xref: /openbmc/linux/drivers/net/fddi/defza.c (revision 9a20332a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*	FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
3  *
4  *	Copyright (c) 2018  Maciej W. Rozycki
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *	References:
12  *
13  *	Dave Sawyer & Phil Weeks & Frank Itkowsky,
14  *	"DEC FDDIcontroller 700 Port Specification",
15  *	Revision 1.1, Digital Equipment Corporation
16  */
17 
18 /* ------------------------------------------------------------------------- */
19 /* FZA configurable parameters.                                              */
20 
21 /* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024.  */
22 #define FZA_RING_TX_MODE 0
23 
24 /* The number of receive ring descriptors; from 2 up to 256.  */
25 #define FZA_RING_RX_SIZE 256
26 
27 /* End of FZA configurable parameters.  No need to change anything below.    */
28 /* ------------------------------------------------------------------------- */
29 
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/kernel.h>
38 #include <linux/list.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/fddidevice.h>
42 #include <linux/sched.h>
43 #include <linux/skbuff.h>
44 #include <linux/spinlock.h>
45 #include <linux/stat.h>
46 #include <linux/tc.h>
47 #include <linux/timer.h>
48 #include <linux/types.h>
49 #include <linux/wait.h>
50 
51 #include <asm/barrier.h>
52 
53 #include "defza.h"
54 
55 #define DRV_NAME "defza"
56 #define DRV_VERSION "v.1.1.4"
57 #define DRV_RELDATE "Oct  6 2018"
58 
59 static char version[] =
60 	DRV_NAME ": " DRV_VERSION "  " DRV_RELDATE "  Maciej W. Rozycki\n";
61 
62 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
63 MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
64 MODULE_LICENSE("GPL");
65 
66 static int loopback;
67 module_param(loopback, int, 0644);
68 
69 /* Ring Purger Multicast */
70 static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
71 /* Directed Beacon Multicast */
72 static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
73 
74 /* Shorthands for MMIO accesses that we require to be strongly ordered
75  * WRT preceding MMIO accesses.
76  */
77 #define readw_o readw_relaxed
78 #define readl_o readl_relaxed
79 
80 #define writew_o writew_relaxed
81 #define writel_o writel_relaxed
82 
83 /* Shorthands for MMIO accesses that we are happy with being weakly ordered
84  * WRT preceding MMIO accesses.
85  */
86 #define readw_u readw_relaxed
87 #define readl_u readl_relaxed
88 #define readq_u readq_relaxed
89 
90 #define writew_u writew_relaxed
91 #define writel_u writel_relaxed
92 #define writeq_u writeq_relaxed
93 
94 static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
95 						unsigned int length)
96 {
97 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
98 }
99 
100 static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
101 					    unsigned int length)
102 {
103 	return __netdev_alloc_skb(dev, length, GFP_KERNEL);
104 }
105 
106 static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
107 {
108 	unsigned long x, y;
109 
110 	x = (unsigned long)skb->data;
111 	y = ALIGN(x, v);
112 
113 	skb_reserve(skb, y - x);
114 }
115 
116 static inline void fza_reads(const void __iomem *from, void *to,
117 			     unsigned long size)
118 {
119 	if (sizeof(unsigned long) == 8) {
120 		const u64 __iomem *src = from;
121 		const u32 __iomem *src_trail;
122 		u64 *dst = to;
123 		u32 *dst_trail;
124 
125 		for (size = (size + 3) / 4; size > 1; size -= 2)
126 			*dst++ = readq_u(src++);
127 		if (size) {
128 			src_trail = (u32 __iomem *)src;
129 			dst_trail = (u32 *)dst;
130 			*dst_trail = readl_u(src_trail);
131 		}
132 	} else {
133 		const u32 __iomem *src = from;
134 		u32 *dst = to;
135 
136 		for (size = (size + 3) / 4; size; size--)
137 			*dst++ = readl_u(src++);
138 	}
139 }
140 
141 static inline void fza_writes(const void *from, void __iomem *to,
142 			      unsigned long size)
143 {
144 	if (sizeof(unsigned long) == 8) {
145 		const u64 *src = from;
146 		const u32 *src_trail;
147 		u64 __iomem *dst = to;
148 		u32 __iomem *dst_trail;
149 
150 		for (size = (size + 3) / 4; size > 1; size -= 2)
151 			writeq_u(*src++, dst++);
152 		if (size) {
153 			src_trail = (u32 *)src;
154 			dst_trail = (u32 __iomem *)dst;
155 			writel_u(*src_trail, dst_trail);
156 		}
157 	} else {
158 		const u32 *src = from;
159 		u32 __iomem *dst = to;
160 
161 		for (size = (size + 3) / 4; size; size--)
162 			writel_u(*src++, dst++);
163 	}
164 }
165 
166 static inline void fza_moves(const void __iomem *from, void __iomem *to,
167 			     unsigned long size)
168 {
169 	if (sizeof(unsigned long) == 8) {
170 		const u64 __iomem *src = from;
171 		const u32 __iomem *src_trail;
172 		u64 __iomem *dst = to;
173 		u32 __iomem *dst_trail;
174 
175 		for (size = (size + 3) / 4; size > 1; size -= 2)
176 			writeq_u(readq_u(src++), dst++);
177 		if (size) {
178 			src_trail = (u32 __iomem *)src;
179 			dst_trail = (u32 __iomem *)dst;
180 			writel_u(readl_u(src_trail), dst_trail);
181 		}
182 	} else {
183 		const u32 __iomem *src = from;
184 		u32 __iomem *dst = to;
185 
186 		for (size = (size + 3) / 4; size; size--)
187 			writel_u(readl_u(src++), dst++);
188 	}
189 }
190 
191 static inline void fza_zeros(void __iomem *to, unsigned long size)
192 {
193 	if (sizeof(unsigned long) == 8) {
194 		u64 __iomem *dst = to;
195 		u32 __iomem *dst_trail;
196 
197 		for (size = (size + 3) / 4; size > 1; size -= 2)
198 			writeq_u(0, dst++);
199 		if (size) {
200 			dst_trail = (u32 __iomem *)dst;
201 			writel_u(0, dst_trail);
202 		}
203 	} else {
204 		u32 __iomem *dst = to;
205 
206 		for (size = (size + 3) / 4; size; size--)
207 			writel_u(0, dst++);
208 	}
209 }
210 
211 static inline void fza_regs_dump(struct fza_private *fp)
212 {
213 	pr_debug("%s: iomem registers:\n", fp->name);
214 	pr_debug(" reset:           0x%04x\n", readw_o(&fp->regs->reset));
215 	pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
216 	pr_debug(" status:          0x%04x\n", readw_u(&fp->regs->status));
217 	pr_debug(" interrupt mask:  0x%04x\n", readw_u(&fp->regs->int_mask));
218 	pr_debug(" control A:       0x%04x\n", readw_u(&fp->regs->control_a));
219 	pr_debug(" control B:       0x%04x\n", readw_u(&fp->regs->control_b));
220 }
221 
222 static inline void fza_do_reset(struct fza_private *fp)
223 {
224 	/* Reset the board. */
225 	writew_o(FZA_RESET_INIT, &fp->regs->reset);
226 	readw_o(&fp->regs->reset);	/* Synchronize. */
227 	readw_o(&fp->regs->reset);	/* Read it back for a small delay. */
228 	writew_o(FZA_RESET_CLR, &fp->regs->reset);
229 
230 	/* Enable all interrupt events we handle. */
231 	writew_o(fp->int_mask, &fp->regs->int_mask);
232 	readw_o(&fp->regs->int_mask);	/* Synchronize. */
233 }
234 
235 static inline void fza_do_shutdown(struct fza_private *fp)
236 {
237 	/* Disable the driver mode. */
238 	writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
239 
240 	/* And reset the board. */
241 	writew_o(FZA_RESET_INIT, &fp->regs->reset);
242 	readw_o(&fp->regs->reset);	/* Synchronize. */
243 	writew_o(FZA_RESET_CLR, &fp->regs->reset);
244 	readw_o(&fp->regs->reset);	/* Synchronize. */
245 }
246 
247 static int fza_reset(struct fza_private *fp)
248 {
249 	unsigned long flags;
250 	uint status, state;
251 	long t;
252 
253 	pr_info("%s: resetting the board...\n", fp->name);
254 
255 	spin_lock_irqsave(&fp->lock, flags);
256 	fp->state_chg_flag = 0;
257 	fza_do_reset(fp);
258 	spin_unlock_irqrestore(&fp->lock, flags);
259 
260 	/* DEC says RESET needs up to 30 seconds to complete.  My DEFZA-AA
261 	 * rev. C03 happily finishes in 9.7 seconds. :-)  But we need to
262 	 * be on the safe side...
263 	 */
264 	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
265 			       45 * HZ);
266 	status = readw_u(&fp->regs->status);
267 	state = FZA_STATUS_GET_STATE(status);
268 	if (fp->state_chg_flag == 0) {
269 		pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
270 		return -EIO;
271 	}
272 	if (state != FZA_STATE_UNINITIALIZED) {
273 		pr_err("%s: RESET failed!, state %x, failure ID %x\n",
274 		       fp->name, state, FZA_STATUS_GET_TEST(status));
275 		return -EIO;
276 	}
277 	pr_info("%s: OK\n", fp->name);
278 	pr_debug("%s: RESET: %lums elapsed\n", fp->name,
279 		 (45 * HZ - t) * 1000 / HZ);
280 
281 	return 0;
282 }
283 
284 static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
285 						 int command)
286 {
287 	struct fza_private *fp = netdev_priv(dev);
288 	struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
289 	unsigned int old_mask, new_mask;
290 	union fza_cmd_buf __iomem *buf;
291 	struct netdev_hw_addr *ha;
292 	int i;
293 
294 	old_mask = fp->int_mask;
295 	new_mask = old_mask & ~FZA_MASK_STATE_CHG;
296 	writew_u(new_mask, &fp->regs->int_mask);
297 	readw_o(&fp->regs->int_mask);			/* Synchronize. */
298 	fp->int_mask = new_mask;
299 
300 	buf = fp->mmio + readl_u(&ring->buffer);
301 
302 	if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
303 	    FZA_RING_OWN_HOST) {
304 		pr_warn("%s: command buffer full, command: %u!\n", fp->name,
305 			command);
306 		return NULL;
307 	}
308 
309 	switch (command) {
310 	case FZA_RING_CMD_INIT:
311 		writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
312 		writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
313 		fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
314 		break;
315 
316 	case FZA_RING_CMD_MODCAM:
317 		i = 0;
318 		fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
319 			   sizeof(*buf->cam.hw_addr));
320 		fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
321 			   sizeof(*buf->cam.hw_addr));
322 		netdev_for_each_mc_addr(ha, dev) {
323 			if (i >= FZA_CMD_CAM_SIZE)
324 				break;
325 			fza_writes(ha->addr, &buf->cam.hw_addr[i++],
326 				   sizeof(*buf->cam.hw_addr));
327 		}
328 		while (i < FZA_CMD_CAM_SIZE)
329 			fza_zeros(&buf->cam.hw_addr[i++],
330 				  sizeof(*buf->cam.hw_addr));
331 		break;
332 
333 	case FZA_RING_CMD_PARAM:
334 		writel_u(loopback, &buf->param.loop_mode);
335 		writel_u(fp->t_max, &buf->param.t_max);
336 		writel_u(fp->t_req, &buf->param.t_req);
337 		writel_u(fp->tvx, &buf->param.tvx);
338 		writel_u(fp->lem_threshold, &buf->param.lem_threshold);
339 		fza_writes(&fp->station_id, &buf->param.station_id,
340 			   sizeof(buf->param.station_id));
341 		/* Convert to milliseconds due to buggy firmware. */
342 		writel_u(fp->rtoken_timeout / 12500,
343 			 &buf->param.rtoken_timeout);
344 		writel_u(fp->ring_purger, &buf->param.ring_purger);
345 		break;
346 
347 	case FZA_RING_CMD_MODPROM:
348 		if (dev->flags & IFF_PROMISC) {
349 			writel_u(1, &buf->modprom.llc_prom);
350 			writel_u(1, &buf->modprom.smt_prom);
351 		} else {
352 			writel_u(0, &buf->modprom.llc_prom);
353 			writel_u(0, &buf->modprom.smt_prom);
354 		}
355 		if (dev->flags & IFF_ALLMULTI ||
356 		    netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
357 			writel_u(1, &buf->modprom.llc_multi);
358 		else
359 			writel_u(0, &buf->modprom.llc_multi);
360 		writel_u(1, &buf->modprom.llc_bcast);
361 		break;
362 	}
363 
364 	/* Trigger the command. */
365 	writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
366 	writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
367 
368 	fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
369 
370 	fp->int_mask = old_mask;
371 	writew_u(fp->int_mask, &fp->regs->int_mask);
372 
373 	return ring;
374 }
375 
376 static int fza_init_send(struct net_device *dev,
377 			 struct fza_cmd_init *__iomem *init)
378 {
379 	struct fza_private *fp = netdev_priv(dev);
380 	struct fza_ring_cmd __iomem *ring;
381 	unsigned long flags;
382 	u32 stat;
383 	long t;
384 
385 	spin_lock_irqsave(&fp->lock, flags);
386 	fp->cmd_done_flag = 0;
387 	ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
388 	spin_unlock_irqrestore(&fp->lock, flags);
389 	if (!ring)
390 		/* This should never happen in the uninitialized state,
391 		 * so do not try to recover and just consider it fatal.
392 		 */
393 		return -ENOBUFS;
394 
395 	/* INIT may take quite a long time (160ms for my C03). */
396 	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
397 	if (fp->cmd_done_flag == 0) {
398 		pr_err("%s: INIT command timed out!, state %x\n", fp->name,
399 		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
400 		return -EIO;
401 	}
402 	stat = readl_u(&ring->stat);
403 	if (stat != FZA_RING_STAT_SUCCESS) {
404 		pr_err("%s: INIT command failed!, status %02x, state %x\n",
405 		       fp->name, stat,
406 		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
407 		return -EIO;
408 	}
409 	pr_debug("%s: INIT: %lums elapsed\n", fp->name,
410 		 (3 * HZ - t) * 1000 / HZ);
411 
412 	if (init)
413 		*init = fp->mmio + readl_u(&ring->buffer);
414 	return 0;
415 }
416 
417 static void fza_rx_init(struct fza_private *fp)
418 {
419 	int i;
420 
421 	/* Fill the host receive descriptor ring. */
422 	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
423 		writel_o(0, &fp->ring_hst_rx[i].rmc);
424 		writel_o((fp->rx_dma[i] + 0x1000) >> 9,
425 			 &fp->ring_hst_rx[i].buffer1);
426 		writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
427 			 &fp->ring_hst_rx[i].buf0_own);
428 	}
429 }
430 
431 static void fza_set_rx_mode(struct net_device *dev)
432 {
433 	fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
434 	fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
435 }
436 
437 union fza_buffer_txp {
438 	struct fza_buffer_tx *data_ptr;
439 	struct fza_buffer_tx __iomem *mmio_ptr;
440 };
441 
442 static int fza_do_xmit(union fza_buffer_txp ub, int len,
443 		       struct net_device *dev, int smt)
444 {
445 	struct fza_private *fp = netdev_priv(dev);
446 	struct fza_buffer_tx __iomem *rmc_tx_ptr;
447 	int i, first, frag_len, left_len;
448 	u32 own, rmc;
449 
450 	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
451 	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
452 	     FZA_TX_BUFFER_SIZE) < len)
453 		return 1;
454 
455 	first = fp->ring_rmc_tx_index;
456 
457 	left_len = len;
458 	frag_len = FZA_TX_BUFFER_SIZE;
459 	/* First descriptor is relinquished last. */
460 	own = FZA_RING_TX_OWN_HOST;
461 	/* First descriptor carries frame length; we don't use cut-through. */
462 	rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
463 	do {
464 		i = fp->ring_rmc_tx_index;
465 		rmc_tx_ptr = &fp->buffer_tx[i];
466 
467 		if (left_len < FZA_TX_BUFFER_SIZE)
468 			frag_len = left_len;
469 		left_len -= frag_len;
470 
471 		/* Length must be a multiple of 4 as only word writes are
472 		 * permitted!
473 		 */
474 		frag_len = (frag_len + 3) & ~3;
475 		if (smt)
476 			fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
477 		else
478 			fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
479 
480 		if (left_len == 0)
481 			rmc |= FZA_RING_TX_EOP;		/* Mark last frag. */
482 
483 		writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
484 		writel_o(own, &fp->ring_rmc_tx[i].own);
485 
486 		ub.data_ptr++;
487 		fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
488 					fp->ring_rmc_tx_size;
489 
490 		/* Settings for intermediate frags. */
491 		own = FZA_RING_TX_OWN_RMC;
492 		rmc = 0;
493 	} while (left_len > 0);
494 
495 	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
496 	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
497 	     FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
498 		netif_stop_queue(dev);
499 		pr_debug("%s: queue stopped\n", fp->name);
500 	}
501 
502 	writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
503 
504 	/* Go, go, go! */
505 	writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
506 
507 	return 0;
508 }
509 
510 static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
511 			   u32 rmc, struct net_device *dev)
512 {
513 	struct fza_private *fp = netdev_priv(dev);
514 	struct fza_buffer_tx __iomem *smt_rx_ptr;
515 	u32 own;
516 	int i;
517 
518 	i = fp->ring_smt_rx_index;
519 	own = readl_o(&fp->ring_smt_rx[i].own);
520 	if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
521 		return 1;
522 
523 	smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
524 
525 	/* Length must be a multiple of 4 as only word writes are permitted! */
526 	fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
527 
528 	writel_o(rmc, &fp->ring_smt_rx[i].rmc);
529 	writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
530 
531 	fp->ring_smt_rx_index =
532 		(fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
533 
534 	/* Grab it! */
535 	writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
536 
537 	return 0;
538 }
539 
540 static void fza_tx(struct net_device *dev)
541 {
542 	struct fza_private *fp = netdev_priv(dev);
543 	u32 own, rmc;
544 	int i;
545 
546 	while (1) {
547 		i = fp->ring_rmc_txd_index;
548 		if (i == fp->ring_rmc_tx_index)
549 			break;
550 		own = readl_o(&fp->ring_rmc_tx[i].own);
551 		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
552 			break;
553 
554 		rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
555 		/* Only process the first descriptor. */
556 		if ((rmc & FZA_RING_TX_SOP) != 0) {
557 			if ((rmc & FZA_RING_TX_DCC_MASK) ==
558 			    FZA_RING_TX_DCC_SUCCESS) {
559 				int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
560 								/* Omit PRH. */
561 
562 				fp->stats.tx_packets++;
563 				fp->stats.tx_bytes += pkt_len;
564 			} else {
565 				fp->stats.tx_errors++;
566 				switch (rmc & FZA_RING_TX_DCC_MASK) {
567 				case FZA_RING_TX_DCC_DTP_SOP:
568 				case FZA_RING_TX_DCC_DTP:
569 				case FZA_RING_TX_DCC_ABORT:
570 					fp->stats.tx_aborted_errors++;
571 					break;
572 				case FZA_RING_TX_DCC_UNDRRUN:
573 					fp->stats.tx_fifo_errors++;
574 					break;
575 				case FZA_RING_TX_DCC_PARITY:
576 				default:
577 					break;
578 				}
579 			}
580 		}
581 
582 		fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
583 					 fp->ring_rmc_tx_size;
584 	}
585 
586 	if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
587 	       fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
588 	     FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
589 		if (fp->queue_active) {
590 			netif_wake_queue(dev);
591 			pr_debug("%s: queue woken\n", fp->name);
592 		}
593 	}
594 }
595 
596 static inline int fza_rx_err(struct fza_private *fp,
597 			     const u32 rmc, const u8 fc)
598 {
599 	int len, min_len, max_len;
600 
601 	len = rmc & FZA_RING_PBC_MASK;
602 
603 	if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
604 		fp->stats.rx_errors++;
605 
606 		/* Check special status codes. */
607 		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
608 			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
609 		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
610 		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
611 			if (len >= 8190)
612 				fp->stats.rx_length_errors++;
613 			return 1;
614 		}
615 		if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
616 			    FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
617 		     (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
618 		      FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
619 			/* Halt the interface to trigger a reset. */
620 			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
621 			readw_o(&fp->regs->control_a);	/* Synchronize. */
622 			return 1;
623 		}
624 
625 		/* Check the MAC status. */
626 		switch (rmc & FZA_RING_RX_RRR_MASK) {
627 		case FZA_RING_RX_RRR_OK:
628 			if ((rmc & FZA_RING_RX_CRC) != 0)
629 				fp->stats.rx_crc_errors++;
630 			else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
631 				 (rmc & FZA_RING_RX_FSB_ERR) != 0)
632 				fp->stats.rx_frame_errors++;
633 			return 1;
634 		case FZA_RING_RX_RRR_SADDR:
635 		case FZA_RING_RX_RRR_DADDR:
636 		case FZA_RING_RX_RRR_ABORT:
637 			/* Halt the interface to trigger a reset. */
638 			writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
639 			readw_o(&fp->regs->control_a);	/* Synchronize. */
640 			return 1;
641 		case FZA_RING_RX_RRR_LENGTH:
642 			fp->stats.rx_frame_errors++;
643 			return 1;
644 		default:
645 			return 1;
646 		}
647 	}
648 
649 	/* Packet received successfully; validate the length. */
650 	switch (fc & FDDI_FC_K_FORMAT_MASK) {
651 	case FDDI_FC_K_FORMAT_MANAGEMENT:
652 		if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
653 			min_len = 37;
654 		else
655 			min_len = 17;
656 		break;
657 	case FDDI_FC_K_FORMAT_LLC:
658 		min_len = 20;
659 		break;
660 	default:
661 		min_len = 17;
662 		break;
663 	}
664 	max_len = 4495;
665 	if (len < min_len || len > max_len) {
666 		fp->stats.rx_errors++;
667 		fp->stats.rx_length_errors++;
668 		return 1;
669 	}
670 
671 	return 0;
672 }
673 
674 static void fza_rx(struct net_device *dev)
675 {
676 	struct fza_private *fp = netdev_priv(dev);
677 	struct sk_buff *skb, *newskb;
678 	struct fza_fddihdr *frame;
679 	dma_addr_t dma, newdma;
680 	u32 own, rmc, buf;
681 	int i, len;
682 	u8 fc;
683 
684 	while (1) {
685 		i = fp->ring_hst_rx_index;
686 		own = readl_o(&fp->ring_hst_rx[i].buf0_own);
687 		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
688 			break;
689 
690 		rmc = readl_u(&fp->ring_hst_rx[i].rmc);
691 		skb = fp->rx_skbuff[i];
692 		dma = fp->rx_dma[i];
693 
694 		/* The RMC doesn't count the preamble and the starting
695 		 * delimiter.  We fix it up here for a total of 3 octets.
696 		 */
697 		dma_rmb();
698 		len = (rmc & FZA_RING_PBC_MASK) + 3;
699 		frame = (struct fza_fddihdr *)skb->data;
700 
701 		/* We need to get at real FC. */
702 		dma_sync_single_for_cpu(fp->bdev,
703 					dma +
704 					((u8 *)&frame->hdr.fc - (u8 *)frame),
705 					sizeof(frame->hdr.fc),
706 					DMA_FROM_DEVICE);
707 		fc = frame->hdr.fc;
708 
709 		if (fza_rx_err(fp, rmc, fc))
710 			goto err_rx;
711 
712 		/* We have to 512-byte-align RX buffers... */
713 		newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
714 		if (newskb) {
715 			fza_skb_align(newskb, 512);
716 			newdma = dma_map_single(fp->bdev, newskb->data,
717 						FZA_RX_BUFFER_SIZE,
718 						DMA_FROM_DEVICE);
719 			if (dma_mapping_error(fp->bdev, newdma)) {
720 				dev_kfree_skb_irq(newskb);
721 				newskb = NULL;
722 			}
723 		}
724 		if (newskb) {
725 			int pkt_len = len - 7;	/* Omit P, SD and FCS. */
726 			int is_multi;
727 			int rx_stat;
728 
729 			dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
730 					 DMA_FROM_DEVICE);
731 
732 			/* Queue SMT frames to the SMT receive ring. */
733 			if ((fc & (FDDI_FC_K_CLASS_MASK |
734 				   FDDI_FC_K_FORMAT_MASK)) ==
735 			     (FDDI_FC_K_CLASS_ASYNC |
736 			      FDDI_FC_K_FORMAT_MANAGEMENT) &&
737 			    (rmc & FZA_RING_RX_DA_MASK) !=
738 			     FZA_RING_RX_DA_PROM) {
739 				if (fza_do_recv_smt((struct fza_buffer_tx *)
740 						    skb->data, len, rmc,
741 						    dev)) {
742 					writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
743 						 &fp->regs->control_a);
744 				}
745 			}
746 
747 			is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
748 
749 			skb_reserve(skb, 3);	/* Skip over P and SD. */
750 			skb_put(skb, pkt_len);	/* And cut off FCS. */
751 			skb->protocol = fddi_type_trans(skb, dev);
752 
753 			rx_stat = netif_rx(skb);
754 			if (rx_stat != NET_RX_DROP) {
755 				fp->stats.rx_packets++;
756 				fp->stats.rx_bytes += pkt_len;
757 				if (is_multi)
758 					fp->stats.multicast++;
759 			} else {
760 				fp->stats.rx_dropped++;
761 			}
762 
763 			skb = newskb;
764 			dma = newdma;
765 			fp->rx_skbuff[i] = skb;
766 			fp->rx_dma[i] = dma;
767 		} else {
768 			fp->stats.rx_dropped++;
769 			pr_notice("%s: memory squeeze, dropping packet\n",
770 				  fp->name);
771 		}
772 
773 err_rx:
774 		writel_o(0, &fp->ring_hst_rx[i].rmc);
775 		buf = (dma + 0x1000) >> 9;
776 		writel_o(buf, &fp->ring_hst_rx[i].buffer1);
777 		buf = dma >> 9 | FZA_RING_OWN_FZA;
778 		writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
779 		fp->ring_hst_rx_index =
780 			(fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
781 	}
782 }
783 
784 static void fza_tx_smt(struct net_device *dev)
785 {
786 	struct fza_private *fp = netdev_priv(dev);
787 	struct fza_buffer_tx __iomem *smt_tx_ptr, *skb_data_ptr;
788 	int i, len;
789 	u32 own;
790 
791 	while (1) {
792 		i = fp->ring_smt_tx_index;
793 		own = readl_o(&fp->ring_smt_tx[i].own);
794 		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
795 			break;
796 
797 		smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
798 		len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
799 
800 		if (!netif_queue_stopped(dev)) {
801 			if (dev_nit_active(dev)) {
802 				struct sk_buff *skb;
803 
804 				/* Length must be a multiple of 4 as only word
805 				 * reads are permitted!
806 				 */
807 				skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
808 				if (!skb)
809 					goto err_no_skb;	/* Drop. */
810 
811 				skb_data_ptr = (struct fza_buffer_tx *)
812 					       skb->data;
813 
814 				fza_reads(smt_tx_ptr, skb_data_ptr,
815 					  (len + 3) & ~3);
816 				skb->dev = dev;
817 				skb_reserve(skb, 3);	/* Skip over PRH. */
818 				skb_put(skb, len - 3);
819 				skb_reset_network_header(skb);
820 
821 				dev_queue_xmit_nit(skb, dev);
822 
823 				dev_kfree_skb_irq(skb);
824 
825 err_no_skb:
826 				;
827 			}
828 
829 			/* Queue the frame to the RMC transmit ring. */
830 			fza_do_xmit((union fza_buffer_txp)
831 				    { .mmio_ptr = smt_tx_ptr },
832 				    len, dev, 1);
833 		}
834 
835 		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
836 		fp->ring_smt_tx_index =
837 			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
838 	}
839 }
840 
841 static void fza_uns(struct net_device *dev)
842 {
843 	struct fza_private *fp = netdev_priv(dev);
844 	u32 own;
845 	int i;
846 
847 	while (1) {
848 		i = fp->ring_uns_index;
849 		own = readl_o(&fp->ring_uns[i].own);
850 		if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
851 			break;
852 
853 		if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
854 			fp->stats.rx_errors++;
855 			fp->stats.rx_over_errors++;
856 		}
857 
858 		writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
859 		fp->ring_uns_index =
860 			(fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
861 	}
862 }
863 
864 static void fza_tx_flush(struct net_device *dev)
865 {
866 	struct fza_private *fp = netdev_priv(dev);
867 	u32 own;
868 	int i;
869 
870 	/* Clean up the SMT TX ring. */
871 	i = fp->ring_smt_tx_index;
872 	do {
873 		writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
874 		fp->ring_smt_tx_index =
875 			(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
876 
877 	} while (i != fp->ring_smt_tx_index);
878 
879 	/* Clean up the RMC TX ring. */
880 	i = fp->ring_rmc_tx_index;
881 	do {
882 		own = readl_o(&fp->ring_rmc_tx[i].own);
883 		if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
884 			u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
885 
886 			writel_u(rmc | FZA_RING_TX_DTP,
887 				 &fp->ring_rmc_tx[i].rmc);
888 		}
889 		fp->ring_rmc_tx_index =
890 			(fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
891 
892 	} while (i != fp->ring_rmc_tx_index);
893 
894 	/* Done. */
895 	writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
896 }
897 
898 static irqreturn_t fza_interrupt(int irq, void *dev_id)
899 {
900 	struct net_device *dev = dev_id;
901 	struct fza_private *fp = netdev_priv(dev);
902 	uint int_event;
903 
904 	/* Get interrupt events. */
905 	int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
906 	if (int_event == 0)
907 		return IRQ_NONE;
908 
909 	/* Clear the events. */
910 	writew_u(int_event, &fp->regs->int_event);
911 
912 	/* Now handle the events.  The order matters. */
913 
914 	/* Command finished interrupt. */
915 	if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
916 		fp->irq_count_cmd_done++;
917 
918 		spin_lock(&fp->lock);
919 		fp->cmd_done_flag = 1;
920 		wake_up(&fp->cmd_done_wait);
921 		spin_unlock(&fp->lock);
922 	}
923 
924 	/* Transmit finished interrupt. */
925 	if ((int_event & FZA_EVENT_TX_DONE) != 0) {
926 		fp->irq_count_tx_done++;
927 		fza_tx(dev);
928 	}
929 
930 	/* Host receive interrupt. */
931 	if ((int_event & FZA_EVENT_RX_POLL) != 0) {
932 		fp->irq_count_rx_poll++;
933 		fza_rx(dev);
934 	}
935 
936 	/* SMT transmit interrupt. */
937 	if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
938 		fp->irq_count_smt_tx_poll++;
939 		fza_tx_smt(dev);
940 	}
941 
942 	/* Transmit ring flush request. */
943 	if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
944 		fp->irq_count_flush_tx++;
945 		fza_tx_flush(dev);
946 	}
947 
948 	/* Link status change interrupt. */
949 	if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
950 		uint status;
951 
952 		fp->irq_count_link_st_chg++;
953 		status = readw_u(&fp->regs->status);
954 		if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
955 			netif_carrier_on(dev);
956 			pr_info("%s: link available\n", fp->name);
957 		} else {
958 			netif_carrier_off(dev);
959 			pr_info("%s: link unavailable\n", fp->name);
960 		}
961 	}
962 
963 	/* Unsolicited event interrupt. */
964 	if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
965 		fp->irq_count_uns_poll++;
966 		fza_uns(dev);
967 	}
968 
969 	/* State change interrupt. */
970 	if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
971 		uint status, state;
972 
973 		fp->irq_count_state_chg++;
974 
975 		status = readw_u(&fp->regs->status);
976 		state = FZA_STATUS_GET_STATE(status);
977 		pr_debug("%s: state change: %x\n", fp->name, state);
978 		switch (state) {
979 		case FZA_STATE_RESET:
980 			break;
981 
982 		case FZA_STATE_UNINITIALIZED:
983 			netif_carrier_off(dev);
984 			del_timer_sync(&fp->reset_timer);
985 			fp->ring_cmd_index = 0;
986 			fp->ring_uns_index = 0;
987 			fp->ring_rmc_tx_index = 0;
988 			fp->ring_rmc_txd_index = 0;
989 			fp->ring_hst_rx_index = 0;
990 			fp->ring_smt_tx_index = 0;
991 			fp->ring_smt_rx_index = 0;
992 			if (fp->state > state) {
993 				pr_info("%s: OK\n", fp->name);
994 				fza_cmd_send(dev, FZA_RING_CMD_INIT);
995 			}
996 			break;
997 
998 		case FZA_STATE_INITIALIZED:
999 			if (fp->state > state) {
1000 				fza_set_rx_mode(dev);
1001 				fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1002 			}
1003 			break;
1004 
1005 		case FZA_STATE_RUNNING:
1006 		case FZA_STATE_MAINTENANCE:
1007 			fp->state = state;
1008 			fza_rx_init(fp);
1009 			fp->queue_active = 1;
1010 			netif_wake_queue(dev);
1011 			pr_debug("%s: queue woken\n", fp->name);
1012 			break;
1013 
1014 		case FZA_STATE_HALTED:
1015 			fp->queue_active = 0;
1016 			netif_stop_queue(dev);
1017 			pr_debug("%s: queue stopped\n", fp->name);
1018 			del_timer_sync(&fp->reset_timer);
1019 			pr_warn("%s: halted, reason: %x\n", fp->name,
1020 				FZA_STATUS_GET_HALT(status));
1021 			fza_regs_dump(fp);
1022 			pr_info("%s: resetting the board...\n", fp->name);
1023 			fza_do_reset(fp);
1024 			fp->timer_state = 0;
1025 			fp->reset_timer.expires = jiffies + 45 * HZ;
1026 			add_timer(&fp->reset_timer);
1027 			break;
1028 
1029 		default:
1030 			pr_warn("%s: undefined state: %x\n", fp->name, state);
1031 			break;
1032 		}
1033 
1034 		spin_lock(&fp->lock);
1035 		fp->state_chg_flag = 1;
1036 		wake_up(&fp->state_chg_wait);
1037 		spin_unlock(&fp->lock);
1038 	}
1039 
1040 	return IRQ_HANDLED;
1041 }
1042 
1043 static void fza_reset_timer(struct timer_list *t)
1044 {
1045 	struct fza_private *fp = from_timer(fp, t, reset_timer);
1046 
1047 	if (!fp->timer_state) {
1048 		pr_err("%s: RESET timed out!\n", fp->name);
1049 		pr_info("%s: trying harder...\n", fp->name);
1050 
1051 		/* Assert the board reset. */
1052 		writew_o(FZA_RESET_INIT, &fp->regs->reset);
1053 		readw_o(&fp->regs->reset);		/* Synchronize. */
1054 
1055 		fp->timer_state = 1;
1056 		fp->reset_timer.expires = jiffies + HZ;
1057 	} else {
1058 		/* Clear the board reset. */
1059 		writew_u(FZA_RESET_CLR, &fp->regs->reset);
1060 
1061 		/* Enable all interrupt events we handle. */
1062 		writew_o(fp->int_mask, &fp->regs->int_mask);
1063 		readw_o(&fp->regs->int_mask);		/* Synchronize. */
1064 
1065 		fp->timer_state = 0;
1066 		fp->reset_timer.expires = jiffies + 45 * HZ;
1067 	}
1068 	add_timer(&fp->reset_timer);
1069 }
1070 
1071 static int fza_set_mac_address(struct net_device *dev, void *addr)
1072 {
1073 	return -EOPNOTSUPP;
1074 }
1075 
1076 static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
1077 {
1078 	struct fza_private *fp = netdev_priv(dev);
1079 	unsigned int old_mask, new_mask;
1080 	int ret;
1081 	u8 fc;
1082 
1083 	skb_push(skb, 3);			/* Make room for PRH. */
1084 
1085 	/* Decode FC to set PRH. */
1086 	fc = skb->data[3];
1087 	skb->data[0] = 0;
1088 	skb->data[1] = 0;
1089 	skb->data[2] = FZA_PRH2_NORMAL;
1090 	if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
1091 		skb->data[0] |= FZA_PRH0_FRAME_SYNC;
1092 	switch (fc & FDDI_FC_K_FORMAT_MASK) {
1093 	case FDDI_FC_K_FORMAT_MANAGEMENT:
1094 		if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
1095 			/* Token. */
1096 			skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
1097 			skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
1098 		} else {
1099 			/* SMT or MAC. */
1100 			skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1101 			skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
1102 		}
1103 		skb->data[1] |= FZA_PRH1_CRC_NORMAL;
1104 		break;
1105 	case FDDI_FC_K_FORMAT_LLC:
1106 	case FDDI_FC_K_FORMAT_FUTURE:
1107 		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1108 		skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
1109 		break;
1110 	case FDDI_FC_K_FORMAT_IMPLEMENTOR:
1111 		skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1112 		skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
1113 		break;
1114 	}
1115 
1116 	/* SMT transmit interrupts may sneak frames into the RMC
1117 	 * transmit ring.  We disable them while queueing a frame
1118 	 * to maintain consistency.
1119 	 */
1120 	old_mask = fp->int_mask;
1121 	new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
1122 	writew_u(new_mask, &fp->regs->int_mask);
1123 	readw_o(&fp->regs->int_mask);			/* Synchronize. */
1124 	fp->int_mask = new_mask;
1125 	ret = fza_do_xmit((union fza_buffer_txp)
1126 			  { .data_ptr = (struct fza_buffer_tx *)skb->data },
1127 			  skb->len, dev, 0);
1128 	fp->int_mask = old_mask;
1129 	writew_u(fp->int_mask, &fp->regs->int_mask);
1130 
1131 	if (ret) {
1132 		/* Probably an SMT packet filled the remaining space,
1133 		 * so just stop the queue, but don't report it as an error.
1134 		 */
1135 		netif_stop_queue(dev);
1136 		pr_debug("%s: queue stopped\n", fp->name);
1137 		fp->stats.tx_dropped++;
1138 	}
1139 
1140 	dev_kfree_skb(skb);
1141 
1142 	return ret;
1143 }
1144 
1145 static int fza_open(struct net_device *dev)
1146 {
1147 	struct fza_private *fp = netdev_priv(dev);
1148 	struct fza_ring_cmd __iomem *ring;
1149 	struct sk_buff *skb;
1150 	unsigned long flags;
1151 	dma_addr_t dma;
1152 	int ret, i;
1153 	u32 stat;
1154 	long t;
1155 
1156 	for (i = 0; i < FZA_RING_RX_SIZE; i++) {
1157 		/* We have to 512-byte-align RX buffers... */
1158 		skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
1159 		if (skb) {
1160 			fza_skb_align(skb, 512);
1161 			dma = dma_map_single(fp->bdev, skb->data,
1162 					     FZA_RX_BUFFER_SIZE,
1163 					     DMA_FROM_DEVICE);
1164 			if (dma_mapping_error(fp->bdev, dma)) {
1165 				dev_kfree_skb(skb);
1166 				skb = NULL;
1167 			}
1168 		}
1169 		if (!skb) {
1170 			for (--i; i >= 0; i--) {
1171 				dma_unmap_single(fp->bdev, fp->rx_dma[i],
1172 						 FZA_RX_BUFFER_SIZE,
1173 						 DMA_FROM_DEVICE);
1174 				dev_kfree_skb(fp->rx_skbuff[i]);
1175 				fp->rx_dma[i] = 0;
1176 				fp->rx_skbuff[i] = NULL;
1177 			}
1178 			return -ENOMEM;
1179 		}
1180 		fp->rx_skbuff[i] = skb;
1181 		fp->rx_dma[i] = dma;
1182 	}
1183 
1184 	ret = fza_init_send(dev, NULL);
1185 	if (ret != 0)
1186 		return ret;
1187 
1188 	/* Purger and Beacon multicasts need to be supplied before PARAM. */
1189 	fza_set_rx_mode(dev);
1190 
1191 	spin_lock_irqsave(&fp->lock, flags);
1192 	fp->cmd_done_flag = 0;
1193 	ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1194 	spin_unlock_irqrestore(&fp->lock, flags);
1195 	if (!ring)
1196 		return -ENOBUFS;
1197 
1198 	t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
1199 	if (fp->cmd_done_flag == 0) {
1200 		pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
1201 		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1202 		return -EIO;
1203 	}
1204 	stat = readl_u(&ring->stat);
1205 	if (stat != FZA_RING_STAT_SUCCESS) {
1206 		pr_err("%s: PARAM command failed!, status %02x, state %x\n",
1207 		       fp->name, stat,
1208 		       FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1209 		return -EIO;
1210 	}
1211 	pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
1212 		 (3 * HZ - t) * 1000 / HZ);
1213 
1214 	return 0;
1215 }
1216 
1217 static int fza_close(struct net_device *dev)
1218 {
1219 	struct fza_private *fp = netdev_priv(dev);
1220 	unsigned long flags;
1221 	uint state;
1222 	long t;
1223 	int i;
1224 
1225 	netif_stop_queue(dev);
1226 	pr_debug("%s: queue stopped\n", fp->name);
1227 
1228 	del_timer_sync(&fp->reset_timer);
1229 	spin_lock_irqsave(&fp->lock, flags);
1230 	fp->state = FZA_STATE_UNINITIALIZED;
1231 	fp->state_chg_flag = 0;
1232 	/* Shut the interface down. */
1233 	writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
1234 	readw_o(&fp->regs->control_a);			/* Synchronize. */
1235 	spin_unlock_irqrestore(&fp->lock, flags);
1236 
1237 	/* DEC says SHUT needs up to 10 seconds to complete. */
1238 	t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
1239 			       15 * HZ);
1240 	state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
1241 	if (fp->state_chg_flag == 0) {
1242 		pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
1243 		return -EIO;
1244 	}
1245 	if (state != FZA_STATE_UNINITIALIZED) {
1246 		pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
1247 		return -EIO;
1248 	}
1249 	pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
1250 		 (15 * HZ - t) * 1000 / HZ);
1251 
1252 	for (i = 0; i < FZA_RING_RX_SIZE; i++)
1253 		if (fp->rx_skbuff[i]) {
1254 			dma_unmap_single(fp->bdev, fp->rx_dma[i],
1255 					 FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
1256 			dev_kfree_skb(fp->rx_skbuff[i]);
1257 			fp->rx_dma[i] = 0;
1258 			fp->rx_skbuff[i] = NULL;
1259 		}
1260 
1261 	return 0;
1262 }
1263 
1264 static struct net_device_stats *fza_get_stats(struct net_device *dev)
1265 {
1266 	struct fza_private *fp = netdev_priv(dev);
1267 
1268 	return &fp->stats;
1269 }
1270 
1271 static int fza_probe(struct device *bdev)
1272 {
1273 	static const struct net_device_ops netdev_ops = {
1274 		.ndo_open = fza_open,
1275 		.ndo_stop = fza_close,
1276 		.ndo_start_xmit = fza_start_xmit,
1277 		.ndo_set_rx_mode = fza_set_rx_mode,
1278 		.ndo_set_mac_address = fza_set_mac_address,
1279 		.ndo_get_stats = fza_get_stats,
1280 	};
1281 	static int version_printed;
1282 	char rom_rev[4], fw_rev[4], rmc_rev[4];
1283 	struct tc_dev *tdev = to_tc_dev(bdev);
1284 	struct fza_cmd_init __iomem *init;
1285 	resource_size_t start, len;
1286 	struct net_device *dev;
1287 	struct fza_private *fp;
1288 	uint smt_ver, pmd_type;
1289 	void __iomem *mmio;
1290 	uint hw_addr[2];
1291 	int ret, i;
1292 
1293 	if (!version_printed) {
1294 		pr_info("%s", version);
1295 		version_printed = 1;
1296 	}
1297 
1298 	dev = alloc_fddidev(sizeof(*fp));
1299 	if (!dev)
1300 		return -ENOMEM;
1301 	SET_NETDEV_DEV(dev, bdev);
1302 
1303 	fp = netdev_priv(dev);
1304 	dev_set_drvdata(bdev, dev);
1305 
1306 	fp->bdev = bdev;
1307 	fp->name = dev_name(bdev);
1308 
1309 	/* Request the I/O MEM resource. */
1310 	start = tdev->resource.start;
1311 	len = tdev->resource.end - start + 1;
1312 	if (!request_mem_region(start, len, dev_name(bdev))) {
1313 		pr_err("%s: cannot reserve MMIO region\n", fp->name);
1314 		ret = -EBUSY;
1315 		goto err_out_kfree;
1316 	}
1317 
1318 	/* MMIO mapping setup. */
1319 	mmio = ioremap_nocache(start, len);
1320 	if (!mmio) {
1321 		pr_err("%s: cannot map MMIO\n", fp->name);
1322 		ret = -ENOMEM;
1323 		goto err_out_resource;
1324 	}
1325 
1326 	/* Initialize the new device structure. */
1327 	switch (loopback) {
1328 	case FZA_LOOP_NORMAL:
1329 	case FZA_LOOP_INTERN:
1330 	case FZA_LOOP_EXTERN:
1331 		break;
1332 	default:
1333 		loopback = FZA_LOOP_NORMAL;
1334 	}
1335 
1336 	fp->mmio = mmio;
1337 	dev->irq = tdev->interrupt;
1338 
1339 	pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
1340 		fp->name, (long long)tdev->resource.start, dev->irq);
1341 	pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
1342 
1343 	fp->regs = mmio + FZA_REG_BASE;
1344 	fp->ring_cmd = mmio + FZA_RING_CMD;
1345 	fp->ring_uns = mmio + FZA_RING_UNS;
1346 
1347 	init_waitqueue_head(&fp->state_chg_wait);
1348 	init_waitqueue_head(&fp->cmd_done_wait);
1349 	spin_lock_init(&fp->lock);
1350 	fp->int_mask = FZA_MASK_NORMAL;
1351 
1352 	timer_setup(&fp->reset_timer, fza_reset_timer, 0);
1353 
1354 	/* Sanitize the board. */
1355 	fza_regs_dump(fp);
1356 	fza_do_shutdown(fp);
1357 
1358 	ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
1359 	if (ret != 0) {
1360 		pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
1361 		goto err_out_map;
1362 	}
1363 
1364 	/* Enable the driver mode. */
1365 	writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
1366 
1367 	/* For some reason transmit done interrupts can trigger during
1368 	 * reset.  This avoids a division error in the handler.
1369 	 */
1370 	fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
1371 
1372 	ret = fza_reset(fp);
1373 	if (ret != 0)
1374 		goto err_out_irq;
1375 
1376 	ret = fza_init_send(dev, &init);
1377 	if (ret != 0)
1378 		goto err_out_irq;
1379 
1380 	fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
1381 	memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
1382 
1383 	fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
1384 	fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
1385 	fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
1386 	for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
1387 		rom_rev[i] = 0;
1388 	for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
1389 		fw_rev[i] = 0;
1390 	for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
1391 		rmc_rev[i] = 0;
1392 
1393 	fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
1394 	fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
1395 	fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
1396 	fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
1397 	fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
1398 	fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
1399 	fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
1400 	fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
1401 
1402 	fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
1403 
1404 	fp->t_max = readl_u(&init->def_t_max);
1405 	fp->t_req = readl_u(&init->def_t_req);
1406 	fp->tvx = readl_u(&init->def_tvx);
1407 	fp->lem_threshold = readl_u(&init->lem_threshold);
1408 	fza_reads(&init->def_station_id, &fp->station_id,
1409 		  sizeof(fp->station_id));
1410 	fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
1411 	fp->ring_purger = readl_u(&init->ring_purger);
1412 
1413 	smt_ver = readl_u(&init->smt_ver);
1414 	pmd_type = readl_u(&init->pmd_type);
1415 
1416 	pr_debug("%s: INIT parameters:\n", fp->name);
1417 	pr_debug("        tx_mode: %u\n", readl_u(&init->tx_mode));
1418 	pr_debug("    hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
1419 	pr_debug("        rmc_rev: %.4s\n", rmc_rev);
1420 	pr_debug("        rom_rev: %.4s\n", rom_rev);
1421 	pr_debug("         fw_rev: %.4s\n", fw_rev);
1422 	pr_debug("       mop_type: %u\n", readl_u(&init->mop_type));
1423 	pr_debug("         hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
1424 	pr_debug("         rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
1425 	pr_debug("    rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
1426 	pr_debug("         smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
1427 	pr_debug("    smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
1428 	pr_debug("         smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
1429 	pr_debug("    smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
1430 	/* TC systems are always LE, so don't bother swapping. */
1431 	pr_debug("        hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1432 		 (readl_u(&init->hw_addr[0]) >> 0) & 0xff,
1433 		 (readl_u(&init->hw_addr[0]) >> 8) & 0xff,
1434 		 (readl_u(&init->hw_addr[0]) >> 16) & 0xff,
1435 		 (readl_u(&init->hw_addr[0]) >> 24) & 0xff,
1436 		 (readl_u(&init->hw_addr[1]) >> 0) & 0xff,
1437 		 (readl_u(&init->hw_addr[1]) >> 8) & 0xff,
1438 		 (readl_u(&init->hw_addr[1]) >> 16) & 0xff,
1439 		 (readl_u(&init->hw_addr[1]) >> 24) & 0xff);
1440 	pr_debug("      def_t_req: %u\n", readl_u(&init->def_t_req));
1441 	pr_debug("        def_tvx: %u\n", readl_u(&init->def_tvx));
1442 	pr_debug("      def_t_max: %u\n", readl_u(&init->def_t_max));
1443 	pr_debug("  lem_threshold: %u\n", readl_u(&init->lem_threshold));
1444 	/* Don't bother swapping, see above. */
1445 	pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1446 		 (readl_u(&init->def_station_id[0]) >> 0) & 0xff,
1447 		 (readl_u(&init->def_station_id[0]) >> 8) & 0xff,
1448 		 (readl_u(&init->def_station_id[0]) >> 16) & 0xff,
1449 		 (readl_u(&init->def_station_id[0]) >> 24) & 0xff,
1450 		 (readl_u(&init->def_station_id[1]) >> 0) & 0xff,
1451 		 (readl_u(&init->def_station_id[1]) >> 8) & 0xff,
1452 		 (readl_u(&init->def_station_id[1]) >> 16) & 0xff,
1453 		 (readl_u(&init->def_station_id[1]) >> 24) & 0xff);
1454 	pr_debug("   pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
1455 	pr_debug("        smt_ver: %u\n", readl_u(&init->smt_ver));
1456 	pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
1457 	pr_debug("    ring_purger: %u\n", readl_u(&init->ring_purger));
1458 	pr_debug("    smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
1459 	pr_debug("    smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
1460 	pr_debug("       pmd_type: %u\n", readl_u(&init->pmd_type));
1461 
1462 	pr_info("%s: model %s, address %pMF\n",
1463 		fp->name,
1464 		pmd_type == FZA_PMD_TYPE_TW ?
1465 			"700-C (DEFZA-CA), ThinWire PMD selected" :
1466 			pmd_type == FZA_PMD_TYPE_STP ?
1467 				"700-C (DEFZA-CA), STP PMD selected" :
1468 				"700 (DEFZA-AA), MMF PMD",
1469 		dev->dev_addr);
1470 	pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
1471 		"SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
1472 
1473 	/* Now that we fetched initial parameters just shut the interface
1474 	 * until opened.
1475 	 */
1476 	ret = fza_close(dev);
1477 	if (ret != 0)
1478 		goto err_out_irq;
1479 
1480 	/* The FZA-specific entries in the device structure. */
1481 	dev->netdev_ops = &netdev_ops;
1482 
1483 	ret = register_netdev(dev);
1484 	if (ret != 0)
1485 		goto err_out_irq;
1486 
1487 	pr_info("%s: registered as %s\n", fp->name, dev->name);
1488 	fp->name = (const char *)dev->name;
1489 
1490 	get_device(bdev);
1491 	return 0;
1492 
1493 err_out_irq:
1494 	del_timer_sync(&fp->reset_timer);
1495 	fza_do_shutdown(fp);
1496 	free_irq(dev->irq, dev);
1497 
1498 err_out_map:
1499 	iounmap(mmio);
1500 
1501 err_out_resource:
1502 	release_mem_region(start, len);
1503 
1504 err_out_kfree:
1505 	free_netdev(dev);
1506 
1507 	pr_err("%s: initialization failure, aborting!\n", fp->name);
1508 	return ret;
1509 }
1510 
1511 static int fza_remove(struct device *bdev)
1512 {
1513 	struct net_device *dev = dev_get_drvdata(bdev);
1514 	struct fza_private *fp = netdev_priv(dev);
1515 	struct tc_dev *tdev = to_tc_dev(bdev);
1516 	resource_size_t start, len;
1517 
1518 	put_device(bdev);
1519 
1520 	unregister_netdev(dev);
1521 
1522 	del_timer_sync(&fp->reset_timer);
1523 	fza_do_shutdown(fp);
1524 	free_irq(dev->irq, dev);
1525 
1526 	iounmap(fp->mmio);
1527 
1528 	start = tdev->resource.start;
1529 	len = tdev->resource.end - start + 1;
1530 	release_mem_region(start, len);
1531 
1532 	free_netdev(dev);
1533 
1534 	return 0;
1535 }
1536 
1537 static struct tc_device_id const fza_tc_table[] = {
1538 	{ "DEC     ", "PMAF-AA " },
1539 	{ }
1540 };
1541 MODULE_DEVICE_TABLE(tc, fza_tc_table);
1542 
1543 static struct tc_driver fza_driver = {
1544 	.id_table	= fza_tc_table,
1545 	.driver		= {
1546 		.name	= "defza",
1547 		.bus	= &tc_bus_type,
1548 		.probe	= fza_probe,
1549 		.remove	= fza_remove,
1550 	},
1551 };
1552 
1553 static int fza_init(void)
1554 {
1555 	return tc_register_driver(&fza_driver);
1556 }
1557 
1558 static void fza_exit(void)
1559 {
1560 	tc_unregister_driver(&fza_driver);
1561 }
1562 
1563 module_init(fza_init);
1564 module_exit(fza_exit);
1565