1 /* 2 * File Name: 3 * defxx.c 4 * 5 * Copyright Information: 6 * Copyright Digital Equipment Corporation 1996. 7 * 8 * This software may be used and distributed according to the terms of 9 * the GNU General Public License, incorporated herein by reference. 10 * 11 * Abstract: 12 * A Linux device driver supporting the Digital Equipment Corporation 13 * FDDI TURBOchannel, EISA and PCI controller families. Supported 14 * adapters include: 15 * 16 * DEC FDDIcontroller/TURBOchannel (DEFTA) 17 * DEC FDDIcontroller/EISA (DEFEA) 18 * DEC FDDIcontroller/PCI (DEFPA) 19 * 20 * The original author: 21 * LVS Lawrence V. Stefani <lstefani@yahoo.com> 22 * 23 * Maintainers: 24 * macro Maciej W. Rozycki <macro@linux-mips.org> 25 * 26 * Credits: 27 * I'd like to thank Patricia Cross for helping me get started with 28 * Linux, David Davies for a lot of help upgrading and configuring 29 * my development system and for answering many OS and driver 30 * development questions, and Alan Cox for recommendations and 31 * integration help on getting FDDI support into Linux. LVS 32 * 33 * Driver Architecture: 34 * The driver architecture is largely based on previous driver work 35 * for other operating systems. The upper edge interface and 36 * functions were largely taken from existing Linux device drivers 37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C 38 * driver. 39 * 40 * Adapter Probe - 41 * The driver scans for supported EISA adapters by reading the 42 * SLOT ID register for each EISA slot and making a match 43 * against the expected value. 44 * 45 * Bus-Specific Initialization - 46 * This driver currently supports both EISA and PCI controller 47 * families. While the custom DMA chip and FDDI logic is similar 48 * or identical, the bus logic is very different. After 49 * initialization, the only bus-specific differences is in how the 50 * driver enables and disables interrupts. Other than that, the 51 * run-time critical code behaves the same on both families. 52 * It's important to note that both adapter families are configured 53 * to I/O map, rather than memory map, the adapter registers. 54 * 55 * Driver Open/Close - 56 * In the driver open routine, the driver ISR (interrupt service 57 * routine) is registered and the adapter is brought to an 58 * operational state. In the driver close routine, the opposite 59 * occurs; the driver ISR is deregistered and the adapter is 60 * brought to a safe, but closed state. Users may use consecutive 61 * commands to bring the adapter up and down as in the following 62 * example: 63 * ifconfig fddi0 up 64 * ifconfig fddi0 down 65 * ifconfig fddi0 up 66 * 67 * Driver Shutdown - 68 * Apparently, there is no shutdown or halt routine support under 69 * Linux. This routine would be called during "reboot" or 70 * "shutdown" to allow the driver to place the adapter in a safe 71 * state before a warm reboot occurs. To be really safe, the user 72 * should close the adapter before shutdown (eg. ifconfig fddi0 down) 73 * to ensure that the adapter DMA engine is taken off-line. However, 74 * the current driver code anticipates this problem and always issues 75 * a soft reset of the adapter at the beginning of driver initialization. 76 * A future driver enhancement in this area may occur in 2.1.X where 77 * Alan indicated that a shutdown handler may be implemented. 78 * 79 * Interrupt Service Routine - 80 * The driver supports shared interrupts, so the ISR is registered for 81 * each board with the appropriate flag and the pointer to that board's 82 * device structure. This provides the context during interrupt 83 * processing to support shared interrupts and multiple boards. 84 * 85 * Interrupt enabling/disabling can occur at many levels. At the host 86 * end, you can disable system interrupts, or disable interrupts at the 87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters 88 * have a bus-logic chip interrupt enable/disable as well as a DMA 89 * controller interrupt enable/disable. 90 * 91 * The driver currently enables and disables adapter interrupts at the 92 * bus-logic chip and assumes that Linux will take care of clearing or 93 * acknowledging any host-based interrupt chips. 94 * 95 * Control Functions - 96 * Control functions are those used to support functions such as adding 97 * or deleting multicast addresses, enabling or disabling packet 98 * reception filters, or other custom/proprietary commands. Presently, 99 * the driver supports the "get statistics", "set multicast list", and 100 * "set mac address" functions defined by Linux. A list of possible 101 * enhancements include: 102 * 103 * - Custom ioctl interface for executing port interface commands 104 * - Custom ioctl interface for adding unicast addresses to 105 * adapter CAM (to support bridge functions). 106 * - Custom ioctl interface for supporting firmware upgrades. 107 * 108 * Hardware (port interface) Support Routines - 109 * The driver function names that start with "dfx_hw_" represent 110 * low-level port interface routines that are called frequently. They 111 * include issuing a DMA or port control command to the adapter, 112 * resetting the adapter, or reading the adapter state. Since the 113 * driver initialization and run-time code must make calls into the 114 * port interface, these routines were written to be as generic and 115 * usable as possible. 116 * 117 * Receive Path - 118 * The adapter DMA engine supports a 256 entry receive descriptor block 119 * of which up to 255 entries can be used at any given time. The 120 * architecture is a standard producer, consumer, completion model in 121 * which the driver "produces" receive buffers to the adapter, the 122 * adapter "consumes" the receive buffers by DMAing incoming packet data, 123 * and the driver "completes" the receive buffers by servicing the 124 * incoming packet, then "produces" a new buffer and starts the cycle 125 * again. Receive buffers can be fragmented in up to 16 fragments 126 * (descriptor entries). For simplicity, this driver posts 127 * single-fragment receive buffers of 4608 bytes, then allocates a 128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU 129 * utilization, a better approach would be to pass up the receive 130 * buffer (no extra copy) then allocate and post a replacement buffer. 131 * This is a performance enhancement that should be looked into at 132 * some point. 133 * 134 * Transmit Path - 135 * Like the receive path, the adapter DMA engine supports a 256 entry 136 * transmit descriptor block of which up to 255 entries can be used at 137 * any given time. Transmit buffers can be fragmented in up to 255 138 * fragments (descriptor entries). This driver always posts one 139 * fragment per transmit packet request. 140 * 141 * The fragment contains the entire packet from FC to end of data. 142 * Before posting the buffer to the adapter, the driver sets a three-byte 143 * packet request header (PRH) which is required by the Motorola MAC chip 144 * used on the adapters. The PRH tells the MAC the type of token to 145 * receive/send, whether or not to generate and append the CRC, whether 146 * synchronous or asynchronous framing is used, etc. Since the PRH 147 * definition is not necessarily consistent across all FDDI chipsets, 148 * the driver, rather than the common FDDI packet handler routines, 149 * sets these bytes. 150 * 151 * To reduce the amount of descriptor fetches needed per transmit request, 152 * the driver takes advantage of the fact that there are at least three 153 * bytes available before the skb->data field on the outgoing transmit 154 * request. This is guaranteed by having fddi_setup() in net_init.c set 155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest 156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" 157 * bytes which we'll use to store the PRH. 158 * 159 * There's a subtle advantage to adding these pad bytes to the 160 * hard_header_len, it ensures that the data portion of the packet for 161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver 162 * implementations may not need the extra padding and can start copying 163 * or DMAing directly from the FC byte which starts at skb->data. Should 164 * another driver implementation need ADDITIONAL padding, the net_init.c 165 * module should be updated and dev->hard_header_len should be increased. 166 * NOTE: To maintain the alignment on the data portion of the packet, 167 * dev->hard_header_len should always be evenly divisible by 4 and at 168 * least 24 bytes in size. 169 * 170 * Modification History: 171 * Date Name Description 172 * 16-Aug-96 LVS Created. 173 * 20-Aug-96 LVS Updated dfx_probe so that version information 174 * string is only displayed if 1 or more cards are 175 * found. Changed dfx_rcv_queue_process to copy 176 * 3 NULL bytes before FC to ensure that data is 177 * longword aligned in receive buffer. 178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable 179 * LLC group promiscuous mode if multicast list 180 * is too large. LLC individual/group promiscuous 181 * mode is now disabled if IFF_PROMISC flag not set. 182 * dfx_xmt_queue_pkt no longer checks for NULL skb 183 * on Alan Cox recommendation. Added node address 184 * override support. 185 * 12-Sep-96 LVS Reset current address to factory address during 186 * device open. Updated transmit path to post a 187 * single fragment which includes PRH->end of data. 188 * Mar 2000 AC Did various cleanups for 2.3.x 189 * Jun 2000 jgarzik PCI and resource alloc cleanups 190 * Jul 2000 tjeerd Much cleanup and some bug fixes 191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup 192 * Feb 2001 Skb allocation fixes 193 * Feb 2001 davej PCI enable cleanups. 194 * 04 Aug 2003 macro Converted to the DMA API. 195 * 14 Aug 2004 macro Fix device names reported. 196 * 14 Jun 2005 macro Use irqreturn_t. 197 * 23 Oct 2006 macro Big-endian host support. 198 * 14 Dec 2006 macro TURBOchannel support. 199 */ 200 201 /* Include files */ 202 #include <linux/bitops.h> 203 #include <linux/compiler.h> 204 #include <linux/delay.h> 205 #include <linux/dma-mapping.h> 206 #include <linux/eisa.h> 207 #include <linux/errno.h> 208 #include <linux/fddidevice.h> 209 #include <linux/interrupt.h> 210 #include <linux/ioport.h> 211 #include <linux/kernel.h> 212 #include <linux/module.h> 213 #include <linux/netdevice.h> 214 #include <linux/pci.h> 215 #include <linux/skbuff.h> 216 #include <linux/slab.h> 217 #include <linux/string.h> 218 #include <linux/tc.h> 219 220 #include <asm/byteorder.h> 221 #include <asm/io.h> 222 223 #include "defxx.h" 224 225 /* Version information string should be updated prior to each new release! */ 226 #define DRV_NAME "defxx" 227 #define DRV_VERSION "v1.10" 228 #define DRV_RELDATE "2006/12/14" 229 230 static char version[] = 231 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE 232 " Lawrence V. Stefani and others\n"; 233 234 #define DYNAMIC_BUFFERS 1 235 236 #define SKBUFF_RX_COPYBREAK 200 237 /* 238 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte 239 * alignment for compatibility with old EISA boards. 240 */ 241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) 242 243 #ifdef CONFIG_EISA 244 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) 245 #else 246 #define DFX_BUS_EISA(dev) 0 247 #endif 248 249 #ifdef CONFIG_TC 250 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) 251 #else 252 #define DFX_BUS_TC(dev) 0 253 #endif 254 255 #ifdef CONFIG_DEFXX_MMIO 256 #define DFX_MMIO 1 257 #else 258 #define DFX_MMIO 0 259 #endif 260 261 /* Define module-wide (static) routines */ 262 263 static void dfx_bus_init(struct net_device *dev); 264 static void dfx_bus_uninit(struct net_device *dev); 265 static void dfx_bus_config_check(DFX_board_t *bp); 266 267 static int dfx_driver_init(struct net_device *dev, 268 const char *print_name, 269 resource_size_t bar_start); 270 static int dfx_adap_init(DFX_board_t *bp, int get_buffers); 271 272 static int dfx_open(struct net_device *dev); 273 static int dfx_close(struct net_device *dev); 274 275 static void dfx_int_pr_halt_id(DFX_board_t *bp); 276 static void dfx_int_type_0_process(DFX_board_t *bp); 277 static void dfx_int_common(struct net_device *dev); 278 static irqreturn_t dfx_interrupt(int irq, void *dev_id); 279 280 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); 281 static void dfx_ctl_set_multicast_list(struct net_device *dev); 282 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); 283 static int dfx_ctl_update_cam(DFX_board_t *bp); 284 static int dfx_ctl_update_filters(DFX_board_t *bp); 285 286 static int dfx_hw_dma_cmd_req(DFX_board_t *bp); 287 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); 288 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); 289 static int dfx_hw_adap_state_rd(DFX_board_t *bp); 290 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); 291 292 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); 293 static void dfx_rcv_queue_process(DFX_board_t *bp); 294 static void dfx_rcv_flush(DFX_board_t *bp); 295 296 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, 297 struct net_device *dev); 298 static int dfx_xmt_done(DFX_board_t *bp); 299 static void dfx_xmt_flush(DFX_board_t *bp); 300 301 /* Define module-wide (static) variables */ 302 303 static struct pci_driver dfx_pci_driver; 304 static struct eisa_driver dfx_eisa_driver; 305 static struct tc_driver dfx_tc_driver; 306 307 308 /* 309 * ======================= 310 * = dfx_port_write_long = 311 * = dfx_port_read_long = 312 * ======================= 313 * 314 * Overview: 315 * Routines for reading and writing values from/to adapter 316 * 317 * Returns: 318 * None 319 * 320 * Arguments: 321 * bp - pointer to board information 322 * offset - register offset from base I/O address 323 * data - for dfx_port_write_long, this is a value to write; 324 * for dfx_port_read_long, this is a pointer to store 325 * the read value 326 * 327 * Functional Description: 328 * These routines perform the correct operation to read or write 329 * the adapter register. 330 * 331 * EISA port block base addresses are based on the slot number in which the 332 * controller is installed. For example, if the EISA controller is installed 333 * in slot 4, the port block base address is 0x4000. If the controller is 334 * installed in slot 2, the port block base address is 0x2000, and so on. 335 * This port block can be used to access PDQ, ESIC, and DEFEA on-board 336 * registers using the register offsets defined in DEFXX.H. 337 * 338 * PCI port block base addresses are assigned by the PCI BIOS or system 339 * firmware. There is one 128 byte port block which can be accessed. It 340 * allows for I/O mapping of both PDQ and PFI registers using the register 341 * offsets defined in DEFXX.H. 342 * 343 * Return Codes: 344 * None 345 * 346 * Assumptions: 347 * bp->base is a valid base I/O address for this adapter. 348 * offset is a valid register offset for this adapter. 349 * 350 * Side Effects: 351 * Rather than produce macros for these functions, these routines 352 * are defined using "inline" to ensure that the compiler will 353 * generate inline code and not waste a procedure call and return. 354 * This provides all the benefits of macros, but with the 355 * advantage of strict data type checking. 356 */ 357 358 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) 359 { 360 writel(data, bp->base.mem + offset); 361 mb(); 362 } 363 364 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) 365 { 366 outl(data, bp->base.port + offset); 367 } 368 369 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) 370 { 371 struct device __maybe_unused *bdev = bp->bus_dev; 372 int dfx_bus_tc = DFX_BUS_TC(bdev); 373 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 374 375 if (dfx_use_mmio) 376 dfx_writel(bp, offset, data); 377 else 378 dfx_outl(bp, offset, data); 379 } 380 381 382 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) 383 { 384 mb(); 385 *data = readl(bp->base.mem + offset); 386 } 387 388 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) 389 { 390 *data = inl(bp->base.port + offset); 391 } 392 393 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) 394 { 395 struct device __maybe_unused *bdev = bp->bus_dev; 396 int dfx_bus_tc = DFX_BUS_TC(bdev); 397 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 398 399 if (dfx_use_mmio) 400 dfx_readl(bp, offset, data); 401 else 402 dfx_inl(bp, offset, data); 403 } 404 405 406 /* 407 * ================ 408 * = dfx_get_bars = 409 * ================ 410 * 411 * Overview: 412 * Retrieves the address range used to access control and status 413 * registers. 414 * 415 * Returns: 416 * None 417 * 418 * Arguments: 419 * bdev - pointer to device information 420 * bar_start - pointer to store the start address 421 * bar_len - pointer to store the length of the area 422 * 423 * Assumptions: 424 * I am sure there are some. 425 * 426 * Side Effects: 427 * None 428 */ 429 static void dfx_get_bars(struct device *bdev, 430 resource_size_t *bar_start, resource_size_t *bar_len) 431 { 432 int dfx_bus_pci = dev_is_pci(bdev); 433 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 434 int dfx_bus_tc = DFX_BUS_TC(bdev); 435 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 436 437 if (dfx_bus_pci) { 438 int num = dfx_use_mmio ? 0 : 1; 439 440 *bar_start = pci_resource_start(to_pci_dev(bdev), num); 441 *bar_len = pci_resource_len(to_pci_dev(bdev), num); 442 } 443 if (dfx_bus_eisa) { 444 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 445 resource_size_t bar; 446 447 if (dfx_use_mmio) { 448 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2); 449 bar <<= 8; 450 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1); 451 bar <<= 8; 452 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0); 453 bar <<= 16; 454 *bar_start = bar; 455 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2); 456 bar <<= 8; 457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1); 458 bar <<= 8; 459 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0); 460 bar <<= 16; 461 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1; 462 } else { 463 *bar_start = base_addr; 464 *bar_len = PI_ESIC_K_CSR_IO_LEN; 465 } 466 } 467 if (dfx_bus_tc) { 468 *bar_start = to_tc_dev(bdev)->resource.start + 469 PI_TC_K_CSR_OFFSET; 470 *bar_len = PI_TC_K_CSR_LEN; 471 } 472 } 473 474 static const struct net_device_ops dfx_netdev_ops = { 475 .ndo_open = dfx_open, 476 .ndo_stop = dfx_close, 477 .ndo_start_xmit = dfx_xmt_queue_pkt, 478 .ndo_get_stats = dfx_ctl_get_stats, 479 .ndo_set_rx_mode = dfx_ctl_set_multicast_list, 480 .ndo_set_mac_address = dfx_ctl_set_mac_address, 481 }; 482 483 /* 484 * ================ 485 * = dfx_register = 486 * ================ 487 * 488 * Overview: 489 * Initializes a supported FDDI controller 490 * 491 * Returns: 492 * Condition code 493 * 494 * Arguments: 495 * bdev - pointer to device information 496 * 497 * Functional Description: 498 * 499 * Return Codes: 500 * 0 - This device (fddi0, fddi1, etc) configured successfully 501 * -EBUSY - Failed to get resources, or dfx_driver_init failed. 502 * 503 * Assumptions: 504 * It compiles so it should work :-( (PCI cards do :-) 505 * 506 * Side Effects: 507 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 508 * initialized and the board resources are read and stored in 509 * the device structure. 510 */ 511 static int dfx_register(struct device *bdev) 512 { 513 static int version_disp; 514 int dfx_bus_pci = dev_is_pci(bdev); 515 int dfx_bus_tc = DFX_BUS_TC(bdev); 516 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 517 const char *print_name = dev_name(bdev); 518 struct net_device *dev; 519 DFX_board_t *bp; /* board pointer */ 520 resource_size_t bar_start = 0; /* pointer to port */ 521 resource_size_t bar_len = 0; /* resource length */ 522 int alloc_size; /* total buffer size used */ 523 struct resource *region; 524 int err = 0; 525 526 if (!version_disp) { /* display version info if adapter is found */ 527 version_disp = 1; /* set display flag to TRUE so that */ 528 printk(version); /* we only display this string ONCE */ 529 } 530 531 dev = alloc_fddidev(sizeof(*bp)); 532 if (!dev) { 533 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", 534 print_name); 535 return -ENOMEM; 536 } 537 538 /* Enable PCI device. */ 539 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) { 540 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n", 541 print_name); 542 goto err_out; 543 } 544 545 SET_NETDEV_DEV(dev, bdev); 546 547 bp = netdev_priv(dev); 548 bp->bus_dev = bdev; 549 dev_set_drvdata(bdev, dev); 550 551 dfx_get_bars(bdev, &bar_start, &bar_len); 552 553 if (dfx_use_mmio) 554 region = request_mem_region(bar_start, bar_len, print_name); 555 else 556 region = request_region(bar_start, bar_len, print_name); 557 if (!region) { 558 printk(KERN_ERR "%s: Cannot reserve I/O resource " 559 "0x%lx @ 0x%lx, aborting\n", 560 print_name, (long)bar_len, (long)bar_start); 561 err = -EBUSY; 562 goto err_out_disable; 563 } 564 565 /* Set up I/O base address. */ 566 if (dfx_use_mmio) { 567 bp->base.mem = ioremap_nocache(bar_start, bar_len); 568 if (!bp->base.mem) { 569 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); 570 err = -ENOMEM; 571 goto err_out_region; 572 } 573 } else { 574 bp->base.port = bar_start; 575 dev->base_addr = bar_start; 576 } 577 578 /* Initialize new device structure */ 579 dev->netdev_ops = &dfx_netdev_ops; 580 581 if (dfx_bus_pci) 582 pci_set_master(to_pci_dev(bdev)); 583 584 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) { 585 err = -ENODEV; 586 goto err_out_unmap; 587 } 588 589 err = register_netdev(dev); 590 if (err) 591 goto err_out_kfree; 592 593 printk("%s: registered as %s\n", print_name, dev->name); 594 return 0; 595 596 err_out_kfree: 597 alloc_size = sizeof(PI_DESCR_BLOCK) + 598 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + 599 #ifndef DYNAMIC_BUFFERS 600 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 601 #endif 602 sizeof(PI_CONSUMER_BLOCK) + 603 (PI_ALIGN_K_DESC_BLK - 1); 604 if (bp->kmalloced) 605 dma_free_coherent(bdev, alloc_size, 606 bp->kmalloced, bp->kmalloced_dma); 607 608 err_out_unmap: 609 if (dfx_use_mmio) 610 iounmap(bp->base.mem); 611 612 err_out_region: 613 if (dfx_use_mmio) 614 release_mem_region(bar_start, bar_len); 615 else 616 release_region(bar_start, bar_len); 617 618 err_out_disable: 619 if (dfx_bus_pci) 620 pci_disable_device(to_pci_dev(bdev)); 621 622 err_out: 623 free_netdev(dev); 624 return err; 625 } 626 627 628 /* 629 * ================ 630 * = dfx_bus_init = 631 * ================ 632 * 633 * Overview: 634 * Initializes the bus-specific controller logic. 635 * 636 * Returns: 637 * None 638 * 639 * Arguments: 640 * dev - pointer to device information 641 * 642 * Functional Description: 643 * Determine and save adapter IRQ in device table, 644 * then perform bus-specific logic initialization. 645 * 646 * Return Codes: 647 * None 648 * 649 * Assumptions: 650 * bp->base has already been set with the proper 651 * base I/O address for this device. 652 * 653 * Side Effects: 654 * Interrupts are enabled at the adapter bus-specific logic. 655 * Note: Interrupts at the DMA engine (PDQ chip) are not 656 * enabled yet. 657 */ 658 659 static void dfx_bus_init(struct net_device *dev) 660 { 661 DFX_board_t *bp = netdev_priv(dev); 662 struct device *bdev = bp->bus_dev; 663 int dfx_bus_pci = dev_is_pci(bdev); 664 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 665 int dfx_bus_tc = DFX_BUS_TC(bdev); 666 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 667 u8 val; 668 669 DBG_printk("In dfx_bus_init...\n"); 670 671 /* Initialize a pointer back to the net_device struct */ 672 bp->dev = dev; 673 674 /* Initialize adapter based on bus type */ 675 676 if (dfx_bus_tc) 677 dev->irq = to_tc_dev(bdev)->interrupt; 678 if (dfx_bus_eisa) { 679 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 680 681 /* Get the interrupt level from the ESIC chip. */ 682 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 683 val &= PI_CONFIG_STAT_0_M_IRQ; 684 val >>= PI_CONFIG_STAT_0_V_IRQ; 685 686 switch (val) { 687 case PI_CONFIG_STAT_0_IRQ_K_9: 688 dev->irq = 9; 689 break; 690 691 case PI_CONFIG_STAT_0_IRQ_K_10: 692 dev->irq = 10; 693 break; 694 695 case PI_CONFIG_STAT_0_IRQ_K_11: 696 dev->irq = 11; 697 break; 698 699 case PI_CONFIG_STAT_0_IRQ_K_15: 700 dev->irq = 15; 701 break; 702 } 703 704 /* 705 * Enable memory decoding (MEMCS0) and/or port decoding 706 * (IOCS1/IOCS0) as appropriate in Function Control 707 * Register. One of the port chip selects seems to be 708 * used for the Burst Holdoff register, but this bit of 709 * documentation is missing and as yet it has not been 710 * determined which of the two. This is also the reason 711 * the size of the decoded port range is twice as large 712 * as one required by the PDQ. 713 */ 714 715 /* Set the decode range of the board. */ 716 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT); 717 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val); 718 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0); 719 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val); 720 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0); 721 val = PI_ESIC_K_CSR_IO_LEN - 1; 722 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff); 723 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff); 724 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff); 725 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff); 726 727 /* Enable the decoders. */ 728 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0; 729 if (dfx_use_mmio) 730 val |= PI_FUNCTION_CNTRL_M_MEMCS0; 731 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val); 732 733 /* 734 * Enable access to the rest of the module 735 * (including PDQ and packet memory). 736 */ 737 val = PI_SLOT_CNTRL_M_ENB; 738 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val); 739 740 /* 741 * Map PDQ registers into memory or port space. This is 742 * done with a bit in the Burst Holdoff register. 743 */ 744 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); 745 if (dfx_use_mmio) 746 val |= PI_BURST_HOLDOFF_V_MEM_MAP; 747 else 748 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP; 749 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val); 750 751 /* Enable interrupts at EISA bus interface chip (ESIC) */ 752 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 753 val |= PI_CONFIG_STAT_0_M_INT_ENB; 754 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); 755 } 756 if (dfx_bus_pci) { 757 struct pci_dev *pdev = to_pci_dev(bdev); 758 759 /* Get the interrupt level from the PCI Configuration Table */ 760 761 dev->irq = pdev->irq; 762 763 /* Check Latency Timer and set if less than minimal */ 764 765 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); 766 if (val < PFI_K_LAT_TIMER_MIN) { 767 val = PFI_K_LAT_TIMER_DEF; 768 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); 769 } 770 771 /* Enable interrupts at PCI bus interface chip (PFI) */ 772 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; 773 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); 774 } 775 } 776 777 /* 778 * ================== 779 * = dfx_bus_uninit = 780 * ================== 781 * 782 * Overview: 783 * Uninitializes the bus-specific controller logic. 784 * 785 * Returns: 786 * None 787 * 788 * Arguments: 789 * dev - pointer to device information 790 * 791 * Functional Description: 792 * Perform bus-specific logic uninitialization. 793 * 794 * Return Codes: 795 * None 796 * 797 * Assumptions: 798 * bp->base has already been set with the proper 799 * base I/O address for this device. 800 * 801 * Side Effects: 802 * Interrupts are disabled at the adapter bus-specific logic. 803 */ 804 805 static void dfx_bus_uninit(struct net_device *dev) 806 { 807 DFX_board_t *bp = netdev_priv(dev); 808 struct device *bdev = bp->bus_dev; 809 int dfx_bus_pci = dev_is_pci(bdev); 810 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 811 u8 val; 812 813 DBG_printk("In dfx_bus_uninit...\n"); 814 815 /* Uninitialize adapter based on bus type */ 816 817 if (dfx_bus_eisa) { 818 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 819 820 /* Disable interrupts at EISA bus interface chip (ESIC) */ 821 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 822 val &= ~PI_CONFIG_STAT_0_M_INT_ENB; 823 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); 824 } 825 if (dfx_bus_pci) { 826 /* Disable interrupts at PCI bus interface chip (PFI) */ 827 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); 828 } 829 } 830 831 832 /* 833 * ======================== 834 * = dfx_bus_config_check = 835 * ======================== 836 * 837 * Overview: 838 * Checks the configuration (burst size, full-duplex, etc.) If any parameters 839 * are illegal, then this routine will set new defaults. 840 * 841 * Returns: 842 * None 843 * 844 * Arguments: 845 * bp - pointer to board information 846 * 847 * Functional Description: 848 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later 849 * PDQ, and all FDDI PCI controllers, all values are legal. 850 * 851 * Return Codes: 852 * None 853 * 854 * Assumptions: 855 * dfx_adap_init has NOT been called yet so burst size and other items have 856 * not been set. 857 * 858 * Side Effects: 859 * None 860 */ 861 862 static void dfx_bus_config_check(DFX_board_t *bp) 863 { 864 struct device __maybe_unused *bdev = bp->bus_dev; 865 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 866 int status; /* return code from adapter port control call */ 867 u32 host_data; /* LW data returned from port control call */ 868 869 DBG_printk("In dfx_bus_config_check...\n"); 870 871 /* Configuration check only valid for EISA adapter */ 872 873 if (dfx_bus_eisa) { 874 /* 875 * First check if revision 2 EISA controller. Rev. 1 cards used 876 * PDQ revision B, so no workaround needed in this case. Rev. 3 877 * cards used PDQ revision E, so no workaround needed in this 878 * case, either. Only Rev. 2 cards used either Rev. D or E 879 * chips, so we must verify the chip revision on Rev. 2 cards. 880 */ 881 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { 882 /* 883 * Revision 2 FDDI EISA controller found, 884 * so let's check PDQ revision of adapter. 885 */ 886 status = dfx_hw_port_ctrl_req(bp, 887 PI_PCTRL_M_SUB_CMD, 888 PI_SUB_CMD_K_PDQ_REV_GET, 889 0, 890 &host_data); 891 if ((status != DFX_K_SUCCESS) || (host_data == 2)) 892 { 893 /* 894 * Either we couldn't determine the PDQ revision, or 895 * we determined that it is at revision D. In either case, 896 * we need to implement the workaround. 897 */ 898 899 /* Ensure that the burst size is set to 8 longwords or less */ 900 901 switch (bp->burst_size) 902 { 903 case PI_PDATA_B_DMA_BURST_SIZE_32: 904 case PI_PDATA_B_DMA_BURST_SIZE_16: 905 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; 906 break; 907 908 default: 909 break; 910 } 911 912 /* Ensure that full-duplex mode is not enabled */ 913 914 bp->full_duplex_enb = PI_SNMP_K_FALSE; 915 } 916 } 917 } 918 } 919 920 921 /* 922 * =================== 923 * = dfx_driver_init = 924 * =================== 925 * 926 * Overview: 927 * Initializes remaining adapter board structure information 928 * and makes sure adapter is in a safe state prior to dfx_open(). 929 * 930 * Returns: 931 * Condition code 932 * 933 * Arguments: 934 * dev - pointer to device information 935 * print_name - printable device name 936 * 937 * Functional Description: 938 * This function allocates additional resources such as the host memory 939 * blocks needed by the adapter (eg. descriptor and consumer blocks). 940 * Remaining bus initialization steps are also completed. The adapter 941 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS 942 * must call dfx_open() to open the adapter and bring it on-line. 943 * 944 * Return Codes: 945 * DFX_K_SUCCESS - initialization succeeded 946 * DFX_K_FAILURE - initialization failed - could not allocate memory 947 * or read adapter MAC address 948 * 949 * Assumptions: 950 * Memory allocated from pci_alloc_consistent() call is physically 951 * contiguous, locked memory. 952 * 953 * Side Effects: 954 * Adapter is reset and should be in DMA_UNAVAILABLE state before 955 * returning from this routine. 956 */ 957 958 static int dfx_driver_init(struct net_device *dev, const char *print_name, 959 resource_size_t bar_start) 960 { 961 DFX_board_t *bp = netdev_priv(dev); 962 struct device *bdev = bp->bus_dev; 963 int dfx_bus_pci = dev_is_pci(bdev); 964 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 965 int dfx_bus_tc = DFX_BUS_TC(bdev); 966 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 967 int alloc_size; /* total buffer size needed */ 968 char *top_v, *curr_v; /* virtual addrs into memory block */ 969 dma_addr_t top_p, curr_p; /* physical addrs into memory block */ 970 u32 data; /* host data register value */ 971 __le32 le32; 972 char *board_name = NULL; 973 974 DBG_printk("In dfx_driver_init...\n"); 975 976 /* Initialize bus-specific hardware registers */ 977 978 dfx_bus_init(dev); 979 980 /* 981 * Initialize default values for configurable parameters 982 * 983 * Note: All of these parameters are ones that a user may 984 * want to customize. It'd be nice to break these 985 * out into Space.c or someplace else that's more 986 * accessible/understandable than this file. 987 */ 988 989 bp->full_duplex_enb = PI_SNMP_K_FALSE; 990 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ 991 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; 992 bp->rcv_bufs_to_post = RCV_BUFS_DEF; 993 994 /* 995 * Ensure that HW configuration is OK 996 * 997 * Note: Depending on the hardware revision, we may need to modify 998 * some of the configurable parameters to workaround hardware 999 * limitations. We'll perform this configuration check AFTER 1000 * setting the parameters to their default values. 1001 */ 1002 1003 dfx_bus_config_check(bp); 1004 1005 /* Disable PDQ interrupts first */ 1006 1007 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1008 1009 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1010 1011 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); 1012 1013 /* Read the factory MAC address from the adapter then save it */ 1014 1015 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, 1016 &data) != DFX_K_SUCCESS) { 1017 printk("%s: Could not read adapter factory MAC address!\n", 1018 print_name); 1019 return DFX_K_FAILURE; 1020 } 1021 le32 = cpu_to_le32(data); 1022 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); 1023 1024 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, 1025 &data) != DFX_K_SUCCESS) { 1026 printk("%s: Could not read adapter factory MAC address!\n", 1027 print_name); 1028 return DFX_K_FAILURE; 1029 } 1030 le32 = cpu_to_le32(data); 1031 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); 1032 1033 /* 1034 * Set current address to factory address 1035 * 1036 * Note: Node address override support is handled through 1037 * dfx_ctl_set_mac_address. 1038 */ 1039 1040 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); 1041 if (dfx_bus_tc) 1042 board_name = "DEFTA"; 1043 if (dfx_bus_eisa) 1044 board_name = "DEFEA"; 1045 if (dfx_bus_pci) 1046 board_name = "DEFPA"; 1047 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", 1048 print_name, board_name, dfx_use_mmio ? "" : "I/O ", 1049 (long long)bar_start, dev->irq, dev->dev_addr); 1050 1051 /* 1052 * Get memory for descriptor block, consumer block, and other buffers 1053 * that need to be DMA read or written to by the adapter. 1054 */ 1055 1056 alloc_size = sizeof(PI_DESCR_BLOCK) + 1057 PI_CMD_REQ_K_SIZE_MAX + 1058 PI_CMD_RSP_K_SIZE_MAX + 1059 #ifndef DYNAMIC_BUFFERS 1060 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 1061 #endif 1062 sizeof(PI_CONSUMER_BLOCK) + 1063 (PI_ALIGN_K_DESC_BLK - 1); 1064 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size, 1065 &bp->kmalloced_dma, 1066 GFP_ATOMIC); 1067 if (top_v == NULL) 1068 return DFX_K_FAILURE; 1069 1070 top_p = bp->kmalloced_dma; /* get physical address of buffer */ 1071 1072 /* 1073 * To guarantee the 8K alignment required for the descriptor block, 8K - 1 1074 * plus the amount of memory needed was allocated. The physical address 1075 * is now 8K aligned. By carving up the memory in a specific order, 1076 * we'll guarantee the alignment requirements for all other structures. 1077 * 1078 * Note: If the assumptions change regarding the non-paged, non-cached, 1079 * physically contiguous nature of the memory block or the address 1080 * alignments, then we'll need to implement a different algorithm 1081 * for allocating the needed memory. 1082 */ 1083 1084 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); 1085 curr_v = top_v + (curr_p - top_p); 1086 1087 /* Reserve space for descriptor block */ 1088 1089 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; 1090 bp->descr_block_phys = curr_p; 1091 curr_v += sizeof(PI_DESCR_BLOCK); 1092 curr_p += sizeof(PI_DESCR_BLOCK); 1093 1094 /* Reserve space for command request buffer */ 1095 1096 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; 1097 bp->cmd_req_phys = curr_p; 1098 curr_v += PI_CMD_REQ_K_SIZE_MAX; 1099 curr_p += PI_CMD_REQ_K_SIZE_MAX; 1100 1101 /* Reserve space for command response buffer */ 1102 1103 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; 1104 bp->cmd_rsp_phys = curr_p; 1105 curr_v += PI_CMD_RSP_K_SIZE_MAX; 1106 curr_p += PI_CMD_RSP_K_SIZE_MAX; 1107 1108 /* Reserve space for the LLC host receive queue buffers */ 1109 1110 bp->rcv_block_virt = curr_v; 1111 bp->rcv_block_phys = curr_p; 1112 1113 #ifndef DYNAMIC_BUFFERS 1114 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); 1115 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); 1116 #endif 1117 1118 /* Reserve space for the consumer block */ 1119 1120 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; 1121 bp->cons_block_phys = curr_p; 1122 1123 /* Display virtual and physical addresses if debug driver */ 1124 1125 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", 1126 print_name, 1127 (long)bp->descr_block_virt, bp->descr_block_phys); 1128 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", 1129 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); 1130 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", 1131 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); 1132 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", 1133 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); 1134 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", 1135 print_name, (long)bp->cons_block_virt, bp->cons_block_phys); 1136 1137 return DFX_K_SUCCESS; 1138 } 1139 1140 1141 /* 1142 * ================= 1143 * = dfx_adap_init = 1144 * ================= 1145 * 1146 * Overview: 1147 * Brings the adapter to the link avail/link unavailable state. 1148 * 1149 * Returns: 1150 * Condition code 1151 * 1152 * Arguments: 1153 * bp - pointer to board information 1154 * get_buffers - non-zero if buffers to be allocated 1155 * 1156 * Functional Description: 1157 * Issues the low-level firmware/hardware calls necessary to bring 1158 * the adapter up, or to properly reset and restore adapter during 1159 * run-time. 1160 * 1161 * Return Codes: 1162 * DFX_K_SUCCESS - Adapter brought up successfully 1163 * DFX_K_FAILURE - Adapter initialization failed 1164 * 1165 * Assumptions: 1166 * bp->reset_type should be set to a valid reset type value before 1167 * calling this routine. 1168 * 1169 * Side Effects: 1170 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state 1171 * upon a successful return of this routine. 1172 */ 1173 1174 static int dfx_adap_init(DFX_board_t *bp, int get_buffers) 1175 { 1176 DBG_printk("In dfx_adap_init...\n"); 1177 1178 /* Disable PDQ interrupts first */ 1179 1180 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1181 1182 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1183 1184 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) 1185 { 1186 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); 1187 return DFX_K_FAILURE; 1188 } 1189 1190 /* 1191 * When the PDQ is reset, some false Type 0 interrupts may be pending, 1192 * so we'll acknowledge all Type 0 interrupts now before continuing. 1193 */ 1194 1195 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); 1196 1197 /* 1198 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state 1199 * 1200 * Note: We only need to clear host copies of these registers. The PDQ reset 1201 * takes care of the on-board register values. 1202 */ 1203 1204 bp->cmd_req_reg.lword = 0; 1205 bp->cmd_rsp_reg.lword = 0; 1206 bp->rcv_xmt_reg.lword = 0; 1207 1208 /* Clear consumer block before going to DMA_AVAILABLE state */ 1209 1210 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); 1211 1212 /* Initialize the DMA Burst Size */ 1213 1214 if (dfx_hw_port_ctrl_req(bp, 1215 PI_PCTRL_M_SUB_CMD, 1216 PI_SUB_CMD_K_BURST_SIZE_SET, 1217 bp->burst_size, 1218 NULL) != DFX_K_SUCCESS) 1219 { 1220 printk("%s: Could not set adapter burst size!\n", bp->dev->name); 1221 return DFX_K_FAILURE; 1222 } 1223 1224 /* 1225 * Set base address of Consumer Block 1226 * 1227 * Assumption: 32-bit physical address of consumer block is 64 byte 1228 * aligned. That is, bits 0-5 of the address must be zero. 1229 */ 1230 1231 if (dfx_hw_port_ctrl_req(bp, 1232 PI_PCTRL_M_CONS_BLOCK, 1233 bp->cons_block_phys, 1234 0, 1235 NULL) != DFX_K_SUCCESS) 1236 { 1237 printk("%s: Could not set consumer block address!\n", bp->dev->name); 1238 return DFX_K_FAILURE; 1239 } 1240 1241 /* 1242 * Set the base address of Descriptor Block and bring adapter 1243 * to DMA_AVAILABLE state. 1244 * 1245 * Note: We also set the literal and data swapping requirements 1246 * in this command. 1247 * 1248 * Assumption: 32-bit physical address of descriptor block 1249 * is 8Kbyte aligned. 1250 */ 1251 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, 1252 (u32)(bp->descr_block_phys | 1253 PI_PDATA_A_INIT_M_BSWAP_INIT), 1254 0, NULL) != DFX_K_SUCCESS) { 1255 printk("%s: Could not set descriptor block address!\n", 1256 bp->dev->name); 1257 return DFX_K_FAILURE; 1258 } 1259 1260 /* Set transmit flush timeout value */ 1261 1262 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; 1263 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; 1264 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ 1265 bp->cmd_req_virt->char_set.item[0].item_index = 0; 1266 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; 1267 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1268 { 1269 printk("%s: DMA command request failed!\n", bp->dev->name); 1270 return DFX_K_FAILURE; 1271 } 1272 1273 /* Set the initial values for eFDXEnable and MACTReq MIB objects */ 1274 1275 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; 1276 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; 1277 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; 1278 bp->cmd_req_virt->snmp_set.item[0].item_index = 0; 1279 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; 1280 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; 1281 bp->cmd_req_virt->snmp_set.item[1].item_index = 0; 1282 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; 1283 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1284 { 1285 printk("%s: DMA command request failed!\n", bp->dev->name); 1286 return DFX_K_FAILURE; 1287 } 1288 1289 /* Initialize adapter CAM */ 1290 1291 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 1292 { 1293 printk("%s: Adapter CAM update failed!\n", bp->dev->name); 1294 return DFX_K_FAILURE; 1295 } 1296 1297 /* Initialize adapter filters */ 1298 1299 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 1300 { 1301 printk("%s: Adapter filters update failed!\n", bp->dev->name); 1302 return DFX_K_FAILURE; 1303 } 1304 1305 /* 1306 * Remove any existing dynamic buffers (i.e. if the adapter is being 1307 * reinitialized) 1308 */ 1309 1310 if (get_buffers) 1311 dfx_rcv_flush(bp); 1312 1313 /* Initialize receive descriptor block and produce buffers */ 1314 1315 if (dfx_rcv_init(bp, get_buffers)) 1316 { 1317 printk("%s: Receive buffer allocation failed\n", bp->dev->name); 1318 if (get_buffers) 1319 dfx_rcv_flush(bp); 1320 return DFX_K_FAILURE; 1321 } 1322 1323 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ 1324 1325 bp->cmd_req_virt->cmd_type = PI_CMD_K_START; 1326 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1327 { 1328 printk("%s: Start command failed\n", bp->dev->name); 1329 if (get_buffers) 1330 dfx_rcv_flush(bp); 1331 return DFX_K_FAILURE; 1332 } 1333 1334 /* Initialization succeeded, reenable PDQ interrupts */ 1335 1336 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); 1337 return DFX_K_SUCCESS; 1338 } 1339 1340 1341 /* 1342 * ============ 1343 * = dfx_open = 1344 * ============ 1345 * 1346 * Overview: 1347 * Opens the adapter 1348 * 1349 * Returns: 1350 * Condition code 1351 * 1352 * Arguments: 1353 * dev - pointer to device information 1354 * 1355 * Functional Description: 1356 * This function brings the adapter to an operational state. 1357 * 1358 * Return Codes: 1359 * 0 - Adapter was successfully opened 1360 * -EAGAIN - Could not register IRQ or adapter initialization failed 1361 * 1362 * Assumptions: 1363 * This routine should only be called for a device that was 1364 * initialized successfully. 1365 * 1366 * Side Effects: 1367 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state 1368 * if the open is successful. 1369 */ 1370 1371 static int dfx_open(struct net_device *dev) 1372 { 1373 DFX_board_t *bp = netdev_priv(dev); 1374 int ret; 1375 1376 DBG_printk("In dfx_open...\n"); 1377 1378 /* Register IRQ - support shared interrupts by passing device ptr */ 1379 1380 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, 1381 dev); 1382 if (ret) { 1383 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); 1384 return ret; 1385 } 1386 1387 /* 1388 * Set current address to factory MAC address 1389 * 1390 * Note: We've already done this step in dfx_driver_init. 1391 * However, it's possible that a user has set a node 1392 * address override, then closed and reopened the 1393 * adapter. Unless we reset the device address field 1394 * now, we'll continue to use the existing modified 1395 * address. 1396 */ 1397 1398 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); 1399 1400 /* Clear local unicast/multicast address tables and counts */ 1401 1402 memset(bp->uc_table, 0, sizeof(bp->uc_table)); 1403 memset(bp->mc_table, 0, sizeof(bp->mc_table)); 1404 bp->uc_count = 0; 1405 bp->mc_count = 0; 1406 1407 /* Disable promiscuous filter settings */ 1408 1409 bp->ind_group_prom = PI_FSTATE_K_BLOCK; 1410 bp->group_prom = PI_FSTATE_K_BLOCK; 1411 1412 spin_lock_init(&bp->lock); 1413 1414 /* Reset and initialize adapter */ 1415 1416 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ 1417 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) 1418 { 1419 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); 1420 free_irq(dev->irq, dev); 1421 return -EAGAIN; 1422 } 1423 1424 /* Set device structure info */ 1425 netif_start_queue(dev); 1426 return 0; 1427 } 1428 1429 1430 /* 1431 * ============= 1432 * = dfx_close = 1433 * ============= 1434 * 1435 * Overview: 1436 * Closes the device/module. 1437 * 1438 * Returns: 1439 * Condition code 1440 * 1441 * Arguments: 1442 * dev - pointer to device information 1443 * 1444 * Functional Description: 1445 * This routine closes the adapter and brings it to a safe state. 1446 * The interrupt service routine is deregistered with the OS. 1447 * The adapter can be opened again with another call to dfx_open(). 1448 * 1449 * Return Codes: 1450 * Always return 0. 1451 * 1452 * Assumptions: 1453 * No further requests for this adapter are made after this routine is 1454 * called. dfx_open() can be called to reset and reinitialize the 1455 * adapter. 1456 * 1457 * Side Effects: 1458 * Adapter should be in DMA_UNAVAILABLE state upon completion of this 1459 * routine. 1460 */ 1461 1462 static int dfx_close(struct net_device *dev) 1463 { 1464 DFX_board_t *bp = netdev_priv(dev); 1465 1466 DBG_printk("In dfx_close...\n"); 1467 1468 /* Disable PDQ interrupts first */ 1469 1470 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1471 1472 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1473 1474 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); 1475 1476 /* 1477 * Flush any pending transmit buffers 1478 * 1479 * Note: It's important that we flush the transmit buffers 1480 * BEFORE we clear our copy of the Type 2 register. 1481 * Otherwise, we'll have no idea how many buffers 1482 * we need to free. 1483 */ 1484 1485 dfx_xmt_flush(bp); 1486 1487 /* 1488 * Clear Type 1 and Type 2 registers after adapter reset 1489 * 1490 * Note: Even though we're closing the adapter, it's 1491 * possible that an interrupt will occur after 1492 * dfx_close is called. Without some assurance to 1493 * the contrary we want to make sure that we don't 1494 * process receive and transmit LLC frames and update 1495 * the Type 2 register with bad information. 1496 */ 1497 1498 bp->cmd_req_reg.lword = 0; 1499 bp->cmd_rsp_reg.lword = 0; 1500 bp->rcv_xmt_reg.lword = 0; 1501 1502 /* Clear consumer block for the same reason given above */ 1503 1504 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); 1505 1506 /* Release all dynamically allocate skb in the receive ring. */ 1507 1508 dfx_rcv_flush(bp); 1509 1510 /* Clear device structure flags */ 1511 1512 netif_stop_queue(dev); 1513 1514 /* Deregister (free) IRQ */ 1515 1516 free_irq(dev->irq, dev); 1517 1518 return 0; 1519 } 1520 1521 1522 /* 1523 * ====================== 1524 * = dfx_int_pr_halt_id = 1525 * ====================== 1526 * 1527 * Overview: 1528 * Displays halt id's in string form. 1529 * 1530 * Returns: 1531 * None 1532 * 1533 * Arguments: 1534 * bp - pointer to board information 1535 * 1536 * Functional Description: 1537 * Determine current halt id and display appropriate string. 1538 * 1539 * Return Codes: 1540 * None 1541 * 1542 * Assumptions: 1543 * None 1544 * 1545 * Side Effects: 1546 * None 1547 */ 1548 1549 static void dfx_int_pr_halt_id(DFX_board_t *bp) 1550 { 1551 PI_UINT32 port_status; /* PDQ port status register value */ 1552 PI_UINT32 halt_id; /* PDQ port status halt ID */ 1553 1554 /* Read the latest port status */ 1555 1556 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 1557 1558 /* Display halt state transition information */ 1559 1560 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; 1561 switch (halt_id) 1562 { 1563 case PI_HALT_ID_K_SELFTEST_TIMEOUT: 1564 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); 1565 break; 1566 1567 case PI_HALT_ID_K_PARITY_ERROR: 1568 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); 1569 break; 1570 1571 case PI_HALT_ID_K_HOST_DIR_HALT: 1572 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); 1573 break; 1574 1575 case PI_HALT_ID_K_SW_FAULT: 1576 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); 1577 break; 1578 1579 case PI_HALT_ID_K_HW_FAULT: 1580 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); 1581 break; 1582 1583 case PI_HALT_ID_K_PC_TRACE: 1584 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); 1585 break; 1586 1587 case PI_HALT_ID_K_DMA_ERROR: 1588 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); 1589 break; 1590 1591 case PI_HALT_ID_K_IMAGE_CRC_ERROR: 1592 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); 1593 break; 1594 1595 case PI_HALT_ID_K_BUS_EXCEPTION: 1596 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); 1597 break; 1598 1599 default: 1600 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); 1601 break; 1602 } 1603 } 1604 1605 1606 /* 1607 * ========================== 1608 * = dfx_int_type_0_process = 1609 * ========================== 1610 * 1611 * Overview: 1612 * Processes Type 0 interrupts. 1613 * 1614 * Returns: 1615 * None 1616 * 1617 * Arguments: 1618 * bp - pointer to board information 1619 * 1620 * Functional Description: 1621 * Processes all enabled Type 0 interrupts. If the reason for the interrupt 1622 * is a serious fault on the adapter, then an error message is displayed 1623 * and the adapter is reset. 1624 * 1625 * One tricky potential timing window is the rapid succession of "link avail" 1626 * "link unavail" state change interrupts. The acknowledgement of the Type 0 1627 * interrupt must be done before reading the state from the Port Status 1628 * register. This is true because a state change could occur after reading 1629 * the data, but before acknowledging the interrupt. If this state change 1630 * does happen, it would be lost because the driver is using the old state, 1631 * and it will never know about the new state because it subsequently 1632 * acknowledges the state change interrupt. 1633 * 1634 * INCORRECT CORRECT 1635 * read type 0 int reasons read type 0 int reasons 1636 * read adapter state ack type 0 interrupts 1637 * ack type 0 interrupts read adapter state 1638 * ... process interrupt ... ... process interrupt ... 1639 * 1640 * Return Codes: 1641 * None 1642 * 1643 * Assumptions: 1644 * None 1645 * 1646 * Side Effects: 1647 * An adapter reset may occur if the adapter has any Type 0 error interrupts 1648 * or if the port status indicates that the adapter is halted. The driver 1649 * is responsible for reinitializing the adapter with the current CAM 1650 * contents and adapter filter settings. 1651 */ 1652 1653 static void dfx_int_type_0_process(DFX_board_t *bp) 1654 1655 { 1656 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ 1657 PI_UINT32 state; /* current adap state (from port status) */ 1658 1659 /* 1660 * Read host interrupt Type 0 register to determine which Type 0 1661 * interrupts are pending. Immediately write it back out to clear 1662 * those interrupts. 1663 */ 1664 1665 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); 1666 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); 1667 1668 /* Check for Type 0 error interrupts */ 1669 1670 if (type_0_status & (PI_TYPE_0_STAT_M_NXM | 1671 PI_TYPE_0_STAT_M_PM_PAR_ERR | 1672 PI_TYPE_0_STAT_M_BUS_PAR_ERR)) 1673 { 1674 /* Check for Non-Existent Memory error */ 1675 1676 if (type_0_status & PI_TYPE_0_STAT_M_NXM) 1677 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); 1678 1679 /* Check for Packet Memory Parity error */ 1680 1681 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) 1682 printk("%s: Packet Memory Parity Error\n", bp->dev->name); 1683 1684 /* Check for Host Bus Parity error */ 1685 1686 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) 1687 printk("%s: Host Bus Parity Error\n", bp->dev->name); 1688 1689 /* Reset adapter and bring it back on-line */ 1690 1691 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1692 bp->reset_type = 0; /* rerun on-board diagnostics */ 1693 printk("%s: Resetting adapter...\n", bp->dev->name); 1694 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) 1695 { 1696 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); 1697 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1698 return; 1699 } 1700 printk("%s: Adapter reset successful!\n", bp->dev->name); 1701 return; 1702 } 1703 1704 /* Check for transmit flush interrupt */ 1705 1706 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) 1707 { 1708 /* Flush any pending xmt's and acknowledge the flush interrupt */ 1709 1710 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1711 dfx_xmt_flush(bp); /* flush any outstanding packets */ 1712 (void) dfx_hw_port_ctrl_req(bp, 1713 PI_PCTRL_M_XMT_DATA_FLUSH_DONE, 1714 0, 1715 0, 1716 NULL); 1717 } 1718 1719 /* Check for adapter state change */ 1720 1721 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) 1722 { 1723 /* Get latest adapter state */ 1724 1725 state = dfx_hw_adap_state_rd(bp); /* get adapter state */ 1726 if (state == PI_STATE_K_HALTED) 1727 { 1728 /* 1729 * Adapter has transitioned to HALTED state, try to reset 1730 * adapter to bring it back on-line. If reset fails, 1731 * leave the adapter in the broken state. 1732 */ 1733 1734 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); 1735 dfx_int_pr_halt_id(bp); /* display halt id as string */ 1736 1737 /* Reset adapter and bring it back on-line */ 1738 1739 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1740 bp->reset_type = 0; /* rerun on-board diagnostics */ 1741 printk("%s: Resetting adapter...\n", bp->dev->name); 1742 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) 1743 { 1744 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); 1745 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1746 return; 1747 } 1748 printk("%s: Adapter reset successful!\n", bp->dev->name); 1749 } 1750 else if (state == PI_STATE_K_LINK_AVAIL) 1751 { 1752 bp->link_available = PI_K_TRUE; /* set link available flag */ 1753 } 1754 } 1755 } 1756 1757 1758 /* 1759 * ================== 1760 * = dfx_int_common = 1761 * ================== 1762 * 1763 * Overview: 1764 * Interrupt service routine (ISR) 1765 * 1766 * Returns: 1767 * None 1768 * 1769 * Arguments: 1770 * bp - pointer to board information 1771 * 1772 * Functional Description: 1773 * This is the ISR which processes incoming adapter interrupts. 1774 * 1775 * Return Codes: 1776 * None 1777 * 1778 * Assumptions: 1779 * This routine assumes PDQ interrupts have not been disabled. 1780 * When interrupts are disabled at the PDQ, the Port Status register 1781 * is automatically cleared. This routine uses the Port Status 1782 * register value to determine whether a Type 0 interrupt occurred, 1783 * so it's important that adapter interrupts are not normally 1784 * enabled/disabled at the PDQ. 1785 * 1786 * It's vital that this routine is NOT reentered for the 1787 * same board and that the OS is not in another section of 1788 * code (eg. dfx_xmt_queue_pkt) for the same board on a 1789 * different thread. 1790 * 1791 * Side Effects: 1792 * Pending interrupts are serviced. Depending on the type of 1793 * interrupt, acknowledging and clearing the interrupt at the 1794 * PDQ involves writing a register to clear the interrupt bit 1795 * or updating completion indices. 1796 */ 1797 1798 static void dfx_int_common(struct net_device *dev) 1799 { 1800 DFX_board_t *bp = netdev_priv(dev); 1801 PI_UINT32 port_status; /* Port Status register */ 1802 1803 /* Process xmt interrupts - frequent case, so always call this routine */ 1804 1805 if(dfx_xmt_done(bp)) /* free consumed xmt packets */ 1806 netif_wake_queue(dev); 1807 1808 /* Process rcv interrupts - frequent case, so always call this routine */ 1809 1810 dfx_rcv_queue_process(bp); /* service received LLC frames */ 1811 1812 /* 1813 * Transmit and receive producer and completion indices are updated on the 1814 * adapter by writing to the Type 2 Producer register. Since the frequent 1815 * case is that we'll be processing either LLC transmit or receive buffers, 1816 * we'll optimize I/O writes by doing a single register write here. 1817 */ 1818 1819 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 1820 1821 /* Read PDQ Port Status register to find out which interrupts need processing */ 1822 1823 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 1824 1825 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ 1826 1827 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) 1828 dfx_int_type_0_process(bp); /* process Type 0 interrupts */ 1829 } 1830 1831 1832 /* 1833 * ================= 1834 * = dfx_interrupt = 1835 * ================= 1836 * 1837 * Overview: 1838 * Interrupt processing routine 1839 * 1840 * Returns: 1841 * Whether a valid interrupt was seen. 1842 * 1843 * Arguments: 1844 * irq - interrupt vector 1845 * dev_id - pointer to device information 1846 * 1847 * Functional Description: 1848 * This routine calls the interrupt processing routine for this adapter. It 1849 * disables and reenables adapter interrupts, as appropriate. We can support 1850 * shared interrupts since the incoming dev_id pointer provides our device 1851 * structure context. 1852 * 1853 * Return Codes: 1854 * IRQ_HANDLED - an IRQ was handled. 1855 * IRQ_NONE - no IRQ was handled. 1856 * 1857 * Assumptions: 1858 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 1859 * on Intel-based systems) is done by the operating system outside this 1860 * routine. 1861 * 1862 * System interrupts are enabled through this call. 1863 * 1864 * Side Effects: 1865 * Interrupts are disabled, then reenabled at the adapter. 1866 */ 1867 1868 static irqreturn_t dfx_interrupt(int irq, void *dev_id) 1869 { 1870 struct net_device *dev = dev_id; 1871 DFX_board_t *bp = netdev_priv(dev); 1872 struct device *bdev = bp->bus_dev; 1873 int dfx_bus_pci = dev_is_pci(bdev); 1874 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 1875 int dfx_bus_tc = DFX_BUS_TC(bdev); 1876 1877 /* Service adapter interrupts */ 1878 1879 if (dfx_bus_pci) { 1880 u32 status; 1881 1882 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); 1883 if (!(status & PFI_STATUS_M_PDQ_INT)) 1884 return IRQ_NONE; 1885 1886 spin_lock(&bp->lock); 1887 1888 /* Disable PDQ-PFI interrupts at PFI */ 1889 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 1890 PFI_MODE_M_DMA_ENB); 1891 1892 /* Call interrupt service routine for this adapter */ 1893 dfx_int_common(dev); 1894 1895 /* Clear PDQ interrupt status bit and reenable interrupts */ 1896 dfx_port_write_long(bp, PFI_K_REG_STATUS, 1897 PFI_STATUS_M_PDQ_INT); 1898 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 1899 (PFI_MODE_M_PDQ_INT_ENB | 1900 PFI_MODE_M_DMA_ENB)); 1901 1902 spin_unlock(&bp->lock); 1903 } 1904 if (dfx_bus_eisa) { 1905 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 1906 u8 status; 1907 1908 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 1909 if (!(status & PI_CONFIG_STAT_0_M_PEND)) 1910 return IRQ_NONE; 1911 1912 spin_lock(&bp->lock); 1913 1914 /* Disable interrupts at the ESIC */ 1915 status &= ~PI_CONFIG_STAT_0_M_INT_ENB; 1916 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); 1917 1918 /* Call interrupt service routine for this adapter */ 1919 dfx_int_common(dev); 1920 1921 /* Reenable interrupts at the ESIC */ 1922 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 1923 status |= PI_CONFIG_STAT_0_M_INT_ENB; 1924 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); 1925 1926 spin_unlock(&bp->lock); 1927 } 1928 if (dfx_bus_tc) { 1929 u32 status; 1930 1931 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); 1932 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | 1933 PI_PSTATUS_M_XMT_DATA_PENDING | 1934 PI_PSTATUS_M_SMT_HOST_PENDING | 1935 PI_PSTATUS_M_UNSOL_PENDING | 1936 PI_PSTATUS_M_CMD_RSP_PENDING | 1937 PI_PSTATUS_M_CMD_REQ_PENDING | 1938 PI_PSTATUS_M_TYPE_0_PENDING))) 1939 return IRQ_NONE; 1940 1941 spin_lock(&bp->lock); 1942 1943 /* Call interrupt service routine for this adapter */ 1944 dfx_int_common(dev); 1945 1946 spin_unlock(&bp->lock); 1947 } 1948 1949 return IRQ_HANDLED; 1950 } 1951 1952 1953 /* 1954 * ===================== 1955 * = dfx_ctl_get_stats = 1956 * ===================== 1957 * 1958 * Overview: 1959 * Get statistics for FDDI adapter 1960 * 1961 * Returns: 1962 * Pointer to FDDI statistics structure 1963 * 1964 * Arguments: 1965 * dev - pointer to device information 1966 * 1967 * Functional Description: 1968 * Gets current MIB objects from adapter, then 1969 * returns FDDI statistics structure as defined 1970 * in if_fddi.h. 1971 * 1972 * Note: Since the FDDI statistics structure is 1973 * still new and the device structure doesn't 1974 * have an FDDI-specific get statistics handler, 1975 * we'll return the FDDI statistics structure as 1976 * a pointer to an Ethernet statistics structure. 1977 * That way, at least the first part of the statistics 1978 * structure can be decoded properly, and it allows 1979 * "smart" applications to perform a second cast to 1980 * decode the FDDI-specific statistics. 1981 * 1982 * We'll have to pay attention to this routine as the 1983 * device structure becomes more mature and LAN media 1984 * independent. 1985 * 1986 * Return Codes: 1987 * None 1988 * 1989 * Assumptions: 1990 * None 1991 * 1992 * Side Effects: 1993 * None 1994 */ 1995 1996 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) 1997 { 1998 DFX_board_t *bp = netdev_priv(dev); 1999 2000 /* Fill the bp->stats structure with driver-maintained counters */ 2001 2002 bp->stats.gen.rx_packets = bp->rcv_total_frames; 2003 bp->stats.gen.tx_packets = bp->xmt_total_frames; 2004 bp->stats.gen.rx_bytes = bp->rcv_total_bytes; 2005 bp->stats.gen.tx_bytes = bp->xmt_total_bytes; 2006 bp->stats.gen.rx_errors = bp->rcv_crc_errors + 2007 bp->rcv_frame_status_errors + 2008 bp->rcv_length_errors; 2009 bp->stats.gen.tx_errors = bp->xmt_length_errors; 2010 bp->stats.gen.rx_dropped = bp->rcv_discards; 2011 bp->stats.gen.tx_dropped = bp->xmt_discards; 2012 bp->stats.gen.multicast = bp->rcv_multicast_frames; 2013 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ 2014 2015 /* Get FDDI SMT MIB objects */ 2016 2017 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; 2018 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2019 return (struct net_device_stats *)&bp->stats; 2020 2021 /* Fill the bp->stats structure with the SMT MIB object values */ 2022 2023 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 2024 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 2025 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 2026 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 2027 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 2028 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 2029 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 2030 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 2031 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 2032 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 2033 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 2034 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 2035 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 2036 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 2037 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 2038 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 2039 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 2040 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 2041 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 2042 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 2043 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 2044 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 2045 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 2046 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 2047 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 2048 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 2049 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 2050 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 2051 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 2052 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 2053 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 2054 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 2055 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 2056 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 2057 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 2058 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 2059 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 2060 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 2061 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 2062 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 2063 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 2064 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 2065 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 2066 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 2067 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 2068 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 2069 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 2070 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 2071 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 2072 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 2073 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 2074 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 2075 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 2076 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 2077 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 2078 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 2079 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 2080 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 2081 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 2082 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 2083 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 2084 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 2085 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 2086 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 2087 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 2088 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 2089 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 2090 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 2091 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 2092 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 2093 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 2094 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 2095 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 2096 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 2097 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 2098 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 2099 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 2100 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 2101 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 2102 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 2103 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 2104 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 2105 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 2106 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 2107 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 2108 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 2109 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 2110 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 2111 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 2112 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 2113 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 2114 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 2115 2116 /* Get FDDI counters */ 2117 2118 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; 2119 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2120 return (struct net_device_stats *)&bp->stats; 2121 2122 /* Fill the bp->stats structure with the FDDI counter values */ 2123 2124 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 2125 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 2126 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 2127 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 2128 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 2129 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 2130 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 2131 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 2132 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 2133 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 2134 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 2135 2136 return (struct net_device_stats *)&bp->stats; 2137 } 2138 2139 2140 /* 2141 * ============================== 2142 * = dfx_ctl_set_multicast_list = 2143 * ============================== 2144 * 2145 * Overview: 2146 * Enable/Disable LLC frame promiscuous mode reception 2147 * on the adapter and/or update multicast address table. 2148 * 2149 * Returns: 2150 * None 2151 * 2152 * Arguments: 2153 * dev - pointer to device information 2154 * 2155 * Functional Description: 2156 * This routine follows a fairly simple algorithm for setting the 2157 * adapter filters and CAM: 2158 * 2159 * if IFF_PROMISC flag is set 2160 * enable LLC individual/group promiscuous mode 2161 * else 2162 * disable LLC individual/group promiscuous mode 2163 * if number of incoming multicast addresses > 2164 * (CAM max size - number of unicast addresses in CAM) 2165 * enable LLC group promiscuous mode 2166 * set driver-maintained multicast address count to zero 2167 * else 2168 * disable LLC group promiscuous mode 2169 * set driver-maintained multicast address count to incoming count 2170 * update adapter CAM 2171 * update adapter filters 2172 * 2173 * Return Codes: 2174 * None 2175 * 2176 * Assumptions: 2177 * Multicast addresses are presented in canonical (LSB) format. 2178 * 2179 * Side Effects: 2180 * On-board adapter CAM and filters are updated. 2181 */ 2182 2183 static void dfx_ctl_set_multicast_list(struct net_device *dev) 2184 { 2185 DFX_board_t *bp = netdev_priv(dev); 2186 int i; /* used as index in for loop */ 2187 struct netdev_hw_addr *ha; 2188 2189 /* Enable LLC frame promiscuous mode, if necessary */ 2190 2191 if (dev->flags & IFF_PROMISC) 2192 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ 2193 2194 /* Else, update multicast address table */ 2195 2196 else 2197 { 2198 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ 2199 /* 2200 * Check whether incoming multicast address count exceeds table size 2201 * 2202 * Note: The adapters utilize an on-board 64 entry CAM for 2203 * supporting perfect filtering of multicast packets 2204 * and bridge functions when adding unicast addresses. 2205 * There is no hash function available. To support 2206 * additional multicast addresses, the all multicast 2207 * filter (LLC group promiscuous mode) must be enabled. 2208 * 2209 * The firmware reserves two CAM entries for SMT-related 2210 * multicast addresses, which leaves 62 entries available. 2211 * The following code ensures that we're not being asked 2212 * to add more than 62 addresses to the CAM. If we are, 2213 * the driver will enable the all multicast filter. 2214 * Should the number of multicast addresses drop below 2215 * the high water mark, the filter will be disabled and 2216 * perfect filtering will be used. 2217 */ 2218 2219 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) 2220 { 2221 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ 2222 bp->mc_count = 0; /* Don't add mc addrs to CAM */ 2223 } 2224 else 2225 { 2226 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ 2227 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ 2228 } 2229 2230 /* Copy addresses to multicast address table, then update adapter CAM */ 2231 2232 i = 0; 2233 netdev_for_each_mc_addr(ha, dev) 2234 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], 2235 ha->addr, FDDI_K_ALEN); 2236 2237 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 2238 { 2239 DBG_printk("%s: Could not update multicast address table!\n", dev->name); 2240 } 2241 else 2242 { 2243 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); 2244 } 2245 } 2246 2247 /* Update adapter filters */ 2248 2249 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 2250 { 2251 DBG_printk("%s: Could not update adapter filters!\n", dev->name); 2252 } 2253 else 2254 { 2255 DBG_printk("%s: Adapter filters updated!\n", dev->name); 2256 } 2257 } 2258 2259 2260 /* 2261 * =========================== 2262 * = dfx_ctl_set_mac_address = 2263 * =========================== 2264 * 2265 * Overview: 2266 * Add node address override (unicast address) to adapter 2267 * CAM and update dev_addr field in device table. 2268 * 2269 * Returns: 2270 * None 2271 * 2272 * Arguments: 2273 * dev - pointer to device information 2274 * addr - pointer to sockaddr structure containing unicast address to add 2275 * 2276 * Functional Description: 2277 * The adapter supports node address overrides by adding one or more 2278 * unicast addresses to the adapter CAM. This is similar to adding 2279 * multicast addresses. In this routine we'll update the driver and 2280 * device structures with the new address, then update the adapter CAM 2281 * to ensure that the adapter will copy and strip frames destined and 2282 * sourced by that address. 2283 * 2284 * Return Codes: 2285 * Always returns zero. 2286 * 2287 * Assumptions: 2288 * The address pointed to by addr->sa_data is a valid unicast 2289 * address and is presented in canonical (LSB) format. 2290 * 2291 * Side Effects: 2292 * On-board adapter CAM is updated. On-board adapter filters 2293 * may be updated. 2294 */ 2295 2296 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) 2297 { 2298 struct sockaddr *p_sockaddr = (struct sockaddr *)addr; 2299 DFX_board_t *bp = netdev_priv(dev); 2300 2301 /* Copy unicast address to driver-maintained structs and update count */ 2302 2303 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ 2304 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ 2305 bp->uc_count = 1; 2306 2307 /* 2308 * Verify we're not exceeding the CAM size by adding unicast address 2309 * 2310 * Note: It's possible that before entering this routine we've 2311 * already filled the CAM with 62 multicast addresses. 2312 * Since we need to place the node address override into 2313 * the CAM, we have to check to see that we're not 2314 * exceeding the CAM size. If we are, we have to enable 2315 * the LLC group (multicast) promiscuous mode filter as 2316 * in dfx_ctl_set_multicast_list. 2317 */ 2318 2319 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) 2320 { 2321 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ 2322 bp->mc_count = 0; /* Don't add mc addrs to CAM */ 2323 2324 /* Update adapter filters */ 2325 2326 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 2327 { 2328 DBG_printk("%s: Could not update adapter filters!\n", dev->name); 2329 } 2330 else 2331 { 2332 DBG_printk("%s: Adapter filters updated!\n", dev->name); 2333 } 2334 } 2335 2336 /* Update adapter CAM with new unicast address */ 2337 2338 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 2339 { 2340 DBG_printk("%s: Could not set new MAC address!\n", dev->name); 2341 } 2342 else 2343 { 2344 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); 2345 } 2346 return 0; /* always return zero */ 2347 } 2348 2349 2350 /* 2351 * ====================== 2352 * = dfx_ctl_update_cam = 2353 * ====================== 2354 * 2355 * Overview: 2356 * Procedure to update adapter CAM (Content Addressable Memory) 2357 * with desired unicast and multicast address entries. 2358 * 2359 * Returns: 2360 * Condition code 2361 * 2362 * Arguments: 2363 * bp - pointer to board information 2364 * 2365 * Functional Description: 2366 * Updates adapter CAM with current contents of board structure 2367 * unicast and multicast address tables. Since there are only 62 2368 * free entries in CAM, this routine ensures that the command 2369 * request buffer is not overrun. 2370 * 2371 * Return Codes: 2372 * DFX_K_SUCCESS - Request succeeded 2373 * DFX_K_FAILURE - Request failed 2374 * 2375 * Assumptions: 2376 * All addresses being added (unicast and multicast) are in canonical 2377 * order. 2378 * 2379 * Side Effects: 2380 * On-board adapter CAM is updated. 2381 */ 2382 2383 static int dfx_ctl_update_cam(DFX_board_t *bp) 2384 { 2385 int i; /* used as index */ 2386 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ 2387 2388 /* 2389 * Fill in command request information 2390 * 2391 * Note: Even though both the unicast and multicast address 2392 * table entries are stored as contiguous 6 byte entries, 2393 * the firmware address filter set command expects each 2394 * entry to be two longwords (8 bytes total). We must be 2395 * careful to only copy the six bytes of each unicast and 2396 * multicast table entry into each command entry. This 2397 * is also why we must first clear the entire command 2398 * request buffer. 2399 */ 2400 2401 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ 2402 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; 2403 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; 2404 2405 /* Now add unicast addresses to command request buffer, if any */ 2406 2407 for (i=0; i < (int)bp->uc_count; i++) 2408 { 2409 if (i < PI_CMD_ADDR_FILTER_K_SIZE) 2410 { 2411 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); 2412 p_addr++; /* point to next command entry */ 2413 } 2414 } 2415 2416 /* Now add multicast addresses to command request buffer, if any */ 2417 2418 for (i=0; i < (int)bp->mc_count; i++) 2419 { 2420 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) 2421 { 2422 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); 2423 p_addr++; /* point to next command entry */ 2424 } 2425 } 2426 2427 /* Issue command to update adapter CAM, then return */ 2428 2429 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2430 return DFX_K_FAILURE; 2431 return DFX_K_SUCCESS; 2432 } 2433 2434 2435 /* 2436 * ========================== 2437 * = dfx_ctl_update_filters = 2438 * ========================== 2439 * 2440 * Overview: 2441 * Procedure to update adapter filters with desired 2442 * filter settings. 2443 * 2444 * Returns: 2445 * Condition code 2446 * 2447 * Arguments: 2448 * bp - pointer to board information 2449 * 2450 * Functional Description: 2451 * Enables or disables filter using current filter settings. 2452 * 2453 * Return Codes: 2454 * DFX_K_SUCCESS - Request succeeded. 2455 * DFX_K_FAILURE - Request failed. 2456 * 2457 * Assumptions: 2458 * We must always pass up packets destined to the broadcast 2459 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the 2460 * broadcast filter enabled. 2461 * 2462 * Side Effects: 2463 * On-board adapter filters are updated. 2464 */ 2465 2466 static int dfx_ctl_update_filters(DFX_board_t *bp) 2467 { 2468 int i = 0; /* used as index */ 2469 2470 /* Fill in command request information */ 2471 2472 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; 2473 2474 /* Initialize Broadcast filter - * ALWAYS ENABLED * */ 2475 2476 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; 2477 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; 2478 2479 /* Initialize LLC Individual/Group Promiscuous filter */ 2480 2481 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; 2482 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; 2483 2484 /* Initialize LLC Group Promiscuous filter */ 2485 2486 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; 2487 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; 2488 2489 /* Terminate the item code list */ 2490 2491 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; 2492 2493 /* Issue command to update adapter filters, then return */ 2494 2495 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2496 return DFX_K_FAILURE; 2497 return DFX_K_SUCCESS; 2498 } 2499 2500 2501 /* 2502 * ====================== 2503 * = dfx_hw_dma_cmd_req = 2504 * ====================== 2505 * 2506 * Overview: 2507 * Sends PDQ DMA command to adapter firmware 2508 * 2509 * Returns: 2510 * Condition code 2511 * 2512 * Arguments: 2513 * bp - pointer to board information 2514 * 2515 * Functional Description: 2516 * The command request and response buffers are posted to the adapter in the manner 2517 * described in the PDQ Port Specification: 2518 * 2519 * 1. Command Response Buffer is posted to adapter. 2520 * 2. Command Request Buffer is posted to adapter. 2521 * 3. Command Request consumer index is polled until it indicates that request 2522 * buffer has been DMA'd to adapter. 2523 * 4. Command Response consumer index is polled until it indicates that response 2524 * buffer has been DMA'd from adapter. 2525 * 2526 * This ordering ensures that a response buffer is already available for the firmware 2527 * to use once it's done processing the request buffer. 2528 * 2529 * Return Codes: 2530 * DFX_K_SUCCESS - DMA command succeeded 2531 * DFX_K_OUTSTATE - Adapter is NOT in proper state 2532 * DFX_K_HW_TIMEOUT - DMA command timed out 2533 * 2534 * Assumptions: 2535 * Command request buffer has already been filled with desired DMA command. 2536 * 2537 * Side Effects: 2538 * None 2539 */ 2540 2541 static int dfx_hw_dma_cmd_req(DFX_board_t *bp) 2542 { 2543 int status; /* adapter status */ 2544 int timeout_cnt; /* used in for loops */ 2545 2546 /* Make sure the adapter is in a state that we can issue the DMA command in */ 2547 2548 status = dfx_hw_adap_state_rd(bp); 2549 if ((status == PI_STATE_K_RESET) || 2550 (status == PI_STATE_K_HALTED) || 2551 (status == PI_STATE_K_DMA_UNAVAIL) || 2552 (status == PI_STATE_K_UPGRADE)) 2553 return DFX_K_OUTSTATE; 2554 2555 /* Put response buffer on the command response queue */ 2556 2557 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | 2558 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); 2559 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; 2560 2561 /* Bump (and wrap) the producer index and write out to register */ 2562 2563 bp->cmd_rsp_reg.index.prod += 1; 2564 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; 2565 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); 2566 2567 /* Put request buffer on the command request queue */ 2568 2569 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | 2570 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); 2571 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; 2572 2573 /* Bump (and wrap) the producer index and write out to register */ 2574 2575 bp->cmd_req_reg.index.prod += 1; 2576 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; 2577 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); 2578 2579 /* 2580 * Here we wait for the command request consumer index to be equal 2581 * to the producer, indicating that the adapter has DMAed the request. 2582 */ 2583 2584 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) 2585 { 2586 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) 2587 break; 2588 udelay(100); /* wait for 100 microseconds */ 2589 } 2590 if (timeout_cnt == 0) 2591 return DFX_K_HW_TIMEOUT; 2592 2593 /* Bump (and wrap) the completion index and write out to register */ 2594 2595 bp->cmd_req_reg.index.comp += 1; 2596 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; 2597 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); 2598 2599 /* 2600 * Here we wait for the command response consumer index to be equal 2601 * to the producer, indicating that the adapter has DMAed the response. 2602 */ 2603 2604 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) 2605 { 2606 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) 2607 break; 2608 udelay(100); /* wait for 100 microseconds */ 2609 } 2610 if (timeout_cnt == 0) 2611 return DFX_K_HW_TIMEOUT; 2612 2613 /* Bump (and wrap) the completion index and write out to register */ 2614 2615 bp->cmd_rsp_reg.index.comp += 1; 2616 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; 2617 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); 2618 return DFX_K_SUCCESS; 2619 } 2620 2621 2622 /* 2623 * ======================== 2624 * = dfx_hw_port_ctrl_req = 2625 * ======================== 2626 * 2627 * Overview: 2628 * Sends PDQ port control command to adapter firmware 2629 * 2630 * Returns: 2631 * Host data register value in host_data if ptr is not NULL 2632 * 2633 * Arguments: 2634 * bp - pointer to board information 2635 * command - port control command 2636 * data_a - port data A register value 2637 * data_b - port data B register value 2638 * host_data - ptr to host data register value 2639 * 2640 * Functional Description: 2641 * Send generic port control command to adapter by writing 2642 * to various PDQ port registers, then polling for completion. 2643 * 2644 * Return Codes: 2645 * DFX_K_SUCCESS - port control command succeeded 2646 * DFX_K_HW_TIMEOUT - port control command timed out 2647 * 2648 * Assumptions: 2649 * None 2650 * 2651 * Side Effects: 2652 * None 2653 */ 2654 2655 static int dfx_hw_port_ctrl_req( 2656 DFX_board_t *bp, 2657 PI_UINT32 command, 2658 PI_UINT32 data_a, 2659 PI_UINT32 data_b, 2660 PI_UINT32 *host_data 2661 ) 2662 2663 { 2664 PI_UINT32 port_cmd; /* Port Control command register value */ 2665 int timeout_cnt; /* used in for loops */ 2666 2667 /* Set Command Error bit in command longword */ 2668 2669 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); 2670 2671 /* Issue port command to the adapter */ 2672 2673 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); 2674 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); 2675 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); 2676 2677 /* Now wait for command to complete */ 2678 2679 if (command == PI_PCTRL_M_BLAST_FLASH) 2680 timeout_cnt = 600000; /* set command timeout count to 60 seconds */ 2681 else 2682 timeout_cnt = 20000; /* set command timeout count to 2 seconds */ 2683 2684 for (; timeout_cnt > 0; timeout_cnt--) 2685 { 2686 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); 2687 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) 2688 break; 2689 udelay(100); /* wait for 100 microseconds */ 2690 } 2691 if (timeout_cnt == 0) 2692 return DFX_K_HW_TIMEOUT; 2693 2694 /* 2695 * If the address of host_data is non-zero, assume caller has supplied a 2696 * non NULL pointer, and return the contents of the HOST_DATA register in 2697 * it. 2698 */ 2699 2700 if (host_data != NULL) 2701 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); 2702 return DFX_K_SUCCESS; 2703 } 2704 2705 2706 /* 2707 * ===================== 2708 * = dfx_hw_adap_reset = 2709 * ===================== 2710 * 2711 * Overview: 2712 * Resets adapter 2713 * 2714 * Returns: 2715 * None 2716 * 2717 * Arguments: 2718 * bp - pointer to board information 2719 * type - type of reset to perform 2720 * 2721 * Functional Description: 2722 * Issue soft reset to adapter by writing to PDQ Port Reset 2723 * register. Use incoming reset type to tell adapter what 2724 * kind of reset operation to perform. 2725 * 2726 * Return Codes: 2727 * None 2728 * 2729 * Assumptions: 2730 * This routine merely issues a soft reset to the adapter. 2731 * It is expected that after this routine returns, the caller 2732 * will appropriately poll the Port Status register for the 2733 * adapter to enter the proper state. 2734 * 2735 * Side Effects: 2736 * Internal adapter registers are cleared. 2737 */ 2738 2739 static void dfx_hw_adap_reset( 2740 DFX_board_t *bp, 2741 PI_UINT32 type 2742 ) 2743 2744 { 2745 /* Set Reset type and assert reset */ 2746 2747 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ 2748 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); 2749 2750 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ 2751 2752 udelay(20); 2753 2754 /* Deassert reset */ 2755 2756 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); 2757 } 2758 2759 2760 /* 2761 * ======================== 2762 * = dfx_hw_adap_state_rd = 2763 * ======================== 2764 * 2765 * Overview: 2766 * Returns current adapter state 2767 * 2768 * Returns: 2769 * Adapter state per PDQ Port Specification 2770 * 2771 * Arguments: 2772 * bp - pointer to board information 2773 * 2774 * Functional Description: 2775 * Reads PDQ Port Status register and returns adapter state. 2776 * 2777 * Return Codes: 2778 * None 2779 * 2780 * Assumptions: 2781 * None 2782 * 2783 * Side Effects: 2784 * None 2785 */ 2786 2787 static int dfx_hw_adap_state_rd(DFX_board_t *bp) 2788 { 2789 PI_UINT32 port_status; /* Port Status register value */ 2790 2791 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 2792 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; 2793 } 2794 2795 2796 /* 2797 * ===================== 2798 * = dfx_hw_dma_uninit = 2799 * ===================== 2800 * 2801 * Overview: 2802 * Brings adapter to DMA_UNAVAILABLE state 2803 * 2804 * Returns: 2805 * Condition code 2806 * 2807 * Arguments: 2808 * bp - pointer to board information 2809 * type - type of reset to perform 2810 * 2811 * Functional Description: 2812 * Bring adapter to DMA_UNAVAILABLE state by performing the following: 2813 * 1. Set reset type bit in Port Data A Register then reset adapter. 2814 * 2. Check that adapter is in DMA_UNAVAILABLE state. 2815 * 2816 * Return Codes: 2817 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state 2818 * DFX_K_HW_TIMEOUT - adapter did not reset properly 2819 * 2820 * Assumptions: 2821 * None 2822 * 2823 * Side Effects: 2824 * Internal adapter registers are cleared. 2825 */ 2826 2827 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) 2828 { 2829 int timeout_cnt; /* used in for loops */ 2830 2831 /* Set reset type bit and reset adapter */ 2832 2833 dfx_hw_adap_reset(bp, type); 2834 2835 /* Now wait for adapter to enter DMA_UNAVAILABLE state */ 2836 2837 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) 2838 { 2839 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) 2840 break; 2841 udelay(100); /* wait for 100 microseconds */ 2842 } 2843 if (timeout_cnt == 0) 2844 return DFX_K_HW_TIMEOUT; 2845 return DFX_K_SUCCESS; 2846 } 2847 2848 /* 2849 * Align an sk_buff to a boundary power of 2 2850 * 2851 */ 2852 2853 static void my_skb_align(struct sk_buff *skb, int n) 2854 { 2855 unsigned long x = (unsigned long)skb->data; 2856 unsigned long v; 2857 2858 v = ALIGN(x, n); /* Where we want to be */ 2859 2860 skb_reserve(skb, v - x); 2861 } 2862 2863 2864 /* 2865 * ================ 2866 * = dfx_rcv_init = 2867 * ================ 2868 * 2869 * Overview: 2870 * Produces buffers to adapter LLC Host receive descriptor block 2871 * 2872 * Returns: 2873 * None 2874 * 2875 * Arguments: 2876 * bp - pointer to board information 2877 * get_buffers - non-zero if buffers to be allocated 2878 * 2879 * Functional Description: 2880 * This routine can be called during dfx_adap_init() or during an adapter 2881 * reset. It initializes the descriptor block and produces all allocated 2882 * LLC Host queue receive buffers. 2883 * 2884 * Return Codes: 2885 * Return 0 on success or -ENOMEM if buffer allocation failed (when using 2886 * dynamic buffer allocation). If the buffer allocation failed, the 2887 * already allocated buffers will not be released and the caller should do 2888 * this. 2889 * 2890 * Assumptions: 2891 * The PDQ has been reset and the adapter and driver maintained Type 2 2892 * register indices are cleared. 2893 * 2894 * Side Effects: 2895 * Receive buffers are posted to the adapter LLC queue and the adapter 2896 * is notified. 2897 */ 2898 2899 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) 2900 { 2901 int i, j; /* used in for loop */ 2902 2903 /* 2904 * Since each receive buffer is a single fragment of same length, initialize 2905 * first longword in each receive descriptor for entire LLC Host descriptor 2906 * block. Also initialize second longword in each receive descriptor with 2907 * physical address of receive buffer. We'll always allocate receive 2908 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor 2909 * block and produce new receive buffers by simply updating the receive 2910 * producer index. 2911 * 2912 * Assumptions: 2913 * To support all shipping versions of PDQ, the receive buffer size 2914 * must be mod 128 in length and the physical address must be 128 byte 2915 * aligned. In other words, bits 0-6 of the length and address must 2916 * be zero for the following descriptor field entries to be correct on 2917 * all PDQ-based boards. We guaranteed both requirements during 2918 * driver initialization when we allocated memory for the receive buffers. 2919 */ 2920 2921 if (get_buffers) { 2922 #ifdef DYNAMIC_BUFFERS 2923 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) 2924 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 2925 { 2926 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO); 2927 if (!newskb) 2928 return -ENOMEM; 2929 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | 2930 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); 2931 /* 2932 * align to 128 bytes for compatibility with 2933 * the old EISA boards. 2934 */ 2935 2936 my_skb_align(newskb, 128); 2937 bp->descr_block_virt->rcv_data[i + j].long_1 = 2938 (u32)dma_map_single(bp->bus_dev, newskb->data, 2939 NEW_SKB_SIZE, 2940 DMA_FROM_DEVICE); 2941 /* 2942 * p_rcv_buff_va is only used inside the 2943 * kernel so we put the skb pointer here. 2944 */ 2945 bp->p_rcv_buff_va[i+j] = (char *) newskb; 2946 } 2947 #else 2948 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) 2949 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 2950 { 2951 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | 2952 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); 2953 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); 2954 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); 2955 } 2956 #endif 2957 } 2958 2959 /* Update receive producer and Type 2 register */ 2960 2961 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; 2962 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 2963 return 0; 2964 } 2965 2966 2967 /* 2968 * ========================= 2969 * = dfx_rcv_queue_process = 2970 * ========================= 2971 * 2972 * Overview: 2973 * Process received LLC frames. 2974 * 2975 * Returns: 2976 * None 2977 * 2978 * Arguments: 2979 * bp - pointer to board information 2980 * 2981 * Functional Description: 2982 * Received LLC frames are processed until there are no more consumed frames. 2983 * Once all frames are processed, the receive buffers are returned to the 2984 * adapter. Note that this algorithm fixes the length of time that can be spent 2985 * in this routine, because there are a fixed number of receive buffers to 2986 * process and buffers are not produced until this routine exits and returns 2987 * to the ISR. 2988 * 2989 * Return Codes: 2990 * None 2991 * 2992 * Assumptions: 2993 * None 2994 * 2995 * Side Effects: 2996 * None 2997 */ 2998 2999 static void dfx_rcv_queue_process( 3000 DFX_board_t *bp 3001 ) 3002 3003 { 3004 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ 3005 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ 3006 u32 descr, pkt_len; /* FMC descriptor field and packet length */ 3007 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ 3008 3009 /* Service all consumed LLC receive frames */ 3010 3011 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); 3012 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) 3013 { 3014 /* Process any errors */ 3015 3016 int entry; 3017 3018 entry = bp->rcv_xmt_reg.index.rcv_comp; 3019 #ifdef DYNAMIC_BUFFERS 3020 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); 3021 #else 3022 p_buff = bp->p_rcv_buff_va[entry]; 3023 #endif 3024 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); 3025 3026 if (descr & PI_FMC_DESCR_M_RCC_FLUSH) 3027 { 3028 if (descr & PI_FMC_DESCR_M_RCC_CRC) 3029 bp->rcv_crc_errors++; 3030 else 3031 bp->rcv_frame_status_errors++; 3032 } 3033 else 3034 { 3035 int rx_in_place = 0; 3036 3037 /* The frame was received without errors - verify packet length */ 3038 3039 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); 3040 pkt_len -= 4; /* subtract 4 byte CRC */ 3041 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) 3042 bp->rcv_length_errors++; 3043 else{ 3044 #ifdef DYNAMIC_BUFFERS 3045 if (pkt_len > SKBUFF_RX_COPYBREAK) { 3046 struct sk_buff *newskb; 3047 3048 newskb = dev_alloc_skb(NEW_SKB_SIZE); 3049 if (newskb){ 3050 rx_in_place = 1; 3051 3052 my_skb_align(newskb, 128); 3053 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; 3054 dma_unmap_single(bp->bus_dev, 3055 bp->descr_block_virt->rcv_data[entry].long_1, 3056 NEW_SKB_SIZE, 3057 DMA_FROM_DEVICE); 3058 skb_reserve(skb, RCV_BUFF_K_PADDING); 3059 bp->p_rcv_buff_va[entry] = (char *)newskb; 3060 bp->descr_block_virt->rcv_data[entry].long_1 = 3061 (u32)dma_map_single(bp->bus_dev, 3062 newskb->data, 3063 NEW_SKB_SIZE, 3064 DMA_FROM_DEVICE); 3065 } else 3066 skb = NULL; 3067 } else 3068 #endif 3069 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ 3070 if (skb == NULL) 3071 { 3072 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); 3073 bp->rcv_discards++; 3074 break; 3075 } 3076 else { 3077 #ifndef DYNAMIC_BUFFERS 3078 if (! rx_in_place) 3079 #endif 3080 { 3081 /* Receive buffer allocated, pass receive packet up */ 3082 3083 skb_copy_to_linear_data(skb, 3084 p_buff + RCV_BUFF_K_PADDING, 3085 pkt_len + 3); 3086 } 3087 3088 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ 3089 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ 3090 skb->protocol = fddi_type_trans(skb, bp->dev); 3091 bp->rcv_total_bytes += skb->len; 3092 netif_rx(skb); 3093 3094 /* Update the rcv counters */ 3095 bp->rcv_total_frames++; 3096 if (*(p_buff + RCV_BUFF_K_DA) & 0x01) 3097 bp->rcv_multicast_frames++; 3098 } 3099 } 3100 } 3101 3102 /* 3103 * Advance the producer (for recycling) and advance the completion 3104 * (for servicing received frames). Note that it is okay to 3105 * advance the producer without checking that it passes the 3106 * completion index because they are both advanced at the same 3107 * rate. 3108 */ 3109 3110 bp->rcv_xmt_reg.index.rcv_prod += 1; 3111 bp->rcv_xmt_reg.index.rcv_comp += 1; 3112 } 3113 } 3114 3115 3116 /* 3117 * ===================== 3118 * = dfx_xmt_queue_pkt = 3119 * ===================== 3120 * 3121 * Overview: 3122 * Queues packets for transmission 3123 * 3124 * Returns: 3125 * Condition code 3126 * 3127 * Arguments: 3128 * skb - pointer to sk_buff to queue for transmission 3129 * dev - pointer to device information 3130 * 3131 * Functional Description: 3132 * Here we assume that an incoming skb transmit request 3133 * is contained in a single physically contiguous buffer 3134 * in which the virtual address of the start of packet 3135 * (skb->data) can be converted to a physical address 3136 * by using pci_map_single(). 3137 * 3138 * Since the adapter architecture requires a three byte 3139 * packet request header to prepend the start of packet, 3140 * we'll write the three byte field immediately prior to 3141 * the FC byte. This assumption is valid because we've 3142 * ensured that dev->hard_header_len includes three pad 3143 * bytes. By posting a single fragment to the adapter, 3144 * we'll reduce the number of descriptor fetches and 3145 * bus traffic needed to send the request. 3146 * 3147 * Also, we can't free the skb until after it's been DMA'd 3148 * out by the adapter, so we'll queue it in the driver and 3149 * return it in dfx_xmt_done. 3150 * 3151 * Return Codes: 3152 * 0 - driver queued packet, link is unavailable, or skbuff was bad 3153 * 1 - caller should requeue the sk_buff for later transmission 3154 * 3155 * Assumptions: 3156 * First and foremost, we assume the incoming skb pointer 3157 * is NOT NULL and is pointing to a valid sk_buff structure. 3158 * 3159 * The outgoing packet is complete, starting with the 3160 * frame control byte including the last byte of data, 3161 * but NOT including the 4 byte CRC. We'll let the 3162 * adapter hardware generate and append the CRC. 3163 * 3164 * The entire packet is stored in one physically 3165 * contiguous buffer which is not cached and whose 3166 * 32-bit physical address can be determined. 3167 * 3168 * It's vital that this routine is NOT reentered for the 3169 * same board and that the OS is not in another section of 3170 * code (eg. dfx_int_common) for the same board on a 3171 * different thread. 3172 * 3173 * Side Effects: 3174 * None 3175 */ 3176 3177 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, 3178 struct net_device *dev) 3179 { 3180 DFX_board_t *bp = netdev_priv(dev); 3181 u8 prod; /* local transmit producer index */ 3182 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ 3183 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3184 unsigned long flags; 3185 3186 netif_stop_queue(dev); 3187 3188 /* 3189 * Verify that incoming transmit request is OK 3190 * 3191 * Note: The packet size check is consistent with other 3192 * Linux device drivers, although the correct packet 3193 * size should be verified before calling the 3194 * transmit routine. 3195 */ 3196 3197 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) 3198 { 3199 printk("%s: Invalid packet length - %u bytes\n", 3200 dev->name, skb->len); 3201 bp->xmt_length_errors++; /* bump error counter */ 3202 netif_wake_queue(dev); 3203 dev_kfree_skb(skb); 3204 return NETDEV_TX_OK; /* return "success" */ 3205 } 3206 /* 3207 * See if adapter link is available, if not, free buffer 3208 * 3209 * Note: If the link isn't available, free buffer and return 0 3210 * rather than tell the upper layer to requeue the packet. 3211 * The methodology here is that by the time the link 3212 * becomes available, the packet to be sent will be 3213 * fairly stale. By simply dropping the packet, the 3214 * higher layer protocols will eventually time out 3215 * waiting for response packets which it won't receive. 3216 */ 3217 3218 if (bp->link_available == PI_K_FALSE) 3219 { 3220 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ 3221 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ 3222 else 3223 { 3224 bp->xmt_discards++; /* bump error counter */ 3225 dev_kfree_skb(skb); /* free sk_buff now */ 3226 netif_wake_queue(dev); 3227 return NETDEV_TX_OK; /* return "success" */ 3228 } 3229 } 3230 3231 spin_lock_irqsave(&bp->lock, flags); 3232 3233 /* Get the current producer and the next free xmt data descriptor */ 3234 3235 prod = bp->rcv_xmt_reg.index.xmt_prod; 3236 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); 3237 3238 /* 3239 * Get pointer to auxiliary queue entry to contain information 3240 * for this packet. 3241 * 3242 * Note: The current xmt producer index will become the 3243 * current xmt completion index when we complete this 3244 * packet later on. So, we'll get the pointer to the 3245 * next auxiliary queue entry now before we bump the 3246 * producer index. 3247 */ 3248 3249 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ 3250 3251 /* Write the three PRH bytes immediately before the FC byte */ 3252 3253 skb_push(skb,3); 3254 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ 3255 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ 3256 skb->data[2] = DFX_PRH2_BYTE; /* specification */ 3257 3258 /* 3259 * Write the descriptor with buffer info and bump producer 3260 * 3261 * Note: Since we need to start DMA from the packet request 3262 * header, we'll add 3 bytes to the DMA buffer length, 3263 * and we'll determine the physical address of the 3264 * buffer from the PRH, not skb->data. 3265 * 3266 * Assumptions: 3267 * 1. Packet starts with the frame control (FC) byte 3268 * at skb->data. 3269 * 2. The 4-byte CRC is not appended to the buffer or 3270 * included in the length. 3271 * 3. Packet length (skb->len) is from FC to end of 3272 * data, inclusive. 3273 * 4. The packet length does not exceed the maximum 3274 * FDDI LLC frame length of 4491 bytes. 3275 * 5. The entire packet is contained in a physically 3276 * contiguous, non-cached, locked memory space 3277 * comprised of a single buffer pointed to by 3278 * skb->data. 3279 * 6. The physical address of the start of packet 3280 * can be determined from the virtual address 3281 * by using pci_map_single() and is only 32-bits 3282 * wide. 3283 */ 3284 3285 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); 3286 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data, 3287 skb->len, DMA_TO_DEVICE); 3288 3289 /* 3290 * Verify that descriptor is actually available 3291 * 3292 * Note: If descriptor isn't available, return 1 which tells 3293 * the upper layer to requeue the packet for later 3294 * transmission. 3295 * 3296 * We need to ensure that the producer never reaches the 3297 * completion, except to indicate that the queue is empty. 3298 */ 3299 3300 if (prod == bp->rcv_xmt_reg.index.xmt_comp) 3301 { 3302 skb_pull(skb,3); 3303 spin_unlock_irqrestore(&bp->lock, flags); 3304 return NETDEV_TX_BUSY; /* requeue packet for later */ 3305 } 3306 3307 /* 3308 * Save info for this packet for xmt done indication routine 3309 * 3310 * Normally, we'd save the producer index in the p_xmt_drv_descr 3311 * structure so that we'd have it handy when we complete this 3312 * packet later (in dfx_xmt_done). However, since the current 3313 * transmit architecture guarantees a single fragment for the 3314 * entire packet, we can simply bump the completion index by 3315 * one (1) for each completed packet. 3316 * 3317 * Note: If this assumption changes and we're presented with 3318 * an inconsistent number of transmit fragments for packet 3319 * data, we'll need to modify this code to save the current 3320 * transmit producer index. 3321 */ 3322 3323 p_xmt_drv_descr->p_skb = skb; 3324 3325 /* Update Type 2 register */ 3326 3327 bp->rcv_xmt_reg.index.xmt_prod = prod; 3328 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 3329 spin_unlock_irqrestore(&bp->lock, flags); 3330 netif_wake_queue(dev); 3331 return NETDEV_TX_OK; /* packet queued to adapter */ 3332 } 3333 3334 3335 /* 3336 * ================ 3337 * = dfx_xmt_done = 3338 * ================ 3339 * 3340 * Overview: 3341 * Processes all frames that have been transmitted. 3342 * 3343 * Returns: 3344 * None 3345 * 3346 * Arguments: 3347 * bp - pointer to board information 3348 * 3349 * Functional Description: 3350 * For all consumed transmit descriptors that have not 3351 * yet been completed, we'll free the skb we were holding 3352 * onto using dev_kfree_skb and bump the appropriate 3353 * counters. 3354 * 3355 * Return Codes: 3356 * None 3357 * 3358 * Assumptions: 3359 * The Type 2 register is not updated in this routine. It is 3360 * assumed that it will be updated in the ISR when dfx_xmt_done 3361 * returns. 3362 * 3363 * Side Effects: 3364 * None 3365 */ 3366 3367 static int dfx_xmt_done(DFX_board_t *bp) 3368 { 3369 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3370 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ 3371 u8 comp; /* local transmit completion index */ 3372 int freed = 0; /* buffers freed */ 3373 3374 /* Service all consumed transmit frames */ 3375 3376 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); 3377 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) 3378 { 3379 /* Get pointer to the transmit driver descriptor block information */ 3380 3381 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); 3382 3383 /* Increment transmit counters */ 3384 3385 bp->xmt_total_frames++; 3386 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; 3387 3388 /* Return skb to operating system */ 3389 comp = bp->rcv_xmt_reg.index.xmt_comp; 3390 dma_unmap_single(bp->bus_dev, 3391 bp->descr_block_virt->xmt_data[comp].long_1, 3392 p_xmt_drv_descr->p_skb->len, 3393 DMA_TO_DEVICE); 3394 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); 3395 3396 /* 3397 * Move to start of next packet by updating completion index 3398 * 3399 * Here we assume that a transmit packet request is always 3400 * serviced by posting one fragment. We can therefore 3401 * simplify the completion code by incrementing the 3402 * completion index by one. This code will need to be 3403 * modified if this assumption changes. See comments 3404 * in dfx_xmt_queue_pkt for more details. 3405 */ 3406 3407 bp->rcv_xmt_reg.index.xmt_comp += 1; 3408 freed++; 3409 } 3410 return freed; 3411 } 3412 3413 3414 /* 3415 * ================= 3416 * = dfx_rcv_flush = 3417 * ================= 3418 * 3419 * Overview: 3420 * Remove all skb's in the receive ring. 3421 * 3422 * Returns: 3423 * None 3424 * 3425 * Arguments: 3426 * bp - pointer to board information 3427 * 3428 * Functional Description: 3429 * Free's all the dynamically allocated skb's that are 3430 * currently attached to the device receive ring. This 3431 * function is typically only used when the device is 3432 * initialized or reinitialized. 3433 * 3434 * Return Codes: 3435 * None 3436 * 3437 * Side Effects: 3438 * None 3439 */ 3440 #ifdef DYNAMIC_BUFFERS 3441 static void dfx_rcv_flush( DFX_board_t *bp ) 3442 { 3443 int i, j; 3444 3445 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) 3446 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 3447 { 3448 struct sk_buff *skb; 3449 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; 3450 if (skb) 3451 dev_kfree_skb(skb); 3452 bp->p_rcv_buff_va[i+j] = NULL; 3453 } 3454 3455 } 3456 #else 3457 static inline void dfx_rcv_flush( DFX_board_t *bp ) 3458 { 3459 } 3460 #endif /* DYNAMIC_BUFFERS */ 3461 3462 /* 3463 * ================= 3464 * = dfx_xmt_flush = 3465 * ================= 3466 * 3467 * Overview: 3468 * Processes all frames whether they've been transmitted 3469 * or not. 3470 * 3471 * Returns: 3472 * None 3473 * 3474 * Arguments: 3475 * bp - pointer to board information 3476 * 3477 * Functional Description: 3478 * For all produced transmit descriptors that have not 3479 * yet been completed, we'll free the skb we were holding 3480 * onto using dev_kfree_skb and bump the appropriate 3481 * counters. Of course, it's possible that some of 3482 * these transmit requests actually did go out, but we 3483 * won't make that distinction here. Finally, we'll 3484 * update the consumer index to match the producer. 3485 * 3486 * Return Codes: 3487 * None 3488 * 3489 * Assumptions: 3490 * This routine does NOT update the Type 2 register. It 3491 * is assumed that this routine is being called during a 3492 * transmit flush interrupt, or a shutdown or close routine. 3493 * 3494 * Side Effects: 3495 * None 3496 */ 3497 3498 static void dfx_xmt_flush( DFX_board_t *bp ) 3499 { 3500 u32 prod_cons; /* rcv/xmt consumer block longword */ 3501 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3502 u8 comp; /* local transmit completion index */ 3503 3504 /* Flush all outstanding transmit frames */ 3505 3506 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) 3507 { 3508 /* Get pointer to the transmit driver descriptor block information */ 3509 3510 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); 3511 3512 /* Return skb to operating system */ 3513 comp = bp->rcv_xmt_reg.index.xmt_comp; 3514 dma_unmap_single(bp->bus_dev, 3515 bp->descr_block_virt->xmt_data[comp].long_1, 3516 p_xmt_drv_descr->p_skb->len, 3517 DMA_TO_DEVICE); 3518 dev_kfree_skb(p_xmt_drv_descr->p_skb); 3519 3520 /* Increment transmit error counter */ 3521 3522 bp->xmt_discards++; 3523 3524 /* 3525 * Move to start of next packet by updating completion index 3526 * 3527 * Here we assume that a transmit packet request is always 3528 * serviced by posting one fragment. We can therefore 3529 * simplify the completion code by incrementing the 3530 * completion index by one. This code will need to be 3531 * modified if this assumption changes. See comments 3532 * in dfx_xmt_queue_pkt for more details. 3533 */ 3534 3535 bp->rcv_xmt_reg.index.xmt_comp += 1; 3536 } 3537 3538 /* Update the transmit consumer index in the consumer block */ 3539 3540 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); 3541 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); 3542 bp->cons_block_virt->xmt_rcv_data = prod_cons; 3543 } 3544 3545 /* 3546 * ================== 3547 * = dfx_unregister = 3548 * ================== 3549 * 3550 * Overview: 3551 * Shuts down an FDDI controller 3552 * 3553 * Returns: 3554 * Condition code 3555 * 3556 * Arguments: 3557 * bdev - pointer to device information 3558 * 3559 * Functional Description: 3560 * 3561 * Return Codes: 3562 * None 3563 * 3564 * Assumptions: 3565 * It compiles so it should work :-( (PCI cards do :-) 3566 * 3567 * Side Effects: 3568 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 3569 * freed. 3570 */ 3571 static void dfx_unregister(struct device *bdev) 3572 { 3573 struct net_device *dev = dev_get_drvdata(bdev); 3574 DFX_board_t *bp = netdev_priv(dev); 3575 int dfx_bus_pci = dev_is_pci(bdev); 3576 int dfx_bus_tc = DFX_BUS_TC(bdev); 3577 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 3578 resource_size_t bar_start = 0; /* pointer to port */ 3579 resource_size_t bar_len = 0; /* resource length */ 3580 int alloc_size; /* total buffer size used */ 3581 3582 unregister_netdev(dev); 3583 3584 alloc_size = sizeof(PI_DESCR_BLOCK) + 3585 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + 3586 #ifndef DYNAMIC_BUFFERS 3587 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 3588 #endif 3589 sizeof(PI_CONSUMER_BLOCK) + 3590 (PI_ALIGN_K_DESC_BLK - 1); 3591 if (bp->kmalloced) 3592 dma_free_coherent(bdev, alloc_size, 3593 bp->kmalloced, bp->kmalloced_dma); 3594 3595 dfx_bus_uninit(dev); 3596 3597 dfx_get_bars(bdev, &bar_start, &bar_len); 3598 if (dfx_use_mmio) { 3599 iounmap(bp->base.mem); 3600 release_mem_region(bar_start, bar_len); 3601 } else 3602 release_region(bar_start, bar_len); 3603 3604 if (dfx_bus_pci) 3605 pci_disable_device(to_pci_dev(bdev)); 3606 3607 free_netdev(dev); 3608 } 3609 3610 3611 static int __maybe_unused dfx_dev_register(struct device *); 3612 static int __maybe_unused dfx_dev_unregister(struct device *); 3613 3614 #ifdef CONFIG_PCI 3615 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *); 3616 static void dfx_pci_unregister(struct pci_dev *); 3617 3618 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = { 3619 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, 3620 { } 3621 }; 3622 MODULE_DEVICE_TABLE(pci, dfx_pci_table); 3623 3624 static struct pci_driver dfx_pci_driver = { 3625 .name = "defxx", 3626 .id_table = dfx_pci_table, 3627 .probe = dfx_pci_register, 3628 .remove = dfx_pci_unregister, 3629 }; 3630 3631 static int dfx_pci_register(struct pci_dev *pdev, 3632 const struct pci_device_id *ent) 3633 { 3634 return dfx_register(&pdev->dev); 3635 } 3636 3637 static void dfx_pci_unregister(struct pci_dev *pdev) 3638 { 3639 dfx_unregister(&pdev->dev); 3640 } 3641 #endif /* CONFIG_PCI */ 3642 3643 #ifdef CONFIG_EISA 3644 static struct eisa_device_id dfx_eisa_table[] = { 3645 { "DEC3001", DEFEA_PROD_ID_1 }, 3646 { "DEC3002", DEFEA_PROD_ID_2 }, 3647 { "DEC3003", DEFEA_PROD_ID_3 }, 3648 { "DEC3004", DEFEA_PROD_ID_4 }, 3649 { } 3650 }; 3651 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); 3652 3653 static struct eisa_driver dfx_eisa_driver = { 3654 .id_table = dfx_eisa_table, 3655 .driver = { 3656 .name = "defxx", 3657 .bus = &eisa_bus_type, 3658 .probe = dfx_dev_register, 3659 .remove = dfx_dev_unregister, 3660 }, 3661 }; 3662 #endif /* CONFIG_EISA */ 3663 3664 #ifdef CONFIG_TC 3665 static struct tc_device_id const dfx_tc_table[] = { 3666 { "DEC ", "PMAF-FA " }, 3667 { "DEC ", "PMAF-FD " }, 3668 { "DEC ", "PMAF-FS " }, 3669 { "DEC ", "PMAF-FU " }, 3670 { } 3671 }; 3672 MODULE_DEVICE_TABLE(tc, dfx_tc_table); 3673 3674 static struct tc_driver dfx_tc_driver = { 3675 .id_table = dfx_tc_table, 3676 .driver = { 3677 .name = "defxx", 3678 .bus = &tc_bus_type, 3679 .probe = dfx_dev_register, 3680 .remove = dfx_dev_unregister, 3681 }, 3682 }; 3683 #endif /* CONFIG_TC */ 3684 3685 static int __maybe_unused dfx_dev_register(struct device *dev) 3686 { 3687 int status; 3688 3689 status = dfx_register(dev); 3690 if (!status) 3691 get_device(dev); 3692 return status; 3693 } 3694 3695 static int __maybe_unused dfx_dev_unregister(struct device *dev) 3696 { 3697 put_device(dev); 3698 dfx_unregister(dev); 3699 return 0; 3700 } 3701 3702 3703 static int dfx_init(void) 3704 { 3705 int status; 3706 3707 status = pci_register_driver(&dfx_pci_driver); 3708 if (!status) 3709 status = eisa_driver_register(&dfx_eisa_driver); 3710 if (!status) 3711 status = tc_register_driver(&dfx_tc_driver); 3712 return status; 3713 } 3714 3715 static void dfx_cleanup(void) 3716 { 3717 tc_unregister_driver(&dfx_tc_driver); 3718 eisa_driver_unregister(&dfx_eisa_driver); 3719 pci_unregister_driver(&dfx_pci_driver); 3720 } 3721 3722 module_init(dfx_init); 3723 module_exit(dfx_cleanup); 3724 MODULE_AUTHOR("Lawrence V. Stefani"); 3725 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " 3726 DRV_VERSION " " DRV_RELDATE); 3727 MODULE_LICENSE("GPL"); 3728