1 /* 2 * File Name: 3 * defxx.c 4 * 5 * Copyright Information: 6 * Copyright Digital Equipment Corporation 1996. 7 * 8 * This software may be used and distributed according to the terms of 9 * the GNU General Public License, incorporated herein by reference. 10 * 11 * Abstract: 12 * A Linux device driver supporting the Digital Equipment Corporation 13 * FDDI TURBOchannel, EISA and PCI controller families. Supported 14 * adapters include: 15 * 16 * DEC FDDIcontroller/TURBOchannel (DEFTA) 17 * DEC FDDIcontroller/EISA (DEFEA) 18 * DEC FDDIcontroller/PCI (DEFPA) 19 * 20 * The original author: 21 * LVS Lawrence V. Stefani <lstefani@yahoo.com> 22 * 23 * Maintainers: 24 * macro Maciej W. Rozycki <macro@linux-mips.org> 25 * 26 * Credits: 27 * I'd like to thank Patricia Cross for helping me get started with 28 * Linux, David Davies for a lot of help upgrading and configuring 29 * my development system and for answering many OS and driver 30 * development questions, and Alan Cox for recommendations and 31 * integration help on getting FDDI support into Linux. LVS 32 * 33 * Driver Architecture: 34 * The driver architecture is largely based on previous driver work 35 * for other operating systems. The upper edge interface and 36 * functions were largely taken from existing Linux device drivers 37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C 38 * driver. 39 * 40 * Adapter Probe - 41 * The driver scans for supported EISA adapters by reading the 42 * SLOT ID register for each EISA slot and making a match 43 * against the expected value. 44 * 45 * Bus-Specific Initialization - 46 * This driver currently supports both EISA and PCI controller 47 * families. While the custom DMA chip and FDDI logic is similar 48 * or identical, the bus logic is very different. After 49 * initialization, the only bus-specific differences is in how the 50 * driver enables and disables interrupts. Other than that, the 51 * run-time critical code behaves the same on both families. 52 * It's important to note that both adapter families are configured 53 * to I/O map, rather than memory map, the adapter registers. 54 * 55 * Driver Open/Close - 56 * In the driver open routine, the driver ISR (interrupt service 57 * routine) is registered and the adapter is brought to an 58 * operational state. In the driver close routine, the opposite 59 * occurs; the driver ISR is deregistered and the adapter is 60 * brought to a safe, but closed state. Users may use consecutive 61 * commands to bring the adapter up and down as in the following 62 * example: 63 * ifconfig fddi0 up 64 * ifconfig fddi0 down 65 * ifconfig fddi0 up 66 * 67 * Driver Shutdown - 68 * Apparently, there is no shutdown or halt routine support under 69 * Linux. This routine would be called during "reboot" or 70 * "shutdown" to allow the driver to place the adapter in a safe 71 * state before a warm reboot occurs. To be really safe, the user 72 * should close the adapter before shutdown (eg. ifconfig fddi0 down) 73 * to ensure that the adapter DMA engine is taken off-line. However, 74 * the current driver code anticipates this problem and always issues 75 * a soft reset of the adapter at the beginning of driver initialization. 76 * A future driver enhancement in this area may occur in 2.1.X where 77 * Alan indicated that a shutdown handler may be implemented. 78 * 79 * Interrupt Service Routine - 80 * The driver supports shared interrupts, so the ISR is registered for 81 * each board with the appropriate flag and the pointer to that board's 82 * device structure. This provides the context during interrupt 83 * processing to support shared interrupts and multiple boards. 84 * 85 * Interrupt enabling/disabling can occur at many levels. At the host 86 * end, you can disable system interrupts, or disable interrupts at the 87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters 88 * have a bus-logic chip interrupt enable/disable as well as a DMA 89 * controller interrupt enable/disable. 90 * 91 * The driver currently enables and disables adapter interrupts at the 92 * bus-logic chip and assumes that Linux will take care of clearing or 93 * acknowledging any host-based interrupt chips. 94 * 95 * Control Functions - 96 * Control functions are those used to support functions such as adding 97 * or deleting multicast addresses, enabling or disabling packet 98 * reception filters, or other custom/proprietary commands. Presently, 99 * the driver supports the "get statistics", "set multicast list", and 100 * "set mac address" functions defined by Linux. A list of possible 101 * enhancements include: 102 * 103 * - Custom ioctl interface for executing port interface commands 104 * - Custom ioctl interface for adding unicast addresses to 105 * adapter CAM (to support bridge functions). 106 * - Custom ioctl interface for supporting firmware upgrades. 107 * 108 * Hardware (port interface) Support Routines - 109 * The driver function names that start with "dfx_hw_" represent 110 * low-level port interface routines that are called frequently. They 111 * include issuing a DMA or port control command to the adapter, 112 * resetting the adapter, or reading the adapter state. Since the 113 * driver initialization and run-time code must make calls into the 114 * port interface, these routines were written to be as generic and 115 * usable as possible. 116 * 117 * Receive Path - 118 * The adapter DMA engine supports a 256 entry receive descriptor block 119 * of which up to 255 entries can be used at any given time. The 120 * architecture is a standard producer, consumer, completion model in 121 * which the driver "produces" receive buffers to the adapter, the 122 * adapter "consumes" the receive buffers by DMAing incoming packet data, 123 * and the driver "completes" the receive buffers by servicing the 124 * incoming packet, then "produces" a new buffer and starts the cycle 125 * again. Receive buffers can be fragmented in up to 16 fragments 126 * (descriptor entries). For simplicity, this driver posts 127 * single-fragment receive buffers of 4608 bytes, then allocates a 128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU 129 * utilization, a better approach would be to pass up the receive 130 * buffer (no extra copy) then allocate and post a replacement buffer. 131 * This is a performance enhancement that should be looked into at 132 * some point. 133 * 134 * Transmit Path - 135 * Like the receive path, the adapter DMA engine supports a 256 entry 136 * transmit descriptor block of which up to 255 entries can be used at 137 * any given time. Transmit buffers can be fragmented in up to 255 138 * fragments (descriptor entries). This driver always posts one 139 * fragment per transmit packet request. 140 * 141 * The fragment contains the entire packet from FC to end of data. 142 * Before posting the buffer to the adapter, the driver sets a three-byte 143 * packet request header (PRH) which is required by the Motorola MAC chip 144 * used on the adapters. The PRH tells the MAC the type of token to 145 * receive/send, whether or not to generate and append the CRC, whether 146 * synchronous or asynchronous framing is used, etc. Since the PRH 147 * definition is not necessarily consistent across all FDDI chipsets, 148 * the driver, rather than the common FDDI packet handler routines, 149 * sets these bytes. 150 * 151 * To reduce the amount of descriptor fetches needed per transmit request, 152 * the driver takes advantage of the fact that there are at least three 153 * bytes available before the skb->data field on the outgoing transmit 154 * request. This is guaranteed by having fddi_setup() in net_init.c set 155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest 156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" 157 * bytes which we'll use to store the PRH. 158 * 159 * There's a subtle advantage to adding these pad bytes to the 160 * hard_header_len, it ensures that the data portion of the packet for 161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver 162 * implementations may not need the extra padding and can start copying 163 * or DMAing directly from the FC byte which starts at skb->data. Should 164 * another driver implementation need ADDITIONAL padding, the net_init.c 165 * module should be updated and dev->hard_header_len should be increased. 166 * NOTE: To maintain the alignment on the data portion of the packet, 167 * dev->hard_header_len should always be evenly divisible by 4 and at 168 * least 24 bytes in size. 169 * 170 * Modification History: 171 * Date Name Description 172 * 16-Aug-96 LVS Created. 173 * 20-Aug-96 LVS Updated dfx_probe so that version information 174 * string is only displayed if 1 or more cards are 175 * found. Changed dfx_rcv_queue_process to copy 176 * 3 NULL bytes before FC to ensure that data is 177 * longword aligned in receive buffer. 178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable 179 * LLC group promiscuous mode if multicast list 180 * is too large. LLC individual/group promiscuous 181 * mode is now disabled if IFF_PROMISC flag not set. 182 * dfx_xmt_queue_pkt no longer checks for NULL skb 183 * on Alan Cox recommendation. Added node address 184 * override support. 185 * 12-Sep-96 LVS Reset current address to factory address during 186 * device open. Updated transmit path to post a 187 * single fragment which includes PRH->end of data. 188 * Mar 2000 AC Did various cleanups for 2.3.x 189 * Jun 2000 jgarzik PCI and resource alloc cleanups 190 * Jul 2000 tjeerd Much cleanup and some bug fixes 191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup 192 * Feb 2001 Skb allocation fixes 193 * Feb 2001 davej PCI enable cleanups. 194 * 04 Aug 2003 macro Converted to the DMA API. 195 * 14 Aug 2004 macro Fix device names reported. 196 * 14 Jun 2005 macro Use irqreturn_t. 197 * 23 Oct 2006 macro Big-endian host support. 198 * 14 Dec 2006 macro TURBOchannel support. 199 * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts. 200 */ 201 202 /* Include files */ 203 #include <linux/bitops.h> 204 #include <linux/compiler.h> 205 #include <linux/delay.h> 206 #include <linux/dma-mapping.h> 207 #include <linux/eisa.h> 208 #include <linux/errno.h> 209 #include <linux/fddidevice.h> 210 #include <linux/interrupt.h> 211 #include <linux/ioport.h> 212 #include <linux/kernel.h> 213 #include <linux/module.h> 214 #include <linux/netdevice.h> 215 #include <linux/pci.h> 216 #include <linux/skbuff.h> 217 #include <linux/slab.h> 218 #include <linux/string.h> 219 #include <linux/tc.h> 220 221 #include <asm/byteorder.h> 222 #include <asm/io.h> 223 224 #include "defxx.h" 225 226 /* Version information string should be updated prior to each new release! */ 227 #define DRV_NAME "defxx" 228 #define DRV_VERSION "v1.11" 229 #define DRV_RELDATE "2014/07/01" 230 231 static char version[] = 232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE 233 " Lawrence V. Stefani and others\n"; 234 235 #define DYNAMIC_BUFFERS 1 236 237 #define SKBUFF_RX_COPYBREAK 200 238 /* 239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte 240 * alignment for compatibility with old EISA boards. 241 */ 242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) 243 244 #ifdef CONFIG_EISA 245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) 246 #else 247 #define DFX_BUS_EISA(dev) 0 248 #endif 249 250 #ifdef CONFIG_TC 251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) 252 #else 253 #define DFX_BUS_TC(dev) 0 254 #endif 255 256 #ifdef CONFIG_DEFXX_MMIO 257 #define DFX_MMIO 1 258 #else 259 #define DFX_MMIO 0 260 #endif 261 262 /* Define module-wide (static) routines */ 263 264 static void dfx_bus_init(struct net_device *dev); 265 static void dfx_bus_uninit(struct net_device *dev); 266 static void dfx_bus_config_check(DFX_board_t *bp); 267 268 static int dfx_driver_init(struct net_device *dev, 269 const char *print_name, 270 resource_size_t bar_start); 271 static int dfx_adap_init(DFX_board_t *bp, int get_buffers); 272 273 static int dfx_open(struct net_device *dev); 274 static int dfx_close(struct net_device *dev); 275 276 static void dfx_int_pr_halt_id(DFX_board_t *bp); 277 static void dfx_int_type_0_process(DFX_board_t *bp); 278 static void dfx_int_common(struct net_device *dev); 279 static irqreturn_t dfx_interrupt(int irq, void *dev_id); 280 281 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); 282 static void dfx_ctl_set_multicast_list(struct net_device *dev); 283 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); 284 static int dfx_ctl_update_cam(DFX_board_t *bp); 285 static int dfx_ctl_update_filters(DFX_board_t *bp); 286 287 static int dfx_hw_dma_cmd_req(DFX_board_t *bp); 288 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); 289 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); 290 static int dfx_hw_adap_state_rd(DFX_board_t *bp); 291 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); 292 293 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); 294 static void dfx_rcv_queue_process(DFX_board_t *bp); 295 #ifdef DYNAMIC_BUFFERS 296 static void dfx_rcv_flush(DFX_board_t *bp); 297 #else 298 static inline void dfx_rcv_flush(DFX_board_t *bp) {} 299 #endif 300 301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, 302 struct net_device *dev); 303 static int dfx_xmt_done(DFX_board_t *bp); 304 static void dfx_xmt_flush(DFX_board_t *bp); 305 306 /* Define module-wide (static) variables */ 307 308 static struct pci_driver dfx_pci_driver; 309 static struct eisa_driver dfx_eisa_driver; 310 static struct tc_driver dfx_tc_driver; 311 312 313 /* 314 * ======================= 315 * = dfx_port_write_long = 316 * = dfx_port_read_long = 317 * ======================= 318 * 319 * Overview: 320 * Routines for reading and writing values from/to adapter 321 * 322 * Returns: 323 * None 324 * 325 * Arguments: 326 * bp - pointer to board information 327 * offset - register offset from base I/O address 328 * data - for dfx_port_write_long, this is a value to write; 329 * for dfx_port_read_long, this is a pointer to store 330 * the read value 331 * 332 * Functional Description: 333 * These routines perform the correct operation to read or write 334 * the adapter register. 335 * 336 * EISA port block base addresses are based on the slot number in which the 337 * controller is installed. For example, if the EISA controller is installed 338 * in slot 4, the port block base address is 0x4000. If the controller is 339 * installed in slot 2, the port block base address is 0x2000, and so on. 340 * This port block can be used to access PDQ, ESIC, and DEFEA on-board 341 * registers using the register offsets defined in DEFXX.H. 342 * 343 * PCI port block base addresses are assigned by the PCI BIOS or system 344 * firmware. There is one 128 byte port block which can be accessed. It 345 * allows for I/O mapping of both PDQ and PFI registers using the register 346 * offsets defined in DEFXX.H. 347 * 348 * Return Codes: 349 * None 350 * 351 * Assumptions: 352 * bp->base is a valid base I/O address for this adapter. 353 * offset is a valid register offset for this adapter. 354 * 355 * Side Effects: 356 * Rather than produce macros for these functions, these routines 357 * are defined using "inline" to ensure that the compiler will 358 * generate inline code and not waste a procedure call and return. 359 * This provides all the benefits of macros, but with the 360 * advantage of strict data type checking. 361 */ 362 363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) 364 { 365 writel(data, bp->base.mem + offset); 366 mb(); 367 } 368 369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) 370 { 371 outl(data, bp->base.port + offset); 372 } 373 374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) 375 { 376 struct device __maybe_unused *bdev = bp->bus_dev; 377 int dfx_bus_tc = DFX_BUS_TC(bdev); 378 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 379 380 if (dfx_use_mmio) 381 dfx_writel(bp, offset, data); 382 else 383 dfx_outl(bp, offset, data); 384 } 385 386 387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) 388 { 389 mb(); 390 *data = readl(bp->base.mem + offset); 391 } 392 393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) 394 { 395 *data = inl(bp->base.port + offset); 396 } 397 398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) 399 { 400 struct device __maybe_unused *bdev = bp->bus_dev; 401 int dfx_bus_tc = DFX_BUS_TC(bdev); 402 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 403 404 if (dfx_use_mmio) 405 dfx_readl(bp, offset, data); 406 else 407 dfx_inl(bp, offset, data); 408 } 409 410 411 /* 412 * ================ 413 * = dfx_get_bars = 414 * ================ 415 * 416 * Overview: 417 * Retrieves the address ranges used to access control and status 418 * registers. 419 * 420 * Returns: 421 * None 422 * 423 * Arguments: 424 * bdev - pointer to device information 425 * bar_start - pointer to store the start addresses 426 * bar_len - pointer to store the lengths of the areas 427 * 428 * Assumptions: 429 * I am sure there are some. 430 * 431 * Side Effects: 432 * None 433 */ 434 static void dfx_get_bars(struct device *bdev, 435 resource_size_t *bar_start, resource_size_t *bar_len) 436 { 437 int dfx_bus_pci = dev_is_pci(bdev); 438 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 439 int dfx_bus_tc = DFX_BUS_TC(bdev); 440 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 441 442 if (dfx_bus_pci) { 443 int num = dfx_use_mmio ? 0 : 1; 444 445 bar_start[0] = pci_resource_start(to_pci_dev(bdev), num); 446 bar_len[0] = pci_resource_len(to_pci_dev(bdev), num); 447 bar_start[2] = bar_start[1] = 0; 448 bar_len[2] = bar_len[1] = 0; 449 } 450 if (dfx_bus_eisa) { 451 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 452 resource_size_t bar_lo; 453 resource_size_t bar_hi; 454 455 if (dfx_use_mmio) { 456 bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2); 457 bar_lo <<= 8; 458 bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1); 459 bar_lo <<= 8; 460 bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0); 461 bar_lo <<= 8; 462 bar_start[0] = bar_lo; 463 bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2); 464 bar_hi <<= 8; 465 bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1); 466 bar_hi <<= 8; 467 bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0); 468 bar_hi <<= 8; 469 bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) + 470 1; 471 } else { 472 bar_start[0] = base_addr; 473 bar_len[0] = PI_ESIC_K_CSR_IO_LEN; 474 } 475 bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF; 476 bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN; 477 bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR; 478 bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN; 479 } 480 if (dfx_bus_tc) { 481 bar_start[0] = to_tc_dev(bdev)->resource.start + 482 PI_TC_K_CSR_OFFSET; 483 bar_len[0] = PI_TC_K_CSR_LEN; 484 bar_start[2] = bar_start[1] = 0; 485 bar_len[2] = bar_len[1] = 0; 486 } 487 } 488 489 static const struct net_device_ops dfx_netdev_ops = { 490 .ndo_open = dfx_open, 491 .ndo_stop = dfx_close, 492 .ndo_start_xmit = dfx_xmt_queue_pkt, 493 .ndo_get_stats = dfx_ctl_get_stats, 494 .ndo_set_rx_mode = dfx_ctl_set_multicast_list, 495 .ndo_set_mac_address = dfx_ctl_set_mac_address, 496 }; 497 498 /* 499 * ================ 500 * = dfx_register = 501 * ================ 502 * 503 * Overview: 504 * Initializes a supported FDDI controller 505 * 506 * Returns: 507 * Condition code 508 * 509 * Arguments: 510 * bdev - pointer to device information 511 * 512 * Functional Description: 513 * 514 * Return Codes: 515 * 0 - This device (fddi0, fddi1, etc) configured successfully 516 * -EBUSY - Failed to get resources, or dfx_driver_init failed. 517 * 518 * Assumptions: 519 * It compiles so it should work :-( (PCI cards do :-) 520 * 521 * Side Effects: 522 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 523 * initialized and the board resources are read and stored in 524 * the device structure. 525 */ 526 static int dfx_register(struct device *bdev) 527 { 528 static int version_disp; 529 int dfx_bus_pci = dev_is_pci(bdev); 530 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 531 int dfx_bus_tc = DFX_BUS_TC(bdev); 532 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 533 const char *print_name = dev_name(bdev); 534 struct net_device *dev; 535 DFX_board_t *bp; /* board pointer */ 536 resource_size_t bar_start[3]; /* pointers to ports */ 537 resource_size_t bar_len[3]; /* resource length */ 538 int alloc_size; /* total buffer size used */ 539 struct resource *region; 540 int err = 0; 541 542 if (!version_disp) { /* display version info if adapter is found */ 543 version_disp = 1; /* set display flag to TRUE so that */ 544 printk(version); /* we only display this string ONCE */ 545 } 546 547 dev = alloc_fddidev(sizeof(*bp)); 548 if (!dev) { 549 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", 550 print_name); 551 return -ENOMEM; 552 } 553 554 /* Enable PCI device. */ 555 if (dfx_bus_pci) { 556 err = pci_enable_device(to_pci_dev(bdev)); 557 if (err) { 558 pr_err("%s: Cannot enable PCI device, aborting\n", 559 print_name); 560 goto err_out; 561 } 562 } 563 564 SET_NETDEV_DEV(dev, bdev); 565 566 bp = netdev_priv(dev); 567 bp->bus_dev = bdev; 568 dev_set_drvdata(bdev, dev); 569 570 dfx_get_bars(bdev, bar_start, bar_len); 571 if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) { 572 pr_err("%s: Cannot use MMIO, no address set, aborting\n", 573 print_name); 574 pr_err("%s: Run ECU and set adapter's MMIO location\n", 575 print_name); 576 pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\"" 577 "\n", print_name); 578 err = -ENXIO; 579 goto err_out; 580 } 581 582 if (dfx_use_mmio) 583 region = request_mem_region(bar_start[0], bar_len[0], 584 print_name); 585 else 586 region = request_region(bar_start[0], bar_len[0], print_name); 587 if (!region) { 588 pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, " 589 "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name, 590 (long)bar_len[0], (long)bar_start[0]); 591 err = -EBUSY; 592 goto err_out_disable; 593 } 594 if (bar_start[1] != 0) { 595 region = request_region(bar_start[1], bar_len[1], print_name); 596 if (!region) { 597 pr_err("%s: Cannot reserve I/O resource " 598 "0x%lx @ 0x%lx, aborting\n", print_name, 599 (long)bar_len[1], (long)bar_start[1]); 600 err = -EBUSY; 601 goto err_out_csr_region; 602 } 603 } 604 if (bar_start[2] != 0) { 605 region = request_region(bar_start[2], bar_len[2], print_name); 606 if (!region) { 607 pr_err("%s: Cannot reserve I/O resource " 608 "0x%lx @ 0x%lx, aborting\n", print_name, 609 (long)bar_len[2], (long)bar_start[2]); 610 err = -EBUSY; 611 goto err_out_bh_region; 612 } 613 } 614 615 /* Set up I/O base address. */ 616 if (dfx_use_mmio) { 617 bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]); 618 if (!bp->base.mem) { 619 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); 620 err = -ENOMEM; 621 goto err_out_esic_region; 622 } 623 } else { 624 bp->base.port = bar_start[0]; 625 dev->base_addr = bar_start[0]; 626 } 627 628 /* Initialize new device structure */ 629 dev->netdev_ops = &dfx_netdev_ops; 630 631 if (dfx_bus_pci) 632 pci_set_master(to_pci_dev(bdev)); 633 634 if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) { 635 err = -ENODEV; 636 goto err_out_unmap; 637 } 638 639 err = register_netdev(dev); 640 if (err) 641 goto err_out_kfree; 642 643 printk("%s: registered as %s\n", print_name, dev->name); 644 return 0; 645 646 err_out_kfree: 647 alloc_size = sizeof(PI_DESCR_BLOCK) + 648 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + 649 #ifndef DYNAMIC_BUFFERS 650 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 651 #endif 652 sizeof(PI_CONSUMER_BLOCK) + 653 (PI_ALIGN_K_DESC_BLK - 1); 654 if (bp->kmalloced) 655 dma_free_coherent(bdev, alloc_size, 656 bp->kmalloced, bp->kmalloced_dma); 657 658 err_out_unmap: 659 if (dfx_use_mmio) 660 iounmap(bp->base.mem); 661 662 err_out_esic_region: 663 if (bar_start[2] != 0) 664 release_region(bar_start[2], bar_len[2]); 665 666 err_out_bh_region: 667 if (bar_start[1] != 0) 668 release_region(bar_start[1], bar_len[1]); 669 670 err_out_csr_region: 671 if (dfx_use_mmio) 672 release_mem_region(bar_start[0], bar_len[0]); 673 else 674 release_region(bar_start[0], bar_len[0]); 675 676 err_out_disable: 677 if (dfx_bus_pci) 678 pci_disable_device(to_pci_dev(bdev)); 679 680 err_out: 681 free_netdev(dev); 682 return err; 683 } 684 685 686 /* 687 * ================ 688 * = dfx_bus_init = 689 * ================ 690 * 691 * Overview: 692 * Initializes the bus-specific controller logic. 693 * 694 * Returns: 695 * None 696 * 697 * Arguments: 698 * dev - pointer to device information 699 * 700 * Functional Description: 701 * Determine and save adapter IRQ in device table, 702 * then perform bus-specific logic initialization. 703 * 704 * Return Codes: 705 * None 706 * 707 * Assumptions: 708 * bp->base has already been set with the proper 709 * base I/O address for this device. 710 * 711 * Side Effects: 712 * Interrupts are enabled at the adapter bus-specific logic. 713 * Note: Interrupts at the DMA engine (PDQ chip) are not 714 * enabled yet. 715 */ 716 717 static void dfx_bus_init(struct net_device *dev) 718 { 719 DFX_board_t *bp = netdev_priv(dev); 720 struct device *bdev = bp->bus_dev; 721 int dfx_bus_pci = dev_is_pci(bdev); 722 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 723 int dfx_bus_tc = DFX_BUS_TC(bdev); 724 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 725 u8 val; 726 727 DBG_printk("In dfx_bus_init...\n"); 728 729 /* Initialize a pointer back to the net_device struct */ 730 bp->dev = dev; 731 732 /* Initialize adapter based on bus type */ 733 734 if (dfx_bus_tc) 735 dev->irq = to_tc_dev(bdev)->interrupt; 736 if (dfx_bus_eisa) { 737 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 738 739 /* Disable the board before fiddling with the decoders. */ 740 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); 741 742 /* Get the interrupt level from the ESIC chip. */ 743 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 744 val &= PI_CONFIG_STAT_0_M_IRQ; 745 val >>= PI_CONFIG_STAT_0_V_IRQ; 746 747 switch (val) { 748 case PI_CONFIG_STAT_0_IRQ_K_9: 749 dev->irq = 9; 750 break; 751 752 case PI_CONFIG_STAT_0_IRQ_K_10: 753 dev->irq = 10; 754 break; 755 756 case PI_CONFIG_STAT_0_IRQ_K_11: 757 dev->irq = 11; 758 break; 759 760 case PI_CONFIG_STAT_0_IRQ_K_15: 761 dev->irq = 15; 762 break; 763 } 764 765 /* 766 * Enable memory decoding (MEMCS1) and/or port decoding 767 * (IOCS1/IOCS0) as appropriate in Function Control 768 * Register. MEMCS1 or IOCS0 is used for PDQ registers, 769 * taking 16 32-bit words, while IOCS1 is used for the 770 * Burst Holdoff register, taking a single 32-bit word 771 * only. We use the slot-specific I/O range as per the 772 * ESIC spec, that is set bits 15:12 in the mask registers 773 * to mask them out. 774 */ 775 776 /* Set the decode range of the board. */ 777 val = 0; 778 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1); 779 val = PI_DEFEA_K_CSR_IO; 780 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0); 781 782 val = PI_IO_CMP_M_SLOT; 783 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1); 784 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3; 785 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0); 786 787 val = 0; 788 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1); 789 val = PI_DEFEA_K_BURST_HOLDOFF; 790 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0); 791 792 val = PI_IO_CMP_M_SLOT; 793 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1); 794 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3; 795 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0); 796 797 /* Enable the decoders. */ 798 val = PI_FUNCTION_CNTRL_M_IOCS1; 799 if (dfx_use_mmio) 800 val |= PI_FUNCTION_CNTRL_M_MEMCS1; 801 else 802 val |= PI_FUNCTION_CNTRL_M_IOCS0; 803 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL); 804 805 /* 806 * Enable access to the rest of the module 807 * (including PDQ and packet memory). 808 */ 809 val = PI_SLOT_CNTRL_M_ENB; 810 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL); 811 812 /* 813 * Map PDQ registers into memory or port space. This is 814 * done with a bit in the Burst Holdoff register. 815 */ 816 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); 817 if (dfx_use_mmio) 818 val |= PI_BURST_HOLDOFF_M_MEM_MAP; 819 else 820 val &= ~PI_BURST_HOLDOFF_M_MEM_MAP; 821 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF); 822 823 /* Enable interrupts at EISA bus interface chip (ESIC) */ 824 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 825 val |= PI_CONFIG_STAT_0_M_INT_ENB; 826 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 827 } 828 if (dfx_bus_pci) { 829 struct pci_dev *pdev = to_pci_dev(bdev); 830 831 /* Get the interrupt level from the PCI Configuration Table */ 832 833 dev->irq = pdev->irq; 834 835 /* Check Latency Timer and set if less than minimal */ 836 837 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); 838 if (val < PFI_K_LAT_TIMER_MIN) { 839 val = PFI_K_LAT_TIMER_DEF; 840 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); 841 } 842 843 /* Enable interrupts at PCI bus interface chip (PFI) */ 844 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; 845 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); 846 } 847 } 848 849 /* 850 * ================== 851 * = dfx_bus_uninit = 852 * ================== 853 * 854 * Overview: 855 * Uninitializes the bus-specific controller logic. 856 * 857 * Returns: 858 * None 859 * 860 * Arguments: 861 * dev - pointer to device information 862 * 863 * Functional Description: 864 * Perform bus-specific logic uninitialization. 865 * 866 * Return Codes: 867 * None 868 * 869 * Assumptions: 870 * bp->base has already been set with the proper 871 * base I/O address for this device. 872 * 873 * Side Effects: 874 * Interrupts are disabled at the adapter bus-specific logic. 875 */ 876 877 static void dfx_bus_uninit(struct net_device *dev) 878 { 879 DFX_board_t *bp = netdev_priv(dev); 880 struct device *bdev = bp->bus_dev; 881 int dfx_bus_pci = dev_is_pci(bdev); 882 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 883 u8 val; 884 885 DBG_printk("In dfx_bus_uninit...\n"); 886 887 /* Uninitialize adapter based on bus type */ 888 889 if (dfx_bus_eisa) { 890 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 891 892 /* Disable interrupts at EISA bus interface chip (ESIC) */ 893 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 894 val &= ~PI_CONFIG_STAT_0_M_INT_ENB; 895 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 896 897 /* Disable the board. */ 898 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL); 899 900 /* Disable memory and port decoders. */ 901 outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL); 902 } 903 if (dfx_bus_pci) { 904 /* Disable interrupts at PCI bus interface chip (PFI) */ 905 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); 906 } 907 } 908 909 910 /* 911 * ======================== 912 * = dfx_bus_config_check = 913 * ======================== 914 * 915 * Overview: 916 * Checks the configuration (burst size, full-duplex, etc.) If any parameters 917 * are illegal, then this routine will set new defaults. 918 * 919 * Returns: 920 * None 921 * 922 * Arguments: 923 * bp - pointer to board information 924 * 925 * Functional Description: 926 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later 927 * PDQ, and all FDDI PCI controllers, all values are legal. 928 * 929 * Return Codes: 930 * None 931 * 932 * Assumptions: 933 * dfx_adap_init has NOT been called yet so burst size and other items have 934 * not been set. 935 * 936 * Side Effects: 937 * None 938 */ 939 940 static void dfx_bus_config_check(DFX_board_t *bp) 941 { 942 struct device __maybe_unused *bdev = bp->bus_dev; 943 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 944 int status; /* return code from adapter port control call */ 945 u32 host_data; /* LW data returned from port control call */ 946 947 DBG_printk("In dfx_bus_config_check...\n"); 948 949 /* Configuration check only valid for EISA adapter */ 950 951 if (dfx_bus_eisa) { 952 /* 953 * First check if revision 2 EISA controller. Rev. 1 cards used 954 * PDQ revision B, so no workaround needed in this case. Rev. 3 955 * cards used PDQ revision E, so no workaround needed in this 956 * case, either. Only Rev. 2 cards used either Rev. D or E 957 * chips, so we must verify the chip revision on Rev. 2 cards. 958 */ 959 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { 960 /* 961 * Revision 2 FDDI EISA controller found, 962 * so let's check PDQ revision of adapter. 963 */ 964 status = dfx_hw_port_ctrl_req(bp, 965 PI_PCTRL_M_SUB_CMD, 966 PI_SUB_CMD_K_PDQ_REV_GET, 967 0, 968 &host_data); 969 if ((status != DFX_K_SUCCESS) || (host_data == 2)) 970 { 971 /* 972 * Either we couldn't determine the PDQ revision, or 973 * we determined that it is at revision D. In either case, 974 * we need to implement the workaround. 975 */ 976 977 /* Ensure that the burst size is set to 8 longwords or less */ 978 979 switch (bp->burst_size) 980 { 981 case PI_PDATA_B_DMA_BURST_SIZE_32: 982 case PI_PDATA_B_DMA_BURST_SIZE_16: 983 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; 984 break; 985 986 default: 987 break; 988 } 989 990 /* Ensure that full-duplex mode is not enabled */ 991 992 bp->full_duplex_enb = PI_SNMP_K_FALSE; 993 } 994 } 995 } 996 } 997 998 999 /* 1000 * =================== 1001 * = dfx_driver_init = 1002 * =================== 1003 * 1004 * Overview: 1005 * Initializes remaining adapter board structure information 1006 * and makes sure adapter is in a safe state prior to dfx_open(). 1007 * 1008 * Returns: 1009 * Condition code 1010 * 1011 * Arguments: 1012 * dev - pointer to device information 1013 * print_name - printable device name 1014 * 1015 * Functional Description: 1016 * This function allocates additional resources such as the host memory 1017 * blocks needed by the adapter (eg. descriptor and consumer blocks). 1018 * Remaining bus initialization steps are also completed. The adapter 1019 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS 1020 * must call dfx_open() to open the adapter and bring it on-line. 1021 * 1022 * Return Codes: 1023 * DFX_K_SUCCESS - initialization succeeded 1024 * DFX_K_FAILURE - initialization failed - could not allocate memory 1025 * or read adapter MAC address 1026 * 1027 * Assumptions: 1028 * Memory allocated from pci_alloc_consistent() call is physically 1029 * contiguous, locked memory. 1030 * 1031 * Side Effects: 1032 * Adapter is reset and should be in DMA_UNAVAILABLE state before 1033 * returning from this routine. 1034 */ 1035 1036 static int dfx_driver_init(struct net_device *dev, const char *print_name, 1037 resource_size_t bar_start) 1038 { 1039 DFX_board_t *bp = netdev_priv(dev); 1040 struct device *bdev = bp->bus_dev; 1041 int dfx_bus_pci = dev_is_pci(bdev); 1042 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 1043 int dfx_bus_tc = DFX_BUS_TC(bdev); 1044 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 1045 int alloc_size; /* total buffer size needed */ 1046 char *top_v, *curr_v; /* virtual addrs into memory block */ 1047 dma_addr_t top_p, curr_p; /* physical addrs into memory block */ 1048 u32 data; /* host data register value */ 1049 __le32 le32; 1050 char *board_name = NULL; 1051 1052 DBG_printk("In dfx_driver_init...\n"); 1053 1054 /* Initialize bus-specific hardware registers */ 1055 1056 dfx_bus_init(dev); 1057 1058 /* 1059 * Initialize default values for configurable parameters 1060 * 1061 * Note: All of these parameters are ones that a user may 1062 * want to customize. It'd be nice to break these 1063 * out into Space.c or someplace else that's more 1064 * accessible/understandable than this file. 1065 */ 1066 1067 bp->full_duplex_enb = PI_SNMP_K_FALSE; 1068 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ 1069 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; 1070 bp->rcv_bufs_to_post = RCV_BUFS_DEF; 1071 1072 /* 1073 * Ensure that HW configuration is OK 1074 * 1075 * Note: Depending on the hardware revision, we may need to modify 1076 * some of the configurable parameters to workaround hardware 1077 * limitations. We'll perform this configuration check AFTER 1078 * setting the parameters to their default values. 1079 */ 1080 1081 dfx_bus_config_check(bp); 1082 1083 /* Disable PDQ interrupts first */ 1084 1085 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1086 1087 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1088 1089 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); 1090 1091 /* Read the factory MAC address from the adapter then save it */ 1092 1093 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, 1094 &data) != DFX_K_SUCCESS) { 1095 printk("%s: Could not read adapter factory MAC address!\n", 1096 print_name); 1097 return DFX_K_FAILURE; 1098 } 1099 le32 = cpu_to_le32(data); 1100 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); 1101 1102 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, 1103 &data) != DFX_K_SUCCESS) { 1104 printk("%s: Could not read adapter factory MAC address!\n", 1105 print_name); 1106 return DFX_K_FAILURE; 1107 } 1108 le32 = cpu_to_le32(data); 1109 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); 1110 1111 /* 1112 * Set current address to factory address 1113 * 1114 * Note: Node address override support is handled through 1115 * dfx_ctl_set_mac_address. 1116 */ 1117 1118 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); 1119 if (dfx_bus_tc) 1120 board_name = "DEFTA"; 1121 if (dfx_bus_eisa) 1122 board_name = "DEFEA"; 1123 if (dfx_bus_pci) 1124 board_name = "DEFPA"; 1125 pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", 1126 print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O", 1127 (long long)bar_start, dev->irq, dev->dev_addr); 1128 1129 /* 1130 * Get memory for descriptor block, consumer block, and other buffers 1131 * that need to be DMA read or written to by the adapter. 1132 */ 1133 1134 alloc_size = sizeof(PI_DESCR_BLOCK) + 1135 PI_CMD_REQ_K_SIZE_MAX + 1136 PI_CMD_RSP_K_SIZE_MAX + 1137 #ifndef DYNAMIC_BUFFERS 1138 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 1139 #endif 1140 sizeof(PI_CONSUMER_BLOCK) + 1141 (PI_ALIGN_K_DESC_BLK - 1); 1142 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size, 1143 &bp->kmalloced_dma, 1144 GFP_ATOMIC); 1145 if (top_v == NULL) 1146 return DFX_K_FAILURE; 1147 1148 top_p = bp->kmalloced_dma; /* get physical address of buffer */ 1149 1150 /* 1151 * To guarantee the 8K alignment required for the descriptor block, 8K - 1 1152 * plus the amount of memory needed was allocated. The physical address 1153 * is now 8K aligned. By carving up the memory in a specific order, 1154 * we'll guarantee the alignment requirements for all other structures. 1155 * 1156 * Note: If the assumptions change regarding the non-paged, non-cached, 1157 * physically contiguous nature of the memory block or the address 1158 * alignments, then we'll need to implement a different algorithm 1159 * for allocating the needed memory. 1160 */ 1161 1162 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); 1163 curr_v = top_v + (curr_p - top_p); 1164 1165 /* Reserve space for descriptor block */ 1166 1167 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; 1168 bp->descr_block_phys = curr_p; 1169 curr_v += sizeof(PI_DESCR_BLOCK); 1170 curr_p += sizeof(PI_DESCR_BLOCK); 1171 1172 /* Reserve space for command request buffer */ 1173 1174 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; 1175 bp->cmd_req_phys = curr_p; 1176 curr_v += PI_CMD_REQ_K_SIZE_MAX; 1177 curr_p += PI_CMD_REQ_K_SIZE_MAX; 1178 1179 /* Reserve space for command response buffer */ 1180 1181 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; 1182 bp->cmd_rsp_phys = curr_p; 1183 curr_v += PI_CMD_RSP_K_SIZE_MAX; 1184 curr_p += PI_CMD_RSP_K_SIZE_MAX; 1185 1186 /* Reserve space for the LLC host receive queue buffers */ 1187 1188 bp->rcv_block_virt = curr_v; 1189 bp->rcv_block_phys = curr_p; 1190 1191 #ifndef DYNAMIC_BUFFERS 1192 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); 1193 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); 1194 #endif 1195 1196 /* Reserve space for the consumer block */ 1197 1198 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; 1199 bp->cons_block_phys = curr_p; 1200 1201 /* Display virtual and physical addresses if debug driver */ 1202 1203 DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n", 1204 print_name, bp->descr_block_virt, &bp->descr_block_phys); 1205 DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n", 1206 print_name, bp->cmd_req_virt, &bp->cmd_req_phys); 1207 DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n", 1208 print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys); 1209 DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n", 1210 print_name, bp->rcv_block_virt, &bp->rcv_block_phys); 1211 DBG_printk("%s: Consumer block virt = %p, phys = %pad\n", 1212 print_name, bp->cons_block_virt, &bp->cons_block_phys); 1213 1214 return DFX_K_SUCCESS; 1215 } 1216 1217 1218 /* 1219 * ================= 1220 * = dfx_adap_init = 1221 * ================= 1222 * 1223 * Overview: 1224 * Brings the adapter to the link avail/link unavailable state. 1225 * 1226 * Returns: 1227 * Condition code 1228 * 1229 * Arguments: 1230 * bp - pointer to board information 1231 * get_buffers - non-zero if buffers to be allocated 1232 * 1233 * Functional Description: 1234 * Issues the low-level firmware/hardware calls necessary to bring 1235 * the adapter up, or to properly reset and restore adapter during 1236 * run-time. 1237 * 1238 * Return Codes: 1239 * DFX_K_SUCCESS - Adapter brought up successfully 1240 * DFX_K_FAILURE - Adapter initialization failed 1241 * 1242 * Assumptions: 1243 * bp->reset_type should be set to a valid reset type value before 1244 * calling this routine. 1245 * 1246 * Side Effects: 1247 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state 1248 * upon a successful return of this routine. 1249 */ 1250 1251 static int dfx_adap_init(DFX_board_t *bp, int get_buffers) 1252 { 1253 DBG_printk("In dfx_adap_init...\n"); 1254 1255 /* Disable PDQ interrupts first */ 1256 1257 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1258 1259 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1260 1261 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) 1262 { 1263 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); 1264 return DFX_K_FAILURE; 1265 } 1266 1267 /* 1268 * When the PDQ is reset, some false Type 0 interrupts may be pending, 1269 * so we'll acknowledge all Type 0 interrupts now before continuing. 1270 */ 1271 1272 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); 1273 1274 /* 1275 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state 1276 * 1277 * Note: We only need to clear host copies of these registers. The PDQ reset 1278 * takes care of the on-board register values. 1279 */ 1280 1281 bp->cmd_req_reg.lword = 0; 1282 bp->cmd_rsp_reg.lword = 0; 1283 bp->rcv_xmt_reg.lword = 0; 1284 1285 /* Clear consumer block before going to DMA_AVAILABLE state */ 1286 1287 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); 1288 1289 /* Initialize the DMA Burst Size */ 1290 1291 if (dfx_hw_port_ctrl_req(bp, 1292 PI_PCTRL_M_SUB_CMD, 1293 PI_SUB_CMD_K_BURST_SIZE_SET, 1294 bp->burst_size, 1295 NULL) != DFX_K_SUCCESS) 1296 { 1297 printk("%s: Could not set adapter burst size!\n", bp->dev->name); 1298 return DFX_K_FAILURE; 1299 } 1300 1301 /* 1302 * Set base address of Consumer Block 1303 * 1304 * Assumption: 32-bit physical address of consumer block is 64 byte 1305 * aligned. That is, bits 0-5 of the address must be zero. 1306 */ 1307 1308 if (dfx_hw_port_ctrl_req(bp, 1309 PI_PCTRL_M_CONS_BLOCK, 1310 bp->cons_block_phys, 1311 0, 1312 NULL) != DFX_K_SUCCESS) 1313 { 1314 printk("%s: Could not set consumer block address!\n", bp->dev->name); 1315 return DFX_K_FAILURE; 1316 } 1317 1318 /* 1319 * Set the base address of Descriptor Block and bring adapter 1320 * to DMA_AVAILABLE state. 1321 * 1322 * Note: We also set the literal and data swapping requirements 1323 * in this command. 1324 * 1325 * Assumption: 32-bit physical address of descriptor block 1326 * is 8Kbyte aligned. 1327 */ 1328 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, 1329 (u32)(bp->descr_block_phys | 1330 PI_PDATA_A_INIT_M_BSWAP_INIT), 1331 0, NULL) != DFX_K_SUCCESS) { 1332 printk("%s: Could not set descriptor block address!\n", 1333 bp->dev->name); 1334 return DFX_K_FAILURE; 1335 } 1336 1337 /* Set transmit flush timeout value */ 1338 1339 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; 1340 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; 1341 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ 1342 bp->cmd_req_virt->char_set.item[0].item_index = 0; 1343 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; 1344 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1345 { 1346 printk("%s: DMA command request failed!\n", bp->dev->name); 1347 return DFX_K_FAILURE; 1348 } 1349 1350 /* Set the initial values for eFDXEnable and MACTReq MIB objects */ 1351 1352 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; 1353 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; 1354 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; 1355 bp->cmd_req_virt->snmp_set.item[0].item_index = 0; 1356 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; 1357 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; 1358 bp->cmd_req_virt->snmp_set.item[1].item_index = 0; 1359 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; 1360 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1361 { 1362 printk("%s: DMA command request failed!\n", bp->dev->name); 1363 return DFX_K_FAILURE; 1364 } 1365 1366 /* Initialize adapter CAM */ 1367 1368 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 1369 { 1370 printk("%s: Adapter CAM update failed!\n", bp->dev->name); 1371 return DFX_K_FAILURE; 1372 } 1373 1374 /* Initialize adapter filters */ 1375 1376 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 1377 { 1378 printk("%s: Adapter filters update failed!\n", bp->dev->name); 1379 return DFX_K_FAILURE; 1380 } 1381 1382 /* 1383 * Remove any existing dynamic buffers (i.e. if the adapter is being 1384 * reinitialized) 1385 */ 1386 1387 if (get_buffers) 1388 dfx_rcv_flush(bp); 1389 1390 /* Initialize receive descriptor block and produce buffers */ 1391 1392 if (dfx_rcv_init(bp, get_buffers)) 1393 { 1394 printk("%s: Receive buffer allocation failed\n", bp->dev->name); 1395 if (get_buffers) 1396 dfx_rcv_flush(bp); 1397 return DFX_K_FAILURE; 1398 } 1399 1400 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ 1401 1402 bp->cmd_req_virt->cmd_type = PI_CMD_K_START; 1403 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 1404 { 1405 printk("%s: Start command failed\n", bp->dev->name); 1406 if (get_buffers) 1407 dfx_rcv_flush(bp); 1408 return DFX_K_FAILURE; 1409 } 1410 1411 /* Initialization succeeded, reenable PDQ interrupts */ 1412 1413 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); 1414 return DFX_K_SUCCESS; 1415 } 1416 1417 1418 /* 1419 * ============ 1420 * = dfx_open = 1421 * ============ 1422 * 1423 * Overview: 1424 * Opens the adapter 1425 * 1426 * Returns: 1427 * Condition code 1428 * 1429 * Arguments: 1430 * dev - pointer to device information 1431 * 1432 * Functional Description: 1433 * This function brings the adapter to an operational state. 1434 * 1435 * Return Codes: 1436 * 0 - Adapter was successfully opened 1437 * -EAGAIN - Could not register IRQ or adapter initialization failed 1438 * 1439 * Assumptions: 1440 * This routine should only be called for a device that was 1441 * initialized successfully. 1442 * 1443 * Side Effects: 1444 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state 1445 * if the open is successful. 1446 */ 1447 1448 static int dfx_open(struct net_device *dev) 1449 { 1450 DFX_board_t *bp = netdev_priv(dev); 1451 int ret; 1452 1453 DBG_printk("In dfx_open...\n"); 1454 1455 /* Register IRQ - support shared interrupts by passing device ptr */ 1456 1457 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, 1458 dev); 1459 if (ret) { 1460 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); 1461 return ret; 1462 } 1463 1464 /* 1465 * Set current address to factory MAC address 1466 * 1467 * Note: We've already done this step in dfx_driver_init. 1468 * However, it's possible that a user has set a node 1469 * address override, then closed and reopened the 1470 * adapter. Unless we reset the device address field 1471 * now, we'll continue to use the existing modified 1472 * address. 1473 */ 1474 1475 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); 1476 1477 /* Clear local unicast/multicast address tables and counts */ 1478 1479 memset(bp->uc_table, 0, sizeof(bp->uc_table)); 1480 memset(bp->mc_table, 0, sizeof(bp->mc_table)); 1481 bp->uc_count = 0; 1482 bp->mc_count = 0; 1483 1484 /* Disable promiscuous filter settings */ 1485 1486 bp->ind_group_prom = PI_FSTATE_K_BLOCK; 1487 bp->group_prom = PI_FSTATE_K_BLOCK; 1488 1489 spin_lock_init(&bp->lock); 1490 1491 /* Reset and initialize adapter */ 1492 1493 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ 1494 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) 1495 { 1496 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); 1497 free_irq(dev->irq, dev); 1498 return -EAGAIN; 1499 } 1500 1501 /* Set device structure info */ 1502 netif_start_queue(dev); 1503 return 0; 1504 } 1505 1506 1507 /* 1508 * ============= 1509 * = dfx_close = 1510 * ============= 1511 * 1512 * Overview: 1513 * Closes the device/module. 1514 * 1515 * Returns: 1516 * Condition code 1517 * 1518 * Arguments: 1519 * dev - pointer to device information 1520 * 1521 * Functional Description: 1522 * This routine closes the adapter and brings it to a safe state. 1523 * The interrupt service routine is deregistered with the OS. 1524 * The adapter can be opened again with another call to dfx_open(). 1525 * 1526 * Return Codes: 1527 * Always return 0. 1528 * 1529 * Assumptions: 1530 * No further requests for this adapter are made after this routine is 1531 * called. dfx_open() can be called to reset and reinitialize the 1532 * adapter. 1533 * 1534 * Side Effects: 1535 * Adapter should be in DMA_UNAVAILABLE state upon completion of this 1536 * routine. 1537 */ 1538 1539 static int dfx_close(struct net_device *dev) 1540 { 1541 DFX_board_t *bp = netdev_priv(dev); 1542 1543 DBG_printk("In dfx_close...\n"); 1544 1545 /* Disable PDQ interrupts first */ 1546 1547 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1548 1549 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ 1550 1551 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); 1552 1553 /* 1554 * Flush any pending transmit buffers 1555 * 1556 * Note: It's important that we flush the transmit buffers 1557 * BEFORE we clear our copy of the Type 2 register. 1558 * Otherwise, we'll have no idea how many buffers 1559 * we need to free. 1560 */ 1561 1562 dfx_xmt_flush(bp); 1563 1564 /* 1565 * Clear Type 1 and Type 2 registers after adapter reset 1566 * 1567 * Note: Even though we're closing the adapter, it's 1568 * possible that an interrupt will occur after 1569 * dfx_close is called. Without some assurance to 1570 * the contrary we want to make sure that we don't 1571 * process receive and transmit LLC frames and update 1572 * the Type 2 register with bad information. 1573 */ 1574 1575 bp->cmd_req_reg.lword = 0; 1576 bp->cmd_rsp_reg.lword = 0; 1577 bp->rcv_xmt_reg.lword = 0; 1578 1579 /* Clear consumer block for the same reason given above */ 1580 1581 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); 1582 1583 /* Release all dynamically allocate skb in the receive ring. */ 1584 1585 dfx_rcv_flush(bp); 1586 1587 /* Clear device structure flags */ 1588 1589 netif_stop_queue(dev); 1590 1591 /* Deregister (free) IRQ */ 1592 1593 free_irq(dev->irq, dev); 1594 1595 return 0; 1596 } 1597 1598 1599 /* 1600 * ====================== 1601 * = dfx_int_pr_halt_id = 1602 * ====================== 1603 * 1604 * Overview: 1605 * Displays halt id's in string form. 1606 * 1607 * Returns: 1608 * None 1609 * 1610 * Arguments: 1611 * bp - pointer to board information 1612 * 1613 * Functional Description: 1614 * Determine current halt id and display appropriate string. 1615 * 1616 * Return Codes: 1617 * None 1618 * 1619 * Assumptions: 1620 * None 1621 * 1622 * Side Effects: 1623 * None 1624 */ 1625 1626 static void dfx_int_pr_halt_id(DFX_board_t *bp) 1627 { 1628 PI_UINT32 port_status; /* PDQ port status register value */ 1629 PI_UINT32 halt_id; /* PDQ port status halt ID */ 1630 1631 /* Read the latest port status */ 1632 1633 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 1634 1635 /* Display halt state transition information */ 1636 1637 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; 1638 switch (halt_id) 1639 { 1640 case PI_HALT_ID_K_SELFTEST_TIMEOUT: 1641 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); 1642 break; 1643 1644 case PI_HALT_ID_K_PARITY_ERROR: 1645 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); 1646 break; 1647 1648 case PI_HALT_ID_K_HOST_DIR_HALT: 1649 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); 1650 break; 1651 1652 case PI_HALT_ID_K_SW_FAULT: 1653 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); 1654 break; 1655 1656 case PI_HALT_ID_K_HW_FAULT: 1657 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); 1658 break; 1659 1660 case PI_HALT_ID_K_PC_TRACE: 1661 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); 1662 break; 1663 1664 case PI_HALT_ID_K_DMA_ERROR: 1665 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); 1666 break; 1667 1668 case PI_HALT_ID_K_IMAGE_CRC_ERROR: 1669 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); 1670 break; 1671 1672 case PI_HALT_ID_K_BUS_EXCEPTION: 1673 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); 1674 break; 1675 1676 default: 1677 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); 1678 break; 1679 } 1680 } 1681 1682 1683 /* 1684 * ========================== 1685 * = dfx_int_type_0_process = 1686 * ========================== 1687 * 1688 * Overview: 1689 * Processes Type 0 interrupts. 1690 * 1691 * Returns: 1692 * None 1693 * 1694 * Arguments: 1695 * bp - pointer to board information 1696 * 1697 * Functional Description: 1698 * Processes all enabled Type 0 interrupts. If the reason for the interrupt 1699 * is a serious fault on the adapter, then an error message is displayed 1700 * and the adapter is reset. 1701 * 1702 * One tricky potential timing window is the rapid succession of "link avail" 1703 * "link unavail" state change interrupts. The acknowledgement of the Type 0 1704 * interrupt must be done before reading the state from the Port Status 1705 * register. This is true because a state change could occur after reading 1706 * the data, but before acknowledging the interrupt. If this state change 1707 * does happen, it would be lost because the driver is using the old state, 1708 * and it will never know about the new state because it subsequently 1709 * acknowledges the state change interrupt. 1710 * 1711 * INCORRECT CORRECT 1712 * read type 0 int reasons read type 0 int reasons 1713 * read adapter state ack type 0 interrupts 1714 * ack type 0 interrupts read adapter state 1715 * ... process interrupt ... ... process interrupt ... 1716 * 1717 * Return Codes: 1718 * None 1719 * 1720 * Assumptions: 1721 * None 1722 * 1723 * Side Effects: 1724 * An adapter reset may occur if the adapter has any Type 0 error interrupts 1725 * or if the port status indicates that the adapter is halted. The driver 1726 * is responsible for reinitializing the adapter with the current CAM 1727 * contents and adapter filter settings. 1728 */ 1729 1730 static void dfx_int_type_0_process(DFX_board_t *bp) 1731 1732 { 1733 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ 1734 PI_UINT32 state; /* current adap state (from port status) */ 1735 1736 /* 1737 * Read host interrupt Type 0 register to determine which Type 0 1738 * interrupts are pending. Immediately write it back out to clear 1739 * those interrupts. 1740 */ 1741 1742 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); 1743 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); 1744 1745 /* Check for Type 0 error interrupts */ 1746 1747 if (type_0_status & (PI_TYPE_0_STAT_M_NXM | 1748 PI_TYPE_0_STAT_M_PM_PAR_ERR | 1749 PI_TYPE_0_STAT_M_BUS_PAR_ERR)) 1750 { 1751 /* Check for Non-Existent Memory error */ 1752 1753 if (type_0_status & PI_TYPE_0_STAT_M_NXM) 1754 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); 1755 1756 /* Check for Packet Memory Parity error */ 1757 1758 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) 1759 printk("%s: Packet Memory Parity Error\n", bp->dev->name); 1760 1761 /* Check for Host Bus Parity error */ 1762 1763 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) 1764 printk("%s: Host Bus Parity Error\n", bp->dev->name); 1765 1766 /* Reset adapter and bring it back on-line */ 1767 1768 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1769 bp->reset_type = 0; /* rerun on-board diagnostics */ 1770 printk("%s: Resetting adapter...\n", bp->dev->name); 1771 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) 1772 { 1773 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); 1774 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1775 return; 1776 } 1777 printk("%s: Adapter reset successful!\n", bp->dev->name); 1778 return; 1779 } 1780 1781 /* Check for transmit flush interrupt */ 1782 1783 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) 1784 { 1785 /* Flush any pending xmt's and acknowledge the flush interrupt */ 1786 1787 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1788 dfx_xmt_flush(bp); /* flush any outstanding packets */ 1789 (void) dfx_hw_port_ctrl_req(bp, 1790 PI_PCTRL_M_XMT_DATA_FLUSH_DONE, 1791 0, 1792 0, 1793 NULL); 1794 } 1795 1796 /* Check for adapter state change */ 1797 1798 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) 1799 { 1800 /* Get latest adapter state */ 1801 1802 state = dfx_hw_adap_state_rd(bp); /* get adapter state */ 1803 if (state == PI_STATE_K_HALTED) 1804 { 1805 /* 1806 * Adapter has transitioned to HALTED state, try to reset 1807 * adapter to bring it back on-line. If reset fails, 1808 * leave the adapter in the broken state. 1809 */ 1810 1811 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); 1812 dfx_int_pr_halt_id(bp); /* display halt id as string */ 1813 1814 /* Reset adapter and bring it back on-line */ 1815 1816 bp->link_available = PI_K_FALSE; /* link is no longer available */ 1817 bp->reset_type = 0; /* rerun on-board diagnostics */ 1818 printk("%s: Resetting adapter...\n", bp->dev->name); 1819 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) 1820 { 1821 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); 1822 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); 1823 return; 1824 } 1825 printk("%s: Adapter reset successful!\n", bp->dev->name); 1826 } 1827 else if (state == PI_STATE_K_LINK_AVAIL) 1828 { 1829 bp->link_available = PI_K_TRUE; /* set link available flag */ 1830 } 1831 } 1832 } 1833 1834 1835 /* 1836 * ================== 1837 * = dfx_int_common = 1838 * ================== 1839 * 1840 * Overview: 1841 * Interrupt service routine (ISR) 1842 * 1843 * Returns: 1844 * None 1845 * 1846 * Arguments: 1847 * bp - pointer to board information 1848 * 1849 * Functional Description: 1850 * This is the ISR which processes incoming adapter interrupts. 1851 * 1852 * Return Codes: 1853 * None 1854 * 1855 * Assumptions: 1856 * This routine assumes PDQ interrupts have not been disabled. 1857 * When interrupts are disabled at the PDQ, the Port Status register 1858 * is automatically cleared. This routine uses the Port Status 1859 * register value to determine whether a Type 0 interrupt occurred, 1860 * so it's important that adapter interrupts are not normally 1861 * enabled/disabled at the PDQ. 1862 * 1863 * It's vital that this routine is NOT reentered for the 1864 * same board and that the OS is not in another section of 1865 * code (eg. dfx_xmt_queue_pkt) for the same board on a 1866 * different thread. 1867 * 1868 * Side Effects: 1869 * Pending interrupts are serviced. Depending on the type of 1870 * interrupt, acknowledging and clearing the interrupt at the 1871 * PDQ involves writing a register to clear the interrupt bit 1872 * or updating completion indices. 1873 */ 1874 1875 static void dfx_int_common(struct net_device *dev) 1876 { 1877 DFX_board_t *bp = netdev_priv(dev); 1878 PI_UINT32 port_status; /* Port Status register */ 1879 1880 /* Process xmt interrupts - frequent case, so always call this routine */ 1881 1882 if(dfx_xmt_done(bp)) /* free consumed xmt packets */ 1883 netif_wake_queue(dev); 1884 1885 /* Process rcv interrupts - frequent case, so always call this routine */ 1886 1887 dfx_rcv_queue_process(bp); /* service received LLC frames */ 1888 1889 /* 1890 * Transmit and receive producer and completion indices are updated on the 1891 * adapter by writing to the Type 2 Producer register. Since the frequent 1892 * case is that we'll be processing either LLC transmit or receive buffers, 1893 * we'll optimize I/O writes by doing a single register write here. 1894 */ 1895 1896 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 1897 1898 /* Read PDQ Port Status register to find out which interrupts need processing */ 1899 1900 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 1901 1902 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ 1903 1904 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) 1905 dfx_int_type_0_process(bp); /* process Type 0 interrupts */ 1906 } 1907 1908 1909 /* 1910 * ================= 1911 * = dfx_interrupt = 1912 * ================= 1913 * 1914 * Overview: 1915 * Interrupt processing routine 1916 * 1917 * Returns: 1918 * Whether a valid interrupt was seen. 1919 * 1920 * Arguments: 1921 * irq - interrupt vector 1922 * dev_id - pointer to device information 1923 * 1924 * Functional Description: 1925 * This routine calls the interrupt processing routine for this adapter. It 1926 * disables and reenables adapter interrupts, as appropriate. We can support 1927 * shared interrupts since the incoming dev_id pointer provides our device 1928 * structure context. 1929 * 1930 * Return Codes: 1931 * IRQ_HANDLED - an IRQ was handled. 1932 * IRQ_NONE - no IRQ was handled. 1933 * 1934 * Assumptions: 1935 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC 1936 * on Intel-based systems) is done by the operating system outside this 1937 * routine. 1938 * 1939 * System interrupts are enabled through this call. 1940 * 1941 * Side Effects: 1942 * Interrupts are disabled, then reenabled at the adapter. 1943 */ 1944 1945 static irqreturn_t dfx_interrupt(int irq, void *dev_id) 1946 { 1947 struct net_device *dev = dev_id; 1948 DFX_board_t *bp = netdev_priv(dev); 1949 struct device *bdev = bp->bus_dev; 1950 int dfx_bus_pci = dev_is_pci(bdev); 1951 int dfx_bus_eisa = DFX_BUS_EISA(bdev); 1952 int dfx_bus_tc = DFX_BUS_TC(bdev); 1953 1954 /* Service adapter interrupts */ 1955 1956 if (dfx_bus_pci) { 1957 u32 status; 1958 1959 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); 1960 if (!(status & PFI_STATUS_M_PDQ_INT)) 1961 return IRQ_NONE; 1962 1963 spin_lock(&bp->lock); 1964 1965 /* Disable PDQ-PFI interrupts at PFI */ 1966 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 1967 PFI_MODE_M_DMA_ENB); 1968 1969 /* Call interrupt service routine for this adapter */ 1970 dfx_int_common(dev); 1971 1972 /* Clear PDQ interrupt status bit and reenable interrupts */ 1973 dfx_port_write_long(bp, PFI_K_REG_STATUS, 1974 PFI_STATUS_M_PDQ_INT); 1975 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 1976 (PFI_MODE_M_PDQ_INT_ENB | 1977 PFI_MODE_M_DMA_ENB)); 1978 1979 spin_unlock(&bp->lock); 1980 } 1981 if (dfx_bus_eisa) { 1982 unsigned long base_addr = to_eisa_device(bdev)->base_addr; 1983 u8 status; 1984 1985 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 1986 if (!(status & PI_CONFIG_STAT_0_M_PEND)) 1987 return IRQ_NONE; 1988 1989 spin_lock(&bp->lock); 1990 1991 /* Disable interrupts at the ESIC */ 1992 status &= ~PI_CONFIG_STAT_0_M_INT_ENB; 1993 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 1994 1995 /* Call interrupt service routine for this adapter */ 1996 dfx_int_common(dev); 1997 1998 /* Reenable interrupts at the ESIC */ 1999 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 2000 status |= PI_CONFIG_STAT_0_M_INT_ENB; 2001 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); 2002 2003 spin_unlock(&bp->lock); 2004 } 2005 if (dfx_bus_tc) { 2006 u32 status; 2007 2008 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); 2009 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | 2010 PI_PSTATUS_M_XMT_DATA_PENDING | 2011 PI_PSTATUS_M_SMT_HOST_PENDING | 2012 PI_PSTATUS_M_UNSOL_PENDING | 2013 PI_PSTATUS_M_CMD_RSP_PENDING | 2014 PI_PSTATUS_M_CMD_REQ_PENDING | 2015 PI_PSTATUS_M_TYPE_0_PENDING))) 2016 return IRQ_NONE; 2017 2018 spin_lock(&bp->lock); 2019 2020 /* Call interrupt service routine for this adapter */ 2021 dfx_int_common(dev); 2022 2023 spin_unlock(&bp->lock); 2024 } 2025 2026 return IRQ_HANDLED; 2027 } 2028 2029 2030 /* 2031 * ===================== 2032 * = dfx_ctl_get_stats = 2033 * ===================== 2034 * 2035 * Overview: 2036 * Get statistics for FDDI adapter 2037 * 2038 * Returns: 2039 * Pointer to FDDI statistics structure 2040 * 2041 * Arguments: 2042 * dev - pointer to device information 2043 * 2044 * Functional Description: 2045 * Gets current MIB objects from adapter, then 2046 * returns FDDI statistics structure as defined 2047 * in if_fddi.h. 2048 * 2049 * Note: Since the FDDI statistics structure is 2050 * still new and the device structure doesn't 2051 * have an FDDI-specific get statistics handler, 2052 * we'll return the FDDI statistics structure as 2053 * a pointer to an Ethernet statistics structure. 2054 * That way, at least the first part of the statistics 2055 * structure can be decoded properly, and it allows 2056 * "smart" applications to perform a second cast to 2057 * decode the FDDI-specific statistics. 2058 * 2059 * We'll have to pay attention to this routine as the 2060 * device structure becomes more mature and LAN media 2061 * independent. 2062 * 2063 * Return Codes: 2064 * None 2065 * 2066 * Assumptions: 2067 * None 2068 * 2069 * Side Effects: 2070 * None 2071 */ 2072 2073 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) 2074 { 2075 DFX_board_t *bp = netdev_priv(dev); 2076 2077 /* Fill the bp->stats structure with driver-maintained counters */ 2078 2079 bp->stats.gen.rx_packets = bp->rcv_total_frames; 2080 bp->stats.gen.tx_packets = bp->xmt_total_frames; 2081 bp->stats.gen.rx_bytes = bp->rcv_total_bytes; 2082 bp->stats.gen.tx_bytes = bp->xmt_total_bytes; 2083 bp->stats.gen.rx_errors = bp->rcv_crc_errors + 2084 bp->rcv_frame_status_errors + 2085 bp->rcv_length_errors; 2086 bp->stats.gen.tx_errors = bp->xmt_length_errors; 2087 bp->stats.gen.rx_dropped = bp->rcv_discards; 2088 bp->stats.gen.tx_dropped = bp->xmt_discards; 2089 bp->stats.gen.multicast = bp->rcv_multicast_frames; 2090 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ 2091 2092 /* Get FDDI SMT MIB objects */ 2093 2094 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; 2095 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2096 return (struct net_device_stats *)&bp->stats; 2097 2098 /* Fill the bp->stats structure with the SMT MIB object values */ 2099 2100 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); 2101 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; 2102 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; 2103 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; 2104 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); 2105 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; 2106 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; 2107 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; 2108 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; 2109 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; 2110 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; 2111 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; 2112 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; 2113 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; 2114 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; 2115 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; 2116 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; 2117 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; 2118 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; 2119 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; 2120 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; 2121 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; 2122 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; 2123 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; 2124 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; 2125 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; 2126 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; 2127 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; 2128 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; 2129 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); 2130 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); 2131 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); 2132 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); 2133 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; 2134 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; 2135 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; 2136 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); 2137 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; 2138 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; 2139 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; 2140 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; 2141 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; 2142 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; 2143 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; 2144 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; 2145 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; 2146 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; 2147 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; 2148 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; 2149 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; 2150 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; 2151 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; 2152 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; 2153 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); 2154 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; 2155 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; 2156 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; 2157 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; 2158 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; 2159 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; 2160 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; 2161 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; 2162 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; 2163 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; 2164 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); 2165 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); 2166 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; 2167 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; 2168 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; 2169 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; 2170 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; 2171 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; 2172 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; 2173 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; 2174 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; 2175 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; 2176 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; 2177 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; 2178 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; 2179 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; 2180 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; 2181 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; 2182 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; 2183 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; 2184 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; 2185 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; 2186 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; 2187 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; 2188 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; 2189 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; 2190 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; 2191 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; 2192 2193 /* Get FDDI counters */ 2194 2195 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; 2196 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2197 return (struct net_device_stats *)&bp->stats; 2198 2199 /* Fill the bp->stats structure with the FDDI counter values */ 2200 2201 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; 2202 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; 2203 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; 2204 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; 2205 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; 2206 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; 2207 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; 2208 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; 2209 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; 2210 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; 2211 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; 2212 2213 return (struct net_device_stats *)&bp->stats; 2214 } 2215 2216 2217 /* 2218 * ============================== 2219 * = dfx_ctl_set_multicast_list = 2220 * ============================== 2221 * 2222 * Overview: 2223 * Enable/Disable LLC frame promiscuous mode reception 2224 * on the adapter and/or update multicast address table. 2225 * 2226 * Returns: 2227 * None 2228 * 2229 * Arguments: 2230 * dev - pointer to device information 2231 * 2232 * Functional Description: 2233 * This routine follows a fairly simple algorithm for setting the 2234 * adapter filters and CAM: 2235 * 2236 * if IFF_PROMISC flag is set 2237 * enable LLC individual/group promiscuous mode 2238 * else 2239 * disable LLC individual/group promiscuous mode 2240 * if number of incoming multicast addresses > 2241 * (CAM max size - number of unicast addresses in CAM) 2242 * enable LLC group promiscuous mode 2243 * set driver-maintained multicast address count to zero 2244 * else 2245 * disable LLC group promiscuous mode 2246 * set driver-maintained multicast address count to incoming count 2247 * update adapter CAM 2248 * update adapter filters 2249 * 2250 * Return Codes: 2251 * None 2252 * 2253 * Assumptions: 2254 * Multicast addresses are presented in canonical (LSB) format. 2255 * 2256 * Side Effects: 2257 * On-board adapter CAM and filters are updated. 2258 */ 2259 2260 static void dfx_ctl_set_multicast_list(struct net_device *dev) 2261 { 2262 DFX_board_t *bp = netdev_priv(dev); 2263 int i; /* used as index in for loop */ 2264 struct netdev_hw_addr *ha; 2265 2266 /* Enable LLC frame promiscuous mode, if necessary */ 2267 2268 if (dev->flags & IFF_PROMISC) 2269 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ 2270 2271 /* Else, update multicast address table */ 2272 2273 else 2274 { 2275 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ 2276 /* 2277 * Check whether incoming multicast address count exceeds table size 2278 * 2279 * Note: The adapters utilize an on-board 64 entry CAM for 2280 * supporting perfect filtering of multicast packets 2281 * and bridge functions when adding unicast addresses. 2282 * There is no hash function available. To support 2283 * additional multicast addresses, the all multicast 2284 * filter (LLC group promiscuous mode) must be enabled. 2285 * 2286 * The firmware reserves two CAM entries for SMT-related 2287 * multicast addresses, which leaves 62 entries available. 2288 * The following code ensures that we're not being asked 2289 * to add more than 62 addresses to the CAM. If we are, 2290 * the driver will enable the all multicast filter. 2291 * Should the number of multicast addresses drop below 2292 * the high water mark, the filter will be disabled and 2293 * perfect filtering will be used. 2294 */ 2295 2296 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) 2297 { 2298 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ 2299 bp->mc_count = 0; /* Don't add mc addrs to CAM */ 2300 } 2301 else 2302 { 2303 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ 2304 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ 2305 } 2306 2307 /* Copy addresses to multicast address table, then update adapter CAM */ 2308 2309 i = 0; 2310 netdev_for_each_mc_addr(ha, dev) 2311 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], 2312 ha->addr, FDDI_K_ALEN); 2313 2314 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 2315 { 2316 DBG_printk("%s: Could not update multicast address table!\n", dev->name); 2317 } 2318 else 2319 { 2320 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); 2321 } 2322 } 2323 2324 /* Update adapter filters */ 2325 2326 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 2327 { 2328 DBG_printk("%s: Could not update adapter filters!\n", dev->name); 2329 } 2330 else 2331 { 2332 DBG_printk("%s: Adapter filters updated!\n", dev->name); 2333 } 2334 } 2335 2336 2337 /* 2338 * =========================== 2339 * = dfx_ctl_set_mac_address = 2340 * =========================== 2341 * 2342 * Overview: 2343 * Add node address override (unicast address) to adapter 2344 * CAM and update dev_addr field in device table. 2345 * 2346 * Returns: 2347 * None 2348 * 2349 * Arguments: 2350 * dev - pointer to device information 2351 * addr - pointer to sockaddr structure containing unicast address to add 2352 * 2353 * Functional Description: 2354 * The adapter supports node address overrides by adding one or more 2355 * unicast addresses to the adapter CAM. This is similar to adding 2356 * multicast addresses. In this routine we'll update the driver and 2357 * device structures with the new address, then update the adapter CAM 2358 * to ensure that the adapter will copy and strip frames destined and 2359 * sourced by that address. 2360 * 2361 * Return Codes: 2362 * Always returns zero. 2363 * 2364 * Assumptions: 2365 * The address pointed to by addr->sa_data is a valid unicast 2366 * address and is presented in canonical (LSB) format. 2367 * 2368 * Side Effects: 2369 * On-board adapter CAM is updated. On-board adapter filters 2370 * may be updated. 2371 */ 2372 2373 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) 2374 { 2375 struct sockaddr *p_sockaddr = (struct sockaddr *)addr; 2376 DFX_board_t *bp = netdev_priv(dev); 2377 2378 /* Copy unicast address to driver-maintained structs and update count */ 2379 2380 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ 2381 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ 2382 bp->uc_count = 1; 2383 2384 /* 2385 * Verify we're not exceeding the CAM size by adding unicast address 2386 * 2387 * Note: It's possible that before entering this routine we've 2388 * already filled the CAM with 62 multicast addresses. 2389 * Since we need to place the node address override into 2390 * the CAM, we have to check to see that we're not 2391 * exceeding the CAM size. If we are, we have to enable 2392 * the LLC group (multicast) promiscuous mode filter as 2393 * in dfx_ctl_set_multicast_list. 2394 */ 2395 2396 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) 2397 { 2398 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ 2399 bp->mc_count = 0; /* Don't add mc addrs to CAM */ 2400 2401 /* Update adapter filters */ 2402 2403 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) 2404 { 2405 DBG_printk("%s: Could not update adapter filters!\n", dev->name); 2406 } 2407 else 2408 { 2409 DBG_printk("%s: Adapter filters updated!\n", dev->name); 2410 } 2411 } 2412 2413 /* Update adapter CAM with new unicast address */ 2414 2415 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) 2416 { 2417 DBG_printk("%s: Could not set new MAC address!\n", dev->name); 2418 } 2419 else 2420 { 2421 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); 2422 } 2423 return 0; /* always return zero */ 2424 } 2425 2426 2427 /* 2428 * ====================== 2429 * = dfx_ctl_update_cam = 2430 * ====================== 2431 * 2432 * Overview: 2433 * Procedure to update adapter CAM (Content Addressable Memory) 2434 * with desired unicast and multicast address entries. 2435 * 2436 * Returns: 2437 * Condition code 2438 * 2439 * Arguments: 2440 * bp - pointer to board information 2441 * 2442 * Functional Description: 2443 * Updates adapter CAM with current contents of board structure 2444 * unicast and multicast address tables. Since there are only 62 2445 * free entries in CAM, this routine ensures that the command 2446 * request buffer is not overrun. 2447 * 2448 * Return Codes: 2449 * DFX_K_SUCCESS - Request succeeded 2450 * DFX_K_FAILURE - Request failed 2451 * 2452 * Assumptions: 2453 * All addresses being added (unicast and multicast) are in canonical 2454 * order. 2455 * 2456 * Side Effects: 2457 * On-board adapter CAM is updated. 2458 */ 2459 2460 static int dfx_ctl_update_cam(DFX_board_t *bp) 2461 { 2462 int i; /* used as index */ 2463 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ 2464 2465 /* 2466 * Fill in command request information 2467 * 2468 * Note: Even though both the unicast and multicast address 2469 * table entries are stored as contiguous 6 byte entries, 2470 * the firmware address filter set command expects each 2471 * entry to be two longwords (8 bytes total). We must be 2472 * careful to only copy the six bytes of each unicast and 2473 * multicast table entry into each command entry. This 2474 * is also why we must first clear the entire command 2475 * request buffer. 2476 */ 2477 2478 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ 2479 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; 2480 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; 2481 2482 /* Now add unicast addresses to command request buffer, if any */ 2483 2484 for (i=0; i < (int)bp->uc_count; i++) 2485 { 2486 if (i < PI_CMD_ADDR_FILTER_K_SIZE) 2487 { 2488 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); 2489 p_addr++; /* point to next command entry */ 2490 } 2491 } 2492 2493 /* Now add multicast addresses to command request buffer, if any */ 2494 2495 for (i=0; i < (int)bp->mc_count; i++) 2496 { 2497 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) 2498 { 2499 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); 2500 p_addr++; /* point to next command entry */ 2501 } 2502 } 2503 2504 /* Issue command to update adapter CAM, then return */ 2505 2506 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2507 return DFX_K_FAILURE; 2508 return DFX_K_SUCCESS; 2509 } 2510 2511 2512 /* 2513 * ========================== 2514 * = dfx_ctl_update_filters = 2515 * ========================== 2516 * 2517 * Overview: 2518 * Procedure to update adapter filters with desired 2519 * filter settings. 2520 * 2521 * Returns: 2522 * Condition code 2523 * 2524 * Arguments: 2525 * bp - pointer to board information 2526 * 2527 * Functional Description: 2528 * Enables or disables filter using current filter settings. 2529 * 2530 * Return Codes: 2531 * DFX_K_SUCCESS - Request succeeded. 2532 * DFX_K_FAILURE - Request failed. 2533 * 2534 * Assumptions: 2535 * We must always pass up packets destined to the broadcast 2536 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the 2537 * broadcast filter enabled. 2538 * 2539 * Side Effects: 2540 * On-board adapter filters are updated. 2541 */ 2542 2543 static int dfx_ctl_update_filters(DFX_board_t *bp) 2544 { 2545 int i = 0; /* used as index */ 2546 2547 /* Fill in command request information */ 2548 2549 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; 2550 2551 /* Initialize Broadcast filter - * ALWAYS ENABLED * */ 2552 2553 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; 2554 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; 2555 2556 /* Initialize LLC Individual/Group Promiscuous filter */ 2557 2558 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; 2559 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; 2560 2561 /* Initialize LLC Group Promiscuous filter */ 2562 2563 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; 2564 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; 2565 2566 /* Terminate the item code list */ 2567 2568 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; 2569 2570 /* Issue command to update adapter filters, then return */ 2571 2572 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) 2573 return DFX_K_FAILURE; 2574 return DFX_K_SUCCESS; 2575 } 2576 2577 2578 /* 2579 * ====================== 2580 * = dfx_hw_dma_cmd_req = 2581 * ====================== 2582 * 2583 * Overview: 2584 * Sends PDQ DMA command to adapter firmware 2585 * 2586 * Returns: 2587 * Condition code 2588 * 2589 * Arguments: 2590 * bp - pointer to board information 2591 * 2592 * Functional Description: 2593 * The command request and response buffers are posted to the adapter in the manner 2594 * described in the PDQ Port Specification: 2595 * 2596 * 1. Command Response Buffer is posted to adapter. 2597 * 2. Command Request Buffer is posted to adapter. 2598 * 3. Command Request consumer index is polled until it indicates that request 2599 * buffer has been DMA'd to adapter. 2600 * 4. Command Response consumer index is polled until it indicates that response 2601 * buffer has been DMA'd from adapter. 2602 * 2603 * This ordering ensures that a response buffer is already available for the firmware 2604 * to use once it's done processing the request buffer. 2605 * 2606 * Return Codes: 2607 * DFX_K_SUCCESS - DMA command succeeded 2608 * DFX_K_OUTSTATE - Adapter is NOT in proper state 2609 * DFX_K_HW_TIMEOUT - DMA command timed out 2610 * 2611 * Assumptions: 2612 * Command request buffer has already been filled with desired DMA command. 2613 * 2614 * Side Effects: 2615 * None 2616 */ 2617 2618 static int dfx_hw_dma_cmd_req(DFX_board_t *bp) 2619 { 2620 int status; /* adapter status */ 2621 int timeout_cnt; /* used in for loops */ 2622 2623 /* Make sure the adapter is in a state that we can issue the DMA command in */ 2624 2625 status = dfx_hw_adap_state_rd(bp); 2626 if ((status == PI_STATE_K_RESET) || 2627 (status == PI_STATE_K_HALTED) || 2628 (status == PI_STATE_K_DMA_UNAVAIL) || 2629 (status == PI_STATE_K_UPGRADE)) 2630 return DFX_K_OUTSTATE; 2631 2632 /* Put response buffer on the command response queue */ 2633 2634 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | 2635 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); 2636 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; 2637 2638 /* Bump (and wrap) the producer index and write out to register */ 2639 2640 bp->cmd_rsp_reg.index.prod += 1; 2641 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; 2642 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); 2643 2644 /* Put request buffer on the command request queue */ 2645 2646 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | 2647 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); 2648 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; 2649 2650 /* Bump (and wrap) the producer index and write out to register */ 2651 2652 bp->cmd_req_reg.index.prod += 1; 2653 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; 2654 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); 2655 2656 /* 2657 * Here we wait for the command request consumer index to be equal 2658 * to the producer, indicating that the adapter has DMAed the request. 2659 */ 2660 2661 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) 2662 { 2663 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) 2664 break; 2665 udelay(100); /* wait for 100 microseconds */ 2666 } 2667 if (timeout_cnt == 0) 2668 return DFX_K_HW_TIMEOUT; 2669 2670 /* Bump (and wrap) the completion index and write out to register */ 2671 2672 bp->cmd_req_reg.index.comp += 1; 2673 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; 2674 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); 2675 2676 /* 2677 * Here we wait for the command response consumer index to be equal 2678 * to the producer, indicating that the adapter has DMAed the response. 2679 */ 2680 2681 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) 2682 { 2683 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) 2684 break; 2685 udelay(100); /* wait for 100 microseconds */ 2686 } 2687 if (timeout_cnt == 0) 2688 return DFX_K_HW_TIMEOUT; 2689 2690 /* Bump (and wrap) the completion index and write out to register */ 2691 2692 bp->cmd_rsp_reg.index.comp += 1; 2693 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; 2694 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); 2695 return DFX_K_SUCCESS; 2696 } 2697 2698 2699 /* 2700 * ======================== 2701 * = dfx_hw_port_ctrl_req = 2702 * ======================== 2703 * 2704 * Overview: 2705 * Sends PDQ port control command to adapter firmware 2706 * 2707 * Returns: 2708 * Host data register value in host_data if ptr is not NULL 2709 * 2710 * Arguments: 2711 * bp - pointer to board information 2712 * command - port control command 2713 * data_a - port data A register value 2714 * data_b - port data B register value 2715 * host_data - ptr to host data register value 2716 * 2717 * Functional Description: 2718 * Send generic port control command to adapter by writing 2719 * to various PDQ port registers, then polling for completion. 2720 * 2721 * Return Codes: 2722 * DFX_K_SUCCESS - port control command succeeded 2723 * DFX_K_HW_TIMEOUT - port control command timed out 2724 * 2725 * Assumptions: 2726 * None 2727 * 2728 * Side Effects: 2729 * None 2730 */ 2731 2732 static int dfx_hw_port_ctrl_req( 2733 DFX_board_t *bp, 2734 PI_UINT32 command, 2735 PI_UINT32 data_a, 2736 PI_UINT32 data_b, 2737 PI_UINT32 *host_data 2738 ) 2739 2740 { 2741 PI_UINT32 port_cmd; /* Port Control command register value */ 2742 int timeout_cnt; /* used in for loops */ 2743 2744 /* Set Command Error bit in command longword */ 2745 2746 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); 2747 2748 /* Issue port command to the adapter */ 2749 2750 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); 2751 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); 2752 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); 2753 2754 /* Now wait for command to complete */ 2755 2756 if (command == PI_PCTRL_M_BLAST_FLASH) 2757 timeout_cnt = 600000; /* set command timeout count to 60 seconds */ 2758 else 2759 timeout_cnt = 20000; /* set command timeout count to 2 seconds */ 2760 2761 for (; timeout_cnt > 0; timeout_cnt--) 2762 { 2763 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); 2764 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) 2765 break; 2766 udelay(100); /* wait for 100 microseconds */ 2767 } 2768 if (timeout_cnt == 0) 2769 return DFX_K_HW_TIMEOUT; 2770 2771 /* 2772 * If the address of host_data is non-zero, assume caller has supplied a 2773 * non NULL pointer, and return the contents of the HOST_DATA register in 2774 * it. 2775 */ 2776 2777 if (host_data != NULL) 2778 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); 2779 return DFX_K_SUCCESS; 2780 } 2781 2782 2783 /* 2784 * ===================== 2785 * = dfx_hw_adap_reset = 2786 * ===================== 2787 * 2788 * Overview: 2789 * Resets adapter 2790 * 2791 * Returns: 2792 * None 2793 * 2794 * Arguments: 2795 * bp - pointer to board information 2796 * type - type of reset to perform 2797 * 2798 * Functional Description: 2799 * Issue soft reset to adapter by writing to PDQ Port Reset 2800 * register. Use incoming reset type to tell adapter what 2801 * kind of reset operation to perform. 2802 * 2803 * Return Codes: 2804 * None 2805 * 2806 * Assumptions: 2807 * This routine merely issues a soft reset to the adapter. 2808 * It is expected that after this routine returns, the caller 2809 * will appropriately poll the Port Status register for the 2810 * adapter to enter the proper state. 2811 * 2812 * Side Effects: 2813 * Internal adapter registers are cleared. 2814 */ 2815 2816 static void dfx_hw_adap_reset( 2817 DFX_board_t *bp, 2818 PI_UINT32 type 2819 ) 2820 2821 { 2822 /* Set Reset type and assert reset */ 2823 2824 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ 2825 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); 2826 2827 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ 2828 2829 udelay(20); 2830 2831 /* Deassert reset */ 2832 2833 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); 2834 } 2835 2836 2837 /* 2838 * ======================== 2839 * = dfx_hw_adap_state_rd = 2840 * ======================== 2841 * 2842 * Overview: 2843 * Returns current adapter state 2844 * 2845 * Returns: 2846 * Adapter state per PDQ Port Specification 2847 * 2848 * Arguments: 2849 * bp - pointer to board information 2850 * 2851 * Functional Description: 2852 * Reads PDQ Port Status register and returns adapter state. 2853 * 2854 * Return Codes: 2855 * None 2856 * 2857 * Assumptions: 2858 * None 2859 * 2860 * Side Effects: 2861 * None 2862 */ 2863 2864 static int dfx_hw_adap_state_rd(DFX_board_t *bp) 2865 { 2866 PI_UINT32 port_status; /* Port Status register value */ 2867 2868 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); 2869 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; 2870 } 2871 2872 2873 /* 2874 * ===================== 2875 * = dfx_hw_dma_uninit = 2876 * ===================== 2877 * 2878 * Overview: 2879 * Brings adapter to DMA_UNAVAILABLE state 2880 * 2881 * Returns: 2882 * Condition code 2883 * 2884 * Arguments: 2885 * bp - pointer to board information 2886 * type - type of reset to perform 2887 * 2888 * Functional Description: 2889 * Bring adapter to DMA_UNAVAILABLE state by performing the following: 2890 * 1. Set reset type bit in Port Data A Register then reset adapter. 2891 * 2. Check that adapter is in DMA_UNAVAILABLE state. 2892 * 2893 * Return Codes: 2894 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state 2895 * DFX_K_HW_TIMEOUT - adapter did not reset properly 2896 * 2897 * Assumptions: 2898 * None 2899 * 2900 * Side Effects: 2901 * Internal adapter registers are cleared. 2902 */ 2903 2904 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) 2905 { 2906 int timeout_cnt; /* used in for loops */ 2907 2908 /* Set reset type bit and reset adapter */ 2909 2910 dfx_hw_adap_reset(bp, type); 2911 2912 /* Now wait for adapter to enter DMA_UNAVAILABLE state */ 2913 2914 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) 2915 { 2916 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) 2917 break; 2918 udelay(100); /* wait for 100 microseconds */ 2919 } 2920 if (timeout_cnt == 0) 2921 return DFX_K_HW_TIMEOUT; 2922 return DFX_K_SUCCESS; 2923 } 2924 2925 /* 2926 * Align an sk_buff to a boundary power of 2 2927 * 2928 */ 2929 #ifdef DYNAMIC_BUFFERS 2930 static void my_skb_align(struct sk_buff *skb, int n) 2931 { 2932 unsigned long x = (unsigned long)skb->data; 2933 unsigned long v; 2934 2935 v = ALIGN(x, n); /* Where we want to be */ 2936 2937 skb_reserve(skb, v - x); 2938 } 2939 #endif 2940 2941 /* 2942 * ================ 2943 * = dfx_rcv_init = 2944 * ================ 2945 * 2946 * Overview: 2947 * Produces buffers to adapter LLC Host receive descriptor block 2948 * 2949 * Returns: 2950 * None 2951 * 2952 * Arguments: 2953 * bp - pointer to board information 2954 * get_buffers - non-zero if buffers to be allocated 2955 * 2956 * Functional Description: 2957 * This routine can be called during dfx_adap_init() or during an adapter 2958 * reset. It initializes the descriptor block and produces all allocated 2959 * LLC Host queue receive buffers. 2960 * 2961 * Return Codes: 2962 * Return 0 on success or -ENOMEM if buffer allocation failed (when using 2963 * dynamic buffer allocation). If the buffer allocation failed, the 2964 * already allocated buffers will not be released and the caller should do 2965 * this. 2966 * 2967 * Assumptions: 2968 * The PDQ has been reset and the adapter and driver maintained Type 2 2969 * register indices are cleared. 2970 * 2971 * Side Effects: 2972 * Receive buffers are posted to the adapter LLC queue and the adapter 2973 * is notified. 2974 */ 2975 2976 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) 2977 { 2978 int i, j; /* used in for loop */ 2979 2980 /* 2981 * Since each receive buffer is a single fragment of same length, initialize 2982 * first longword in each receive descriptor for entire LLC Host descriptor 2983 * block. Also initialize second longword in each receive descriptor with 2984 * physical address of receive buffer. We'll always allocate receive 2985 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor 2986 * block and produce new receive buffers by simply updating the receive 2987 * producer index. 2988 * 2989 * Assumptions: 2990 * To support all shipping versions of PDQ, the receive buffer size 2991 * must be mod 128 in length and the physical address must be 128 byte 2992 * aligned. In other words, bits 0-6 of the length and address must 2993 * be zero for the following descriptor field entries to be correct on 2994 * all PDQ-based boards. We guaranteed both requirements during 2995 * driver initialization when we allocated memory for the receive buffers. 2996 */ 2997 2998 if (get_buffers) { 2999 #ifdef DYNAMIC_BUFFERS 3000 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) 3001 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 3002 { 3003 struct sk_buff *newskb; 3004 dma_addr_t dma_addr; 3005 3006 newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, 3007 GFP_NOIO); 3008 if (!newskb) 3009 return -ENOMEM; 3010 /* 3011 * align to 128 bytes for compatibility with 3012 * the old EISA boards. 3013 */ 3014 3015 my_skb_align(newskb, 128); 3016 dma_addr = dma_map_single(bp->bus_dev, 3017 newskb->data, 3018 PI_RCV_DATA_K_SIZE_MAX, 3019 DMA_FROM_DEVICE); 3020 if (dma_mapping_error(bp->bus_dev, dma_addr)) { 3021 dev_kfree_skb(newskb); 3022 return -ENOMEM; 3023 } 3024 bp->descr_block_virt->rcv_data[i + j].long_0 = 3025 (u32)(PI_RCV_DESCR_M_SOP | 3026 ((PI_RCV_DATA_K_SIZE_MAX / 3027 PI_ALIGN_K_RCV_DATA_BUFF) << 3028 PI_RCV_DESCR_V_SEG_LEN)); 3029 bp->descr_block_virt->rcv_data[i + j].long_1 = 3030 (u32)dma_addr; 3031 3032 /* 3033 * p_rcv_buff_va is only used inside the 3034 * kernel so we put the skb pointer here. 3035 */ 3036 bp->p_rcv_buff_va[i+j] = (char *) newskb; 3037 } 3038 #else 3039 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) 3040 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 3041 { 3042 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | 3043 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); 3044 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); 3045 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); 3046 } 3047 #endif 3048 } 3049 3050 /* Update receive producer and Type 2 register */ 3051 3052 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; 3053 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 3054 return 0; 3055 } 3056 3057 3058 /* 3059 * ========================= 3060 * = dfx_rcv_queue_process = 3061 * ========================= 3062 * 3063 * Overview: 3064 * Process received LLC frames. 3065 * 3066 * Returns: 3067 * None 3068 * 3069 * Arguments: 3070 * bp - pointer to board information 3071 * 3072 * Functional Description: 3073 * Received LLC frames are processed until there are no more consumed frames. 3074 * Once all frames are processed, the receive buffers are returned to the 3075 * adapter. Note that this algorithm fixes the length of time that can be spent 3076 * in this routine, because there are a fixed number of receive buffers to 3077 * process and buffers are not produced until this routine exits and returns 3078 * to the ISR. 3079 * 3080 * Return Codes: 3081 * None 3082 * 3083 * Assumptions: 3084 * None 3085 * 3086 * Side Effects: 3087 * None 3088 */ 3089 3090 static void dfx_rcv_queue_process( 3091 DFX_board_t *bp 3092 ) 3093 3094 { 3095 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ 3096 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ 3097 u32 descr, pkt_len; /* FMC descriptor field and packet length */ 3098 struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */ 3099 3100 /* Service all consumed LLC receive frames */ 3101 3102 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); 3103 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) 3104 { 3105 /* Process any errors */ 3106 dma_addr_t dma_addr; 3107 int entry; 3108 3109 entry = bp->rcv_xmt_reg.index.rcv_comp; 3110 #ifdef DYNAMIC_BUFFERS 3111 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); 3112 #else 3113 p_buff = bp->p_rcv_buff_va[entry]; 3114 #endif 3115 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1; 3116 dma_sync_single_for_cpu(bp->bus_dev, 3117 dma_addr + RCV_BUFF_K_DESCR, 3118 sizeof(u32), 3119 DMA_FROM_DEVICE); 3120 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); 3121 3122 if (descr & PI_FMC_DESCR_M_RCC_FLUSH) 3123 { 3124 if (descr & PI_FMC_DESCR_M_RCC_CRC) 3125 bp->rcv_crc_errors++; 3126 else 3127 bp->rcv_frame_status_errors++; 3128 } 3129 else 3130 { 3131 int rx_in_place = 0; 3132 3133 /* The frame was received without errors - verify packet length */ 3134 3135 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); 3136 pkt_len -= 4; /* subtract 4 byte CRC */ 3137 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) 3138 bp->rcv_length_errors++; 3139 else{ 3140 #ifdef DYNAMIC_BUFFERS 3141 struct sk_buff *newskb = NULL; 3142 3143 if (pkt_len > SKBUFF_RX_COPYBREAK) { 3144 dma_addr_t new_dma_addr; 3145 3146 newskb = netdev_alloc_skb(bp->dev, 3147 NEW_SKB_SIZE); 3148 if (newskb){ 3149 my_skb_align(newskb, 128); 3150 new_dma_addr = dma_map_single( 3151 bp->bus_dev, 3152 newskb->data, 3153 PI_RCV_DATA_K_SIZE_MAX, 3154 DMA_FROM_DEVICE); 3155 if (dma_mapping_error( 3156 bp->bus_dev, 3157 new_dma_addr)) { 3158 dev_kfree_skb(newskb); 3159 newskb = NULL; 3160 } 3161 } 3162 if (newskb) { 3163 rx_in_place = 1; 3164 3165 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; 3166 dma_unmap_single(bp->bus_dev, 3167 dma_addr, 3168 PI_RCV_DATA_K_SIZE_MAX, 3169 DMA_FROM_DEVICE); 3170 skb_reserve(skb, RCV_BUFF_K_PADDING); 3171 bp->p_rcv_buff_va[entry] = (char *)newskb; 3172 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr; 3173 } 3174 } 3175 if (!newskb) 3176 #endif 3177 /* Alloc new buffer to pass up, 3178 * add room for PRH. */ 3179 skb = netdev_alloc_skb(bp->dev, 3180 pkt_len + 3); 3181 if (skb == NULL) 3182 { 3183 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); 3184 bp->rcv_discards++; 3185 break; 3186 } 3187 else { 3188 if (!rx_in_place) { 3189 /* Receive buffer allocated, pass receive packet up */ 3190 dma_sync_single_for_cpu( 3191 bp->bus_dev, 3192 dma_addr + 3193 RCV_BUFF_K_PADDING, 3194 pkt_len + 3, 3195 DMA_FROM_DEVICE); 3196 3197 skb_copy_to_linear_data(skb, 3198 p_buff + RCV_BUFF_K_PADDING, 3199 pkt_len + 3); 3200 } 3201 3202 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ 3203 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ 3204 skb->protocol = fddi_type_trans(skb, bp->dev); 3205 bp->rcv_total_bytes += skb->len; 3206 netif_rx(skb); 3207 3208 /* Update the rcv counters */ 3209 bp->rcv_total_frames++; 3210 if (*(p_buff + RCV_BUFF_K_DA) & 0x01) 3211 bp->rcv_multicast_frames++; 3212 } 3213 } 3214 } 3215 3216 /* 3217 * Advance the producer (for recycling) and advance the completion 3218 * (for servicing received frames). Note that it is okay to 3219 * advance the producer without checking that it passes the 3220 * completion index because they are both advanced at the same 3221 * rate. 3222 */ 3223 3224 bp->rcv_xmt_reg.index.rcv_prod += 1; 3225 bp->rcv_xmt_reg.index.rcv_comp += 1; 3226 } 3227 } 3228 3229 3230 /* 3231 * ===================== 3232 * = dfx_xmt_queue_pkt = 3233 * ===================== 3234 * 3235 * Overview: 3236 * Queues packets for transmission 3237 * 3238 * Returns: 3239 * Condition code 3240 * 3241 * Arguments: 3242 * skb - pointer to sk_buff to queue for transmission 3243 * dev - pointer to device information 3244 * 3245 * Functional Description: 3246 * Here we assume that an incoming skb transmit request 3247 * is contained in a single physically contiguous buffer 3248 * in which the virtual address of the start of packet 3249 * (skb->data) can be converted to a physical address 3250 * by using pci_map_single(). 3251 * 3252 * Since the adapter architecture requires a three byte 3253 * packet request header to prepend the start of packet, 3254 * we'll write the three byte field immediately prior to 3255 * the FC byte. This assumption is valid because we've 3256 * ensured that dev->hard_header_len includes three pad 3257 * bytes. By posting a single fragment to the adapter, 3258 * we'll reduce the number of descriptor fetches and 3259 * bus traffic needed to send the request. 3260 * 3261 * Also, we can't free the skb until after it's been DMA'd 3262 * out by the adapter, so we'll queue it in the driver and 3263 * return it in dfx_xmt_done. 3264 * 3265 * Return Codes: 3266 * 0 - driver queued packet, link is unavailable, or skbuff was bad 3267 * 1 - caller should requeue the sk_buff for later transmission 3268 * 3269 * Assumptions: 3270 * First and foremost, we assume the incoming skb pointer 3271 * is NOT NULL and is pointing to a valid sk_buff structure. 3272 * 3273 * The outgoing packet is complete, starting with the 3274 * frame control byte including the last byte of data, 3275 * but NOT including the 4 byte CRC. We'll let the 3276 * adapter hardware generate and append the CRC. 3277 * 3278 * The entire packet is stored in one physically 3279 * contiguous buffer which is not cached and whose 3280 * 32-bit physical address can be determined. 3281 * 3282 * It's vital that this routine is NOT reentered for the 3283 * same board and that the OS is not in another section of 3284 * code (eg. dfx_int_common) for the same board on a 3285 * different thread. 3286 * 3287 * Side Effects: 3288 * None 3289 */ 3290 3291 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, 3292 struct net_device *dev) 3293 { 3294 DFX_board_t *bp = netdev_priv(dev); 3295 u8 prod; /* local transmit producer index */ 3296 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ 3297 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3298 dma_addr_t dma_addr; 3299 unsigned long flags; 3300 3301 netif_stop_queue(dev); 3302 3303 /* 3304 * Verify that incoming transmit request is OK 3305 * 3306 * Note: The packet size check is consistent with other 3307 * Linux device drivers, although the correct packet 3308 * size should be verified before calling the 3309 * transmit routine. 3310 */ 3311 3312 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) 3313 { 3314 printk("%s: Invalid packet length - %u bytes\n", 3315 dev->name, skb->len); 3316 bp->xmt_length_errors++; /* bump error counter */ 3317 netif_wake_queue(dev); 3318 dev_kfree_skb(skb); 3319 return NETDEV_TX_OK; /* return "success" */ 3320 } 3321 /* 3322 * See if adapter link is available, if not, free buffer 3323 * 3324 * Note: If the link isn't available, free buffer and return 0 3325 * rather than tell the upper layer to requeue the packet. 3326 * The methodology here is that by the time the link 3327 * becomes available, the packet to be sent will be 3328 * fairly stale. By simply dropping the packet, the 3329 * higher layer protocols will eventually time out 3330 * waiting for response packets which it won't receive. 3331 */ 3332 3333 if (bp->link_available == PI_K_FALSE) 3334 { 3335 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ 3336 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ 3337 else 3338 { 3339 bp->xmt_discards++; /* bump error counter */ 3340 dev_kfree_skb(skb); /* free sk_buff now */ 3341 netif_wake_queue(dev); 3342 return NETDEV_TX_OK; /* return "success" */ 3343 } 3344 } 3345 3346 /* Write the three PRH bytes immediately before the FC byte */ 3347 3348 skb_push(skb, 3); 3349 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ 3350 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ 3351 skb->data[2] = DFX_PRH2_BYTE; /* specification */ 3352 3353 dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len, 3354 DMA_TO_DEVICE); 3355 if (dma_mapping_error(bp->bus_dev, dma_addr)) { 3356 skb_pull(skb, 3); 3357 return NETDEV_TX_BUSY; 3358 } 3359 3360 spin_lock_irqsave(&bp->lock, flags); 3361 3362 /* Get the current producer and the next free xmt data descriptor */ 3363 3364 prod = bp->rcv_xmt_reg.index.xmt_prod; 3365 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); 3366 3367 /* 3368 * Get pointer to auxiliary queue entry to contain information 3369 * for this packet. 3370 * 3371 * Note: The current xmt producer index will become the 3372 * current xmt completion index when we complete this 3373 * packet later on. So, we'll get the pointer to the 3374 * next auxiliary queue entry now before we bump the 3375 * producer index. 3376 */ 3377 3378 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ 3379 3380 /* 3381 * Write the descriptor with buffer info and bump producer 3382 * 3383 * Note: Since we need to start DMA from the packet request 3384 * header, we'll add 3 bytes to the DMA buffer length, 3385 * and we'll determine the physical address of the 3386 * buffer from the PRH, not skb->data. 3387 * 3388 * Assumptions: 3389 * 1. Packet starts with the frame control (FC) byte 3390 * at skb->data. 3391 * 2. The 4-byte CRC is not appended to the buffer or 3392 * included in the length. 3393 * 3. Packet length (skb->len) is from FC to end of 3394 * data, inclusive. 3395 * 4. The packet length does not exceed the maximum 3396 * FDDI LLC frame length of 4491 bytes. 3397 * 5. The entire packet is contained in a physically 3398 * contiguous, non-cached, locked memory space 3399 * comprised of a single buffer pointed to by 3400 * skb->data. 3401 * 6. The physical address of the start of packet 3402 * can be determined from the virtual address 3403 * by using pci_map_single() and is only 32-bits 3404 * wide. 3405 */ 3406 3407 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); 3408 p_xmt_descr->long_1 = (u32)dma_addr; 3409 3410 /* 3411 * Verify that descriptor is actually available 3412 * 3413 * Note: If descriptor isn't available, return 1 which tells 3414 * the upper layer to requeue the packet for later 3415 * transmission. 3416 * 3417 * We need to ensure that the producer never reaches the 3418 * completion, except to indicate that the queue is empty. 3419 */ 3420 3421 if (prod == bp->rcv_xmt_reg.index.xmt_comp) 3422 { 3423 skb_pull(skb,3); 3424 spin_unlock_irqrestore(&bp->lock, flags); 3425 return NETDEV_TX_BUSY; /* requeue packet for later */ 3426 } 3427 3428 /* 3429 * Save info for this packet for xmt done indication routine 3430 * 3431 * Normally, we'd save the producer index in the p_xmt_drv_descr 3432 * structure so that we'd have it handy when we complete this 3433 * packet later (in dfx_xmt_done). However, since the current 3434 * transmit architecture guarantees a single fragment for the 3435 * entire packet, we can simply bump the completion index by 3436 * one (1) for each completed packet. 3437 * 3438 * Note: If this assumption changes and we're presented with 3439 * an inconsistent number of transmit fragments for packet 3440 * data, we'll need to modify this code to save the current 3441 * transmit producer index. 3442 */ 3443 3444 p_xmt_drv_descr->p_skb = skb; 3445 3446 /* Update Type 2 register */ 3447 3448 bp->rcv_xmt_reg.index.xmt_prod = prod; 3449 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); 3450 spin_unlock_irqrestore(&bp->lock, flags); 3451 netif_wake_queue(dev); 3452 return NETDEV_TX_OK; /* packet queued to adapter */ 3453 } 3454 3455 3456 /* 3457 * ================ 3458 * = dfx_xmt_done = 3459 * ================ 3460 * 3461 * Overview: 3462 * Processes all frames that have been transmitted. 3463 * 3464 * Returns: 3465 * None 3466 * 3467 * Arguments: 3468 * bp - pointer to board information 3469 * 3470 * Functional Description: 3471 * For all consumed transmit descriptors that have not 3472 * yet been completed, we'll free the skb we were holding 3473 * onto using dev_kfree_skb and bump the appropriate 3474 * counters. 3475 * 3476 * Return Codes: 3477 * None 3478 * 3479 * Assumptions: 3480 * The Type 2 register is not updated in this routine. It is 3481 * assumed that it will be updated in the ISR when dfx_xmt_done 3482 * returns. 3483 * 3484 * Side Effects: 3485 * None 3486 */ 3487 3488 static int dfx_xmt_done(DFX_board_t *bp) 3489 { 3490 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3491 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ 3492 u8 comp; /* local transmit completion index */ 3493 int freed = 0; /* buffers freed */ 3494 3495 /* Service all consumed transmit frames */ 3496 3497 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); 3498 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) 3499 { 3500 /* Get pointer to the transmit driver descriptor block information */ 3501 3502 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); 3503 3504 /* Increment transmit counters */ 3505 3506 bp->xmt_total_frames++; 3507 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; 3508 3509 /* Return skb to operating system */ 3510 comp = bp->rcv_xmt_reg.index.xmt_comp; 3511 dma_unmap_single(bp->bus_dev, 3512 bp->descr_block_virt->xmt_data[comp].long_1, 3513 p_xmt_drv_descr->p_skb->len, 3514 DMA_TO_DEVICE); 3515 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); 3516 3517 /* 3518 * Move to start of next packet by updating completion index 3519 * 3520 * Here we assume that a transmit packet request is always 3521 * serviced by posting one fragment. We can therefore 3522 * simplify the completion code by incrementing the 3523 * completion index by one. This code will need to be 3524 * modified if this assumption changes. See comments 3525 * in dfx_xmt_queue_pkt for more details. 3526 */ 3527 3528 bp->rcv_xmt_reg.index.xmt_comp += 1; 3529 freed++; 3530 } 3531 return freed; 3532 } 3533 3534 3535 /* 3536 * ================= 3537 * = dfx_rcv_flush = 3538 * ================= 3539 * 3540 * Overview: 3541 * Remove all skb's in the receive ring. 3542 * 3543 * Returns: 3544 * None 3545 * 3546 * Arguments: 3547 * bp - pointer to board information 3548 * 3549 * Functional Description: 3550 * Free's all the dynamically allocated skb's that are 3551 * currently attached to the device receive ring. This 3552 * function is typically only used when the device is 3553 * initialized or reinitialized. 3554 * 3555 * Return Codes: 3556 * None 3557 * 3558 * Side Effects: 3559 * None 3560 */ 3561 #ifdef DYNAMIC_BUFFERS 3562 static void dfx_rcv_flush( DFX_board_t *bp ) 3563 { 3564 int i, j; 3565 3566 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) 3567 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) 3568 { 3569 struct sk_buff *skb; 3570 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; 3571 if (skb) { 3572 dma_unmap_single(bp->bus_dev, 3573 bp->descr_block_virt->rcv_data[i+j].long_1, 3574 PI_RCV_DATA_K_SIZE_MAX, 3575 DMA_FROM_DEVICE); 3576 dev_kfree_skb(skb); 3577 } 3578 bp->p_rcv_buff_va[i+j] = NULL; 3579 } 3580 3581 } 3582 #endif /* DYNAMIC_BUFFERS */ 3583 3584 /* 3585 * ================= 3586 * = dfx_xmt_flush = 3587 * ================= 3588 * 3589 * Overview: 3590 * Processes all frames whether they've been transmitted 3591 * or not. 3592 * 3593 * Returns: 3594 * None 3595 * 3596 * Arguments: 3597 * bp - pointer to board information 3598 * 3599 * Functional Description: 3600 * For all produced transmit descriptors that have not 3601 * yet been completed, we'll free the skb we were holding 3602 * onto using dev_kfree_skb and bump the appropriate 3603 * counters. Of course, it's possible that some of 3604 * these transmit requests actually did go out, but we 3605 * won't make that distinction here. Finally, we'll 3606 * update the consumer index to match the producer. 3607 * 3608 * Return Codes: 3609 * None 3610 * 3611 * Assumptions: 3612 * This routine does NOT update the Type 2 register. It 3613 * is assumed that this routine is being called during a 3614 * transmit flush interrupt, or a shutdown or close routine. 3615 * 3616 * Side Effects: 3617 * None 3618 */ 3619 3620 static void dfx_xmt_flush( DFX_board_t *bp ) 3621 { 3622 u32 prod_cons; /* rcv/xmt consumer block longword */ 3623 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ 3624 u8 comp; /* local transmit completion index */ 3625 3626 /* Flush all outstanding transmit frames */ 3627 3628 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) 3629 { 3630 /* Get pointer to the transmit driver descriptor block information */ 3631 3632 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); 3633 3634 /* Return skb to operating system */ 3635 comp = bp->rcv_xmt_reg.index.xmt_comp; 3636 dma_unmap_single(bp->bus_dev, 3637 bp->descr_block_virt->xmt_data[comp].long_1, 3638 p_xmt_drv_descr->p_skb->len, 3639 DMA_TO_DEVICE); 3640 dev_kfree_skb(p_xmt_drv_descr->p_skb); 3641 3642 /* Increment transmit error counter */ 3643 3644 bp->xmt_discards++; 3645 3646 /* 3647 * Move to start of next packet by updating completion index 3648 * 3649 * Here we assume that a transmit packet request is always 3650 * serviced by posting one fragment. We can therefore 3651 * simplify the completion code by incrementing the 3652 * completion index by one. This code will need to be 3653 * modified if this assumption changes. See comments 3654 * in dfx_xmt_queue_pkt for more details. 3655 */ 3656 3657 bp->rcv_xmt_reg.index.xmt_comp += 1; 3658 } 3659 3660 /* Update the transmit consumer index in the consumer block */ 3661 3662 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); 3663 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); 3664 bp->cons_block_virt->xmt_rcv_data = prod_cons; 3665 } 3666 3667 /* 3668 * ================== 3669 * = dfx_unregister = 3670 * ================== 3671 * 3672 * Overview: 3673 * Shuts down an FDDI controller 3674 * 3675 * Returns: 3676 * Condition code 3677 * 3678 * Arguments: 3679 * bdev - pointer to device information 3680 * 3681 * Functional Description: 3682 * 3683 * Return Codes: 3684 * None 3685 * 3686 * Assumptions: 3687 * It compiles so it should work :-( (PCI cards do :-) 3688 * 3689 * Side Effects: 3690 * Device structures for FDDI adapters (fddi0, fddi1, etc) are 3691 * freed. 3692 */ 3693 static void dfx_unregister(struct device *bdev) 3694 { 3695 struct net_device *dev = dev_get_drvdata(bdev); 3696 DFX_board_t *bp = netdev_priv(dev); 3697 int dfx_bus_pci = dev_is_pci(bdev); 3698 int dfx_bus_tc = DFX_BUS_TC(bdev); 3699 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; 3700 resource_size_t bar_start[3]; /* pointers to ports */ 3701 resource_size_t bar_len[3]; /* resource lengths */ 3702 int alloc_size; /* total buffer size used */ 3703 3704 unregister_netdev(dev); 3705 3706 alloc_size = sizeof(PI_DESCR_BLOCK) + 3707 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + 3708 #ifndef DYNAMIC_BUFFERS 3709 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + 3710 #endif 3711 sizeof(PI_CONSUMER_BLOCK) + 3712 (PI_ALIGN_K_DESC_BLK - 1); 3713 if (bp->kmalloced) 3714 dma_free_coherent(bdev, alloc_size, 3715 bp->kmalloced, bp->kmalloced_dma); 3716 3717 dfx_bus_uninit(dev); 3718 3719 dfx_get_bars(bdev, bar_start, bar_len); 3720 if (bar_start[2] != 0) 3721 release_region(bar_start[2], bar_len[2]); 3722 if (bar_start[1] != 0) 3723 release_region(bar_start[1], bar_len[1]); 3724 if (dfx_use_mmio) { 3725 iounmap(bp->base.mem); 3726 release_mem_region(bar_start[0], bar_len[0]); 3727 } else 3728 release_region(bar_start[0], bar_len[0]); 3729 3730 if (dfx_bus_pci) 3731 pci_disable_device(to_pci_dev(bdev)); 3732 3733 free_netdev(dev); 3734 } 3735 3736 3737 static int __maybe_unused dfx_dev_register(struct device *); 3738 static int __maybe_unused dfx_dev_unregister(struct device *); 3739 3740 #ifdef CONFIG_PCI 3741 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *); 3742 static void dfx_pci_unregister(struct pci_dev *); 3743 3744 static const struct pci_device_id dfx_pci_table[] = { 3745 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, 3746 { } 3747 }; 3748 MODULE_DEVICE_TABLE(pci, dfx_pci_table); 3749 3750 static struct pci_driver dfx_pci_driver = { 3751 .name = "defxx", 3752 .id_table = dfx_pci_table, 3753 .probe = dfx_pci_register, 3754 .remove = dfx_pci_unregister, 3755 }; 3756 3757 static int dfx_pci_register(struct pci_dev *pdev, 3758 const struct pci_device_id *ent) 3759 { 3760 return dfx_register(&pdev->dev); 3761 } 3762 3763 static void dfx_pci_unregister(struct pci_dev *pdev) 3764 { 3765 dfx_unregister(&pdev->dev); 3766 } 3767 #endif /* CONFIG_PCI */ 3768 3769 #ifdef CONFIG_EISA 3770 static struct eisa_device_id dfx_eisa_table[] = { 3771 { "DEC3001", DEFEA_PROD_ID_1 }, 3772 { "DEC3002", DEFEA_PROD_ID_2 }, 3773 { "DEC3003", DEFEA_PROD_ID_3 }, 3774 { "DEC3004", DEFEA_PROD_ID_4 }, 3775 { } 3776 }; 3777 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); 3778 3779 static struct eisa_driver dfx_eisa_driver = { 3780 .id_table = dfx_eisa_table, 3781 .driver = { 3782 .name = "defxx", 3783 .bus = &eisa_bus_type, 3784 .probe = dfx_dev_register, 3785 .remove = dfx_dev_unregister, 3786 }, 3787 }; 3788 #endif /* CONFIG_EISA */ 3789 3790 #ifdef CONFIG_TC 3791 static struct tc_device_id const dfx_tc_table[] = { 3792 { "DEC ", "PMAF-FA " }, 3793 { "DEC ", "PMAF-FD " }, 3794 { "DEC ", "PMAF-FS " }, 3795 { "DEC ", "PMAF-FU " }, 3796 { } 3797 }; 3798 MODULE_DEVICE_TABLE(tc, dfx_tc_table); 3799 3800 static struct tc_driver dfx_tc_driver = { 3801 .id_table = dfx_tc_table, 3802 .driver = { 3803 .name = "defxx", 3804 .bus = &tc_bus_type, 3805 .probe = dfx_dev_register, 3806 .remove = dfx_dev_unregister, 3807 }, 3808 }; 3809 #endif /* CONFIG_TC */ 3810 3811 static int __maybe_unused dfx_dev_register(struct device *dev) 3812 { 3813 int status; 3814 3815 status = dfx_register(dev); 3816 if (!status) 3817 get_device(dev); 3818 return status; 3819 } 3820 3821 static int __maybe_unused dfx_dev_unregister(struct device *dev) 3822 { 3823 put_device(dev); 3824 dfx_unregister(dev); 3825 return 0; 3826 } 3827 3828 3829 static int dfx_init(void) 3830 { 3831 int status; 3832 3833 status = pci_register_driver(&dfx_pci_driver); 3834 if (!status) 3835 status = eisa_driver_register(&dfx_eisa_driver); 3836 if (!status) 3837 status = tc_register_driver(&dfx_tc_driver); 3838 return status; 3839 } 3840 3841 static void dfx_cleanup(void) 3842 { 3843 tc_unregister_driver(&dfx_tc_driver); 3844 eisa_driver_unregister(&dfx_eisa_driver); 3845 pci_unregister_driver(&dfx_pci_driver); 3846 } 3847 3848 module_init(dfx_init); 3849 module_exit(dfx_cleanup); 3850 MODULE_AUTHOR("Lawrence V. Stefani"); 3851 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " 3852 DRV_VERSION " " DRV_RELDATE); 3853 MODULE_LICENSE("GPL"); 3854