1 /****************************************************************************** 2 * 3 * (C)Copyright 1998,1999 SysKonnect, 4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH. 5 * 6 * See the file "skfddi.c" for further information. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * The information in this file is provided "AS IS" without warranty. 14 * 15 ******************************************************************************/ 16 17 /* 18 * FORMAC+ Driver for tag mode 19 */ 20 21 #include "h/types.h" 22 #include "h/fddi.h" 23 #include "h/smc.h" 24 #include "h/supern_2.h" 25 #include <linux/bitrev.h> 26 #include <linux/etherdevice.h> 27 28 #ifndef lint 29 static const char ID_sccs[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ; 30 #endif 31 32 #ifndef UNUSED 33 #ifdef lint 34 #define UNUSED(x) (x) = (x) 35 #else 36 #define UNUSED(x) 37 #endif 38 #endif 39 40 #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1) 41 #define MS2BCLK(x) ((x)*12500L) 42 #define US2BCLK(x) ((x)*1250L) 43 44 /* 45 * prototypes for static function 46 */ 47 static void build_claim_beacon(struct s_smc *smc, u_long t_request); 48 static int init_mac(struct s_smc *smc, int all); 49 static void rtm_init(struct s_smc *smc); 50 static void smt_split_up_fifo(struct s_smc *smc); 51 52 #if (!defined(NO_SMT_PANIC) || defined(DEBUG)) 53 static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n"; 54 static char cam_warning [] = "E_SMT_004: CAM still busy\n"; 55 #endif 56 57 #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP)) 58 59 #define CHECK_NPP() { unsigned int k = 10000 ;\ 60 while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\ 61 if (!k) { \ 62 SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \ 63 } \ 64 } 65 66 #define CHECK_CAM() { unsigned int k = 10 ;\ 67 while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\ 68 if (!k) { \ 69 SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \ 70 } \ 71 } 72 73 const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}}; 74 static const struct fddi_addr null_addr = {{0,0,0,0,0,0}}; 75 static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}}; 76 77 static const u_short my_said = 0xffff ; /* short address (n.u.) */ 78 static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */ 79 80 /* 81 * define my address 82 */ 83 #ifdef USE_CAN_ADDR 84 #define MA smc->hw.fddi_canon_addr 85 #else 86 #define MA smc->hw.fddi_home_addr 87 #endif 88 89 90 /* 91 * useful interrupt bits 92 */ 93 static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ; 94 static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0| 95 FM_STBURS | FM_STBURA0 ; 96 97 /* delete FM_SRBFL after tests */ 98 static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL | 99 FM_SMYCLM ; 100 static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR | 101 FM_SERRCTR | FM_SLSTCTR | 102 FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ; 103 104 static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ; 105 static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ; 106 107 static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC | 108 FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ; 109 110 111 static u_long mac_get_tneg(struct s_smc *smc) 112 { 113 u_long tneg ; 114 115 tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ; 116 return (u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) | 117 0xffe00000L) ; 118 } 119 120 void mac_update_counter(struct s_smc *smc) 121 { 122 smc->mib.m[MAC0].fddiMACFrame_Ct = 123 (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L) 124 + (u_short) inpw(FM_A(FM_FCNTR)) ; 125 smc->mib.m[MAC0].fddiMACLost_Ct = 126 (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L) 127 + (u_short) inpw(FM_A(FM_LCNTR)) ; 128 smc->mib.m[MAC0].fddiMACError_Ct = 129 (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L) 130 + (u_short) inpw(FM_A(FM_ECNTR)) ; 131 smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ; 132 #ifdef SMT_REAL_TOKEN_CT 133 /* 134 * If the token counter is emulated it is updated in smt_event. 135 */ 136 TBD 137 #else 138 smt_emulate_token_ct( smc, MAC0 ); 139 #endif 140 } 141 142 /* 143 * write long value into buffer memory over memory data register (MDR), 144 */ 145 static void write_mdr(struct s_smc *smc, u_long val) 146 { 147 CHECK_NPP() ; 148 MDRW(val) ; 149 } 150 151 #if 0 152 /* 153 * read long value from buffer memory over memory data register (MDR), 154 */ 155 static u_long read_mdr(struct s_smc *smc, unsigned int addr) 156 { 157 long p ; 158 CHECK_NPP() ; 159 MARR(addr) ; 160 outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ; 161 CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */ 162 /* p = MDRR() ; */ /* bad read values if the workaround */ 163 /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/ 164 /* is used */ 165 p = (u_long)inpw(FM_A(FM_MDRU))<<16 ; 166 p += (u_long)inpw(FM_A(FM_MDRL)) ; 167 return p; 168 } 169 #endif 170 171 /* 172 * clear buffer memory 173 */ 174 static void init_ram(struct s_smc *smc) 175 { 176 u_short i ; 177 178 smc->hw.fp.fifo.rbc_ram_start = 0 ; 179 smc->hw.fp.fifo.rbc_ram_end = 180 smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ; 181 CHECK_NPP() ; 182 MARW(smc->hw.fp.fifo.rbc_ram_start) ; 183 for (i = smc->hw.fp.fifo.rbc_ram_start; 184 i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++) 185 write_mdr(smc,0L) ; 186 /* Erase the last byte too */ 187 write_mdr(smc,0L) ; 188 } 189 190 /* 191 * set receive FIFO pointer 192 */ 193 static void set_recvptr(struct s_smc *smc) 194 { 195 /* 196 * initialize the pointer for receive queue 1 197 */ 198 outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */ 199 outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */ 200 outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */ 201 outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */ 202 203 /* 204 * initialize the pointer for receive queue 2 205 */ 206 if (smc->hw.fp.fifo.rx2_fifo_size) { 207 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ; 208 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ; 209 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ; 210 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; 211 } 212 else { 213 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; 214 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; 215 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; 216 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; 217 } 218 } 219 220 /* 221 * set transmit FIFO pointer 222 */ 223 static void set_txptr(struct s_smc *smc) 224 { 225 outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */ 226 227 /* 228 * initialize the pointer for asynchronous transmit queue 229 */ 230 outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */ 231 outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */ 232 outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */ 233 outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */ 234 235 /* 236 * initialize the pointer for synchronous transmit queue 237 */ 238 if (smc->hw.fp.fifo.tx_s_size) { 239 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ; 240 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ; 241 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ; 242 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; 243 } 244 else { 245 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ; 246 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ; 247 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ; 248 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; 249 } 250 } 251 252 /* 253 * init memory buffer management registers 254 */ 255 static void init_rbc(struct s_smc *smc) 256 { 257 u_short rbc_ram_addr ; 258 259 /* 260 * set unused pointers or permanent pointers 261 */ 262 rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ; 263 264 outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */ 265 outpw(FM_A(FM_WPXA1),rbc_ram_addr) ; 266 outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ; 267 outpw(FM_A(FM_EAA1),rbc_ram_addr) ; 268 269 set_recvptr(smc) ; 270 set_txptr(smc) ; 271 } 272 273 /* 274 * init rx pointer 275 */ 276 static void init_rx(struct s_smc *smc) 277 { 278 struct s_smt_rx_queue *queue ; 279 280 /* 281 * init all tx data structures for receive queue 1 282 */ 283 smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ; 284 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ; 285 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ; 286 287 /* 288 * init all tx data structures for receive queue 2 289 */ 290 smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ; 291 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ; 292 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ; 293 } 294 295 /* 296 * set the TSYNC register of the FORMAC to regulate synchronous transmission 297 */ 298 void set_formac_tsync(struct s_smc *smc, long sync_bw) 299 { 300 outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ; 301 } 302 303 /* 304 * init all tx data structures 305 */ 306 static void init_tx(struct s_smc *smc) 307 { 308 struct s_smt_tx_queue *queue ; 309 310 /* 311 * init all tx data structures for the synchronous queue 312 */ 313 smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ; 314 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ; 315 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ; 316 317 #ifdef ESS 318 set_formac_tsync(smc,smc->ess.sync_bw) ; 319 #endif 320 321 /* 322 * init all tx data structures for the asynchronous queue 0 323 */ 324 smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ; 325 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ; 326 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ; 327 328 329 llc_recover_tx(smc) ; 330 } 331 332 static void mac_counter_init(struct s_smc *smc) 333 { 334 int i ; 335 u_long *ec ; 336 337 /* 338 * clear FORMAC+ frame-, lost- and error counter 339 */ 340 outpw(FM_A(FM_FCNTR),0) ; 341 outpw(FM_A(FM_LCNTR),0) ; 342 outpw(FM_A(FM_ECNTR),0) ; 343 /* 344 * clear internal error counter structure 345 */ 346 ec = (u_long *)&smc->hw.fp.err_stats ; 347 for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--) 348 *ec++ = 0L ; 349 smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ; 350 } 351 352 /* 353 * set FORMAC address, and t_request 354 */ 355 static void set_formac_addr(struct s_smc *smc) 356 { 357 long t_requ = smc->mib.m[MAC0].fddiMACT_Req ; 358 359 outpw(FM_A(FM_SAID),my_said) ; /* set short address */ 360 outpw(FM_A(FM_LAIL),(unsigned short)((smc->hw.fddi_home_addr.a[4]<<8) + 361 smc->hw.fddi_home_addr.a[5])) ; 362 outpw(FM_A(FM_LAIC),(unsigned short)((smc->hw.fddi_home_addr.a[2]<<8) + 363 smc->hw.fddi_home_addr.a[3])) ; 364 outpw(FM_A(FM_LAIM),(unsigned short)((smc->hw.fddi_home_addr.a[0]<<8) + 365 smc->hw.fddi_home_addr.a[1])) ; 366 367 outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */ 368 369 outpw(FM_A(FM_LAGL),(unsigned short)((smc->hw.fp.group_addr.a[4]<<8) + 370 smc->hw.fp.group_addr.a[5])) ; 371 outpw(FM_A(FM_LAGC),(unsigned short)((smc->hw.fp.group_addr.a[2]<<8) + 372 smc->hw.fp.group_addr.a[3])) ; 373 outpw(FM_A(FM_LAGM),(unsigned short)((smc->hw.fp.group_addr.a[0]<<8) + 374 smc->hw.fp.group_addr.a[1])) ; 375 376 /* set r_request regs. (MSW & LSW of TRT ) */ 377 outpw(FM_A(FM_TREQ1),(unsigned short)(t_requ>>16)) ; 378 outpw(FM_A(FM_TREQ0),(unsigned short)t_requ) ; 379 } 380 381 static void set_int(char *p, int l) 382 { 383 p[0] = (char)(l >> 24) ; 384 p[1] = (char)(l >> 16) ; 385 p[2] = (char)(l >> 8) ; 386 p[3] = (char)(l >> 0) ; 387 } 388 389 /* 390 * copy TX descriptor to buffer mem 391 * append FC field and MAC frame 392 * if more bit is set in descr 393 * append pointer to descriptor (endless loop) 394 * else 395 * append 'end of chain' pointer 396 */ 397 static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac, 398 unsigned int off, int len) 399 /* u_long td; transmit descriptor */ 400 /* struct fddi_mac *mac; mac frame pointer */ 401 /* unsigned int off; start address within buffer memory */ 402 /* int len ; length of the frame including the FC */ 403 { 404 int i ; 405 __le32 *p ; 406 407 CHECK_NPP() ; 408 MARW(off) ; /* set memory address reg for writes */ 409 410 p = (__le32 *) mac ; 411 for (i = (len + 3)/4 ; i ; i--) { 412 if (i == 1) { 413 /* last word, set the tag bit */ 414 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; 415 } 416 write_mdr(smc,le32_to_cpu(*p)) ; 417 p++ ; 418 } 419 420 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ 421 write_mdr(smc,td) ; /* write over memory data reg to buffer */ 422 } 423 424 /* 425 BEGIN_MANUAL_ENTRY(module;tests;3) 426 How to test directed beacon frames 427 ---------------------------------------------------------------- 428 429 o Insert a break point in the function build_claim_beacon() 430 before calling copy_tx_mac() for building the claim frame. 431 o Modify the RM3_DETECT case so that the RM6_DETECT state 432 will always entered from the RM3_DETECT state (function rmt_fsm(), 433 rmt.c) 434 o Compile the driver. 435 o Set the parameter TREQ in the protocol.ini or net.cfg to a 436 small value to make sure your station will win the claim 437 process. 438 o Start the driver. 439 o When you reach the break point, modify the SA and DA address 440 of the claim frame (e.g. SA = DA = 10005affffff). 441 o When you see RM3_DETECT and RM6_DETECT, observe the direct 442 beacon frames on the UPPSLANA. 443 444 END_MANUAL_ENTRY 445 */ 446 static void directed_beacon(struct s_smc *smc) 447 { 448 SK_LOC_DECL(__le32,a[2]) ; 449 450 /* 451 * set UNA in frame 452 * enable FORMAC to send endless queue of directed beacon 453 * important: the UNA starts at byte 1 (not at byte 0) 454 */ 455 * (char *) a = (char) ((long)DBEACON_INFO<<24L) ; 456 a[1] = 0 ; 457 memcpy((char *)a+1, (char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr, ETH_ALEN); 458 459 CHECK_NPP() ; 460 /* set memory address reg for writes */ 461 MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ; 462 write_mdr(smc,le32_to_cpu(a[0])) ; 463 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */ 464 write_mdr(smc,le32_to_cpu(a[1])) ; 465 466 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ; 467 } 468 469 /* 470 setup claim & beacon pointer 471 NOTE : 472 special frame packets end with a pointer to their own 473 descriptor, and the MORE bit is set in the descriptor 474 */ 475 static void build_claim_beacon(struct s_smc *smc, u_long t_request) 476 { 477 u_int td ; 478 int len ; 479 struct fddi_mac_sf *mac ; 480 481 /* 482 * build claim packet 483 */ 484 len = 17 ; 485 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; 486 mac = &smc->hw.fp.mac_sfb ; 487 mac->mac_fc = FC_CLAIM ; 488 /* DA == SA in claim frame */ 489 mac->mac_source = mac->mac_dest = MA ; 490 /* 2's complement */ 491 set_int((char *)mac->mac_info,(int)t_request) ; 492 493 copy_tx_mac(smc,td,(struct fddi_mac *)mac, 494 smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ; 495 /* set CLAIM start pointer */ 496 outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ; 497 498 /* 499 * build beacon packet 500 */ 501 len = 17 ; 502 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; 503 mac->mac_fc = FC_BEACON ; 504 mac->mac_source = MA ; 505 mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */ 506 set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ; 507 508 copy_tx_mac(smc,td,(struct fddi_mac *)mac, 509 smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ; 510 /* set beacon start pointer */ 511 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ; 512 513 /* 514 * build directed beacon packet 515 * contains optional UNA 516 */ 517 len = 23 ; 518 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; 519 mac->mac_fc = FC_BEACON ; 520 mac->mac_source = MA ; 521 mac->mac_dest = dbeacon_multi ; /* multicast */ 522 set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ; 523 set_int((char *) mac->mac_info+4,0) ; 524 set_int((char *) mac->mac_info+8,0) ; 525 526 copy_tx_mac(smc,td,(struct fddi_mac *)mac, 527 smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ; 528 529 /* end of claim/beacon queue */ 530 outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ; 531 532 outpw(FM_A(FM_WPXSF),0) ; 533 outpw(FM_A(FM_RPXSF),0) ; 534 } 535 536 static void formac_rcv_restart(struct s_smc *smc) 537 { 538 /* enable receive function */ 539 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; 540 541 outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */ 542 } 543 544 void formac_tx_restart(struct s_smc *smc) 545 { 546 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ 547 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ 548 } 549 550 static void enable_formac(struct s_smc *smc) 551 { 552 /* set formac IMSK : 0 enables irq */ 553 outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u); 554 outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l); 555 outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u); 556 outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l); 557 outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u); 558 outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l); 559 } 560 561 #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */ 562 /* The FORMACs tx complete IRQ should be used any longer */ 563 564 /* 565 BEGIN_MANUAL_ENTRY(if,func;others;4) 566 567 void enable_tx_irq(smc, queue) 568 struct s_smc *smc ; 569 u_short queue ; 570 571 Function DOWNCALL (SMT, fplustm.c) 572 enable_tx_irq() enables the FORMACs transmit complete 573 interrupt of the queue. 574 575 Para queue = QUEUE_S: synchronous queue 576 = QUEUE_A0: asynchronous queue 577 578 Note After any ring operational change the transmit complete 579 interrupts are disabled. 580 The operating system dependent module must enable 581 the transmit complete interrupt of a queue, 582 - when it queues the first frame, 583 because of no transmit resources are beeing 584 available and 585 - when it escapes from the function llc_restart_tx 586 while some frames are still queued. 587 588 END_MANUAL_ENTRY 589 */ 590 void enable_tx_irq(struct s_smc *smc, u_short queue) 591 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ 592 { 593 u_short imask ; 594 595 imask = ~(inpw(FM_A(FM_IMSK1U))) ; 596 597 if (queue == 0) { 598 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ; 599 } 600 if (queue == 1) { 601 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ; 602 } 603 } 604 605 /* 606 BEGIN_MANUAL_ENTRY(if,func;others;4) 607 608 void disable_tx_irq(smc, queue) 609 struct s_smc *smc ; 610 u_short queue ; 611 612 Function DOWNCALL (SMT, fplustm.c) 613 disable_tx_irq disables the FORMACs transmit complete 614 interrupt of the queue 615 616 Para queue = QUEUE_S: synchronous queue 617 = QUEUE_A0: asynchronous queue 618 619 Note The operating system dependent module should disable 620 the transmit complete interrupts if it escapes from the 621 function llc_restart_tx and no frames are queued. 622 623 END_MANUAL_ENTRY 624 */ 625 void disable_tx_irq(struct s_smc *smc, u_short queue) 626 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ 627 { 628 u_short imask ; 629 630 imask = ~(inpw(FM_A(FM_IMSK1U))) ; 631 632 if (queue == 0) { 633 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ; 634 } 635 if (queue == 1) { 636 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ; 637 } 638 } 639 #endif 640 641 static void disable_formac(struct s_smc *smc) 642 { 643 /* clear formac IMSK : 1 disables irq */ 644 outpw(FM_A(FM_IMSK1U),MW) ; 645 outpw(FM_A(FM_IMSK1L),MW) ; 646 outpw(FM_A(FM_IMSK2U),MW) ; 647 outpw(FM_A(FM_IMSK2L),MW) ; 648 outpw(FM_A(FM_IMSK3U),MW) ; 649 outpw(FM_A(FM_IMSK3L),MW) ; 650 } 651 652 653 static void mac_ring_up(struct s_smc *smc, int up) 654 { 655 if (up) { 656 formac_rcv_restart(smc) ; /* enable receive function */ 657 smc->hw.mac_ring_is_up = TRUE ; 658 llc_restart_tx(smc) ; /* TX queue */ 659 } 660 else { 661 /* disable receive function */ 662 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; 663 664 /* abort current transmit activity */ 665 outpw(FM_A(FM_CMDREG2),FM_IACTR) ; 666 667 smc->hw.mac_ring_is_up = FALSE ; 668 } 669 } 670 671 /*--------------------------- ISR handling ----------------------------------*/ 672 /* 673 * mac1_irq is in drvfbi.c 674 */ 675 676 /* 677 * mac2_irq: status bits for the receive queue 1, and ring status 678 * ring status indication bits 679 */ 680 void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l) 681 { 682 u_short change_s2l ; 683 u_short change_s2u ; 684 685 /* (jd) 22-Feb-1999 686 * Restart 2_DMax Timer after end of claiming or beaconing 687 */ 688 if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) { 689 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; 690 } 691 else if (code_s2l & (FM_STKISS)) { 692 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; 693 } 694 695 /* 696 * XOR current st bits with the last to avoid useless RMT event queuing 697 */ 698 change_s2l = smc->hw.fp.s2l ^ code_s2l ; 699 change_s2u = smc->hw.fp.s2u ^ code_s2u ; 700 701 if ((change_s2l & FM_SRNGOP) || 702 (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) { 703 if (code_s2l & FM_SRNGOP) { 704 mac_ring_up(smc,1) ; 705 queue_event(smc,EVENT_RMT,RM_RING_OP) ; 706 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; 707 } 708 else { 709 mac_ring_up(smc,0) ; 710 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; 711 } 712 goto mac2_end ; 713 } 714 if (code_s2l & FM_SMISFRM) { /* missed frame */ 715 smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ; 716 } 717 if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */ 718 FM_SRBFL)) { /* recv. buffer full */ 719 smc->hw.mac_ct.mac_r_restart_counter++ ; 720 /* formac_rcv_restart(smc) ; */ 721 smt_stat_counter(smc,1) ; 722 /* goto mac2_end ; */ 723 } 724 if (code_s2u & FM_SOTRBEC) 725 queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ; 726 if (code_s2u & FM_SMYBEC) 727 queue_event(smc,EVENT_RMT,RM_MY_BEACON) ; 728 if (change_s2u & code_s2u & FM_SLOCLM) { 729 DB_RMTN(2, "RMT : lower claim received"); 730 } 731 if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) { 732 /* 733 * This is my claim and that claim is not detected as a 734 * duplicate one. 735 */ 736 queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ; 737 } 738 if (code_s2l & FM_SDUPCLM) { 739 /* 740 * If a duplicate claim frame (same SA but T_Bid != T_Req) 741 * this flag will be set. 742 * In the RMT state machine we need a RM_VALID_CLAIM event 743 * to do the appropriate state change. 744 * RM(34c) 745 */ 746 queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ; 747 } 748 if (change_s2u & code_s2u & FM_SHICLM) { 749 DB_RMTN(2, "RMT : higher claim received"); 750 } 751 if ( (code_s2l & FM_STRTEXP) || 752 (code_s2l & FM_STRTEXR) ) 753 queue_event(smc,EVENT_RMT,RM_TRT_EXP) ; 754 if (code_s2l & FM_SMULTDA) { 755 /* 756 * The MAC has found a 2. MAC with the same address. 757 * Signal dup_addr_test = failed to RMT state machine. 758 * RM(25) 759 */ 760 smc->r.dup_addr_test = DA_FAILED ; 761 queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ; 762 } 763 if (code_s2u & FM_SBEC) 764 smc->hw.fp.err_stats.err_bec_stat++ ; 765 if (code_s2u & FM_SCLM) 766 smc->hw.fp.err_stats.err_clm_stat++ ; 767 if (code_s2l & FM_STVXEXP) 768 smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ; 769 if ((code_s2u & (FM_SBEC|FM_SCLM))) { 770 if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) { 771 mac_ring_up(smc,0) ; 772 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; 773 774 mac_ring_up(smc,1) ; 775 queue_event(smc,EVENT_RMT,RM_RING_OP) ; 776 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; 777 } 778 } 779 if (code_s2l & FM_SPHINV) 780 smc->hw.fp.err_stats.err_phinv++ ; 781 if (code_s2l & FM_SSIFG) 782 smc->hw.fp.err_stats.err_sifg_det++ ; 783 if (code_s2l & FM_STKISS) 784 smc->hw.fp.err_stats.err_tkiss++ ; 785 if (code_s2l & FM_STKERR) 786 smc->hw.fp.err_stats.err_tkerr++ ; 787 if (code_s2l & FM_SFRMCTR) 788 smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ; 789 if (code_s2l & FM_SERRCTR) 790 smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ; 791 if (code_s2l & FM_SLSTCTR) 792 smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ; 793 if (code_s2u & FM_SERRSF) { 794 SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ; 795 } 796 mac2_end: 797 /* notice old status */ 798 smc->hw.fp.s2l = code_s2l ; 799 smc->hw.fp.s2u = code_s2u ; 800 outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ; 801 } 802 803 /* 804 * mac3_irq: receive queue 2 bits and address detection bits 805 */ 806 void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l) 807 { 808 UNUSED(code_s3l) ; 809 810 if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */ 811 FM_SRBFL2)) { /* recv. buffer full */ 812 smc->hw.mac_ct.mac_r_restart_counter++ ; 813 smt_stat_counter(smc,1); 814 } 815 816 817 if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */ 818 SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ; 819 } 820 if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */ 821 SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ; 822 } 823 } 824 825 826 /* 827 * take formac offline 828 */ 829 static void formac_offline(struct s_smc *smc) 830 { 831 outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */ 832 833 /* disable receive function */ 834 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; 835 836 /* FORMAC+ 'Initialize Mode' */ 837 SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ; 838 839 disable_formac(smc) ; 840 smc->hw.mac_ring_is_up = FALSE ; 841 smc->hw.hw_state = STOPPED ; 842 } 843 844 /* 845 * bring formac online 846 */ 847 static void formac_online(struct s_smc *smc) 848 { 849 enable_formac(smc) ; 850 SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT | 851 smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ; 852 } 853 854 /* 855 * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon) 856 */ 857 int init_fplus(struct s_smc *smc) 858 { 859 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; 860 smc->hw.fp.rx_mode = FM_MDAMA ; 861 smc->hw.fp.group_addr = fddi_broadcast ; 862 smc->hw.fp.func_addr = 0 ; 863 smc->hw.fp.frselreg_init = 0 ; 864 865 init_driver_fplus(smc) ; 866 if (smc->s.sas == SMT_DAS) 867 smc->hw.fp.mdr3init |= FM_MENDAS ; 868 869 smc->hw.mac_ct.mac_nobuf_counter = 0 ; 870 smc->hw.mac_ct.mac_r_restart_counter = 0 ; 871 872 smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ; 873 smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ; 874 smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ; 875 smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ; 876 smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ; 877 smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ; 878 879 smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ; 880 smc->hw.mac_ring_is_up = 0 ; 881 882 mac_counter_init(smc) ; 883 884 /* convert BCKL units to symbol time */ 885 smc->hw.mac_pa.t_neg = (u_long)0 ; 886 smc->hw.mac_pa.t_pri = (u_long)0 ; 887 888 /* make sure all PCI settings are correct */ 889 mac_do_pci_fix(smc) ; 890 891 return init_mac(smc, 1); 892 /* enable_formac(smc) ; */ 893 } 894 895 static int init_mac(struct s_smc *smc, int all) 896 { 897 u_short t_max,x ; 898 u_long time=0 ; 899 900 /* 901 * clear memory 902 */ 903 outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */ 904 set_formac_addr(smc) ; 905 outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */ 906 /* Note: Mode register 2 is set here, incase parity is enabled. */ 907 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; 908 909 if (all) { 910 init_ram(smc) ; 911 } 912 else { 913 /* 914 * reset the HPI, the Master and the BMUs 915 */ 916 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; 917 time = hwt_quick_read(smc) ; 918 } 919 920 /* 921 * set all pointers, frames etc 922 */ 923 smt_split_up_fifo(smc) ; 924 925 init_tx(smc) ; 926 init_rx(smc) ; 927 init_rbc(smc) ; 928 929 build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ; 930 931 /* set RX threshold */ 932 /* see Errata #SN2 Phantom receive overflow */ 933 outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */ 934 935 /* set formac work mode */ 936 outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ; 937 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; 938 outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ; 939 outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ; 940 941 /* set timer */ 942 /* 943 * errata #22 fplus: 944 * T_MAX must not be FFFE 945 * or one of FFDF, FFB8, FF91 (-0x27 etc..) 946 */ 947 t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ; 948 x = t_max/0x27 ; 949 x *= 0x27 ; 950 if ((t_max == 0xfffe) || (t_max - x == 0x16)) 951 t_max-- ; 952 outpw(FM_A(FM_TMAX),(u_short)t_max) ; 953 954 /* BugFix for report #10204 */ 955 if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) { 956 outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ; 957 } else { 958 outpw(FM_A(FM_TVX), 959 (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ; 960 } 961 962 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */ 963 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */ 964 outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */ 965 966 /* Auto unlock receice threshold for receive queue 1 and 2 */ 967 outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ; 968 969 rtm_init(smc) ; /* RT-Monitor */ 970 971 if (!all) { 972 /* 973 * after 10ms, reset the BMUs and repair the rings 974 */ 975 hwt_wait_time(smc,time,MS2BCLK(10)) ; 976 outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ; 977 outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ; 978 outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ; 979 outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ; 980 outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ; 981 outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ; 982 outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ; 983 if (!smc->hw.hw_is_64bit) { 984 outpd(ADDR(B4_R1_F), RX_WATERMARK) ; 985 outpd(ADDR(B5_XA_F), TX_WATERMARK) ; 986 outpd(ADDR(B5_XS_F), TX_WATERMARK) ; 987 } 988 smc->hw.hw_state = STOPPED ; 989 mac_drv_repair_descr(smc) ; 990 } 991 smc->hw.hw_state = STARTED ; 992 993 return 0; 994 } 995 996 997 /* 998 * called by CFM 999 */ 1000 void config_mux(struct s_smc *smc, int mux) 1001 { 1002 plc_config_mux(smc,mux) ; 1003 1004 SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ; 1005 } 1006 1007 /* 1008 * called by RMT 1009 * enable CLAIM/BEACON interrupts 1010 * (only called if these events are of interest, e.g. in DETECT state 1011 * the interrupt must not be permanently enabled 1012 * RMT calls this function periodically (timer driven polling) 1013 */ 1014 void sm_mac_check_beacon_claim(struct s_smc *smc) 1015 { 1016 /* set formac IMSK : 0 enables irq */ 1017 outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ; 1018 /* the driver must receive the directed beacons */ 1019 formac_rcv_restart(smc) ; 1020 process_receive(smc) ; 1021 } 1022 1023 /*-------------------------- interface functions ----------------------------*/ 1024 /* 1025 * control MAC layer (called by RMT) 1026 */ 1027 void sm_ma_control(struct s_smc *smc, int mode) 1028 { 1029 switch(mode) { 1030 case MA_OFFLINE : 1031 /* Add to make the MAC offline in RM0_ISOLATED state */ 1032 formac_offline(smc) ; 1033 break ; 1034 case MA_RESET : 1035 (void)init_mac(smc,0) ; 1036 break ; 1037 case MA_BEACON : 1038 formac_online(smc) ; 1039 break ; 1040 case MA_DIRECTED : 1041 directed_beacon(smc) ; 1042 break ; 1043 case MA_TREQ : 1044 /* 1045 * no actions necessary, TREQ is already set 1046 */ 1047 break ; 1048 } 1049 } 1050 1051 int sm_mac_get_tx_state(struct s_smc *smc) 1052 { 1053 return (inpw(FM_A(FM_STMCHN))>>4) & 7; 1054 } 1055 1056 /* 1057 * multicast functions 1058 */ 1059 1060 static struct s_fpmc* mac_get_mc_table(struct s_smc *smc, 1061 struct fddi_addr *user, 1062 struct fddi_addr *own, 1063 int del, int can) 1064 { 1065 struct s_fpmc *tb ; 1066 struct s_fpmc *slot ; 1067 u_char *p ; 1068 int i ; 1069 1070 /* 1071 * set own = can(user) 1072 */ 1073 *own = *user ; 1074 if (can) { 1075 p = own->a ; 1076 for (i = 0 ; i < 6 ; i++, p++) 1077 *p = bitrev8(*p); 1078 } 1079 slot = NULL; 1080 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ 1081 if (!tb->n) { /* not used */ 1082 if (!del && !slot) /* if !del save first free */ 1083 slot = tb ; 1084 continue ; 1085 } 1086 if (!ether_addr_equal((char *)&tb->a, (char *)own)) 1087 continue ; 1088 return tb; 1089 } 1090 return slot; /* return first free or NULL */ 1091 } 1092 1093 /* 1094 BEGIN_MANUAL_ENTRY(if,func;others;2) 1095 1096 void mac_clear_multicast(smc) 1097 struct s_smc *smc ; 1098 1099 Function DOWNCALL (SMT, fplustm.c) 1100 Clear all multicast entries 1101 1102 END_MANUAL_ENTRY() 1103 */ 1104 void mac_clear_multicast(struct s_smc *smc) 1105 { 1106 struct s_fpmc *tb ; 1107 int i ; 1108 1109 smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */ 1110 /* will not be deleted */ 1111 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ 1112 if (!tb->perm) { 1113 tb->n = 0 ; 1114 } 1115 } 1116 } 1117 1118 /* 1119 BEGIN_MANUAL_ENTRY(if,func;others;2) 1120 1121 int mac_add_multicast(smc,addr,can) 1122 struct s_smc *smc ; 1123 struct fddi_addr *addr ; 1124 int can ; 1125 1126 Function DOWNCALL (SMC, fplustm.c) 1127 Add an entry to the multicast table 1128 1129 Para addr pointer to a multicast address 1130 can = 0: the multicast address has the physical format 1131 = 1: the multicast address has the canonical format 1132 | 0x80 permanent 1133 1134 Returns 0: success 1135 1: address table full 1136 1137 Note After a 'driver reset' or a 'station set address' all 1138 entries of the multicast table are cleared. 1139 In this case the driver has to fill the multicast table again. 1140 After the operating system dependent module filled 1141 the multicast table it must call mac_update_multicast 1142 to activate the new multicast addresses! 1143 1144 END_MANUAL_ENTRY() 1145 */ 1146 int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can) 1147 { 1148 SK_LOC_DECL(struct fddi_addr,own) ; 1149 struct s_fpmc *tb ; 1150 1151 /* 1152 * check if there are free table entries 1153 */ 1154 if (can & 0x80) { 1155 if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) { 1156 return 1; 1157 } 1158 } 1159 else { 1160 if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) { 1161 return 1; 1162 } 1163 } 1164 1165 /* 1166 * find empty slot 1167 */ 1168 if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80))) 1169 return 1; 1170 tb->n++ ; 1171 tb->a = own ; 1172 tb->perm = (can & 0x80) ? 1 : 0 ; 1173 1174 if (can & 0x80) 1175 smc->hw.fp.smt_slots_used++ ; 1176 else 1177 smc->hw.fp.os_slots_used++ ; 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * mode 1184 */ 1185 1186 #define RX_MODE_PROM 0x1 1187 #define RX_MODE_ALL_MULTI 0x2 1188 1189 /* 1190 BEGIN_MANUAL_ENTRY(if,func;others;2) 1191 1192 void mac_update_multicast(smc) 1193 struct s_smc *smc ; 1194 1195 Function DOWNCALL (SMT, fplustm.c) 1196 Update FORMAC multicast registers 1197 1198 END_MANUAL_ENTRY() 1199 */ 1200 void mac_update_multicast(struct s_smc *smc) 1201 { 1202 struct s_fpmc *tb ; 1203 u_char *fu ; 1204 int i ; 1205 1206 /* 1207 * invalidate the CAM 1208 */ 1209 outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ; 1210 1211 /* 1212 * set the functional address 1213 */ 1214 if (smc->hw.fp.func_addr) { 1215 fu = (u_char *) &smc->hw.fp.func_addr ; 1216 outpw(FM_A(FM_AFMASK2),0xffff) ; 1217 outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ; 1218 outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ; 1219 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; 1220 outpw(FM_A(FM_AFCOMP2), 0xc000) ; 1221 outpw(FM_A(FM_AFCOMP1), 0x0000) ; 1222 outpw(FM_A(FM_AFCOMP0), 0x0000) ; 1223 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; 1224 } 1225 1226 /* 1227 * set the mask and the personality register(s) 1228 */ 1229 outpw(FM_A(FM_AFMASK0),0xffff) ; 1230 outpw(FM_A(FM_AFMASK1),0xffff) ; 1231 outpw(FM_A(FM_AFMASK2),0xffff) ; 1232 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; 1233 1234 for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) { 1235 if (tb->n) { 1236 CHECK_CAM() ; 1237 1238 /* 1239 * write the multicast address into the CAM 1240 */ 1241 outpw(FM_A(FM_AFCOMP2), 1242 (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ; 1243 outpw(FM_A(FM_AFCOMP1), 1244 (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ; 1245 outpw(FM_A(FM_AFCOMP0), 1246 (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ; 1247 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; 1248 } 1249 } 1250 } 1251 1252 /* 1253 BEGIN_MANUAL_ENTRY(if,func;others;3) 1254 1255 void mac_set_rx_mode(smc,mode) 1256 struct s_smc *smc ; 1257 int mode ; 1258 1259 Function DOWNCALL/INTERN (SMT, fplustm.c) 1260 This function enables / disables the selected receive. 1261 Don't call this function if the hardware module is 1262 used -- use mac_drv_rx_mode() instead of. 1263 1264 Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts 1265 2 RX_DISABLE_ALLMULTI disable "enable all multicasts" 1266 3 RX_ENABLE_PROMISC enable promiscuous 1267 4 RX_DISABLE_PROMISC disable promiscuous 1268 5 RX_ENABLE_NSA enable reception of NSA frames 1269 6 RX_DISABLE_NSA disable reception of NSA frames 1270 1271 Note The selected receive modes will be lost after 'driver reset' 1272 or 'set station address' 1273 1274 END_MANUAL_ENTRY 1275 */ 1276 void mac_set_rx_mode(struct s_smc *smc, int mode) 1277 { 1278 switch (mode) { 1279 case RX_ENABLE_ALLMULTI : 1280 smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ; 1281 break ; 1282 case RX_DISABLE_ALLMULTI : 1283 smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ; 1284 break ; 1285 case RX_ENABLE_PROMISC : 1286 smc->hw.fp.rx_prom |= RX_MODE_PROM ; 1287 break ; 1288 case RX_DISABLE_PROMISC : 1289 smc->hw.fp.rx_prom &= ~RX_MODE_PROM ; 1290 break ; 1291 case RX_ENABLE_NSA : 1292 smc->hw.fp.nsa_mode = FM_MDAMA ; 1293 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | 1294 smc->hw.fp.nsa_mode ; 1295 break ; 1296 case RX_DISABLE_NSA : 1297 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; 1298 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | 1299 smc->hw.fp.nsa_mode ; 1300 break ; 1301 } 1302 if (smc->hw.fp.rx_prom & RX_MODE_PROM) { 1303 smc->hw.fp.rx_mode = FM_MLIMPROM ; 1304 } 1305 else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) { 1306 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ; 1307 } 1308 else 1309 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ; 1310 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; 1311 mac_update_multicast(smc) ; 1312 } 1313 1314 /* 1315 BEGIN_MANUAL_ENTRY(module;tests;3) 1316 How to test the Restricted Token Monitor 1317 ---------------------------------------------------------------- 1318 1319 o Insert a break point in the function rtm_irq() 1320 o Remove all stations with a restricted token monitor from the 1321 network. 1322 o Connect a UPPS ISA or EISA station to the network. 1323 o Give the FORMAC of UPPS station the command to send 1324 restricted tokens until the ring becomes instable. 1325 o Now connect your test test client. 1326 o The restricted token monitor should detect the restricted token, 1327 and your break point will be reached. 1328 o You can ovserve how the station will clean the ring. 1329 1330 END_MANUAL_ENTRY 1331 */ 1332 void rtm_irq(struct s_smc *smc) 1333 { 1334 outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */ 1335 if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) { 1336 outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */ 1337 DB_RMT("RMT: fddiPATHT_Rmode expired"); 1338 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, 1339 (u_long) FDDI_SMT_EVENT, 1340 (u_long) FDDI_RTT, smt_get_event_word(smc)); 1341 } 1342 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */ 1343 } 1344 1345 static void rtm_init(struct s_smc *smc) 1346 { 1347 outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */ 1348 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */ 1349 } 1350 1351 void rtm_set_timer(struct s_smc *smc) 1352 { 1353 /* 1354 * MIB timer and hardware timer have the same resolution of 80nS 1355 */ 1356 DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns", 1357 (int)smc->mib.a[PATH0].fddiPATHT_Rmode); 1358 outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ; 1359 } 1360 1361 static void smt_split_up_fifo(struct s_smc *smc) 1362 { 1363 1364 /* 1365 BEGIN_MANUAL_ENTRY(module;mem;1) 1366 ------------------------------------------------------------- 1367 RECEIVE BUFFER MEMORY DIVERSION 1368 ------------------------------------------------------------- 1369 1370 R1_RxD == SMT_R1_RXD_COUNT 1371 R2_RxD == SMT_R2_RXD_COUNT 1372 1373 SMT_R1_RXD_COUNT must be unequal zero 1374 1375 | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD 1376 | x 0 | x 1-3 | x < 3 1377 ---------------------------------------------------------------------- 1378 | 63,75 kB | 54,75 | R1_RxD 1379 rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB 1380 | | | R1_RxD+R2_RxD 1381 ---------------------------------------------------------------------- 1382 | | 9 kB | R2_RxD 1383 rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB 1384 | (not used) | | R1_RxD+R2_RxD 1385 1386 END_MANUAL_ENTRY 1387 */ 1388 1389 if (SMT_R1_RXD_COUNT == 0) { 1390 SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ; 1391 } 1392 1393 switch(SMT_R2_RXD_COUNT) { 1394 case 0: 1395 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ; 1396 smc->hw.fp.fifo.rx2_fifo_size = 0 ; 1397 break ; 1398 case 1: 1399 case 2: 1400 case 3: 1401 smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ; 1402 smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ; 1403 break ; 1404 default: /* this is not the real defaule */ 1405 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE * 1406 SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; 1407 smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE * 1408 SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; 1409 break ; 1410 } 1411 1412 /* 1413 BEGIN_MANUAL_ENTRY(module;mem;1) 1414 ------------------------------------------------------------- 1415 TRANSMIT BUFFER MEMORY DIVERSION 1416 ------------------------------------------------------------- 1417 1418 1419 | no sync bw | sync bw available and | sync bw available and 1420 | available | SynchTxMode = SPLIT | SynchTxMode = ALL 1421 ----------------------------------------------------------------------- 1422 sync tx | 0 kB | 32 kB | 55 kB 1423 queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO 1424 ----------------------------------------------------------------------- 1425 async tx | 64 kB | 32 kB | 9 k 1426 queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO 1427 1428 END_MANUAL_ENTRY 1429 */ 1430 1431 /* 1432 * set the tx mode bits 1433 */ 1434 if (smc->mib.a[PATH0].fddiPATHSbaPayload) { 1435 #ifdef ESS 1436 smc->hw.fp.fifo.fifo_config_mode |= 1437 smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ; 1438 #endif 1439 } 1440 else { 1441 smc->hw.fp.fifo.fifo_config_mode &= 1442 ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ; 1443 } 1444 1445 /* 1446 * split up the FIFO 1447 */ 1448 if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) { 1449 if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) { 1450 smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ; 1451 smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ; 1452 } 1453 else { 1454 smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ; 1455 smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ; 1456 } 1457 } 1458 else { 1459 smc->hw.fp.fifo.tx_s_size = 0 ; 1460 smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ; 1461 } 1462 1463 smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start + 1464 RX_FIFO_OFF ; 1465 smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start + 1466 smc->hw.fp.fifo.rx1_fifo_size ; 1467 smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start + 1468 smc->hw.fp.fifo.tx_s_size ; 1469 smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start + 1470 smc->hw.fp.fifo.tx_a0_size ; 1471 1472 DB_SMT("FIFO split: mode = %x", smc->hw.fp.fifo.fifo_config_mode); 1473 DB_SMT("rbc_ram_start = %x rbc_ram_end = %x", 1474 smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end); 1475 DB_SMT("rx1_fifo_start = %x tx_s_start = %x", 1476 smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start); 1477 DB_SMT("tx_a0_start = %x rx2_fifo_start = %x", 1478 smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start); 1479 } 1480 1481 void formac_reinit_tx(struct s_smc *smc) 1482 { 1483 /* 1484 * Split up the FIFO and reinitialize the MAC if synchronous 1485 * bandwidth becomes available but no synchronous queue is 1486 * configured. 1487 */ 1488 if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){ 1489 (void)init_mac(smc,0) ; 1490 } 1491 } 1492 1493