xref: /openbmc/linux/drivers/net/fddi/defxx.c (revision ccc319dc)
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *		DEC FDDIcontroller/EISA         (DEFEA)
18  *		DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro	Maciej W. Rozycki <macro@orcam.me.uk>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *		The driver scans for supported EISA adapters by reading the
42  *		SLOT ID register for each EISA slot and making a match
43  *		against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *		This driver currently supports both EISA and PCI controller
47  *		families.  While the custom DMA chip and FDDI logic is similar
48  *		or identical, the bus logic is very different.  After
49  *		initialization, the	only bus-specific differences is in how the
50  *		driver enables and disables interrupts.  Other than that, the
51  *		run-time critical code behaves the same on both families.
52  *		It's important to note that both adapter families are configured
53  *		to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *		In the driver open routine, the driver ISR (interrupt service
57  *		routine) is registered and the adapter is brought to an
58  *		operational state.  In the driver close routine, the opposite
59  *		occurs; the driver ISR is deregistered and the adapter is
60  *		brought to a safe, but closed state.  Users may use consecutive
61  *		commands to bring the adapter up and down as in the following
62  *		example:
63  *					ifconfig fddi0 up
64  *					ifconfig fddi0 down
65  *					ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *		Apparently, there is no shutdown or halt routine support under
69  *		Linux.  This routine would be called during "reboot" or
70  *		"shutdown" to allow the driver to place the adapter in a safe
71  *		state before a warm reboot occurs.  To be really safe, the user
72  *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *		to ensure that the adapter DMA engine is taken off-line.  However,
74  *		the current driver code anticipates this problem and always issues
75  *		a soft reset of the adapter	at the beginning of driver initialization.
76  *		A future driver enhancement in this area may occur in 2.1.X where
77  *		Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *		The driver supports shared interrupts, so the ISR is registered for
81  *		each board with the appropriate flag and the pointer to that board's
82  *		device structure.  This provides the context during interrupt
83  *		processing to support shared interrupts and multiple boards.
84  *
85  *		Interrupt enabling/disabling can occur at many levels.  At the host
86  *		end, you can disable system interrupts, or disable interrupts at the
87  *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *		have a bus-logic chip interrupt enable/disable as well as a DMA
89  *		controller interrupt enable/disable.
90  *
91  *		The driver currently enables and disables adapter interrupts at the
92  *		bus-logic chip and assumes that Linux will take care of clearing or
93  *		acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *		Control functions are those used to support functions such as adding
97  *		or deleting multicast addresses, enabling or disabling packet
98  *		reception filters, or other custom/proprietary commands.  Presently,
99  *		the driver supports the "get statistics", "set multicast list", and
100  *		"set mac address" functions defined by Linux.  A list of possible
101  *		enhancements include:
102  *
103  *				- Custom ioctl interface for executing port interface commands
104  *				- Custom ioctl interface for adding unicast addresses to
105  *				  adapter CAM (to support bridge functions).
106  *				- Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *		The driver function names that start with "dfx_hw_" represent
110  *		low-level port interface routines that are called frequently.  They
111  *		include issuing a DMA or port control command to the adapter,
112  *		resetting the adapter, or reading the adapter state.  Since the
113  *		driver initialization and run-time code must make calls into the
114  *		port interface, these routines were written to be as generic and
115  *		usable as possible.
116  *
117  *   Receive Path -
118  *		The adapter DMA engine supports a 256 entry receive descriptor block
119  *		of which up to 255 entries can be used at any given time.  The
120  *		architecture is a standard producer, consumer, completion model in
121  *		which the driver "produces" receive buffers to the adapter, the
122  *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *		and the driver "completes" the receive buffers by servicing the
124  *		incoming packet, then "produces" a new buffer and starts the cycle
125  *		again.  Receive buffers can be fragmented in up to 16 fragments
126  *		(descriptor	entries).  For simplicity, this driver posts
127  *		single-fragment receive buffers of 4608 bytes, then allocates a
128  *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *		utilization, a better approach would be to pass up the receive
130  *		buffer (no extra copy) then allocate and post a replacement buffer.
131  *		This is a performance enhancement that should be looked into at
132  *		some point.
133  *
134  *   Transmit Path -
135  *		Like the receive path, the adapter DMA engine supports a 256 entry
136  *		transmit descriptor block of which up to 255 entries can be used at
137  *		any	given time.  Transmit buffers can be fragmented	in up to 255
138  *		fragments (descriptor entries).  This driver always posts one
139  *		fragment per transmit packet request.
140  *
141  *		The fragment contains the entire packet from FC to end of data.
142  *		Before posting the buffer to the adapter, the driver sets a three-byte
143  *		packet request header (PRH) which is required by the Motorola MAC chip
144  *		used on the adapters.  The PRH tells the MAC the type of token to
145  *		receive/send, whether or not to generate and append the CRC, whether
146  *		synchronous or asynchronous framing is used, etc.  Since the PRH
147  *		definition is not necessarily consistent across all FDDI chipsets,
148  *		the driver, rather than the common FDDI packet handler routines,
149  *		sets these bytes.
150  *
151  *		To reduce the amount of descriptor fetches needed per transmit request,
152  *		the driver takes advantage of the fact that there are at least three
153  *		bytes available before the skb->data field on the outgoing transmit
154  *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *		bytes which we'll use to store the PRH.
158  *
159  *		There's a subtle advantage to adding these pad bytes to the
160  *		hard_header_len, it ensures that the data portion of the packet for
161  *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *		implementations may not need the extra padding and can start copying
163  *		or DMAing directly from the FC byte which starts at skb->data.  Should
164  *		another driver implementation need ADDITIONAL padding, the net_init.c
165  *		module should be updated and dev->hard_header_len should be increased.
166  *		NOTE: To maintain the alignment on the data portion of the packet,
167  *		dev->hard_header_len should always be evenly divisible by 4 and at
168  *		least 24 bytes in size.
169  *
170  * Modification History:
171  *		Date		Name	Description
172  *		16-Aug-96	LVS		Created.
173  *		20-Aug-96	LVS		Updated dfx_probe so that version information
174  *							string is only displayed if 1 or more cards are
175  *							found.  Changed dfx_rcv_queue_process to copy
176  *							3 NULL bytes before FC to ensure that data is
177  *							longword aligned in receive buffer.
178  *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179  *							LLC group promiscuous mode if multicast list
180  *							is too large.  LLC individual/group promiscuous
181  *							mode is now disabled if IFF_PROMISC flag not set.
182  *							dfx_xmt_queue_pkt no longer checks for NULL skb
183  *							on Alan Cox recommendation.  Added node address
184  *							override support.
185  *		12-Sep-96	LVS		Reset current address to factory address during
186  *							device open.  Updated transmit path to post a
187  *							single fragment which includes PRH->end of data.
188  *		Mar 2000	AC		Did various cleanups for 2.3.x
189  *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190  *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191  *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192  *		Feb 2001			Skb allocation fixes
193  *		Feb 2001	davej		PCI enable cleanups.
194  *		04 Aug 2003	macro		Converted to the DMA API.
195  *		14 Aug 2004	macro		Fix device names reported.
196  *		14 Jun 2005	macro		Use irqreturn_t.
197  *		23 Oct 2006	macro		Big-endian host support.
198  *		14 Dec 2006	macro		TURBOchannel support.
199  *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
200  *		10 Mar 2021	macro		Dynamic MMIO vs port I/O.
201  */
202 
203 /* Include files */
204 #include <linux/bitops.h>
205 #include <linux/compiler.h>
206 #include <linux/delay.h>
207 #include <linux/dma-mapping.h>
208 #include <linux/eisa.h>
209 #include <linux/errno.h>
210 #include <linux/fddidevice.h>
211 #include <linux/interrupt.h>
212 #include <linux/ioport.h>
213 #include <linux/kernel.h>
214 #include <linux/module.h>
215 #include <linux/netdevice.h>
216 #include <linux/pci.h>
217 #include <linux/skbuff.h>
218 #include <linux/slab.h>
219 #include <linux/string.h>
220 #include <linux/tc.h>
221 
222 #include <asm/byteorder.h>
223 #include <asm/io.h>
224 
225 #include "defxx.h"
226 
227 /* Version information string should be updated prior to each new release!  */
228 #define DRV_NAME "defxx"
229 #define DRV_VERSION "v1.12"
230 #define DRV_RELDATE "2021/03/10"
231 
232 static const char version[] =
233 	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
234 	"  Lawrence V. Stefani and others\n";
235 
236 #define DYNAMIC_BUFFERS 1
237 
238 #define SKBUFF_RX_COPYBREAK 200
239 /*
240  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
241  * alignment for compatibility with old EISA boards.
242  */
243 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
244 
245 #ifdef CONFIG_EISA
246 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
247 #else
248 #define DFX_BUS_EISA(dev) 0
249 #endif
250 
251 #ifdef CONFIG_TC
252 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
253 #else
254 #define DFX_BUS_TC(dev) 0
255 #endif
256 
257 #if defined(CONFIG_EISA) || defined(CONFIG_PCI)
258 #define dfx_use_mmio bp->mmio
259 #else
260 #define dfx_use_mmio true
261 #endif
262 
263 /* Define module-wide (static) routines */
264 
265 static void		dfx_bus_init(struct net_device *dev);
266 static void		dfx_bus_uninit(struct net_device *dev);
267 static void		dfx_bus_config_check(DFX_board_t *bp);
268 
269 static int		dfx_driver_init(struct net_device *dev,
270 					const char *print_name,
271 					resource_size_t bar_start);
272 static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
273 
274 static int		dfx_open(struct net_device *dev);
275 static int		dfx_close(struct net_device *dev);
276 
277 static void		dfx_int_pr_halt_id(DFX_board_t *bp);
278 static void		dfx_int_type_0_process(DFX_board_t *bp);
279 static void		dfx_int_common(struct net_device *dev);
280 static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
281 
282 static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
283 static void		dfx_ctl_set_multicast_list(struct net_device *dev);
284 static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
285 static int		dfx_ctl_update_cam(DFX_board_t *bp);
286 static int		dfx_ctl_update_filters(DFX_board_t *bp);
287 
288 static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
289 static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
290 static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
291 static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
292 static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
293 
294 static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
295 static void		dfx_rcv_queue_process(DFX_board_t *bp);
296 #ifdef DYNAMIC_BUFFERS
297 static void		dfx_rcv_flush(DFX_board_t *bp);
298 #else
299 static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
300 #endif
301 
302 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
303 				     struct net_device *dev);
304 static int		dfx_xmt_done(DFX_board_t *bp);
305 static void		dfx_xmt_flush(DFX_board_t *bp);
306 
307 /* Define module-wide (static) variables */
308 
309 static struct pci_driver dfx_pci_driver;
310 static struct eisa_driver dfx_eisa_driver;
311 static struct tc_driver dfx_tc_driver;
312 
313 
314 /*
315  * =======================
316  * = dfx_port_write_long =
317  * = dfx_port_read_long  =
318  * =======================
319  *
320  * Overview:
321  *   Routines for reading and writing values from/to adapter
322  *
323  * Returns:
324  *   None
325  *
326  * Arguments:
327  *   bp		- pointer to board information
328  *   offset	- register offset from base I/O address
329  *   data	- for dfx_port_write_long, this is a value to write;
330  *		  for dfx_port_read_long, this is a pointer to store
331  *		  the read value
332  *
333  * Functional Description:
334  *   These routines perform the correct operation to read or write
335  *   the adapter register.
336  *
337  *   EISA port block base addresses are based on the slot number in which the
338  *   controller is installed.  For example, if the EISA controller is installed
339  *   in slot 4, the port block base address is 0x4000.  If the controller is
340  *   installed in slot 2, the port block base address is 0x2000, and so on.
341  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
342  *   registers using the register offsets defined in DEFXX.H.
343  *
344  *   PCI port block base addresses are assigned by the PCI BIOS or system
345  *   firmware.  There is one 128 byte port block which can be accessed.  It
346  *   allows for I/O mapping of both PDQ and PFI registers using the register
347  *   offsets defined in DEFXX.H.
348  *
349  * Return Codes:
350  *   None
351  *
352  * Assumptions:
353  *   bp->base is a valid base I/O address for this adapter.
354  *   offset is a valid register offset for this adapter.
355  *
356  * Side Effects:
357  *   Rather than produce macros for these functions, these routines
358  *   are defined using "inline" to ensure that the compiler will
359  *   generate inline code and not waste a procedure call and return.
360  *   This provides all the benefits of macros, but with the
361  *   advantage of strict data type checking.
362  */
363 
364 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
365 {
366 	writel(data, bp->base.mem + offset);
367 	mb();
368 }
369 
370 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
371 {
372 	outl(data, bp->base.port + offset);
373 }
374 
375 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
376 {
377 	struct device __maybe_unused *bdev = bp->bus_dev;
378 
379 	if (dfx_use_mmio)
380 		dfx_writel(bp, offset, data);
381 	else
382 		dfx_outl(bp, offset, data);
383 }
384 
385 
386 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
387 {
388 	mb();
389 	*data = readl(bp->base.mem + offset);
390 }
391 
392 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
393 {
394 	*data = inl(bp->base.port + offset);
395 }
396 
397 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
398 {
399 	struct device __maybe_unused *bdev = bp->bus_dev;
400 
401 	if (dfx_use_mmio)
402 		dfx_readl(bp, offset, data);
403 	else
404 		dfx_inl(bp, offset, data);
405 }
406 
407 
408 /*
409  * ================
410  * = dfx_get_bars =
411  * ================
412  *
413  * Overview:
414  *   Retrieves the address ranges used to access control and status
415  *   registers.
416  *
417  * Returns:
418  *   None
419  *
420  * Arguments:
421  *   bp		- pointer to board information
422  *   bar_start	- pointer to store the start addresses
423  *   bar_len	- pointer to store the lengths of the areas
424  *
425  * Assumptions:
426  *   I am sure there are some.
427  *
428  * Side Effects:
429  *   None
430  */
431 static void dfx_get_bars(DFX_board_t *bp,
432 			 resource_size_t *bar_start, resource_size_t *bar_len)
433 {
434 	struct device *bdev = bp->bus_dev;
435 	int dfx_bus_pci = dev_is_pci(bdev);
436 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
437 	int dfx_bus_tc = DFX_BUS_TC(bdev);
438 
439 	if (dfx_bus_pci) {
440 		int num = dfx_use_mmio ? 0 : 1;
441 
442 		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
443 		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
444 		bar_start[2] = bar_start[1] = 0;
445 		bar_len[2] = bar_len[1] = 0;
446 	}
447 	if (dfx_bus_eisa) {
448 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
449 		resource_size_t bar_lo;
450 		resource_size_t bar_hi;
451 
452 		if (dfx_use_mmio) {
453 			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
454 			bar_lo <<= 8;
455 			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
456 			bar_lo <<= 8;
457 			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
458 			bar_lo <<= 8;
459 			bar_start[0] = bar_lo;
460 			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
461 			bar_hi <<= 8;
462 			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
463 			bar_hi <<= 8;
464 			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
465 			bar_hi <<= 8;
466 			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
467 				     1;
468 		} else {
469 			bar_start[0] = base_addr;
470 			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
471 		}
472 		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
473 		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
474 		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
475 		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
476 	}
477 	if (dfx_bus_tc) {
478 		bar_start[0] = to_tc_dev(bdev)->resource.start +
479 			       PI_TC_K_CSR_OFFSET;
480 		bar_len[0] = PI_TC_K_CSR_LEN;
481 		bar_start[2] = bar_start[1] = 0;
482 		bar_len[2] = bar_len[1] = 0;
483 	}
484 }
485 
486 static const struct net_device_ops dfx_netdev_ops = {
487 	.ndo_open		= dfx_open,
488 	.ndo_stop		= dfx_close,
489 	.ndo_start_xmit		= dfx_xmt_queue_pkt,
490 	.ndo_get_stats		= dfx_ctl_get_stats,
491 	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
492 	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
493 };
494 
495 static void dfx_register_res_err(const char *print_name, bool mmio,
496 				 unsigned long start, unsigned long len)
497 {
498 	pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
499 	       print_name, mmio ? "MMIO" : "I/O", len, start);
500 }
501 
502 /*
503  * ================
504  * = dfx_register =
505  * ================
506  *
507  * Overview:
508  *   Initializes a supported FDDI controller
509  *
510  * Returns:
511  *   Condition code
512  *
513  * Arguments:
514  *   bdev - pointer to device information
515  *
516  * Functional Description:
517  *
518  * Return Codes:
519  *   0		 - This device (fddi0, fddi1, etc) configured successfully
520  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
521  *
522  * Assumptions:
523  *   It compiles so it should work :-( (PCI cards do :-)
524  *
525  * Side Effects:
526  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
527  *   initialized and the board resources are read and stored in
528  *   the device structure.
529  */
530 static int dfx_register(struct device *bdev)
531 {
532 	static int version_disp;
533 	int dfx_bus_pci = dev_is_pci(bdev);
534 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
535 	const char *print_name = dev_name(bdev);
536 	struct net_device *dev;
537 	DFX_board_t	  *bp;			/* board pointer */
538 	resource_size_t bar_start[3] = {0};	/* pointers to ports */
539 	resource_size_t bar_len[3] = {0};	/* resource length */
540 	int alloc_size;				/* total buffer size used */
541 	struct resource *region;
542 	int err = 0;
543 
544 	if (!version_disp) {	/* display version info if adapter is found */
545 		version_disp = 1;	/* set display flag to TRUE so that */
546 		printk(version);	/* we only display this string ONCE */
547 	}
548 
549 	dev = alloc_fddidev(sizeof(*bp));
550 	if (!dev) {
551 		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
552 		       print_name);
553 		return -ENOMEM;
554 	}
555 
556 	/* Enable PCI device. */
557 	if (dfx_bus_pci) {
558 		err = pci_enable_device(to_pci_dev(bdev));
559 		if (err) {
560 			pr_err("%s: Cannot enable PCI device, aborting\n",
561 			       print_name);
562 			goto err_out;
563 		}
564 	}
565 
566 	SET_NETDEV_DEV(dev, bdev);
567 
568 	bp = netdev_priv(dev);
569 	bp->bus_dev = bdev;
570 	dev_set_drvdata(bdev, dev);
571 
572 	bp->mmio = true;
573 
574 	dfx_get_bars(bp, bar_start, bar_len);
575 	if (bar_len[0] == 0 ||
576 	    (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
577 		bp->mmio = false;
578 		dfx_get_bars(bp, bar_start, bar_len);
579 	}
580 
581 	if (dfx_use_mmio) {
582 		region = request_mem_region(bar_start[0], bar_len[0],
583 					    bdev->driver->name);
584 		if (!region && (dfx_bus_eisa || dfx_bus_pci)) {
585 			bp->mmio = false;
586 			dfx_get_bars(bp, bar_start, bar_len);
587 		}
588 	}
589 	if (!dfx_use_mmio)
590 		region = request_region(bar_start[0], bar_len[0],
591 					bdev->driver->name);
592 	if (!region) {
593 		dfx_register_res_err(print_name, dfx_use_mmio,
594 				     bar_start[0], bar_len[0]);
595 		err = -EBUSY;
596 		goto err_out_disable;
597 	}
598 	if (bar_start[1] != 0) {
599 		region = request_region(bar_start[1], bar_len[1],
600 					bdev->driver->name);
601 		if (!region) {
602 			dfx_register_res_err(print_name, 0,
603 					     bar_start[1], bar_len[1]);
604 			err = -EBUSY;
605 			goto err_out_csr_region;
606 		}
607 	}
608 	if (bar_start[2] != 0) {
609 		region = request_region(bar_start[2], bar_len[2],
610 					bdev->driver->name);
611 		if (!region) {
612 			dfx_register_res_err(print_name, 0,
613 					     bar_start[2], bar_len[2]);
614 			err = -EBUSY;
615 			goto err_out_bh_region;
616 		}
617 	}
618 
619 	/* Set up I/O base address. */
620 	if (dfx_use_mmio) {
621 		bp->base.mem = ioremap(bar_start[0], bar_len[0]);
622 		if (!bp->base.mem) {
623 			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
624 			err = -ENOMEM;
625 			goto err_out_esic_region;
626 		}
627 	} else {
628 		bp->base.port = bar_start[0];
629 		dev->base_addr = bar_start[0];
630 	}
631 
632 	/* Initialize new device structure */
633 	dev->netdev_ops			= &dfx_netdev_ops;
634 
635 	if (dfx_bus_pci)
636 		pci_set_master(to_pci_dev(bdev));
637 
638 	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
639 		err = -ENODEV;
640 		goto err_out_unmap;
641 	}
642 
643 	err = register_netdev(dev);
644 	if (err)
645 		goto err_out_kfree;
646 
647 	printk("%s: registered as %s\n", print_name, dev->name);
648 	return 0;
649 
650 err_out_kfree:
651 	alloc_size = sizeof(PI_DESCR_BLOCK) +
652 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
653 #ifndef DYNAMIC_BUFFERS
654 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
655 #endif
656 		     sizeof(PI_CONSUMER_BLOCK) +
657 		     (PI_ALIGN_K_DESC_BLK - 1);
658 	if (bp->kmalloced)
659 		dma_free_coherent(bdev, alloc_size,
660 				  bp->kmalloced, bp->kmalloced_dma);
661 
662 err_out_unmap:
663 	if (dfx_use_mmio)
664 		iounmap(bp->base.mem);
665 
666 err_out_esic_region:
667 	if (bar_start[2] != 0)
668 		release_region(bar_start[2], bar_len[2]);
669 
670 err_out_bh_region:
671 	if (bar_start[1] != 0)
672 		release_region(bar_start[1], bar_len[1]);
673 
674 err_out_csr_region:
675 	if (dfx_use_mmio)
676 		release_mem_region(bar_start[0], bar_len[0]);
677 	else
678 		release_region(bar_start[0], bar_len[0]);
679 
680 err_out_disable:
681 	if (dfx_bus_pci)
682 		pci_disable_device(to_pci_dev(bdev));
683 
684 err_out:
685 	free_netdev(dev);
686 	return err;
687 }
688 
689 
690 /*
691  * ================
692  * = dfx_bus_init =
693  * ================
694  *
695  * Overview:
696  *   Initializes the bus-specific controller logic.
697  *
698  * Returns:
699  *   None
700  *
701  * Arguments:
702  *   dev - pointer to device information
703  *
704  * Functional Description:
705  *   Determine and save adapter IRQ in device table,
706  *   then perform bus-specific logic initialization.
707  *
708  * Return Codes:
709  *   None
710  *
711  * Assumptions:
712  *   bp->base has already been set with the proper
713  *	 base I/O address for this device.
714  *
715  * Side Effects:
716  *   Interrupts are enabled at the adapter bus-specific logic.
717  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
718  *   enabled yet.
719  */
720 
721 static void dfx_bus_init(struct net_device *dev)
722 {
723 	DFX_board_t *bp = netdev_priv(dev);
724 	struct device *bdev = bp->bus_dev;
725 	int dfx_bus_pci = dev_is_pci(bdev);
726 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
727 	int dfx_bus_tc = DFX_BUS_TC(bdev);
728 	u8 val;
729 
730 	DBG_printk("In dfx_bus_init...\n");
731 
732 	/* Initialize a pointer back to the net_device struct */
733 	bp->dev = dev;
734 
735 	/* Initialize adapter based on bus type */
736 
737 	if (dfx_bus_tc)
738 		dev->irq = to_tc_dev(bdev)->interrupt;
739 	if (dfx_bus_eisa) {
740 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
741 
742 		/* Disable the board before fiddling with the decoders.  */
743 		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
744 
745 		/* Get the interrupt level from the ESIC chip.  */
746 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
747 		val &= PI_CONFIG_STAT_0_M_IRQ;
748 		val >>= PI_CONFIG_STAT_0_V_IRQ;
749 
750 		switch (val) {
751 		case PI_CONFIG_STAT_0_IRQ_K_9:
752 			dev->irq = 9;
753 			break;
754 
755 		case PI_CONFIG_STAT_0_IRQ_K_10:
756 			dev->irq = 10;
757 			break;
758 
759 		case PI_CONFIG_STAT_0_IRQ_K_11:
760 			dev->irq = 11;
761 			break;
762 
763 		case PI_CONFIG_STAT_0_IRQ_K_15:
764 			dev->irq = 15;
765 			break;
766 		}
767 
768 		/*
769 		 * Enable memory decoding (MEMCS1) and/or port decoding
770 		 * (IOCS1/IOCS0) as appropriate in Function Control
771 		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
772 		 * taking 16 32-bit words, while IOCS1 is used for the
773 		 * Burst Holdoff register, taking a single 32-bit word
774 		 * only.  We use the slot-specific I/O range as per the
775 		 * ESIC spec, that is set bits 15:12 in the mask registers
776 		 * to mask them out.
777 		 */
778 
779 		/* Set the decode range of the board.  */
780 		val = 0;
781 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
782 		val = PI_DEFEA_K_CSR_IO;
783 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
784 
785 		val = PI_IO_CMP_M_SLOT;
786 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
787 		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
788 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
789 
790 		val = 0;
791 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
792 		val = PI_DEFEA_K_BURST_HOLDOFF;
793 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
794 
795 		val = PI_IO_CMP_M_SLOT;
796 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
797 		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
798 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
799 
800 		/* Enable the decoders.  */
801 		val = PI_FUNCTION_CNTRL_M_IOCS1;
802 		if (dfx_use_mmio)
803 			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
804 		else
805 			val |= PI_FUNCTION_CNTRL_M_IOCS0;
806 		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
807 
808 		/*
809 		 * Enable access to the rest of the module
810 		 * (including PDQ and packet memory).
811 		 */
812 		val = PI_SLOT_CNTRL_M_ENB;
813 		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
814 
815 		/*
816 		 * Map PDQ registers into memory or port space.  This is
817 		 * done with a bit in the Burst Holdoff register.
818 		 */
819 		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
820 		if (dfx_use_mmio)
821 			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
822 		else
823 			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
824 		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
825 
826 		/* Enable interrupts at EISA bus interface chip (ESIC) */
827 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
828 		val |= PI_CONFIG_STAT_0_M_INT_ENB;
829 		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
830 	}
831 	if (dfx_bus_pci) {
832 		struct pci_dev *pdev = to_pci_dev(bdev);
833 
834 		/* Get the interrupt level from the PCI Configuration Table */
835 
836 		dev->irq = pdev->irq;
837 
838 		/* Check Latency Timer and set if less than minimal */
839 
840 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
841 		if (val < PFI_K_LAT_TIMER_MIN) {
842 			val = PFI_K_LAT_TIMER_DEF;
843 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
844 		}
845 
846 		/* Enable interrupts at PCI bus interface chip (PFI) */
847 		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
848 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
849 	}
850 }
851 
852 /*
853  * ==================
854  * = dfx_bus_uninit =
855  * ==================
856  *
857  * Overview:
858  *   Uninitializes the bus-specific controller logic.
859  *
860  * Returns:
861  *   None
862  *
863  * Arguments:
864  *   dev - pointer to device information
865  *
866  * Functional Description:
867  *   Perform bus-specific logic uninitialization.
868  *
869  * Return Codes:
870  *   None
871  *
872  * Assumptions:
873  *   bp->base has already been set with the proper
874  *	 base I/O address for this device.
875  *
876  * Side Effects:
877  *   Interrupts are disabled at the adapter bus-specific logic.
878  */
879 
880 static void dfx_bus_uninit(struct net_device *dev)
881 {
882 	DFX_board_t *bp = netdev_priv(dev);
883 	struct device *bdev = bp->bus_dev;
884 	int dfx_bus_pci = dev_is_pci(bdev);
885 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
886 	u8 val;
887 
888 	DBG_printk("In dfx_bus_uninit...\n");
889 
890 	/* Uninitialize adapter based on bus type */
891 
892 	if (dfx_bus_eisa) {
893 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
894 
895 		/* Disable interrupts at EISA bus interface chip (ESIC) */
896 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
897 		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
898 		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
899 
900 		/* Disable the board.  */
901 		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
902 
903 		/* Disable memory and port decoders.  */
904 		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
905 	}
906 	if (dfx_bus_pci) {
907 		/* Disable interrupts at PCI bus interface chip (PFI) */
908 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
909 	}
910 }
911 
912 
913 /*
914  * ========================
915  * = dfx_bus_config_check =
916  * ========================
917  *
918  * Overview:
919  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
920  *   are illegal, then this routine will set new defaults.
921  *
922  * Returns:
923  *   None
924  *
925  * Arguments:
926  *   bp - pointer to board information
927  *
928  * Functional Description:
929  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
930  *   PDQ, and all FDDI PCI controllers, all values are legal.
931  *
932  * Return Codes:
933  *   None
934  *
935  * Assumptions:
936  *   dfx_adap_init has NOT been called yet so burst size and other items have
937  *   not been set.
938  *
939  * Side Effects:
940  *   None
941  */
942 
943 static void dfx_bus_config_check(DFX_board_t *bp)
944 {
945 	struct device __maybe_unused *bdev = bp->bus_dev;
946 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
947 	int	status;				/* return code from adapter port control call */
948 	u32	host_data;			/* LW data returned from port control call */
949 
950 	DBG_printk("In dfx_bus_config_check...\n");
951 
952 	/* Configuration check only valid for EISA adapter */
953 
954 	if (dfx_bus_eisa) {
955 		/*
956 		 * First check if revision 2 EISA controller.  Rev. 1 cards used
957 		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
958 		 * cards used PDQ revision E, so no workaround needed in this
959 		 * case, either.  Only Rev. 2 cards used either Rev. D or E
960 		 * chips, so we must verify the chip revision on Rev. 2 cards.
961 		 */
962 		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
963 			/*
964 			 * Revision 2 FDDI EISA controller found,
965 			 * so let's check PDQ revision of adapter.
966 			 */
967 			status = dfx_hw_port_ctrl_req(bp,
968 											PI_PCTRL_M_SUB_CMD,
969 											PI_SUB_CMD_K_PDQ_REV_GET,
970 											0,
971 											&host_data);
972 			if ((status != DFX_K_SUCCESS) || (host_data == 2))
973 				{
974 				/*
975 				 * Either we couldn't determine the PDQ revision, or
976 				 * we determined that it is at revision D.  In either case,
977 				 * we need to implement the workaround.
978 				 */
979 
980 				/* Ensure that the burst size is set to 8 longwords or less */
981 
982 				switch (bp->burst_size)
983 					{
984 					case PI_PDATA_B_DMA_BURST_SIZE_32:
985 					case PI_PDATA_B_DMA_BURST_SIZE_16:
986 						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
987 						break;
988 
989 					default:
990 						break;
991 					}
992 
993 				/* Ensure that full-duplex mode is not enabled */
994 
995 				bp->full_duplex_enb = PI_SNMP_K_FALSE;
996 				}
997 			}
998 		}
999 	}
1000 
1001 
1002 /*
1003  * ===================
1004  * = dfx_driver_init =
1005  * ===================
1006  *
1007  * Overview:
1008  *   Initializes remaining adapter board structure information
1009  *   and makes sure adapter is in a safe state prior to dfx_open().
1010  *
1011  * Returns:
1012  *   Condition code
1013  *
1014  * Arguments:
1015  *   dev - pointer to device information
1016  *   print_name - printable device name
1017  *
1018  * Functional Description:
1019  *   This function allocates additional resources such as the host memory
1020  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1021  *	 Remaining bus initialization steps are also completed.  The adapter
1022  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1023  *   must call dfx_open() to open the adapter and bring it on-line.
1024  *
1025  * Return Codes:
1026  *   DFX_K_SUCCESS	- initialization succeeded
1027  *   DFX_K_FAILURE	- initialization failed - could not allocate memory
1028  *						or read adapter MAC address
1029  *
1030  * Assumptions:
1031  *   Memory allocated from dma_alloc_coherent() call is physically
1032  *   contiguous, locked memory.
1033  *
1034  * Side Effects:
1035  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1036  *   returning from this routine.
1037  */
1038 
1039 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1040 			   resource_size_t bar_start)
1041 {
1042 	DFX_board_t *bp = netdev_priv(dev);
1043 	struct device *bdev = bp->bus_dev;
1044 	int dfx_bus_pci = dev_is_pci(bdev);
1045 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1046 	int dfx_bus_tc = DFX_BUS_TC(bdev);
1047 	int alloc_size;			/* total buffer size needed */
1048 	char *top_v, *curr_v;		/* virtual addrs into memory block */
1049 	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
1050 	u32 data;			/* host data register value */
1051 	__le32 le32;
1052 	char *board_name = NULL;
1053 
1054 	DBG_printk("In dfx_driver_init...\n");
1055 
1056 	/* Initialize bus-specific hardware registers */
1057 
1058 	dfx_bus_init(dev);
1059 
1060 	/*
1061 	 * Initialize default values for configurable parameters
1062 	 *
1063 	 * Note: All of these parameters are ones that a user may
1064 	 *       want to customize.  It'd be nice to break these
1065 	 *		 out into Space.c or someplace else that's more
1066 	 *		 accessible/understandable than this file.
1067 	 */
1068 
1069 	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1070 	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1071 	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1072 	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1073 
1074 	/*
1075 	 * Ensure that HW configuration is OK
1076 	 *
1077 	 * Note: Depending on the hardware revision, we may need to modify
1078 	 *       some of the configurable parameters to workaround hardware
1079 	 *       limitations.  We'll perform this configuration check AFTER
1080 	 *       setting the parameters to their default values.
1081 	 */
1082 
1083 	dfx_bus_config_check(bp);
1084 
1085 	/* Disable PDQ interrupts first */
1086 
1087 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1088 
1089 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1090 
1091 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1092 
1093 	/*  Read the factory MAC address from the adapter then save it */
1094 
1095 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1096 				 &data) != DFX_K_SUCCESS) {
1097 		printk("%s: Could not read adapter factory MAC address!\n",
1098 		       print_name);
1099 		return DFX_K_FAILURE;
1100 	}
1101 	le32 = cpu_to_le32(data);
1102 	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1103 
1104 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1105 				 &data) != DFX_K_SUCCESS) {
1106 		printk("%s: Could not read adapter factory MAC address!\n",
1107 		       print_name);
1108 		return DFX_K_FAILURE;
1109 	}
1110 	le32 = cpu_to_le32(data);
1111 	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1112 
1113 	/*
1114 	 * Set current address to factory address
1115 	 *
1116 	 * Note: Node address override support is handled through
1117 	 *       dfx_ctl_set_mac_address.
1118 	 */
1119 
1120 	dev_addr_set(dev, bp->factory_mac_addr);
1121 	if (dfx_bus_tc)
1122 		board_name = "DEFTA";
1123 	if (dfx_bus_eisa)
1124 		board_name = "DEFEA";
1125 	if (dfx_bus_pci)
1126 		board_name = "DEFPA";
1127 	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1128 		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1129 		(long long)bar_start, dev->irq, dev->dev_addr);
1130 
1131 	/*
1132 	 * Get memory for descriptor block, consumer block, and other buffers
1133 	 * that need to be DMA read or written to by the adapter.
1134 	 */
1135 
1136 	alloc_size = sizeof(PI_DESCR_BLOCK) +
1137 					PI_CMD_REQ_K_SIZE_MAX +
1138 					PI_CMD_RSP_K_SIZE_MAX +
1139 #ifndef DYNAMIC_BUFFERS
1140 					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1141 #endif
1142 					sizeof(PI_CONSUMER_BLOCK) +
1143 					(PI_ALIGN_K_DESC_BLK - 1);
1144 	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1145 						   &bp->kmalloced_dma,
1146 						   GFP_ATOMIC);
1147 	if (top_v == NULL)
1148 		return DFX_K_FAILURE;
1149 
1150 	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1151 
1152 	/*
1153 	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1154 	 *  plus the amount of memory needed was allocated.  The physical address
1155 	 *	is now 8K aligned.  By carving up the memory in a specific order,
1156 	 *  we'll guarantee the alignment requirements for all other structures.
1157 	 *
1158 	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1159 	 *		  physically contiguous nature of the memory block or the address
1160 	 *		  alignments, then we'll need to implement a different algorithm
1161 	 *		  for allocating the needed memory.
1162 	 */
1163 
1164 	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1165 	curr_v = top_v + (curr_p - top_p);
1166 
1167 	/* Reserve space for descriptor block */
1168 
1169 	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1170 	bp->descr_block_phys = curr_p;
1171 	curr_v += sizeof(PI_DESCR_BLOCK);
1172 	curr_p += sizeof(PI_DESCR_BLOCK);
1173 
1174 	/* Reserve space for command request buffer */
1175 
1176 	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1177 	bp->cmd_req_phys = curr_p;
1178 	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1179 	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1180 
1181 	/* Reserve space for command response buffer */
1182 
1183 	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1184 	bp->cmd_rsp_phys = curr_p;
1185 	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1186 	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1187 
1188 	/* Reserve space for the LLC host receive queue buffers */
1189 
1190 	bp->rcv_block_virt = curr_v;
1191 	bp->rcv_block_phys = curr_p;
1192 
1193 #ifndef DYNAMIC_BUFFERS
1194 	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1195 	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1196 #endif
1197 
1198 	/* Reserve space for the consumer block */
1199 
1200 	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1201 	bp->cons_block_phys = curr_p;
1202 
1203 	/* Display virtual and physical addresses if debug driver */
1204 
1205 	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1206 		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1207 	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1208 		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1209 	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1210 		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1211 	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1212 		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1213 	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1214 		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1215 
1216 	return DFX_K_SUCCESS;
1217 }
1218 
1219 
1220 /*
1221  * =================
1222  * = dfx_adap_init =
1223  * =================
1224  *
1225  * Overview:
1226  *   Brings the adapter to the link avail/link unavailable state.
1227  *
1228  * Returns:
1229  *   Condition code
1230  *
1231  * Arguments:
1232  *   bp - pointer to board information
1233  *   get_buffers - non-zero if buffers to be allocated
1234  *
1235  * Functional Description:
1236  *   Issues the low-level firmware/hardware calls necessary to bring
1237  *   the adapter up, or to properly reset and restore adapter during
1238  *   run-time.
1239  *
1240  * Return Codes:
1241  *   DFX_K_SUCCESS - Adapter brought up successfully
1242  *   DFX_K_FAILURE - Adapter initialization failed
1243  *
1244  * Assumptions:
1245  *   bp->reset_type should be set to a valid reset type value before
1246  *   calling this routine.
1247  *
1248  * Side Effects:
1249  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1250  *   upon a successful return of this routine.
1251  */
1252 
1253 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1254 	{
1255 	DBG_printk("In dfx_adap_init...\n");
1256 
1257 	/* Disable PDQ interrupts first */
1258 
1259 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1260 
1261 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1262 
1263 	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1264 		{
1265 		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1266 		return DFX_K_FAILURE;
1267 		}
1268 
1269 	/*
1270 	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1271 	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1272 	 */
1273 
1274 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1275 
1276 	/*
1277 	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1278 	 *
1279 	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1280 	 *       takes care of the on-board register values.
1281 	 */
1282 
1283 	bp->cmd_req_reg.lword	= 0;
1284 	bp->cmd_rsp_reg.lword	= 0;
1285 	bp->rcv_xmt_reg.lword	= 0;
1286 
1287 	/* Clear consumer block before going to DMA_AVAILABLE state */
1288 
1289 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1290 
1291 	/* Initialize the DMA Burst Size */
1292 
1293 	if (dfx_hw_port_ctrl_req(bp,
1294 							PI_PCTRL_M_SUB_CMD,
1295 							PI_SUB_CMD_K_BURST_SIZE_SET,
1296 							bp->burst_size,
1297 							NULL) != DFX_K_SUCCESS)
1298 		{
1299 		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1300 		return DFX_K_FAILURE;
1301 		}
1302 
1303 	/*
1304 	 * Set base address of Consumer Block
1305 	 *
1306 	 * Assumption: 32-bit physical address of consumer block is 64 byte
1307 	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1308 	 */
1309 
1310 	if (dfx_hw_port_ctrl_req(bp,
1311 							PI_PCTRL_M_CONS_BLOCK,
1312 							bp->cons_block_phys,
1313 							0,
1314 							NULL) != DFX_K_SUCCESS)
1315 		{
1316 		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1317 		return DFX_K_FAILURE;
1318 		}
1319 
1320 	/*
1321 	 * Set the base address of Descriptor Block and bring adapter
1322 	 * to DMA_AVAILABLE state.
1323 	 *
1324 	 * Note: We also set the literal and data swapping requirements
1325 	 *       in this command.
1326 	 *
1327 	 * Assumption: 32-bit physical address of descriptor block
1328 	 *       is 8Kbyte aligned.
1329 	 */
1330 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1331 				 (u32)(bp->descr_block_phys |
1332 				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1333 				 0, NULL) != DFX_K_SUCCESS) {
1334 		printk("%s: Could not set descriptor block address!\n",
1335 		       bp->dev->name);
1336 		return DFX_K_FAILURE;
1337 	}
1338 
1339 	/* Set transmit flush timeout value */
1340 
1341 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1342 	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1343 	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1344 	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1345 	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1346 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1347 		{
1348 		printk("%s: DMA command request failed!\n", bp->dev->name);
1349 		return DFX_K_FAILURE;
1350 		}
1351 
1352 	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1353 
1354 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1355 	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1356 	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1357 	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1358 	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1359 	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1360 	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1361 	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1362 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1363 		{
1364 		printk("%s: DMA command request failed!\n", bp->dev->name);
1365 		return DFX_K_FAILURE;
1366 		}
1367 
1368 	/* Initialize adapter CAM */
1369 
1370 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1371 		{
1372 		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1373 		return DFX_K_FAILURE;
1374 		}
1375 
1376 	/* Initialize adapter filters */
1377 
1378 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1379 		{
1380 		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1381 		return DFX_K_FAILURE;
1382 		}
1383 
1384 	/*
1385 	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1386 	 * reinitialized)
1387 	 */
1388 
1389 	if (get_buffers)
1390 		dfx_rcv_flush(bp);
1391 
1392 	/* Initialize receive descriptor block and produce buffers */
1393 
1394 	if (dfx_rcv_init(bp, get_buffers))
1395 	        {
1396 		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1397 		if (get_buffers)
1398 			dfx_rcv_flush(bp);
1399 		return DFX_K_FAILURE;
1400 		}
1401 
1402 	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1403 
1404 	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1405 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1406 		{
1407 		printk("%s: Start command failed\n", bp->dev->name);
1408 		if (get_buffers)
1409 			dfx_rcv_flush(bp);
1410 		return DFX_K_FAILURE;
1411 		}
1412 
1413 	/* Initialization succeeded, reenable PDQ interrupts */
1414 
1415 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1416 	return DFX_K_SUCCESS;
1417 	}
1418 
1419 
1420 /*
1421  * ============
1422  * = dfx_open =
1423  * ============
1424  *
1425  * Overview:
1426  *   Opens the adapter
1427  *
1428  * Returns:
1429  *   Condition code
1430  *
1431  * Arguments:
1432  *   dev - pointer to device information
1433  *
1434  * Functional Description:
1435  *   This function brings the adapter to an operational state.
1436  *
1437  * Return Codes:
1438  *   0		 - Adapter was successfully opened
1439  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1440  *
1441  * Assumptions:
1442  *   This routine should only be called for a device that was
1443  *   initialized successfully.
1444  *
1445  * Side Effects:
1446  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1447  *   if the open is successful.
1448  */
1449 
1450 static int dfx_open(struct net_device *dev)
1451 {
1452 	DFX_board_t *bp = netdev_priv(dev);
1453 	int ret;
1454 
1455 	DBG_printk("In dfx_open...\n");
1456 
1457 	/* Register IRQ - support shared interrupts by passing device ptr */
1458 
1459 	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1460 			  dev);
1461 	if (ret) {
1462 		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1463 		return ret;
1464 	}
1465 
1466 	/*
1467 	 * Set current address to factory MAC address
1468 	 *
1469 	 * Note: We've already done this step in dfx_driver_init.
1470 	 *       However, it's possible that a user has set a node
1471 	 *		 address override, then closed and reopened the
1472 	 *		 adapter.  Unless we reset the device address field
1473 	 *		 now, we'll continue to use the existing modified
1474 	 *		 address.
1475 	 */
1476 
1477 	dev_addr_set(dev, bp->factory_mac_addr);
1478 
1479 	/* Clear local unicast/multicast address tables and counts */
1480 
1481 	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1482 	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1483 	bp->uc_count = 0;
1484 	bp->mc_count = 0;
1485 
1486 	/* Disable promiscuous filter settings */
1487 
1488 	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1489 	bp->group_prom		= PI_FSTATE_K_BLOCK;
1490 
1491 	spin_lock_init(&bp->lock);
1492 
1493 	/* Reset and initialize adapter */
1494 
1495 	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1496 	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1497 	{
1498 		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1499 		free_irq(dev->irq, dev);
1500 		return -EAGAIN;
1501 	}
1502 
1503 	/* Set device structure info */
1504 	netif_start_queue(dev);
1505 	return 0;
1506 }
1507 
1508 
1509 /*
1510  * =============
1511  * = dfx_close =
1512  * =============
1513  *
1514  * Overview:
1515  *   Closes the device/module.
1516  *
1517  * Returns:
1518  *   Condition code
1519  *
1520  * Arguments:
1521  *   dev - pointer to device information
1522  *
1523  * Functional Description:
1524  *   This routine closes the adapter and brings it to a safe state.
1525  *   The interrupt service routine is deregistered with the OS.
1526  *   The adapter can be opened again with another call to dfx_open().
1527  *
1528  * Return Codes:
1529  *   Always return 0.
1530  *
1531  * Assumptions:
1532  *   No further requests for this adapter are made after this routine is
1533  *   called.  dfx_open() can be called to reset and reinitialize the
1534  *   adapter.
1535  *
1536  * Side Effects:
1537  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1538  *   routine.
1539  */
1540 
1541 static int dfx_close(struct net_device *dev)
1542 {
1543 	DFX_board_t *bp = netdev_priv(dev);
1544 
1545 	DBG_printk("In dfx_close...\n");
1546 
1547 	/* Disable PDQ interrupts first */
1548 
1549 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1550 
1551 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1552 
1553 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1554 
1555 	/*
1556 	 * Flush any pending transmit buffers
1557 	 *
1558 	 * Note: It's important that we flush the transmit buffers
1559 	 *		 BEFORE we clear our copy of the Type 2 register.
1560 	 *		 Otherwise, we'll have no idea how many buffers
1561 	 *		 we need to free.
1562 	 */
1563 
1564 	dfx_xmt_flush(bp);
1565 
1566 	/*
1567 	 * Clear Type 1 and Type 2 registers after adapter reset
1568 	 *
1569 	 * Note: Even though we're closing the adapter, it's
1570 	 *       possible that an interrupt will occur after
1571 	 *		 dfx_close is called.  Without some assurance to
1572 	 *		 the contrary we want to make sure that we don't
1573 	 *		 process receive and transmit LLC frames and update
1574 	 *		 the Type 2 register with bad information.
1575 	 */
1576 
1577 	bp->cmd_req_reg.lword	= 0;
1578 	bp->cmd_rsp_reg.lword	= 0;
1579 	bp->rcv_xmt_reg.lword	= 0;
1580 
1581 	/* Clear consumer block for the same reason given above */
1582 
1583 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1584 
1585 	/* Release all dynamically allocate skb in the receive ring. */
1586 
1587 	dfx_rcv_flush(bp);
1588 
1589 	/* Clear device structure flags */
1590 
1591 	netif_stop_queue(dev);
1592 
1593 	/* Deregister (free) IRQ */
1594 
1595 	free_irq(dev->irq, dev);
1596 
1597 	return 0;
1598 }
1599 
1600 
1601 /*
1602  * ======================
1603  * = dfx_int_pr_halt_id =
1604  * ======================
1605  *
1606  * Overview:
1607  *   Displays halt id's in string form.
1608  *
1609  * Returns:
1610  *   None
1611  *
1612  * Arguments:
1613  *   bp - pointer to board information
1614  *
1615  * Functional Description:
1616  *   Determine current halt id and display appropriate string.
1617  *
1618  * Return Codes:
1619  *   None
1620  *
1621  * Assumptions:
1622  *   None
1623  *
1624  * Side Effects:
1625  *   None
1626  */
1627 
1628 static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1629 	{
1630 	PI_UINT32	port_status;			/* PDQ port status register value */
1631 	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1632 
1633 	/* Read the latest port status */
1634 
1635 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1636 
1637 	/* Display halt state transition information */
1638 
1639 	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1640 	switch (halt_id)
1641 		{
1642 		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1643 			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1644 			break;
1645 
1646 		case PI_HALT_ID_K_PARITY_ERROR:
1647 			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1648 			break;
1649 
1650 		case PI_HALT_ID_K_HOST_DIR_HALT:
1651 			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1652 			break;
1653 
1654 		case PI_HALT_ID_K_SW_FAULT:
1655 			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1656 			break;
1657 
1658 		case PI_HALT_ID_K_HW_FAULT:
1659 			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1660 			break;
1661 
1662 		case PI_HALT_ID_K_PC_TRACE:
1663 			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1664 			break;
1665 
1666 		case PI_HALT_ID_K_DMA_ERROR:
1667 			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1668 			break;
1669 
1670 		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1671 			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1672 			break;
1673 
1674 		case PI_HALT_ID_K_BUS_EXCEPTION:
1675 			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1676 			break;
1677 
1678 		default:
1679 			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1680 			break;
1681 		}
1682 	}
1683 
1684 
1685 /*
1686  * ==========================
1687  * = dfx_int_type_0_process =
1688  * ==========================
1689  *
1690  * Overview:
1691  *   Processes Type 0 interrupts.
1692  *
1693  * Returns:
1694  *   None
1695  *
1696  * Arguments:
1697  *   bp - pointer to board information
1698  *
1699  * Functional Description:
1700  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1701  *   is a serious fault on the adapter, then an error message is displayed
1702  *   and the adapter is reset.
1703  *
1704  *   One tricky potential timing window is the rapid succession of "link avail"
1705  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1706  *   interrupt must be done before reading the state from the Port Status
1707  *   register.  This is true because a state change could occur after reading
1708  *   the data, but before acknowledging the interrupt.  If this state change
1709  *   does happen, it would be lost because the driver is using the old state,
1710  *   and it will never know about the new state because it subsequently
1711  *   acknowledges the state change interrupt.
1712  *
1713  *          INCORRECT                                      CORRECT
1714  *      read type 0 int reasons                   read type 0 int reasons
1715  *      read adapter state                        ack type 0 interrupts
1716  *      ack type 0 interrupts                     read adapter state
1717  *      ... process interrupt ...                 ... process interrupt ...
1718  *
1719  * Return Codes:
1720  *   None
1721  *
1722  * Assumptions:
1723  *   None
1724  *
1725  * Side Effects:
1726  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1727  *   or if the port status indicates that the adapter is halted.  The driver
1728  *   is responsible for reinitializing the adapter with the current CAM
1729  *   contents and adapter filter settings.
1730  */
1731 
1732 static void dfx_int_type_0_process(DFX_board_t	*bp)
1733 
1734 	{
1735 	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1736 	PI_UINT32	state;				/* current adap state (from port status) */
1737 
1738 	/*
1739 	 * Read host interrupt Type 0 register to determine which Type 0
1740 	 * interrupts are pending.  Immediately write it back out to clear
1741 	 * those interrupts.
1742 	 */
1743 
1744 	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1745 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1746 
1747 	/* Check for Type 0 error interrupts */
1748 
1749 	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1750 							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1751 							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1752 		{
1753 		/* Check for Non-Existent Memory error */
1754 
1755 		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1756 			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1757 
1758 		/* Check for Packet Memory Parity error */
1759 
1760 		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1761 			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1762 
1763 		/* Check for Host Bus Parity error */
1764 
1765 		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1766 			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1767 
1768 		/* Reset adapter and bring it back on-line */
1769 
1770 		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1771 		bp->reset_type = 0;					/* rerun on-board diagnostics */
1772 		printk("%s: Resetting adapter...\n", bp->dev->name);
1773 		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1774 			{
1775 			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1776 			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1777 			return;
1778 			}
1779 		printk("%s: Adapter reset successful!\n", bp->dev->name);
1780 		return;
1781 		}
1782 
1783 	/* Check for transmit flush interrupt */
1784 
1785 	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1786 		{
1787 		/* Flush any pending xmt's and acknowledge the flush interrupt */
1788 
1789 		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1790 		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1791 		(void) dfx_hw_port_ctrl_req(bp,
1792 									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1793 									0,
1794 									0,
1795 									NULL);
1796 		}
1797 
1798 	/* Check for adapter state change */
1799 
1800 	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1801 		{
1802 		/* Get latest adapter state */
1803 
1804 		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1805 		if (state == PI_STATE_K_HALTED)
1806 			{
1807 			/*
1808 			 * Adapter has transitioned to HALTED state, try to reset
1809 			 * adapter to bring it back on-line.  If reset fails,
1810 			 * leave the adapter in the broken state.
1811 			 */
1812 
1813 			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1814 			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1815 
1816 			/* Reset adapter and bring it back on-line */
1817 
1818 			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1819 			bp->reset_type = 0;					/* rerun on-board diagnostics */
1820 			printk("%s: Resetting adapter...\n", bp->dev->name);
1821 			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1822 				{
1823 				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1824 				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1825 				return;
1826 				}
1827 			printk("%s: Adapter reset successful!\n", bp->dev->name);
1828 			}
1829 		else if (state == PI_STATE_K_LINK_AVAIL)
1830 			{
1831 			bp->link_available = PI_K_TRUE;		/* set link available flag */
1832 			}
1833 		}
1834 	}
1835 
1836 
1837 /*
1838  * ==================
1839  * = dfx_int_common =
1840  * ==================
1841  *
1842  * Overview:
1843  *   Interrupt service routine (ISR)
1844  *
1845  * Returns:
1846  *   None
1847  *
1848  * Arguments:
1849  *   bp - pointer to board information
1850  *
1851  * Functional Description:
1852  *   This is the ISR which processes incoming adapter interrupts.
1853  *
1854  * Return Codes:
1855  *   None
1856  *
1857  * Assumptions:
1858  *   This routine assumes PDQ interrupts have not been disabled.
1859  *   When interrupts are disabled at the PDQ, the Port Status register
1860  *   is automatically cleared.  This routine uses the Port Status
1861  *   register value to determine whether a Type 0 interrupt occurred,
1862  *   so it's important that adapter interrupts are not normally
1863  *   enabled/disabled at the PDQ.
1864  *
1865  *   It's vital that this routine is NOT reentered for the
1866  *   same board and that the OS is not in another section of
1867  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1868  *   different thread.
1869  *
1870  * Side Effects:
1871  *   Pending interrupts are serviced.  Depending on the type of
1872  *   interrupt, acknowledging and clearing the interrupt at the
1873  *   PDQ involves writing a register to clear the interrupt bit
1874  *   or updating completion indices.
1875  */
1876 
1877 static void dfx_int_common(struct net_device *dev)
1878 {
1879 	DFX_board_t *bp = netdev_priv(dev);
1880 	PI_UINT32	port_status;		/* Port Status register */
1881 
1882 	/* Process xmt interrupts - frequent case, so always call this routine */
1883 
1884 	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1885 		netif_wake_queue(dev);
1886 
1887 	/* Process rcv interrupts - frequent case, so always call this routine */
1888 
1889 	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1890 
1891 	/*
1892 	 * Transmit and receive producer and completion indices are updated on the
1893 	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1894 	 * case is that we'll be processing either LLC transmit or receive buffers,
1895 	 * we'll optimize I/O writes by doing a single register write here.
1896 	 */
1897 
1898 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1899 
1900 	/* Read PDQ Port Status register to find out which interrupts need processing */
1901 
1902 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1903 
1904 	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1905 
1906 	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1907 		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1908 	}
1909 
1910 
1911 /*
1912  * =================
1913  * = dfx_interrupt =
1914  * =================
1915  *
1916  * Overview:
1917  *   Interrupt processing routine
1918  *
1919  * Returns:
1920  *   Whether a valid interrupt was seen.
1921  *
1922  * Arguments:
1923  *   irq	- interrupt vector
1924  *   dev_id	- pointer to device information
1925  *
1926  * Functional Description:
1927  *   This routine calls the interrupt processing routine for this adapter.  It
1928  *   disables and reenables adapter interrupts, as appropriate.  We can support
1929  *   shared interrupts since the incoming dev_id pointer provides our device
1930  *   structure context.
1931  *
1932  * Return Codes:
1933  *   IRQ_HANDLED - an IRQ was handled.
1934  *   IRQ_NONE    - no IRQ was handled.
1935  *
1936  * Assumptions:
1937  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1938  *   on Intel-based systems) is done by the operating system outside this
1939  *   routine.
1940  *
1941  *	 System interrupts are enabled through this call.
1942  *
1943  * Side Effects:
1944  *   Interrupts are disabled, then reenabled at the adapter.
1945  */
1946 
1947 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1948 {
1949 	struct net_device *dev = dev_id;
1950 	DFX_board_t *bp = netdev_priv(dev);
1951 	struct device *bdev = bp->bus_dev;
1952 	int dfx_bus_pci = dev_is_pci(bdev);
1953 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1954 	int dfx_bus_tc = DFX_BUS_TC(bdev);
1955 
1956 	/* Service adapter interrupts */
1957 
1958 	if (dfx_bus_pci) {
1959 		u32 status;
1960 
1961 		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1962 		if (!(status & PFI_STATUS_M_PDQ_INT))
1963 			return IRQ_NONE;
1964 
1965 		spin_lock(&bp->lock);
1966 
1967 		/* Disable PDQ-PFI interrupts at PFI */
1968 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1969 				    PFI_MODE_M_DMA_ENB);
1970 
1971 		/* Call interrupt service routine for this adapter */
1972 		dfx_int_common(dev);
1973 
1974 		/* Clear PDQ interrupt status bit and reenable interrupts */
1975 		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1976 				    PFI_STATUS_M_PDQ_INT);
1977 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1978 				    (PFI_MODE_M_PDQ_INT_ENB |
1979 				     PFI_MODE_M_DMA_ENB));
1980 
1981 		spin_unlock(&bp->lock);
1982 	}
1983 	if (dfx_bus_eisa) {
1984 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1985 		u8 status;
1986 
1987 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1988 		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1989 			return IRQ_NONE;
1990 
1991 		spin_lock(&bp->lock);
1992 
1993 		/* Disable interrupts at the ESIC */
1994 		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1995 		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1996 
1997 		/* Call interrupt service routine for this adapter */
1998 		dfx_int_common(dev);
1999 
2000 		/* Reenable interrupts at the ESIC */
2001 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002 		status |= PI_CONFIG_STAT_0_M_INT_ENB;
2003 		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2004 
2005 		spin_unlock(&bp->lock);
2006 	}
2007 	if (dfx_bus_tc) {
2008 		u32 status;
2009 
2010 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2011 		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2012 				PI_PSTATUS_M_XMT_DATA_PENDING |
2013 				PI_PSTATUS_M_SMT_HOST_PENDING |
2014 				PI_PSTATUS_M_UNSOL_PENDING |
2015 				PI_PSTATUS_M_CMD_RSP_PENDING |
2016 				PI_PSTATUS_M_CMD_REQ_PENDING |
2017 				PI_PSTATUS_M_TYPE_0_PENDING)))
2018 			return IRQ_NONE;
2019 
2020 		spin_lock(&bp->lock);
2021 
2022 		/* Call interrupt service routine for this adapter */
2023 		dfx_int_common(dev);
2024 
2025 		spin_unlock(&bp->lock);
2026 	}
2027 
2028 	return IRQ_HANDLED;
2029 }
2030 
2031 
2032 /*
2033  * =====================
2034  * = dfx_ctl_get_stats =
2035  * =====================
2036  *
2037  * Overview:
2038  *   Get statistics for FDDI adapter
2039  *
2040  * Returns:
2041  *   Pointer to FDDI statistics structure
2042  *
2043  * Arguments:
2044  *   dev - pointer to device information
2045  *
2046  * Functional Description:
2047  *   Gets current MIB objects from adapter, then
2048  *   returns FDDI statistics structure as defined
2049  *   in if_fddi.h.
2050  *
2051  *   Note: Since the FDDI statistics structure is
2052  *   still new and the device structure doesn't
2053  *   have an FDDI-specific get statistics handler,
2054  *   we'll return the FDDI statistics structure as
2055  *   a pointer to an Ethernet statistics structure.
2056  *   That way, at least the first part of the statistics
2057  *   structure can be decoded properly, and it allows
2058  *   "smart" applications to perform a second cast to
2059  *   decode the FDDI-specific statistics.
2060  *
2061  *   We'll have to pay attention to this routine as the
2062  *   device structure becomes more mature and LAN media
2063  *   independent.
2064  *
2065  * Return Codes:
2066  *   None
2067  *
2068  * Assumptions:
2069  *   None
2070  *
2071  * Side Effects:
2072  *   None
2073  */
2074 
2075 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2076 	{
2077 	DFX_board_t *bp = netdev_priv(dev);
2078 
2079 	/* Fill the bp->stats structure with driver-maintained counters */
2080 
2081 	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2082 	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2083 	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2084 	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2085 	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2086 				   bp->rcv_frame_status_errors +
2087 				   bp->rcv_length_errors;
2088 	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2089 	bp->stats.gen.rx_dropped = bp->rcv_discards;
2090 	bp->stats.gen.tx_dropped = bp->xmt_discards;
2091 	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2092 	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2093 
2094 	/* Get FDDI SMT MIB objects */
2095 
2096 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2097 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2098 		return (struct net_device_stats *)&bp->stats;
2099 
2100 	/* Fill the bp->stats structure with the SMT MIB object values */
2101 
2102 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2103 	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2104 	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2105 	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2106 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2107 	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2108 	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2109 	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2110 	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2111 	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2112 	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2113 	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2114 	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2115 	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2116 	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2117 	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2118 	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2119 	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2120 	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2121 	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2122 	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2123 	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2124 	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2125 	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2126 	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2127 	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2128 	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2129 	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2130 	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2131 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2132 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2133 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2134 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2135 	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2136 	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2137 	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2138 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2139 	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2140 	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2141 	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2142 	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2143 	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2144 	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2145 	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2146 	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2147 	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2148 	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2149 	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2150 	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2151 	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2152 	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2153 	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2154 	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2155 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2156 	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2157 	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2158 	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2159 	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2160 	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2161 	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2162 	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2163 	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2164 	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2165 	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2166 	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2167 	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2168 	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2169 	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2170 	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2171 	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2172 	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2173 	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2174 	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2175 	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2176 	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2177 	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2178 	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2179 	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2180 	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2181 	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2182 	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2183 	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2184 	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2185 	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2186 	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2187 	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2188 	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2189 	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2190 	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2191 	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2192 	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2193 	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2194 
2195 	/* Get FDDI counters */
2196 
2197 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2198 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2199 		return (struct net_device_stats *)&bp->stats;
2200 
2201 	/* Fill the bp->stats structure with the FDDI counter values */
2202 
2203 	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2204 	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2205 	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2206 	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2207 	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2208 	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2209 	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2210 	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2211 	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2212 	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2213 	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2214 
2215 	return (struct net_device_stats *)&bp->stats;
2216 	}
2217 
2218 
2219 /*
2220  * ==============================
2221  * = dfx_ctl_set_multicast_list =
2222  * ==============================
2223  *
2224  * Overview:
2225  *   Enable/Disable LLC frame promiscuous mode reception
2226  *   on the adapter and/or update multicast address table.
2227  *
2228  * Returns:
2229  *   None
2230  *
2231  * Arguments:
2232  *   dev - pointer to device information
2233  *
2234  * Functional Description:
2235  *   This routine follows a fairly simple algorithm for setting the
2236  *   adapter filters and CAM:
2237  *
2238  *		if IFF_PROMISC flag is set
2239  *			enable LLC individual/group promiscuous mode
2240  *		else
2241  *			disable LLC individual/group promiscuous mode
2242  *			if number of incoming multicast addresses >
2243  *					(CAM max size - number of unicast addresses in CAM)
2244  *				enable LLC group promiscuous mode
2245  *				set driver-maintained multicast address count to zero
2246  *			else
2247  *				disable LLC group promiscuous mode
2248  *				set driver-maintained multicast address count to incoming count
2249  *			update adapter CAM
2250  *		update adapter filters
2251  *
2252  * Return Codes:
2253  *   None
2254  *
2255  * Assumptions:
2256  *   Multicast addresses are presented in canonical (LSB) format.
2257  *
2258  * Side Effects:
2259  *   On-board adapter CAM and filters are updated.
2260  */
2261 
2262 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2263 {
2264 	DFX_board_t *bp = netdev_priv(dev);
2265 	int					i;			/* used as index in for loop */
2266 	struct netdev_hw_addr *ha;
2267 
2268 	/* Enable LLC frame promiscuous mode, if necessary */
2269 
2270 	if (dev->flags & IFF_PROMISC)
2271 		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2272 
2273 	/* Else, update multicast address table */
2274 
2275 	else
2276 		{
2277 		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2278 		/*
2279 		 * Check whether incoming multicast address count exceeds table size
2280 		 *
2281 		 * Note: The adapters utilize an on-board 64 entry CAM for
2282 		 *       supporting perfect filtering of multicast packets
2283 		 *		 and bridge functions when adding unicast addresses.
2284 		 *		 There is no hash function available.  To support
2285 		 *		 additional multicast addresses, the all multicast
2286 		 *		 filter (LLC group promiscuous mode) must be enabled.
2287 		 *
2288 		 *		 The firmware reserves two CAM entries for SMT-related
2289 		 *		 multicast addresses, which leaves 62 entries available.
2290 		 *		 The following code ensures that we're not being asked
2291 		 *		 to add more than 62 addresses to the CAM.  If we are,
2292 		 *		 the driver will enable the all multicast filter.
2293 		 *		 Should the number of multicast addresses drop below
2294 		 *		 the high water mark, the filter will be disabled and
2295 		 *		 perfect filtering will be used.
2296 		 */
2297 
2298 		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2299 			{
2300 			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2301 			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2302 			}
2303 		else
2304 			{
2305 			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2306 			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2307 			}
2308 
2309 		/* Copy addresses to multicast address table, then update adapter CAM */
2310 
2311 		i = 0;
2312 		netdev_for_each_mc_addr(ha, dev)
2313 			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2314 			       ha->addr, FDDI_K_ALEN);
2315 
2316 		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2317 			{
2318 			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2319 			}
2320 		else
2321 			{
2322 			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2323 			}
2324 		}
2325 
2326 	/* Update adapter filters */
2327 
2328 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2329 		{
2330 		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2331 		}
2332 	else
2333 		{
2334 		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2335 		}
2336 	}
2337 
2338 
2339 /*
2340  * ===========================
2341  * = dfx_ctl_set_mac_address =
2342  * ===========================
2343  *
2344  * Overview:
2345  *   Add node address override (unicast address) to adapter
2346  *   CAM and update dev_addr field in device table.
2347  *
2348  * Returns:
2349  *   None
2350  *
2351  * Arguments:
2352  *   dev  - pointer to device information
2353  *   addr - pointer to sockaddr structure containing unicast address to add
2354  *
2355  * Functional Description:
2356  *   The adapter supports node address overrides by adding one or more
2357  *   unicast addresses to the adapter CAM.  This is similar to adding
2358  *   multicast addresses.  In this routine we'll update the driver and
2359  *   device structures with the new address, then update the adapter CAM
2360  *   to ensure that the adapter will copy and strip frames destined and
2361  *   sourced by that address.
2362  *
2363  * Return Codes:
2364  *   Always returns zero.
2365  *
2366  * Assumptions:
2367  *   The address pointed to by addr->sa_data is a valid unicast
2368  *   address and is presented in canonical (LSB) format.
2369  *
2370  * Side Effects:
2371  *   On-board adapter CAM is updated.  On-board adapter filters
2372  *   may be updated.
2373  */
2374 
2375 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2376 	{
2377 	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2378 	DFX_board_t *bp = netdev_priv(dev);
2379 
2380 	/* Copy unicast address to driver-maintained structs and update count */
2381 
2382 	dev_addr_set(dev, p_sockaddr->sa_data);				/* update device struct */
2383 	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2384 	bp->uc_count = 1;
2385 
2386 	/*
2387 	 * Verify we're not exceeding the CAM size by adding unicast address
2388 	 *
2389 	 * Note: It's possible that before entering this routine we've
2390 	 *       already filled the CAM with 62 multicast addresses.
2391 	 *		 Since we need to place the node address override into
2392 	 *		 the CAM, we have to check to see that we're not
2393 	 *		 exceeding the CAM size.  If we are, we have to enable
2394 	 *		 the LLC group (multicast) promiscuous mode filter as
2395 	 *		 in dfx_ctl_set_multicast_list.
2396 	 */
2397 
2398 	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2399 		{
2400 		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2401 		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2402 
2403 		/* Update adapter filters */
2404 
2405 		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2406 			{
2407 			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2408 			}
2409 		else
2410 			{
2411 			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2412 			}
2413 		}
2414 
2415 	/* Update adapter CAM with new unicast address */
2416 
2417 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2418 		{
2419 		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2420 		}
2421 	else
2422 		{
2423 		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2424 		}
2425 	return 0;			/* always return zero */
2426 	}
2427 
2428 
2429 /*
2430  * ======================
2431  * = dfx_ctl_update_cam =
2432  * ======================
2433  *
2434  * Overview:
2435  *   Procedure to update adapter CAM (Content Addressable Memory)
2436  *   with desired unicast and multicast address entries.
2437  *
2438  * Returns:
2439  *   Condition code
2440  *
2441  * Arguments:
2442  *   bp - pointer to board information
2443  *
2444  * Functional Description:
2445  *   Updates adapter CAM with current contents of board structure
2446  *   unicast and multicast address tables.  Since there are only 62
2447  *   free entries in CAM, this routine ensures that the command
2448  *   request buffer is not overrun.
2449  *
2450  * Return Codes:
2451  *   DFX_K_SUCCESS - Request succeeded
2452  *   DFX_K_FAILURE - Request failed
2453  *
2454  * Assumptions:
2455  *   All addresses being added (unicast and multicast) are in canonical
2456  *   order.
2457  *
2458  * Side Effects:
2459  *   On-board adapter CAM is updated.
2460  */
2461 
2462 static int dfx_ctl_update_cam(DFX_board_t *bp)
2463 	{
2464 	int			i;				/* used as index */
2465 	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2466 
2467 	/*
2468 	 * Fill in command request information
2469 	 *
2470 	 * Note: Even though both the unicast and multicast address
2471 	 *       table entries are stored as contiguous 6 byte entries,
2472 	 *		 the firmware address filter set command expects each
2473 	 *		 entry to be two longwords (8 bytes total).  We must be
2474 	 *		 careful to only copy the six bytes of each unicast and
2475 	 *		 multicast table entry into each command entry.  This
2476 	 *		 is also why we must first clear the entire command
2477 	 *		 request buffer.
2478 	 */
2479 
2480 	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2481 	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2482 	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2483 
2484 	/* Now add unicast addresses to command request buffer, if any */
2485 
2486 	for (i=0; i < (int)bp->uc_count; i++)
2487 		{
2488 		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2489 			{
2490 			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2491 			p_addr++;			/* point to next command entry */
2492 			}
2493 		}
2494 
2495 	/* Now add multicast addresses to command request buffer, if any */
2496 
2497 	for (i=0; i < (int)bp->mc_count; i++)
2498 		{
2499 		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2500 			{
2501 			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502 			p_addr++;			/* point to next command entry */
2503 			}
2504 		}
2505 
2506 	/* Issue command to update adapter CAM, then return */
2507 
2508 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2509 		return DFX_K_FAILURE;
2510 	return DFX_K_SUCCESS;
2511 	}
2512 
2513 
2514 /*
2515  * ==========================
2516  * = dfx_ctl_update_filters =
2517  * ==========================
2518  *
2519  * Overview:
2520  *   Procedure to update adapter filters with desired
2521  *   filter settings.
2522  *
2523  * Returns:
2524  *   Condition code
2525  *
2526  * Arguments:
2527  *   bp - pointer to board information
2528  *
2529  * Functional Description:
2530  *   Enables or disables filter using current filter settings.
2531  *
2532  * Return Codes:
2533  *   DFX_K_SUCCESS - Request succeeded.
2534  *   DFX_K_FAILURE - Request failed.
2535  *
2536  * Assumptions:
2537  *   We must always pass up packets destined to the broadcast
2538  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2539  *   broadcast filter enabled.
2540  *
2541  * Side Effects:
2542  *   On-board adapter filters are updated.
2543  */
2544 
2545 static int dfx_ctl_update_filters(DFX_board_t *bp)
2546 	{
2547 	int	i = 0;					/* used as index */
2548 
2549 	/* Fill in command request information */
2550 
2551 	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2552 
2553 	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2554 
2555 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2556 	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2557 
2558 	/* Initialize LLC Individual/Group Promiscuous filter */
2559 
2560 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2561 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2562 
2563 	/* Initialize LLC Group Promiscuous filter */
2564 
2565 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2566 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2567 
2568 	/* Terminate the item code list */
2569 
2570 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2571 
2572 	/* Issue command to update adapter filters, then return */
2573 
2574 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2575 		return DFX_K_FAILURE;
2576 	return DFX_K_SUCCESS;
2577 	}
2578 
2579 
2580 /*
2581  * ======================
2582  * = dfx_hw_dma_cmd_req =
2583  * ======================
2584  *
2585  * Overview:
2586  *   Sends PDQ DMA command to adapter firmware
2587  *
2588  * Returns:
2589  *   Condition code
2590  *
2591  * Arguments:
2592  *   bp - pointer to board information
2593  *
2594  * Functional Description:
2595  *   The command request and response buffers are posted to the adapter in the manner
2596  *   described in the PDQ Port Specification:
2597  *
2598  *		1. Command Response Buffer is posted to adapter.
2599  *		2. Command Request Buffer is posted to adapter.
2600  *		3. Command Request consumer index is polled until it indicates that request
2601  *         buffer has been DMA'd to adapter.
2602  *		4. Command Response consumer index is polled until it indicates that response
2603  *         buffer has been DMA'd from adapter.
2604  *
2605  *   This ordering ensures that a response buffer is already available for the firmware
2606  *   to use once it's done processing the request buffer.
2607  *
2608  * Return Codes:
2609  *   DFX_K_SUCCESS	  - DMA command succeeded
2610  * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2611  *   DFX_K_HW_TIMEOUT - DMA command timed out
2612  *
2613  * Assumptions:
2614  *   Command request buffer has already been filled with desired DMA command.
2615  *
2616  * Side Effects:
2617  *   None
2618  */
2619 
2620 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2621 	{
2622 	int status;			/* adapter status */
2623 	int timeout_cnt;	/* used in for loops */
2624 
2625 	/* Make sure the adapter is in a state that we can issue the DMA command in */
2626 
2627 	status = dfx_hw_adap_state_rd(bp);
2628 	if ((status == PI_STATE_K_RESET)		||
2629 		(status == PI_STATE_K_HALTED)		||
2630 		(status == PI_STATE_K_DMA_UNAVAIL)	||
2631 		(status == PI_STATE_K_UPGRADE))
2632 		return DFX_K_OUTSTATE;
2633 
2634 	/* Put response buffer on the command response queue */
2635 
2636 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2637 			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2638 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2639 
2640 	/* Bump (and wrap) the producer index and write out to register */
2641 
2642 	bp->cmd_rsp_reg.index.prod += 1;
2643 	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2644 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2645 
2646 	/* Put request buffer on the command request queue */
2647 
2648 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2649 			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2650 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2651 
2652 	/* Bump (and wrap) the producer index and write out to register */
2653 
2654 	bp->cmd_req_reg.index.prod += 1;
2655 	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2656 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2657 
2658 	/*
2659 	 * Here we wait for the command request consumer index to be equal
2660 	 * to the producer, indicating that the adapter has DMAed the request.
2661 	 */
2662 
2663 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2664 		{
2665 		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2666 			break;
2667 		udelay(100);			/* wait for 100 microseconds */
2668 		}
2669 	if (timeout_cnt == 0)
2670 		return DFX_K_HW_TIMEOUT;
2671 
2672 	/* Bump (and wrap) the completion index and write out to register */
2673 
2674 	bp->cmd_req_reg.index.comp += 1;
2675 	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2676 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2677 
2678 	/*
2679 	 * Here we wait for the command response consumer index to be equal
2680 	 * to the producer, indicating that the adapter has DMAed the response.
2681 	 */
2682 
2683 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2684 		{
2685 		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2686 			break;
2687 		udelay(100);			/* wait for 100 microseconds */
2688 		}
2689 	if (timeout_cnt == 0)
2690 		return DFX_K_HW_TIMEOUT;
2691 
2692 	/* Bump (and wrap) the completion index and write out to register */
2693 
2694 	bp->cmd_rsp_reg.index.comp += 1;
2695 	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2696 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2697 	return DFX_K_SUCCESS;
2698 	}
2699 
2700 
2701 /*
2702  * ========================
2703  * = dfx_hw_port_ctrl_req =
2704  * ========================
2705  *
2706  * Overview:
2707  *   Sends PDQ port control command to adapter firmware
2708  *
2709  * Returns:
2710  *   Host data register value in host_data if ptr is not NULL
2711  *
2712  * Arguments:
2713  *   bp			- pointer to board information
2714  *	 command	- port control command
2715  *	 data_a		- port data A register value
2716  *	 data_b		- port data B register value
2717  *	 host_data	- ptr to host data register value
2718  *
2719  * Functional Description:
2720  *   Send generic port control command to adapter by writing
2721  *   to various PDQ port registers, then polling for completion.
2722  *
2723  * Return Codes:
2724  *   DFX_K_SUCCESS	  - port control command succeeded
2725  *   DFX_K_HW_TIMEOUT - port control command timed out
2726  *
2727  * Assumptions:
2728  *   None
2729  *
2730  * Side Effects:
2731  *   None
2732  */
2733 
2734 static int dfx_hw_port_ctrl_req(
2735 	DFX_board_t	*bp,
2736 	PI_UINT32	command,
2737 	PI_UINT32	data_a,
2738 	PI_UINT32	data_b,
2739 	PI_UINT32	*host_data
2740 	)
2741 
2742 	{
2743 	PI_UINT32	port_cmd;		/* Port Control command register value */
2744 	int			timeout_cnt;	/* used in for loops */
2745 
2746 	/* Set Command Error bit in command longword */
2747 
2748 	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2749 
2750 	/* Issue port command to the adapter */
2751 
2752 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2753 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2754 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2755 
2756 	/* Now wait for command to complete */
2757 
2758 	if (command == PI_PCTRL_M_BLAST_FLASH)
2759 		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2760 	else
2761 		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2762 
2763 	for (; timeout_cnt > 0; timeout_cnt--)
2764 		{
2765 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2766 		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2767 			break;
2768 		udelay(100);			/* wait for 100 microseconds */
2769 		}
2770 	if (timeout_cnt == 0)
2771 		return DFX_K_HW_TIMEOUT;
2772 
2773 	/*
2774 	 * If the address of host_data is non-zero, assume caller has supplied a
2775 	 * non NULL pointer, and return the contents of the HOST_DATA register in
2776 	 * it.
2777 	 */
2778 
2779 	if (host_data != NULL)
2780 		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2781 	return DFX_K_SUCCESS;
2782 	}
2783 
2784 
2785 /*
2786  * =====================
2787  * = dfx_hw_adap_reset =
2788  * =====================
2789  *
2790  * Overview:
2791  *   Resets adapter
2792  *
2793  * Returns:
2794  *   None
2795  *
2796  * Arguments:
2797  *   bp   - pointer to board information
2798  *   type - type of reset to perform
2799  *
2800  * Functional Description:
2801  *   Issue soft reset to adapter by writing to PDQ Port Reset
2802  *   register.  Use incoming reset type to tell adapter what
2803  *   kind of reset operation to perform.
2804  *
2805  * Return Codes:
2806  *   None
2807  *
2808  * Assumptions:
2809  *   This routine merely issues a soft reset to the adapter.
2810  *   It is expected that after this routine returns, the caller
2811  *   will appropriately poll the Port Status register for the
2812  *   adapter to enter the proper state.
2813  *
2814  * Side Effects:
2815  *   Internal adapter registers are cleared.
2816  */
2817 
2818 static void dfx_hw_adap_reset(
2819 	DFX_board_t	*bp,
2820 	PI_UINT32	type
2821 	)
2822 
2823 	{
2824 	/* Set Reset type and assert reset */
2825 
2826 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2827 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2828 
2829 	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2830 
2831 	udelay(20);
2832 
2833 	/* Deassert reset */
2834 
2835 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2836 	}
2837 
2838 
2839 /*
2840  * ========================
2841  * = dfx_hw_adap_state_rd =
2842  * ========================
2843  *
2844  * Overview:
2845  *   Returns current adapter state
2846  *
2847  * Returns:
2848  *   Adapter state per PDQ Port Specification
2849  *
2850  * Arguments:
2851  *   bp - pointer to board information
2852  *
2853  * Functional Description:
2854  *   Reads PDQ Port Status register and returns adapter state.
2855  *
2856  * Return Codes:
2857  *   None
2858  *
2859  * Assumptions:
2860  *   None
2861  *
2862  * Side Effects:
2863  *   None
2864  */
2865 
2866 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2867 	{
2868 	PI_UINT32 port_status;		/* Port Status register value */
2869 
2870 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2871 	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2872 	}
2873 
2874 
2875 /*
2876  * =====================
2877  * = dfx_hw_dma_uninit =
2878  * =====================
2879  *
2880  * Overview:
2881  *   Brings adapter to DMA_UNAVAILABLE state
2882  *
2883  * Returns:
2884  *   Condition code
2885  *
2886  * Arguments:
2887  *   bp   - pointer to board information
2888  *   type - type of reset to perform
2889  *
2890  * Functional Description:
2891  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2892  *		1. Set reset type bit in Port Data A Register then reset adapter.
2893  *		2. Check that adapter is in DMA_UNAVAILABLE state.
2894  *
2895  * Return Codes:
2896  *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2897  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2898  *
2899  * Assumptions:
2900  *   None
2901  *
2902  * Side Effects:
2903  *   Internal adapter registers are cleared.
2904  */
2905 
2906 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2907 	{
2908 	int timeout_cnt;	/* used in for loops */
2909 
2910 	/* Set reset type bit and reset adapter */
2911 
2912 	dfx_hw_adap_reset(bp, type);
2913 
2914 	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2915 
2916 	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2917 		{
2918 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2919 			break;
2920 		udelay(100);					/* wait for 100 microseconds */
2921 		}
2922 	if (timeout_cnt == 0)
2923 		return DFX_K_HW_TIMEOUT;
2924 	return DFX_K_SUCCESS;
2925 	}
2926 
2927 /*
2928  *	Align an sk_buff to a boundary power of 2
2929  *
2930  */
2931 #ifdef DYNAMIC_BUFFERS
2932 static void my_skb_align(struct sk_buff *skb, int n)
2933 {
2934 	unsigned long x = (unsigned long)skb->data;
2935 	unsigned long v;
2936 
2937 	v = ALIGN(x, n);	/* Where we want to be */
2938 
2939 	skb_reserve(skb, v - x);
2940 }
2941 #endif
2942 
2943 /*
2944  * ================
2945  * = dfx_rcv_init =
2946  * ================
2947  *
2948  * Overview:
2949  *   Produces buffers to adapter LLC Host receive descriptor block
2950  *
2951  * Returns:
2952  *   None
2953  *
2954  * Arguments:
2955  *   bp - pointer to board information
2956  *   get_buffers - non-zero if buffers to be allocated
2957  *
2958  * Functional Description:
2959  *   This routine can be called during dfx_adap_init() or during an adapter
2960  *	 reset.  It initializes the descriptor block and produces all allocated
2961  *   LLC Host queue receive buffers.
2962  *
2963  * Return Codes:
2964  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2965  *   dynamic buffer allocation). If the buffer allocation failed, the
2966  *   already allocated buffers will not be released and the caller should do
2967  *   this.
2968  *
2969  * Assumptions:
2970  *   The PDQ has been reset and the adapter and driver maintained Type 2
2971  *   register indices are cleared.
2972  *
2973  * Side Effects:
2974  *   Receive buffers are posted to the adapter LLC queue and the adapter
2975  *   is notified.
2976  */
2977 
2978 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2979 	{
2980 	int	i, j;					/* used in for loop */
2981 
2982 	/*
2983 	 *  Since each receive buffer is a single fragment of same length, initialize
2984 	 *  first longword in each receive descriptor for entire LLC Host descriptor
2985 	 *  block.  Also initialize second longword in each receive descriptor with
2986 	 *  physical address of receive buffer.  We'll always allocate receive
2987 	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2988 	 *  block and produce new receive buffers by simply updating the receive
2989 	 *  producer index.
2990 	 *
2991 	 * 	Assumptions:
2992 	 *		To support all shipping versions of PDQ, the receive buffer size
2993 	 *		must be mod 128 in length and the physical address must be 128 byte
2994 	 *		aligned.  In other words, bits 0-6 of the length and address must
2995 	 *		be zero for the following descriptor field entries to be correct on
2996 	 *		all PDQ-based boards.  We guaranteed both requirements during
2997 	 *		driver initialization when we allocated memory for the receive buffers.
2998 	 */
2999 
3000 	if (get_buffers) {
3001 #ifdef DYNAMIC_BUFFERS
3002 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3003 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3004 		{
3005 			struct sk_buff *newskb;
3006 			dma_addr_t dma_addr;
3007 
3008 			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3009 						    GFP_NOIO);
3010 			if (!newskb)
3011 				return -ENOMEM;
3012 			/*
3013 			 * align to 128 bytes for compatibility with
3014 			 * the old EISA boards.
3015 			 */
3016 
3017 			my_skb_align(newskb, 128);
3018 			dma_addr = dma_map_single(bp->bus_dev,
3019 						  newskb->data,
3020 						  PI_RCV_DATA_K_SIZE_MAX,
3021 						  DMA_FROM_DEVICE);
3022 			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3023 				dev_kfree_skb(newskb);
3024 				return -ENOMEM;
3025 			}
3026 			bp->descr_block_virt->rcv_data[i + j].long_0 =
3027 				(u32)(PI_RCV_DESCR_M_SOP |
3028 				      ((PI_RCV_DATA_K_SIZE_MAX /
3029 					PI_ALIGN_K_RCV_DATA_BUFF) <<
3030 				       PI_RCV_DESCR_V_SEG_LEN));
3031 			bp->descr_block_virt->rcv_data[i + j].long_1 =
3032 				(u32)dma_addr;
3033 
3034 			/*
3035 			 * p_rcv_buff_va is only used inside the
3036 			 * kernel so we put the skb pointer here.
3037 			 */
3038 			bp->p_rcv_buff_va[i+j] = (char *) newskb;
3039 		}
3040 #else
3041 	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3042 		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3043 			{
3044 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3045 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3046 			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3047 			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3048 			}
3049 #endif
3050 	}
3051 
3052 	/* Update receive producer and Type 2 register */
3053 
3054 	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3055 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3056 	return 0;
3057 	}
3058 
3059 
3060 /*
3061  * =========================
3062  * = dfx_rcv_queue_process =
3063  * =========================
3064  *
3065  * Overview:
3066  *   Process received LLC frames.
3067  *
3068  * Returns:
3069  *   None
3070  *
3071  * Arguments:
3072  *   bp - pointer to board information
3073  *
3074  * Functional Description:
3075  *   Received LLC frames are processed until there are no more consumed frames.
3076  *   Once all frames are processed, the receive buffers are returned to the
3077  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3078  *   in this routine, because there are a fixed number of receive buffers to
3079  *   process and buffers are not produced until this routine exits and returns
3080  *   to the ISR.
3081  *
3082  * Return Codes:
3083  *   None
3084  *
3085  * Assumptions:
3086  *   None
3087  *
3088  * Side Effects:
3089  *   None
3090  */
3091 
3092 static void dfx_rcv_queue_process(
3093 	DFX_board_t *bp
3094 	)
3095 
3096 	{
3097 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3098 	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3099 	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3100 	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3101 
3102 	/* Service all consumed LLC receive frames */
3103 
3104 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3105 	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3106 		{
3107 		/* Process any errors */
3108 		dma_addr_t dma_addr;
3109 		int entry;
3110 
3111 		entry = bp->rcv_xmt_reg.index.rcv_comp;
3112 #ifdef DYNAMIC_BUFFERS
3113 		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3114 #else
3115 		p_buff = bp->p_rcv_buff_va[entry];
3116 #endif
3117 		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3118 		dma_sync_single_for_cpu(bp->bus_dev,
3119 					dma_addr + RCV_BUFF_K_DESCR,
3120 					sizeof(u32),
3121 					DMA_FROM_DEVICE);
3122 		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3123 
3124 		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3125 			{
3126 			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3127 				bp->rcv_crc_errors++;
3128 			else
3129 				bp->rcv_frame_status_errors++;
3130 			}
3131 		else
3132 		{
3133 			int rx_in_place = 0;
3134 
3135 			/* The frame was received without errors - verify packet length */
3136 
3137 			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3138 			pkt_len -= 4;				/* subtract 4 byte CRC */
3139 			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3140 				bp->rcv_length_errors++;
3141 			else{
3142 #ifdef DYNAMIC_BUFFERS
3143 				struct sk_buff *newskb = NULL;
3144 
3145 				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3146 					dma_addr_t new_dma_addr;
3147 
3148 					newskb = netdev_alloc_skb(bp->dev,
3149 								  NEW_SKB_SIZE);
3150 					if (newskb){
3151 						my_skb_align(newskb, 128);
3152 						new_dma_addr = dma_map_single(
3153 								bp->bus_dev,
3154 								newskb->data,
3155 								PI_RCV_DATA_K_SIZE_MAX,
3156 								DMA_FROM_DEVICE);
3157 						if (dma_mapping_error(
3158 								bp->bus_dev,
3159 								new_dma_addr)) {
3160 							dev_kfree_skb(newskb);
3161 							newskb = NULL;
3162 						}
3163 					}
3164 					if (newskb) {
3165 						rx_in_place = 1;
3166 
3167 						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3168 						dma_unmap_single(bp->bus_dev,
3169 							dma_addr,
3170 							PI_RCV_DATA_K_SIZE_MAX,
3171 							DMA_FROM_DEVICE);
3172 						skb_reserve(skb, RCV_BUFF_K_PADDING);
3173 						bp->p_rcv_buff_va[entry] = (char *)newskb;
3174 						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3175 					}
3176 				}
3177 				if (!newskb)
3178 #endif
3179 					/* Alloc new buffer to pass up,
3180 					 * add room for PRH. */
3181 					skb = netdev_alloc_skb(bp->dev,
3182 							       pkt_len + 3);
3183 				if (skb == NULL)
3184 					{
3185 					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3186 					bp->rcv_discards++;
3187 					break;
3188 					}
3189 				else {
3190 					if (!rx_in_place) {
3191 						/* Receive buffer allocated, pass receive packet up */
3192 						dma_sync_single_for_cpu(
3193 							bp->bus_dev,
3194 							dma_addr +
3195 							RCV_BUFF_K_PADDING,
3196 							pkt_len + 3,
3197 							DMA_FROM_DEVICE);
3198 
3199 						skb_copy_to_linear_data(skb,
3200 							       p_buff + RCV_BUFF_K_PADDING,
3201 							       pkt_len + 3);
3202 					}
3203 
3204 					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3205 					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3206 					skb->protocol = fddi_type_trans(skb, bp->dev);
3207 					bp->rcv_total_bytes += skb->len;
3208 					netif_rx(skb);
3209 
3210 					/* Update the rcv counters */
3211 					bp->rcv_total_frames++;
3212 					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3213 						bp->rcv_multicast_frames++;
3214 				}
3215 			}
3216 			}
3217 
3218 		/*
3219 		 * Advance the producer (for recycling) and advance the completion
3220 		 * (for servicing received frames).  Note that it is okay to
3221 		 * advance the producer without checking that it passes the
3222 		 * completion index because they are both advanced at the same
3223 		 * rate.
3224 		 */
3225 
3226 		bp->rcv_xmt_reg.index.rcv_prod += 1;
3227 		bp->rcv_xmt_reg.index.rcv_comp += 1;
3228 		}
3229 	}
3230 
3231 
3232 /*
3233  * =====================
3234  * = dfx_xmt_queue_pkt =
3235  * =====================
3236  *
3237  * Overview:
3238  *   Queues packets for transmission
3239  *
3240  * Returns:
3241  *   Condition code
3242  *
3243  * Arguments:
3244  *   skb - pointer to sk_buff to queue for transmission
3245  *   dev - pointer to device information
3246  *
3247  * Functional Description:
3248  *   Here we assume that an incoming skb transmit request
3249  *   is contained in a single physically contiguous buffer
3250  *   in which the virtual address of the start of packet
3251  *   (skb->data) can be converted to a physical address
3252  *   by using dma_map_single().
3253  *
3254  *   Since the adapter architecture requires a three byte
3255  *   packet request header to prepend the start of packet,
3256  *   we'll write the three byte field immediately prior to
3257  *   the FC byte.  This assumption is valid because we've
3258  *   ensured that dev->hard_header_len includes three pad
3259  *   bytes.  By posting a single fragment to the adapter,
3260  *   we'll reduce the number of descriptor fetches and
3261  *   bus traffic needed to send the request.
3262  *
3263  *   Also, we can't free the skb until after it's been DMA'd
3264  *   out by the adapter, so we'll queue it in the driver and
3265  *   return it in dfx_xmt_done.
3266  *
3267  * Return Codes:
3268  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3269  *	 1 - caller should requeue the sk_buff for later transmission
3270  *
3271  * Assumptions:
3272  *	 First and foremost, we assume the incoming skb pointer
3273  *   is NOT NULL and is pointing to a valid sk_buff structure.
3274  *
3275  *   The outgoing packet is complete, starting with the
3276  *   frame control byte including the last byte of data,
3277  *   but NOT including the 4 byte CRC.  We'll let the
3278  *   adapter hardware generate and append the CRC.
3279  *
3280  *   The entire packet is stored in one physically
3281  *   contiguous buffer which is not cached and whose
3282  *   32-bit physical address can be determined.
3283  *
3284  *   It's vital that this routine is NOT reentered for the
3285  *   same board and that the OS is not in another section of
3286  *   code (eg. dfx_int_common) for the same board on a
3287  *   different thread.
3288  *
3289  * Side Effects:
3290  *   None
3291  */
3292 
3293 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3294 				     struct net_device *dev)
3295 	{
3296 	DFX_board_t		*bp = netdev_priv(dev);
3297 	u8			prod;				/* local transmit producer index */
3298 	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3299 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3300 	dma_addr_t		dma_addr;
3301 	unsigned long		flags;
3302 
3303 	netif_stop_queue(dev);
3304 
3305 	/*
3306 	 * Verify that incoming transmit request is OK
3307 	 *
3308 	 * Note: The packet size check is consistent with other
3309 	 *		 Linux device drivers, although the correct packet
3310 	 *		 size should be verified before calling the
3311 	 *		 transmit routine.
3312 	 */
3313 
3314 	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3315 	{
3316 		printk("%s: Invalid packet length - %u bytes\n",
3317 			dev->name, skb->len);
3318 		bp->xmt_length_errors++;		/* bump error counter */
3319 		netif_wake_queue(dev);
3320 		dev_kfree_skb(skb);
3321 		return NETDEV_TX_OK;			/* return "success" */
3322 	}
3323 	/*
3324 	 * See if adapter link is available, if not, free buffer
3325 	 *
3326 	 * Note: If the link isn't available, free buffer and return 0
3327 	 *		 rather than tell the upper layer to requeue the packet.
3328 	 *		 The methodology here is that by the time the link
3329 	 *		 becomes available, the packet to be sent will be
3330 	 *		 fairly stale.  By simply dropping the packet, the
3331 	 *		 higher layer protocols will eventually time out
3332 	 *		 waiting for response packets which it won't receive.
3333 	 */
3334 
3335 	if (bp->link_available == PI_K_FALSE)
3336 		{
3337 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3338 			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3339 		else
3340 			{
3341 			bp->xmt_discards++;					/* bump error counter */
3342 			dev_kfree_skb(skb);		/* free sk_buff now */
3343 			netif_wake_queue(dev);
3344 			return NETDEV_TX_OK;		/* return "success" */
3345 			}
3346 		}
3347 
3348 	/* Write the three PRH bytes immediately before the FC byte */
3349 
3350 	skb_push(skb, 3);
3351 	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3352 	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3353 	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3354 
3355 	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3356 				  DMA_TO_DEVICE);
3357 	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3358 		skb_pull(skb, 3);
3359 		return NETDEV_TX_BUSY;
3360 	}
3361 
3362 	spin_lock_irqsave(&bp->lock, flags);
3363 
3364 	/* Get the current producer and the next free xmt data descriptor */
3365 
3366 	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3367 	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3368 
3369 	/*
3370 	 * Get pointer to auxiliary queue entry to contain information
3371 	 * for this packet.
3372 	 *
3373 	 * Note: The current xmt producer index will become the
3374 	 *	 current xmt completion index when we complete this
3375 	 *	 packet later on.  So, we'll get the pointer to the
3376 	 *	 next auxiliary queue entry now before we bump the
3377 	 *	 producer index.
3378 	 */
3379 
3380 	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3381 
3382 	/*
3383 	 * Write the descriptor with buffer info and bump producer
3384 	 *
3385 	 * Note: Since we need to start DMA from the packet request
3386 	 *		 header, we'll add 3 bytes to the DMA buffer length,
3387 	 *		 and we'll determine the physical address of the
3388 	 *		 buffer from the PRH, not skb->data.
3389 	 *
3390 	 * Assumptions:
3391 	 *		 1. Packet starts with the frame control (FC) byte
3392 	 *		    at skb->data.
3393 	 *		 2. The 4-byte CRC is not appended to the buffer or
3394 	 *			included in the length.
3395 	 *		 3. Packet length (skb->len) is from FC to end of
3396 	 *			data, inclusive.
3397 	 *		 4. The packet length does not exceed the maximum
3398 	 *			FDDI LLC frame length of 4491 bytes.
3399 	 *		 5. The entire packet is contained in a physically
3400 	 *			contiguous, non-cached, locked memory space
3401 	 *			comprised of a single buffer pointed to by
3402 	 *			skb->data.
3403 	 *		 6. The physical address of the start of packet
3404 	 *			can be determined from the virtual address
3405 	 *			by using dma_map_single() and is only 32-bits
3406 	 *			wide.
3407 	 */
3408 
3409 	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3410 	p_xmt_descr->long_1 = (u32)dma_addr;
3411 
3412 	/*
3413 	 * Verify that descriptor is actually available
3414 	 *
3415 	 * Note: If descriptor isn't available, return 1 which tells
3416 	 *	 the upper layer to requeue the packet for later
3417 	 *	 transmission.
3418 	 *
3419 	 *       We need to ensure that the producer never reaches the
3420 	 *	 completion, except to indicate that the queue is empty.
3421 	 */
3422 
3423 	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3424 	{
3425 		skb_pull(skb,3);
3426 		spin_unlock_irqrestore(&bp->lock, flags);
3427 		return NETDEV_TX_BUSY;	/* requeue packet for later */
3428 	}
3429 
3430 	/*
3431 	 * Save info for this packet for xmt done indication routine
3432 	 *
3433 	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3434 	 * structure so that we'd have it handy when we complete this
3435 	 * packet later (in dfx_xmt_done).  However, since the current
3436 	 * transmit architecture guarantees a single fragment for the
3437 	 * entire packet, we can simply bump the completion index by
3438 	 * one (1) for each completed packet.
3439 	 *
3440 	 * Note: If this assumption changes and we're presented with
3441 	 *	 an inconsistent number of transmit fragments for packet
3442 	 *	 data, we'll need to modify this code to save the current
3443 	 *	 transmit producer index.
3444 	 */
3445 
3446 	p_xmt_drv_descr->p_skb = skb;
3447 
3448 	/* Update Type 2 register */
3449 
3450 	bp->rcv_xmt_reg.index.xmt_prod = prod;
3451 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3452 	spin_unlock_irqrestore(&bp->lock, flags);
3453 	netif_wake_queue(dev);
3454 	return NETDEV_TX_OK;	/* packet queued to adapter */
3455 	}
3456 
3457 
3458 /*
3459  * ================
3460  * = dfx_xmt_done =
3461  * ================
3462  *
3463  * Overview:
3464  *   Processes all frames that have been transmitted.
3465  *
3466  * Returns:
3467  *   None
3468  *
3469  * Arguments:
3470  *   bp - pointer to board information
3471  *
3472  * Functional Description:
3473  *   For all consumed transmit descriptors that have not
3474  *   yet been completed, we'll free the skb we were holding
3475  *   onto using dev_kfree_skb and bump the appropriate
3476  *   counters.
3477  *
3478  * Return Codes:
3479  *   None
3480  *
3481  * Assumptions:
3482  *   The Type 2 register is not updated in this routine.  It is
3483  *   assumed that it will be updated in the ISR when dfx_xmt_done
3484  *   returns.
3485  *
3486  * Side Effects:
3487  *   None
3488  */
3489 
3490 static int dfx_xmt_done(DFX_board_t *bp)
3491 	{
3492 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3493 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3494 	u8			comp;			/* local transmit completion index */
3495 	int 			freed = 0;		/* buffers freed */
3496 
3497 	/* Service all consumed transmit frames */
3498 
3499 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3500 	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3501 		{
3502 		/* Get pointer to the transmit driver descriptor block information */
3503 
3504 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3505 
3506 		/* Increment transmit counters */
3507 
3508 		bp->xmt_total_frames++;
3509 		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3510 
3511 		/* Return skb to operating system */
3512 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3513 		dma_unmap_single(bp->bus_dev,
3514 				 bp->descr_block_virt->xmt_data[comp].long_1,
3515 				 p_xmt_drv_descr->p_skb->len,
3516 				 DMA_TO_DEVICE);
3517 		dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
3518 
3519 		/*
3520 		 * Move to start of next packet by updating completion index
3521 		 *
3522 		 * Here we assume that a transmit packet request is always
3523 		 * serviced by posting one fragment.  We can therefore
3524 		 * simplify the completion code by incrementing the
3525 		 * completion index by one.  This code will need to be
3526 		 * modified if this assumption changes.  See comments
3527 		 * in dfx_xmt_queue_pkt for more details.
3528 		 */
3529 
3530 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3531 		freed++;
3532 		}
3533 	return freed;
3534 	}
3535 
3536 
3537 /*
3538  * =================
3539  * = dfx_rcv_flush =
3540  * =================
3541  *
3542  * Overview:
3543  *   Remove all skb's in the receive ring.
3544  *
3545  * Returns:
3546  *   None
3547  *
3548  * Arguments:
3549  *   bp - pointer to board information
3550  *
3551  * Functional Description:
3552  *   Free's all the dynamically allocated skb's that are
3553  *   currently attached to the device receive ring. This
3554  *   function is typically only used when the device is
3555  *   initialized or reinitialized.
3556  *
3557  * Return Codes:
3558  *   None
3559  *
3560  * Side Effects:
3561  *   None
3562  */
3563 #ifdef DYNAMIC_BUFFERS
3564 static void dfx_rcv_flush( DFX_board_t *bp )
3565 	{
3566 	int i, j;
3567 
3568 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3569 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3570 		{
3571 			struct sk_buff *skb;
3572 			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3573 			if (skb) {
3574 				dma_unmap_single(bp->bus_dev,
3575 						 bp->descr_block_virt->rcv_data[i+j].long_1,
3576 						 PI_RCV_DATA_K_SIZE_MAX,
3577 						 DMA_FROM_DEVICE);
3578 				dev_kfree_skb(skb);
3579 			}
3580 			bp->p_rcv_buff_va[i+j] = NULL;
3581 		}
3582 
3583 	}
3584 #endif /* DYNAMIC_BUFFERS */
3585 
3586 /*
3587  * =================
3588  * = dfx_xmt_flush =
3589  * =================
3590  *
3591  * Overview:
3592  *   Processes all frames whether they've been transmitted
3593  *   or not.
3594  *
3595  * Returns:
3596  *   None
3597  *
3598  * Arguments:
3599  *   bp - pointer to board information
3600  *
3601  * Functional Description:
3602  *   For all produced transmit descriptors that have not
3603  *   yet been completed, we'll free the skb we were holding
3604  *   onto using dev_kfree_skb and bump the appropriate
3605  *   counters.  Of course, it's possible that some of
3606  *   these transmit requests actually did go out, but we
3607  *   won't make that distinction here.  Finally, we'll
3608  *   update the consumer index to match the producer.
3609  *
3610  * Return Codes:
3611  *   None
3612  *
3613  * Assumptions:
3614  *   This routine does NOT update the Type 2 register.  It
3615  *   is assumed that this routine is being called during a
3616  *   transmit flush interrupt, or a shutdown or close routine.
3617  *
3618  * Side Effects:
3619  *   None
3620  */
3621 
3622 static void dfx_xmt_flush( DFX_board_t *bp )
3623 	{
3624 	u32			prod_cons;		/* rcv/xmt consumer block longword */
3625 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3626 	u8			comp;			/* local transmit completion index */
3627 
3628 	/* Flush all outstanding transmit frames */
3629 
3630 	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3631 		{
3632 		/* Get pointer to the transmit driver descriptor block information */
3633 
3634 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3635 
3636 		/* Return skb to operating system */
3637 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3638 		dma_unmap_single(bp->bus_dev,
3639 				 bp->descr_block_virt->xmt_data[comp].long_1,
3640 				 p_xmt_drv_descr->p_skb->len,
3641 				 DMA_TO_DEVICE);
3642 		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3643 
3644 		/* Increment transmit error counter */
3645 
3646 		bp->xmt_discards++;
3647 
3648 		/*
3649 		 * Move to start of next packet by updating completion index
3650 		 *
3651 		 * Here we assume that a transmit packet request is always
3652 		 * serviced by posting one fragment.  We can therefore
3653 		 * simplify the completion code by incrementing the
3654 		 * completion index by one.  This code will need to be
3655 		 * modified if this assumption changes.  See comments
3656 		 * in dfx_xmt_queue_pkt for more details.
3657 		 */
3658 
3659 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3660 		}
3661 
3662 	/* Update the transmit consumer index in the consumer block */
3663 
3664 	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3665 	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3666 	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3667 	}
3668 
3669 /*
3670  * ==================
3671  * = dfx_unregister =
3672  * ==================
3673  *
3674  * Overview:
3675  *   Shuts down an FDDI controller
3676  *
3677  * Returns:
3678  *   Condition code
3679  *
3680  * Arguments:
3681  *   bdev - pointer to device information
3682  *
3683  * Functional Description:
3684  *
3685  * Return Codes:
3686  *   None
3687  *
3688  * Assumptions:
3689  *   It compiles so it should work :-( (PCI cards do :-)
3690  *
3691  * Side Effects:
3692  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3693  *   freed.
3694  */
3695 static void dfx_unregister(struct device *bdev)
3696 {
3697 	struct net_device *dev = dev_get_drvdata(bdev);
3698 	DFX_board_t *bp = netdev_priv(dev);
3699 	int dfx_bus_pci = dev_is_pci(bdev);
3700 	resource_size_t bar_start[3] = {0};	/* pointers to ports */
3701 	resource_size_t bar_len[3] = {0};	/* resource lengths */
3702 	int		alloc_size;		/* total buffer size used */
3703 
3704 	unregister_netdev(dev);
3705 
3706 	alloc_size = sizeof(PI_DESCR_BLOCK) +
3707 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708 #ifndef DYNAMIC_BUFFERS
3709 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710 #endif
3711 		     sizeof(PI_CONSUMER_BLOCK) +
3712 		     (PI_ALIGN_K_DESC_BLK - 1);
3713 	if (bp->kmalloced)
3714 		dma_free_coherent(bdev, alloc_size,
3715 				  bp->kmalloced, bp->kmalloced_dma);
3716 
3717 	dfx_bus_uninit(dev);
3718 
3719 	dfx_get_bars(bp, bar_start, bar_len);
3720 	if (bar_start[2] != 0)
3721 		release_region(bar_start[2], bar_len[2]);
3722 	if (bar_start[1] != 0)
3723 		release_region(bar_start[1], bar_len[1]);
3724 	if (dfx_use_mmio) {
3725 		iounmap(bp->base.mem);
3726 		release_mem_region(bar_start[0], bar_len[0]);
3727 	} else
3728 		release_region(bar_start[0], bar_len[0]);
3729 
3730 	if (dfx_bus_pci)
3731 		pci_disable_device(to_pci_dev(bdev));
3732 
3733 	free_netdev(dev);
3734 }
3735 
3736 
3737 static int __maybe_unused dfx_dev_register(struct device *);
3738 static int __maybe_unused dfx_dev_unregister(struct device *);
3739 
3740 #ifdef CONFIG_PCI
3741 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742 static void dfx_pci_unregister(struct pci_dev *);
3743 
3744 static const struct pci_device_id dfx_pci_table[] = {
3745 	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746 	{ }
3747 };
3748 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749 
3750 static struct pci_driver dfx_pci_driver = {
3751 	.name		= DRV_NAME,
3752 	.id_table	= dfx_pci_table,
3753 	.probe		= dfx_pci_register,
3754 	.remove		= dfx_pci_unregister,
3755 };
3756 
3757 static int dfx_pci_register(struct pci_dev *pdev,
3758 			    const struct pci_device_id *ent)
3759 {
3760 	return dfx_register(&pdev->dev);
3761 }
3762 
3763 static void dfx_pci_unregister(struct pci_dev *pdev)
3764 {
3765 	dfx_unregister(&pdev->dev);
3766 }
3767 #endif /* CONFIG_PCI */
3768 
3769 #ifdef CONFIG_EISA
3770 static const struct eisa_device_id dfx_eisa_table[] = {
3771         { "DEC3001", DEFEA_PROD_ID_1 },
3772         { "DEC3002", DEFEA_PROD_ID_2 },
3773         { "DEC3003", DEFEA_PROD_ID_3 },
3774         { "DEC3004", DEFEA_PROD_ID_4 },
3775         { }
3776 };
3777 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778 
3779 static struct eisa_driver dfx_eisa_driver = {
3780 	.id_table	= dfx_eisa_table,
3781 	.driver		= {
3782 		.name	= DRV_NAME,
3783 		.bus	= &eisa_bus_type,
3784 		.probe	= dfx_dev_register,
3785 		.remove	= dfx_dev_unregister,
3786 	},
3787 };
3788 #endif /* CONFIG_EISA */
3789 
3790 #ifdef CONFIG_TC
3791 static struct tc_device_id const dfx_tc_table[] = {
3792 	{ "DEC     ", "PMAF-FA " },
3793 	{ "DEC     ", "PMAF-FD " },
3794 	{ "DEC     ", "PMAF-FS " },
3795 	{ "DEC     ", "PMAF-FU " },
3796 	{ }
3797 };
3798 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799 
3800 static struct tc_driver dfx_tc_driver = {
3801 	.id_table	= dfx_tc_table,
3802 	.driver		= {
3803 		.name	= DRV_NAME,
3804 		.bus	= &tc_bus_type,
3805 		.probe	= dfx_dev_register,
3806 		.remove	= dfx_dev_unregister,
3807 	},
3808 };
3809 #endif /* CONFIG_TC */
3810 
3811 static int __maybe_unused dfx_dev_register(struct device *dev)
3812 {
3813 	int status;
3814 
3815 	status = dfx_register(dev);
3816 	if (!status)
3817 		get_device(dev);
3818 	return status;
3819 }
3820 
3821 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822 {
3823 	put_device(dev);
3824 	dfx_unregister(dev);
3825 	return 0;
3826 }
3827 
3828 
3829 static int dfx_init(void)
3830 {
3831 	int status;
3832 
3833 	status = pci_register_driver(&dfx_pci_driver);
3834 	if (!status)
3835 		status = eisa_driver_register(&dfx_eisa_driver);
3836 	if (!status)
3837 		status = tc_register_driver(&dfx_tc_driver);
3838 	return status;
3839 }
3840 
3841 static void dfx_cleanup(void)
3842 {
3843 	tc_unregister_driver(&dfx_tc_driver);
3844 	eisa_driver_unregister(&dfx_eisa_driver);
3845 	pci_unregister_driver(&dfx_pci_driver);
3846 }
3847 
3848 module_init(dfx_init);
3849 module_exit(dfx_cleanup);
3850 MODULE_AUTHOR("Lawrence V. Stefani");
3851 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852 		   DRV_VERSION " " DRV_RELDATE);
3853 MODULE_LICENSE("GPL");
3854