1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port		0x00		0x10		0x20
13  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
14  * physical PortId	2		0		1
15  * TX queue		23		24		25
16  * RX-free queue	26		27		28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1	- NPE ID (RX and TX-done)
22  * bits 0 -> 2	- priority (TX, per 802.1D)
23  * bits 3 -> 4	- port ID (user-set?)
24  * bits 5 -> 31	- physical descriptor address
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <mach/ixp46x_ts.h>
39 #include <mach/npe.h>
40 #include <mach/qmgr.h>
41 
42 #define DEBUG_DESC		0
43 #define DEBUG_RX		0
44 #define DEBUG_TX		0
45 #define DEBUG_PKT_BYTES		0
46 #define DEBUG_MDIO		0
47 #define DEBUG_CLOSE		0
48 
49 #define DRV_NAME		"ixp4xx_eth"
50 
51 #define MAX_NPES		3
52 
53 #define RX_DESCS		64 /* also length of all RX queues */
54 #define TX_DESCS		16 /* also length of all TX queues */
55 #define TXDONE_QUEUE_LEN	64 /* dwords */
56 
57 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
58 #define REGS_SIZE		0x1000
59 #define MAX_MRU			1536 /* 0x600 */
60 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
61 
62 #define NAPI_WEIGHT		16
63 #define MDIO_INTERVAL		(3 * HZ)
64 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
65 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
66 
67 #define NPE_ID(port_id)		((port_id) >> 4)
68 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
69 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
70 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
71 #define TXDONE_QUEUE		31
72 
73 #define PTP_SLAVE_MODE		1
74 #define PTP_MASTER_MODE		2
75 #define PORT2CHANNEL(p)		NPE_ID(p->id)
76 
77 /* TX Control Registers */
78 #define TX_CNTRL0_TX_EN		0x01
79 #define TX_CNTRL0_HALFDUPLEX	0x02
80 #define TX_CNTRL0_RETRY		0x04
81 #define TX_CNTRL0_PAD_EN	0x08
82 #define TX_CNTRL0_APPEND_FCS	0x10
83 #define TX_CNTRL0_2DEFER	0x20
84 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
85 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
86 
87 /* RX Control Registers */
88 #define RX_CNTRL0_RX_EN		0x01
89 #define RX_CNTRL0_PADSTRIP_EN	0x02
90 #define RX_CNTRL0_SEND_FCS	0x04
91 #define RX_CNTRL0_PAUSE_EN	0x08
92 #define RX_CNTRL0_LOOP_EN	0x10
93 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
94 #define RX_CNTRL0_RX_RUNT_EN	0x40
95 #define RX_CNTRL0_BCAST_DIS	0x80
96 #define RX_CNTRL1_DEFER_EN	0x01
97 
98 /* Core Control Register */
99 #define CORE_RESET		0x01
100 #define CORE_RX_FIFO_FLUSH	0x02
101 #define CORE_TX_FIFO_FLUSH	0x04
102 #define CORE_SEND_JAM		0x08
103 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
104 
105 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
106 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
107 				 TX_CNTRL0_2DEFER)
108 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
109 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
110 
111 
112 /* NPE message codes */
113 #define NPE_GETSTATUS			0x00
114 #define NPE_EDB_SETPORTADDRESS		0x01
115 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
116 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
117 #define NPE_GETSTATS			0x04
118 #define NPE_RESETSTATS			0x05
119 #define NPE_SETMAXFRAMELENGTHS		0x06
120 #define NPE_VLAN_SETRXTAGMODE		0x07
121 #define NPE_VLAN_SETDEFAULTRXVID	0x08
122 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
123 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
124 #define NPE_VLAN_SETRXQOSENTRY		0x0B
125 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
126 #define NPE_STP_SETBLOCKINGSTATE	0x0D
127 #define NPE_FW_SETFIREWALLMODE		0x0E
128 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
129 #define NPE_PC_SETAPMACTABLE		0x11
130 #define NPE_SETLOOPBACK_MODE		0x12
131 #define NPE_PC_SETBSSIDTABLE		0x13
132 #define NPE_ADDRESS_FILTER_CONFIG	0x14
133 #define NPE_APPENDFCSCONFIG		0x15
134 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
135 #define NPE_MAC_RECOVERY_START		0x17
136 
137 
138 #ifdef __ARMEB__
139 typedef struct sk_buff buffer_t;
140 #define free_buffer dev_kfree_skb
141 #define free_buffer_irq dev_kfree_skb_irq
142 #else
143 typedef void buffer_t;
144 #define free_buffer kfree
145 #define free_buffer_irq kfree
146 #endif
147 
148 struct eth_regs {
149 	u32 tx_control[2], __res1[2];		/* 000 */
150 	u32 rx_control[2], __res2[2];		/* 010 */
151 	u32 random_seed, __res3[3];		/* 020 */
152 	u32 partial_empty_threshold, __res4;	/* 030 */
153 	u32 partial_full_threshold, __res5;	/* 038 */
154 	u32 tx_start_bytes, __res6[3];		/* 040 */
155 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
156 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
157 	u32 slot_time, __res9[3];		/* 070 */
158 	u32 mdio_command[4];			/* 080 */
159 	u32 mdio_status[4];			/* 090 */
160 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
161 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
162 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
163 	u32 hw_addr[6], __res13[61];		/* 0F0 */
164 	u32 core_control;			/* 1FC */
165 };
166 
167 struct port {
168 	struct resource *mem_res;
169 	struct eth_regs __iomem *regs;
170 	struct npe *npe;
171 	struct net_device *netdev;
172 	struct napi_struct napi;
173 	struct phy_device *phydev;
174 	struct eth_plat_info *plat;
175 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
176 	struct desc *desc_tab;	/* coherent */
177 	u32 desc_tab_phys;
178 	int id;			/* logical port ID */
179 	int speed, duplex;
180 	u8 firmware[4];
181 	int hwts_tx_en;
182 	int hwts_rx_en;
183 };
184 
185 /* NPE message structure */
186 struct msg {
187 #ifdef __ARMEB__
188 	u8 cmd, eth_id, byte2, byte3;
189 	u8 byte4, byte5, byte6, byte7;
190 #else
191 	u8 byte3, byte2, eth_id, cmd;
192 	u8 byte7, byte6, byte5, byte4;
193 #endif
194 };
195 
196 /* Ethernet packet descriptor */
197 struct desc {
198 	u32 next;		/* pointer to next buffer, unused */
199 
200 #ifdef __ARMEB__
201 	u16 buf_len;		/* buffer length */
202 	u16 pkt_len;		/* packet length */
203 	u32 data;		/* pointer to data buffer in RAM */
204 	u8 dest_id;
205 	u8 src_id;
206 	u16 flags;
207 	u8 qos;
208 	u8 padlen;
209 	u16 vlan_tci;
210 #else
211 	u16 pkt_len;		/* packet length */
212 	u16 buf_len;		/* buffer length */
213 	u32 data;		/* pointer to data buffer in RAM */
214 	u16 flags;
215 	u8 src_id;
216 	u8 dest_id;
217 	u16 vlan_tci;
218 	u8 padlen;
219 	u8 qos;
220 #endif
221 
222 #ifdef __ARMEB__
223 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
224 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
225 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
226 #else
227 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
228 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
229 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
230 #endif
231 };
232 
233 
234 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
235 				 (n) * sizeof(struct desc))
236 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
237 
238 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
239 				 ((n) + RX_DESCS) * sizeof(struct desc))
240 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
241 
242 #ifndef __ARMEB__
243 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
244 {
245 	int i;
246 	for (i = 0; i < cnt; i++)
247 		dest[i] = swab32(src[i]);
248 }
249 #endif
250 
251 static spinlock_t mdio_lock;
252 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
253 static struct mii_bus *mdio_bus;
254 static int ports_open;
255 static struct port *npe_port_tab[MAX_NPES];
256 static struct dma_pool *dma_pool;
257 
258 static struct sock_filter ptp_filter[] = {
259 	PTP_FILTER
260 };
261 
262 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
263 {
264 	u8 *data = skb->data;
265 	unsigned int offset;
266 	u16 *hi, *id;
267 	u32 lo;
268 
269 	if (sk_run_filter(skb, ptp_filter) != PTP_CLASS_V1_IPV4)
270 		return 0;
271 
272 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
273 
274 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
275 		return 0;
276 
277 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
278 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
279 
280 	memcpy(&lo, &hi[1], sizeof(lo));
281 
282 	return (uid_hi == ntohs(*hi) &&
283 		uid_lo == ntohl(lo) &&
284 		seqid  == ntohs(*id));
285 }
286 
287 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
288 {
289 	struct skb_shared_hwtstamps *shhwtstamps;
290 	struct ixp46x_ts_regs *regs;
291 	u64 ns;
292 	u32 ch, hi, lo, val;
293 	u16 uid, seq;
294 
295 	if (!port->hwts_rx_en)
296 		return;
297 
298 	ch = PORT2CHANNEL(port);
299 
300 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
301 
302 	val = __raw_readl(&regs->channel[ch].ch_event);
303 
304 	if (!(val & RX_SNAPSHOT_LOCKED))
305 		return;
306 
307 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
308 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
309 
310 	uid = hi & 0xffff;
311 	seq = (hi >> 16) & 0xffff;
312 
313 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
314 		goto out;
315 
316 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
317 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
318 	ns = ((u64) hi) << 32;
319 	ns |= lo;
320 	ns <<= TICKS_NS_SHIFT;
321 
322 	shhwtstamps = skb_hwtstamps(skb);
323 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
324 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
325 out:
326 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
327 }
328 
329 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
330 {
331 	struct skb_shared_hwtstamps shhwtstamps;
332 	struct ixp46x_ts_regs *regs;
333 	struct skb_shared_info *shtx;
334 	u64 ns;
335 	u32 ch, cnt, hi, lo, val;
336 
337 	shtx = skb_shinfo(skb);
338 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
339 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
340 	else
341 		return;
342 
343 	ch = PORT2CHANNEL(port);
344 
345 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
346 
347 	/*
348 	 * This really stinks, but we have to poll for the Tx time stamp.
349 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
350 	 */
351 	for (cnt = 0; cnt < 100; cnt++) {
352 		val = __raw_readl(&regs->channel[ch].ch_event);
353 		if (val & TX_SNAPSHOT_LOCKED)
354 			break;
355 		udelay(1);
356 	}
357 	if (!(val & TX_SNAPSHOT_LOCKED)) {
358 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
359 		return;
360 	}
361 
362 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
363 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
364 	ns = ((u64) hi) << 32;
365 	ns |= lo;
366 	ns <<= TICKS_NS_SHIFT;
367 
368 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
369 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
370 	skb_tstamp_tx(skb, &shhwtstamps);
371 
372 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
373 }
374 
375 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
376 {
377 	struct hwtstamp_config cfg;
378 	struct ixp46x_ts_regs *regs;
379 	struct port *port = netdev_priv(netdev);
380 	int ch;
381 
382 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
383 		return -EFAULT;
384 
385 	if (cfg.flags) /* reserved for future extensions */
386 		return -EINVAL;
387 
388 	ch = PORT2CHANNEL(port);
389 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
390 
391 	switch (cfg.tx_type) {
392 	case HWTSTAMP_TX_OFF:
393 		port->hwts_tx_en = 0;
394 		break;
395 	case HWTSTAMP_TX_ON:
396 		port->hwts_tx_en = 1;
397 		break;
398 	default:
399 		return -ERANGE;
400 	}
401 
402 	switch (cfg.rx_filter) {
403 	case HWTSTAMP_FILTER_NONE:
404 		port->hwts_rx_en = 0;
405 		break;
406 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
407 		port->hwts_rx_en = PTP_SLAVE_MODE;
408 		__raw_writel(0, &regs->channel[ch].ch_control);
409 		break;
410 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
411 		port->hwts_rx_en = PTP_MASTER_MODE;
412 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
413 		break;
414 	default:
415 		return -ERANGE;
416 	}
417 
418 	/* Clear out any old time stamps. */
419 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
420 		     &regs->channel[ch].ch_event);
421 
422 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
423 }
424 
425 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
426 			   int write, u16 cmd)
427 {
428 	int cycles = 0;
429 
430 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
431 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
432 		return -1;
433 	}
434 
435 	if (write) {
436 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
437 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
438 	}
439 	__raw_writel(((phy_id << 5) | location) & 0xFF,
440 		     &mdio_regs->mdio_command[2]);
441 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
442 		     &mdio_regs->mdio_command[3]);
443 
444 	while ((cycles < MAX_MDIO_RETRIES) &&
445 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
446 		udelay(1);
447 		cycles++;
448 	}
449 
450 	if (cycles == MAX_MDIO_RETRIES) {
451 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
452 		       phy_id);
453 		return -1;
454 	}
455 
456 #if DEBUG_MDIO
457 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
458 	       phy_id, write ? "write" : "read", cycles);
459 #endif
460 
461 	if (write)
462 		return 0;
463 
464 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
465 #if DEBUG_MDIO
466 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
467 		       phy_id);
468 #endif
469 		return 0xFFFF; /* don't return error */
470 	}
471 
472 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
473 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
474 }
475 
476 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
477 {
478 	unsigned long flags;
479 	int ret;
480 
481 	spin_lock_irqsave(&mdio_lock, flags);
482 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
483 	spin_unlock_irqrestore(&mdio_lock, flags);
484 #if DEBUG_MDIO
485 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
486 	       phy_id, location, ret);
487 #endif
488 	return ret;
489 }
490 
491 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
492 			     u16 val)
493 {
494 	unsigned long flags;
495 	int ret;
496 
497 	spin_lock_irqsave(&mdio_lock, flags);
498 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
499 	spin_unlock_irqrestore(&mdio_lock, flags);
500 #if DEBUG_MDIO
501 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
502 	       bus->name, phy_id, location, val, ret);
503 #endif
504 	return ret;
505 }
506 
507 static int ixp4xx_mdio_register(void)
508 {
509 	int err;
510 
511 	if (!(mdio_bus = mdiobus_alloc()))
512 		return -ENOMEM;
513 
514 	if (cpu_is_ixp43x()) {
515 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
516 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
517 			return -ENODEV;
518 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
519 	} else {
520 		/* All MII PHY accesses use NPE-B Ethernet registers */
521 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
522 			return -ENODEV;
523 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
524 	}
525 
526 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
527 	spin_lock_init(&mdio_lock);
528 	mdio_bus->name = "IXP4xx MII Bus";
529 	mdio_bus->read = &ixp4xx_mdio_read;
530 	mdio_bus->write = &ixp4xx_mdio_write;
531 	strcpy(mdio_bus->id, "0");
532 
533 	if ((err = mdiobus_register(mdio_bus)))
534 		mdiobus_free(mdio_bus);
535 	return err;
536 }
537 
538 static void ixp4xx_mdio_remove(void)
539 {
540 	mdiobus_unregister(mdio_bus);
541 	mdiobus_free(mdio_bus);
542 }
543 
544 
545 static void ixp4xx_adjust_link(struct net_device *dev)
546 {
547 	struct port *port = netdev_priv(dev);
548 	struct phy_device *phydev = port->phydev;
549 
550 	if (!phydev->link) {
551 		if (port->speed) {
552 			port->speed = 0;
553 			printk(KERN_INFO "%s: link down\n", dev->name);
554 		}
555 		return;
556 	}
557 
558 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
559 		return;
560 
561 	port->speed = phydev->speed;
562 	port->duplex = phydev->duplex;
563 
564 	if (port->duplex)
565 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
566 			     &port->regs->tx_control[0]);
567 	else
568 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
569 			     &port->regs->tx_control[0]);
570 
571 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
572 	       dev->name, port->speed, port->duplex ? "full" : "half");
573 }
574 
575 
576 static inline void debug_pkt(struct net_device *dev, const char *func,
577 			     u8 *data, int len)
578 {
579 #if DEBUG_PKT_BYTES
580 	int i;
581 
582 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
583 	for (i = 0; i < len; i++) {
584 		if (i >= DEBUG_PKT_BYTES)
585 			break;
586 		printk("%s%02X",
587 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
588 		       data[i]);
589 	}
590 	printk("\n");
591 #endif
592 }
593 
594 
595 static inline void debug_desc(u32 phys, struct desc *desc)
596 {
597 #if DEBUG_DESC
598 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
599 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
600 	       phys, desc->next, desc->buf_len, desc->pkt_len,
601 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
602 	       desc->qos, desc->padlen, desc->vlan_tci,
603 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
604 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
605 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
606 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
607 #endif
608 }
609 
610 static inline int queue_get_desc(unsigned int queue, struct port *port,
611 				 int is_tx)
612 {
613 	u32 phys, tab_phys, n_desc;
614 	struct desc *tab;
615 
616 	if (!(phys = qmgr_get_entry(queue)))
617 		return -1;
618 
619 	phys &= ~0x1F; /* mask out non-address bits */
620 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
621 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
622 	n_desc = (phys - tab_phys) / sizeof(struct desc);
623 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
624 	debug_desc(phys, &tab[n_desc]);
625 	BUG_ON(tab[n_desc].next);
626 	return n_desc;
627 }
628 
629 static inline void queue_put_desc(unsigned int queue, u32 phys,
630 				  struct desc *desc)
631 {
632 	debug_desc(phys, desc);
633 	BUG_ON(phys & 0x1F);
634 	qmgr_put_entry(queue, phys);
635 	/* Don't check for queue overflow here, we've allocated sufficient
636 	   length and queues >= 32 don't support this check anyway. */
637 }
638 
639 
640 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
641 {
642 #ifdef __ARMEB__
643 	dma_unmap_single(&port->netdev->dev, desc->data,
644 			 desc->buf_len, DMA_TO_DEVICE);
645 #else
646 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
647 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
648 			 DMA_TO_DEVICE);
649 #endif
650 }
651 
652 
653 static void eth_rx_irq(void *pdev)
654 {
655 	struct net_device *dev = pdev;
656 	struct port *port = netdev_priv(dev);
657 
658 #if DEBUG_RX
659 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
660 #endif
661 	qmgr_disable_irq(port->plat->rxq);
662 	napi_schedule(&port->napi);
663 }
664 
665 static int eth_poll(struct napi_struct *napi, int budget)
666 {
667 	struct port *port = container_of(napi, struct port, napi);
668 	struct net_device *dev = port->netdev;
669 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
670 	int received = 0;
671 
672 #if DEBUG_RX
673 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
674 #endif
675 
676 	while (received < budget) {
677 		struct sk_buff *skb;
678 		struct desc *desc;
679 		int n;
680 #ifdef __ARMEB__
681 		struct sk_buff *temp;
682 		u32 phys;
683 #endif
684 
685 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
686 #if DEBUG_RX
687 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
688 			       dev->name);
689 #endif
690 			napi_complete(napi);
691 			qmgr_enable_irq(rxq);
692 			if (!qmgr_stat_below_low_watermark(rxq) &&
693 			    napi_reschedule(napi)) { /* not empty again */
694 #if DEBUG_RX
695 				printk(KERN_DEBUG "%s: eth_poll"
696 				       " napi_reschedule successed\n",
697 				       dev->name);
698 #endif
699 				qmgr_disable_irq(rxq);
700 				continue;
701 			}
702 #if DEBUG_RX
703 			printk(KERN_DEBUG "%s: eth_poll all done\n",
704 			       dev->name);
705 #endif
706 			return received; /* all work done */
707 		}
708 
709 		desc = rx_desc_ptr(port, n);
710 
711 #ifdef __ARMEB__
712 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
713 			phys = dma_map_single(&dev->dev, skb->data,
714 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
715 			if (dma_mapping_error(&dev->dev, phys)) {
716 				dev_kfree_skb(skb);
717 				skb = NULL;
718 			}
719 		}
720 #else
721 		skb = netdev_alloc_skb(dev,
722 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
723 #endif
724 
725 		if (!skb) {
726 			dev->stats.rx_dropped++;
727 			/* put the desc back on RX-ready queue */
728 			desc->buf_len = MAX_MRU;
729 			desc->pkt_len = 0;
730 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
731 			continue;
732 		}
733 
734 		/* process received frame */
735 #ifdef __ARMEB__
736 		temp = skb;
737 		skb = port->rx_buff_tab[n];
738 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
739 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
740 #else
741 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
742 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
743 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
744 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
745 #endif
746 		skb_reserve(skb, NET_IP_ALIGN);
747 		skb_put(skb, desc->pkt_len);
748 
749 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
750 
751 		ixp_rx_timestamp(port, skb);
752 		skb->protocol = eth_type_trans(skb, dev);
753 		dev->stats.rx_packets++;
754 		dev->stats.rx_bytes += skb->len;
755 		netif_receive_skb(skb);
756 
757 		/* put the new buffer on RX-free queue */
758 #ifdef __ARMEB__
759 		port->rx_buff_tab[n] = temp;
760 		desc->data = phys + NET_IP_ALIGN;
761 #endif
762 		desc->buf_len = MAX_MRU;
763 		desc->pkt_len = 0;
764 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
765 		received++;
766 	}
767 
768 #if DEBUG_RX
769 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
770 #endif
771 	return received;		/* not all work done */
772 }
773 
774 
775 static void eth_txdone_irq(void *unused)
776 {
777 	u32 phys;
778 
779 #if DEBUG_TX
780 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
781 #endif
782 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
783 		u32 npe_id, n_desc;
784 		struct port *port;
785 		struct desc *desc;
786 		int start;
787 
788 		npe_id = phys & 3;
789 		BUG_ON(npe_id >= MAX_NPES);
790 		port = npe_port_tab[npe_id];
791 		BUG_ON(!port);
792 		phys &= ~0x1F; /* mask out non-address bits */
793 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
794 		BUG_ON(n_desc >= TX_DESCS);
795 		desc = tx_desc_ptr(port, n_desc);
796 		debug_desc(phys, desc);
797 
798 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
799 			port->netdev->stats.tx_packets++;
800 			port->netdev->stats.tx_bytes += desc->pkt_len;
801 
802 			dma_unmap_tx(port, desc);
803 #if DEBUG_TX
804 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
805 			       port->netdev->name, port->tx_buff_tab[n_desc]);
806 #endif
807 			free_buffer_irq(port->tx_buff_tab[n_desc]);
808 			port->tx_buff_tab[n_desc] = NULL;
809 		}
810 
811 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
812 		queue_put_desc(port->plat->txreadyq, phys, desc);
813 		if (start) { /* TX-ready queue was empty */
814 #if DEBUG_TX
815 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
816 			       port->netdev->name);
817 #endif
818 			netif_wake_queue(port->netdev);
819 		}
820 	}
821 }
822 
823 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
824 {
825 	struct port *port = netdev_priv(dev);
826 	unsigned int txreadyq = port->plat->txreadyq;
827 	int len, offset, bytes, n;
828 	void *mem;
829 	u32 phys;
830 	struct desc *desc;
831 
832 #if DEBUG_TX
833 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
834 #endif
835 
836 	if (unlikely(skb->len > MAX_MRU)) {
837 		dev_kfree_skb(skb);
838 		dev->stats.tx_errors++;
839 		return NETDEV_TX_OK;
840 	}
841 
842 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
843 
844 	len = skb->len;
845 #ifdef __ARMEB__
846 	offset = 0; /* no need to keep alignment */
847 	bytes = len;
848 	mem = skb->data;
849 #else
850 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
851 	bytes = ALIGN(offset + len, 4);
852 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
853 		dev_kfree_skb(skb);
854 		dev->stats.tx_dropped++;
855 		return NETDEV_TX_OK;
856 	}
857 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
858 #endif
859 
860 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
861 	if (dma_mapping_error(&dev->dev, phys)) {
862 		dev_kfree_skb(skb);
863 #ifndef __ARMEB__
864 		kfree(mem);
865 #endif
866 		dev->stats.tx_dropped++;
867 		return NETDEV_TX_OK;
868 	}
869 
870 	n = queue_get_desc(txreadyq, port, 1);
871 	BUG_ON(n < 0);
872 	desc = tx_desc_ptr(port, n);
873 
874 #ifdef __ARMEB__
875 	port->tx_buff_tab[n] = skb;
876 #else
877 	port->tx_buff_tab[n] = mem;
878 #endif
879 	desc->data = phys + offset;
880 	desc->buf_len = desc->pkt_len = len;
881 
882 	/* NPE firmware pads short frames with zeros internally */
883 	wmb();
884 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
885 
886 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
887 #if DEBUG_TX
888 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
889 #endif
890 		netif_stop_queue(dev);
891 		/* we could miss TX ready interrupt */
892 		/* really empty in fact */
893 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
894 #if DEBUG_TX
895 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
896 			       dev->name);
897 #endif
898 			netif_wake_queue(dev);
899 		}
900 	}
901 
902 #if DEBUG_TX
903 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
904 #endif
905 
906 	ixp_tx_timestamp(port, skb);
907 	skb_tx_timestamp(skb);
908 
909 #ifndef __ARMEB__
910 	dev_kfree_skb(skb);
911 #endif
912 	return NETDEV_TX_OK;
913 }
914 
915 
916 static void eth_set_mcast_list(struct net_device *dev)
917 {
918 	struct port *port = netdev_priv(dev);
919 	struct netdev_hw_addr *ha;
920 	u8 diffs[ETH_ALEN], *addr;
921 	int i;
922 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
923 
924 	if (dev->flags & IFF_ALLMULTI) {
925 		for (i = 0; i < ETH_ALEN; i++) {
926 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
927 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
928 		}
929 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
930 			&port->regs->rx_control[0]);
931 		return;
932 	}
933 
934 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
935 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
936 			     &port->regs->rx_control[0]);
937 		return;
938 	}
939 
940 	memset(diffs, 0, ETH_ALEN);
941 
942 	addr = NULL;
943 	netdev_for_each_mc_addr(ha, dev) {
944 		if (!addr)
945 			addr = ha->addr; /* first MAC address */
946 		for (i = 0; i < ETH_ALEN; i++)
947 			diffs[i] |= addr[i] ^ ha->addr[i];
948 	}
949 
950 	for (i = 0; i < ETH_ALEN; i++) {
951 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
952 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
953 	}
954 
955 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
956 		     &port->regs->rx_control[0]);
957 }
958 
959 
960 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
961 {
962 	struct port *port = netdev_priv(dev);
963 
964 	if (!netif_running(dev))
965 		return -EINVAL;
966 
967 	if (cpu_is_ixp46x() && cmd == SIOCSHWTSTAMP)
968 		return hwtstamp_ioctl(dev, req, cmd);
969 
970 	return phy_mii_ioctl(port->phydev, req, cmd);
971 }
972 
973 /* ethtool support */
974 
975 static void ixp4xx_get_drvinfo(struct net_device *dev,
976 			       struct ethtool_drvinfo *info)
977 {
978 	struct port *port = netdev_priv(dev);
979 	strcpy(info->driver, DRV_NAME);
980 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
981 		 port->firmware[0], port->firmware[1],
982 		 port->firmware[2], port->firmware[3]);
983 	strcpy(info->bus_info, "internal");
984 }
985 
986 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
987 {
988 	struct port *port = netdev_priv(dev);
989 	return phy_ethtool_gset(port->phydev, cmd);
990 }
991 
992 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
993 {
994 	struct port *port = netdev_priv(dev);
995 	return phy_ethtool_sset(port->phydev, cmd);
996 }
997 
998 static int ixp4xx_nway_reset(struct net_device *dev)
999 {
1000 	struct port *port = netdev_priv(dev);
1001 	return phy_start_aneg(port->phydev);
1002 }
1003 
1004 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1005 	.get_drvinfo = ixp4xx_get_drvinfo,
1006 	.get_settings = ixp4xx_get_settings,
1007 	.set_settings = ixp4xx_set_settings,
1008 	.nway_reset = ixp4xx_nway_reset,
1009 	.get_link = ethtool_op_get_link,
1010 };
1011 
1012 
1013 static int request_queues(struct port *port)
1014 {
1015 	int err;
1016 
1017 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1018 				 "%s:RX-free", port->netdev->name);
1019 	if (err)
1020 		return err;
1021 
1022 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1023 				 "%s:RX", port->netdev->name);
1024 	if (err)
1025 		goto rel_rxfree;
1026 
1027 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1028 				 "%s:TX", port->netdev->name);
1029 	if (err)
1030 		goto rel_rx;
1031 
1032 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1033 				 "%s:TX-ready", port->netdev->name);
1034 	if (err)
1035 		goto rel_tx;
1036 
1037 	/* TX-done queue handles skbs sent out by the NPEs */
1038 	if (!ports_open) {
1039 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1040 					 "%s:TX-done", DRV_NAME);
1041 		if (err)
1042 			goto rel_txready;
1043 	}
1044 	return 0;
1045 
1046 rel_txready:
1047 	qmgr_release_queue(port->plat->txreadyq);
1048 rel_tx:
1049 	qmgr_release_queue(TX_QUEUE(port->id));
1050 rel_rx:
1051 	qmgr_release_queue(port->plat->rxq);
1052 rel_rxfree:
1053 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1054 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1055 	       port->netdev->name);
1056 	return err;
1057 }
1058 
1059 static void release_queues(struct port *port)
1060 {
1061 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1062 	qmgr_release_queue(port->plat->rxq);
1063 	qmgr_release_queue(TX_QUEUE(port->id));
1064 	qmgr_release_queue(port->plat->txreadyq);
1065 
1066 	if (!ports_open)
1067 		qmgr_release_queue(TXDONE_QUEUE);
1068 }
1069 
1070 static int init_queues(struct port *port)
1071 {
1072 	int i;
1073 
1074 	if (!ports_open)
1075 		if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
1076 						 POOL_ALLOC_SIZE, 32, 0)))
1077 			return -ENOMEM;
1078 
1079 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1080 					      &port->desc_tab_phys)))
1081 		return -ENOMEM;
1082 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1083 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1084 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1085 
1086 	/* Setup RX buffers */
1087 	for (i = 0; i < RX_DESCS; i++) {
1088 		struct desc *desc = rx_desc_ptr(port, i);
1089 		buffer_t *buff; /* skb or kmalloc()ated memory */
1090 		void *data;
1091 #ifdef __ARMEB__
1092 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1093 			return -ENOMEM;
1094 		data = buff->data;
1095 #else
1096 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1097 			return -ENOMEM;
1098 		data = buff;
1099 #endif
1100 		desc->buf_len = MAX_MRU;
1101 		desc->data = dma_map_single(&port->netdev->dev, data,
1102 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1103 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1104 			free_buffer(buff);
1105 			return -EIO;
1106 		}
1107 		desc->data += NET_IP_ALIGN;
1108 		port->rx_buff_tab[i] = buff;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static void destroy_queues(struct port *port)
1115 {
1116 	int i;
1117 
1118 	if (port->desc_tab) {
1119 		for (i = 0; i < RX_DESCS; i++) {
1120 			struct desc *desc = rx_desc_ptr(port, i);
1121 			buffer_t *buff = port->rx_buff_tab[i];
1122 			if (buff) {
1123 				dma_unmap_single(&port->netdev->dev,
1124 						 desc->data - NET_IP_ALIGN,
1125 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1126 				free_buffer(buff);
1127 			}
1128 		}
1129 		for (i = 0; i < TX_DESCS; i++) {
1130 			struct desc *desc = tx_desc_ptr(port, i);
1131 			buffer_t *buff = port->tx_buff_tab[i];
1132 			if (buff) {
1133 				dma_unmap_tx(port, desc);
1134 				free_buffer(buff);
1135 			}
1136 		}
1137 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1138 		port->desc_tab = NULL;
1139 	}
1140 
1141 	if (!ports_open && dma_pool) {
1142 		dma_pool_destroy(dma_pool);
1143 		dma_pool = NULL;
1144 	}
1145 }
1146 
1147 static int eth_open(struct net_device *dev)
1148 {
1149 	struct port *port = netdev_priv(dev);
1150 	struct npe *npe = port->npe;
1151 	struct msg msg;
1152 	int i, err;
1153 
1154 	if (!npe_running(npe)) {
1155 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1156 		if (err)
1157 			return err;
1158 
1159 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1160 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1161 			       npe_name(npe));
1162 			return -EIO;
1163 		}
1164 		port->firmware[0] = msg.byte4;
1165 		port->firmware[1] = msg.byte5;
1166 		port->firmware[2] = msg.byte6;
1167 		port->firmware[3] = msg.byte7;
1168 	}
1169 
1170 	memset(&msg, 0, sizeof(msg));
1171 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1172 	msg.eth_id = port->id;
1173 	msg.byte5 = port->plat->rxq | 0x80;
1174 	msg.byte7 = port->plat->rxq << 4;
1175 	for (i = 0; i < 8; i++) {
1176 		msg.byte3 = i;
1177 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1178 			return -EIO;
1179 	}
1180 
1181 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1182 	msg.eth_id = PHYSICAL_ID(port->id);
1183 	msg.byte2 = dev->dev_addr[0];
1184 	msg.byte3 = dev->dev_addr[1];
1185 	msg.byte4 = dev->dev_addr[2];
1186 	msg.byte5 = dev->dev_addr[3];
1187 	msg.byte6 = dev->dev_addr[4];
1188 	msg.byte7 = dev->dev_addr[5];
1189 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1190 		return -EIO;
1191 
1192 	memset(&msg, 0, sizeof(msg));
1193 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1194 	msg.eth_id = port->id;
1195 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1196 		return -EIO;
1197 
1198 	if ((err = request_queues(port)) != 0)
1199 		return err;
1200 
1201 	if ((err = init_queues(port)) != 0) {
1202 		destroy_queues(port);
1203 		release_queues(port);
1204 		return err;
1205 	}
1206 
1207 	port->speed = 0;	/* force "link up" message */
1208 	phy_start(port->phydev);
1209 
1210 	for (i = 0; i < ETH_ALEN; i++)
1211 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1212 	__raw_writel(0x08, &port->regs->random_seed);
1213 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1214 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1215 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1216 	__raw_writel(0x15, &port->regs->tx_deferral);
1217 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1218 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1219 	__raw_writel(0x80, &port->regs->slot_time);
1220 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1221 
1222 	/* Populate queues with buffers, no failure after this point */
1223 	for (i = 0; i < TX_DESCS; i++)
1224 		queue_put_desc(port->plat->txreadyq,
1225 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1226 
1227 	for (i = 0; i < RX_DESCS; i++)
1228 		queue_put_desc(RXFREE_QUEUE(port->id),
1229 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1230 
1231 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1232 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1233 	__raw_writel(0, &port->regs->rx_control[1]);
1234 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1235 
1236 	napi_enable(&port->napi);
1237 	eth_set_mcast_list(dev);
1238 	netif_start_queue(dev);
1239 
1240 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1241 		     eth_rx_irq, dev);
1242 	if (!ports_open) {
1243 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1244 			     eth_txdone_irq, NULL);
1245 		qmgr_enable_irq(TXDONE_QUEUE);
1246 	}
1247 	ports_open++;
1248 	/* we may already have RX data, enables IRQ */
1249 	napi_schedule(&port->napi);
1250 	return 0;
1251 }
1252 
1253 static int eth_close(struct net_device *dev)
1254 {
1255 	struct port *port = netdev_priv(dev);
1256 	struct msg msg;
1257 	int buffs = RX_DESCS; /* allocated RX buffers */
1258 	int i;
1259 
1260 	ports_open--;
1261 	qmgr_disable_irq(port->plat->rxq);
1262 	napi_disable(&port->napi);
1263 	netif_stop_queue(dev);
1264 
1265 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1266 		buffs--;
1267 
1268 	memset(&msg, 0, sizeof(msg));
1269 	msg.cmd = NPE_SETLOOPBACK_MODE;
1270 	msg.eth_id = port->id;
1271 	msg.byte3 = 1;
1272 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1273 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1274 
1275 	i = 0;
1276 	do {			/* drain RX buffers */
1277 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1278 			buffs--;
1279 		if (!buffs)
1280 			break;
1281 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1282 			/* we have to inject some packet */
1283 			struct desc *desc;
1284 			u32 phys;
1285 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1286 			BUG_ON(n < 0);
1287 			desc = tx_desc_ptr(port, n);
1288 			phys = tx_desc_phys(port, n);
1289 			desc->buf_len = desc->pkt_len = 1;
1290 			wmb();
1291 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1292 		}
1293 		udelay(1);
1294 	} while (++i < MAX_CLOSE_WAIT);
1295 
1296 	if (buffs)
1297 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1298 		       " left in NPE\n", dev->name, buffs);
1299 #if DEBUG_CLOSE
1300 	if (!buffs)
1301 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1302 #endif
1303 
1304 	buffs = TX_DESCS;
1305 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1306 		buffs--; /* cancel TX */
1307 
1308 	i = 0;
1309 	do {
1310 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1311 			buffs--;
1312 		if (!buffs)
1313 			break;
1314 	} while (++i < MAX_CLOSE_WAIT);
1315 
1316 	if (buffs)
1317 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1318 		       "left in NPE\n", dev->name, buffs);
1319 #if DEBUG_CLOSE
1320 	if (!buffs)
1321 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1322 #endif
1323 
1324 	msg.byte3 = 0;
1325 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1326 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1327 		       dev->name);
1328 
1329 	phy_stop(port->phydev);
1330 
1331 	if (!ports_open)
1332 		qmgr_disable_irq(TXDONE_QUEUE);
1333 	destroy_queues(port);
1334 	release_queues(port);
1335 	return 0;
1336 }
1337 
1338 static const struct net_device_ops ixp4xx_netdev_ops = {
1339 	.ndo_open = eth_open,
1340 	.ndo_stop = eth_close,
1341 	.ndo_start_xmit = eth_xmit,
1342 	.ndo_set_rx_mode = eth_set_mcast_list,
1343 	.ndo_do_ioctl = eth_ioctl,
1344 	.ndo_change_mtu = eth_change_mtu,
1345 	.ndo_set_mac_address = eth_mac_addr,
1346 	.ndo_validate_addr = eth_validate_addr,
1347 };
1348 
1349 static int __devinit eth_init_one(struct platform_device *pdev)
1350 {
1351 	struct port *port;
1352 	struct net_device *dev;
1353 	struct eth_plat_info *plat = pdev->dev.platform_data;
1354 	u32 regs_phys;
1355 	char phy_id[MII_BUS_ID_SIZE + 3];
1356 	int err;
1357 
1358 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
1359 		pr_err("ixp4xx_eth: bad ptp filter\n");
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1364 		return -ENOMEM;
1365 
1366 	SET_NETDEV_DEV(dev, &pdev->dev);
1367 	port = netdev_priv(dev);
1368 	port->netdev = dev;
1369 	port->id = pdev->id;
1370 
1371 	switch (port->id) {
1372 	case IXP4XX_ETH_NPEA:
1373 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1374 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1375 		break;
1376 	case IXP4XX_ETH_NPEB:
1377 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1378 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1379 		break;
1380 	case IXP4XX_ETH_NPEC:
1381 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1382 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1383 		break;
1384 	default:
1385 		err = -ENODEV;
1386 		goto err_free;
1387 	}
1388 
1389 	dev->netdev_ops = &ixp4xx_netdev_ops;
1390 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1391 	dev->tx_queue_len = 100;
1392 
1393 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1394 
1395 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1396 		err = -EIO;
1397 		goto err_free;
1398 	}
1399 
1400 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1401 	if (!port->mem_res) {
1402 		err = -EBUSY;
1403 		goto err_npe_rel;
1404 	}
1405 
1406 	port->plat = plat;
1407 	npe_port_tab[NPE_ID(port->id)] = port;
1408 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1409 
1410 	platform_set_drvdata(pdev, dev);
1411 
1412 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1413 		     &port->regs->core_control);
1414 	udelay(50);
1415 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1416 	udelay(50);
1417 
1418 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
1419 	port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
1420 				   PHY_INTERFACE_MODE_MII);
1421 	if (IS_ERR(port->phydev)) {
1422 		err = PTR_ERR(port->phydev);
1423 		goto err_free_mem;
1424 	}
1425 
1426 	port->phydev->irq = PHY_POLL;
1427 
1428 	if ((err = register_netdev(dev)))
1429 		goto err_phy_dis;
1430 
1431 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1432 	       npe_name(port->npe));
1433 
1434 	return 0;
1435 
1436 err_phy_dis:
1437 	phy_disconnect(port->phydev);
1438 err_free_mem:
1439 	npe_port_tab[NPE_ID(port->id)] = NULL;
1440 	platform_set_drvdata(pdev, NULL);
1441 	release_resource(port->mem_res);
1442 err_npe_rel:
1443 	npe_release(port->npe);
1444 err_free:
1445 	free_netdev(dev);
1446 	return err;
1447 }
1448 
1449 static int __devexit eth_remove_one(struct platform_device *pdev)
1450 {
1451 	struct net_device *dev = platform_get_drvdata(pdev);
1452 	struct port *port = netdev_priv(dev);
1453 
1454 	unregister_netdev(dev);
1455 	phy_disconnect(port->phydev);
1456 	npe_port_tab[NPE_ID(port->id)] = NULL;
1457 	platform_set_drvdata(pdev, NULL);
1458 	npe_release(port->npe);
1459 	release_resource(port->mem_res);
1460 	free_netdev(dev);
1461 	return 0;
1462 }
1463 
1464 static struct platform_driver ixp4xx_eth_driver = {
1465 	.driver.name	= DRV_NAME,
1466 	.probe		= eth_init_one,
1467 	.remove		= eth_remove_one,
1468 };
1469 
1470 static int __init eth_init_module(void)
1471 {
1472 	int err;
1473 	if ((err = ixp4xx_mdio_register()))
1474 		return err;
1475 	return platform_driver_register(&ixp4xx_eth_driver);
1476 }
1477 
1478 static void __exit eth_cleanup_module(void)
1479 {
1480 	platform_driver_unregister(&ixp4xx_eth_driver);
1481 	ixp4xx_mdio_remove();
1482 }
1483 
1484 MODULE_AUTHOR("Krzysztof Halasa");
1485 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1486 MODULE_LICENSE("GPL v2");
1487 MODULE_ALIAS("platform:ixp4xx_eth");
1488 module_init(eth_init_module);
1489 module_exit(eth_cleanup_module);
1490