1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port		0x00		0x10		0x20
13  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
14  * physical PortId	2		0		1
15  * TX queue		23		24		25
16  * RX-free queue	26		27		28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1	- NPE ID (RX and TX-done)
22  * bits 0 -> 2	- priority (TX, per 802.1D)
23  * bits 3 -> 4	- port ID (user-set?)
24  * bits 5 -> 31	- physical descriptor address
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
42 
43 #define DEBUG_DESC		0
44 #define DEBUG_RX		0
45 #define DEBUG_TX		0
46 #define DEBUG_PKT_BYTES		0
47 #define DEBUG_MDIO		0
48 #define DEBUG_CLOSE		0
49 
50 #define DRV_NAME		"ixp4xx_eth"
51 
52 #define MAX_NPES		3
53 
54 #define RX_DESCS		64 /* also length of all RX queues */
55 #define TX_DESCS		16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN	64 /* dwords */
57 
58 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE		0x1000
60 #define MAX_MRU			1536 /* 0x600 */
61 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
62 
63 #define NAPI_WEIGHT		16
64 #define MDIO_INTERVAL		(3 * HZ)
65 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
67 
68 #define NPE_ID(port_id)		((port_id) >> 4)
69 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE		31
73 
74 #define PTP_SLAVE_MODE		1
75 #define PTP_MASTER_MODE		2
76 #define PORT2CHANNEL(p)		NPE_ID(p->id)
77 
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN		0x01
80 #define TX_CNTRL0_HALFDUPLEX	0x02
81 #define TX_CNTRL0_RETRY		0x04
82 #define TX_CNTRL0_PAD_EN	0x08
83 #define TX_CNTRL0_APPEND_FCS	0x10
84 #define TX_CNTRL0_2DEFER	0x20
85 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
87 
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN		0x01
90 #define RX_CNTRL0_PADSTRIP_EN	0x02
91 #define RX_CNTRL0_SEND_FCS	0x04
92 #define RX_CNTRL0_PAUSE_EN	0x08
93 #define RX_CNTRL0_LOOP_EN	0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
95 #define RX_CNTRL0_RX_RUNT_EN	0x40
96 #define RX_CNTRL0_BCAST_DIS	0x80
97 #define RX_CNTRL1_DEFER_EN	0x01
98 
99 /* Core Control Register */
100 #define CORE_RESET		0x01
101 #define CORE_RX_FIFO_FLUSH	0x02
102 #define CORE_TX_FIFO_FLUSH	0x04
103 #define CORE_SEND_JAM		0x08
104 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
105 
106 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
107 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108 				 TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
111 
112 
113 /* NPE message codes */
114 #define NPE_GETSTATUS			0x00
115 #define NPE_EDB_SETPORTADDRESS		0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
118 #define NPE_GETSTATS			0x04
119 #define NPE_RESETSTATS			0x05
120 #define NPE_SETMAXFRAMELENGTHS		0x06
121 #define NPE_VLAN_SETRXTAGMODE		0x07
122 #define NPE_VLAN_SETDEFAULTRXVID	0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
125 #define NPE_VLAN_SETRXQOSENTRY		0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE	0x0D
128 #define NPE_FW_SETFIREWALLMODE		0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE		0x11
131 #define NPE_SETLOOPBACK_MODE		0x12
132 #define NPE_PC_SETBSSIDTABLE		0x13
133 #define NPE_ADDRESS_FILTER_CONFIG	0x14
134 #define NPE_APPENDFCSCONFIG		0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
136 #define NPE_MAC_RECOVERY_START		0x17
137 
138 
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
148 
149 struct eth_regs {
150 	u32 tx_control[2], __res1[2];		/* 000 */
151 	u32 rx_control[2], __res2[2];		/* 010 */
152 	u32 random_seed, __res3[3];		/* 020 */
153 	u32 partial_empty_threshold, __res4;	/* 030 */
154 	u32 partial_full_threshold, __res5;	/* 038 */
155 	u32 tx_start_bytes, __res6[3];		/* 040 */
156 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
158 	u32 slot_time, __res9[3];		/* 070 */
159 	u32 mdio_command[4];			/* 080 */
160 	u32 mdio_status[4];			/* 090 */
161 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
162 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
163 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
164 	u32 hw_addr[6], __res13[61];		/* 0F0 */
165 	u32 core_control;			/* 1FC */
166 };
167 
168 struct port {
169 	struct resource *mem_res;
170 	struct eth_regs __iomem *regs;
171 	struct npe *npe;
172 	struct net_device *netdev;
173 	struct napi_struct napi;
174 	struct phy_device *phydev;
175 	struct eth_plat_info *plat;
176 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
177 	struct desc *desc_tab;	/* coherent */
178 	u32 desc_tab_phys;
179 	int id;			/* logical port ID */
180 	int speed, duplex;
181 	u8 firmware[4];
182 	int hwts_tx_en;
183 	int hwts_rx_en;
184 };
185 
186 /* NPE message structure */
187 struct msg {
188 #ifdef __ARMEB__
189 	u8 cmd, eth_id, byte2, byte3;
190 	u8 byte4, byte5, byte6, byte7;
191 #else
192 	u8 byte3, byte2, eth_id, cmd;
193 	u8 byte7, byte6, byte5, byte4;
194 #endif
195 };
196 
197 /* Ethernet packet descriptor */
198 struct desc {
199 	u32 next;		/* pointer to next buffer, unused */
200 
201 #ifdef __ARMEB__
202 	u16 buf_len;		/* buffer length */
203 	u16 pkt_len;		/* packet length */
204 	u32 data;		/* pointer to data buffer in RAM */
205 	u8 dest_id;
206 	u8 src_id;
207 	u16 flags;
208 	u8 qos;
209 	u8 padlen;
210 	u16 vlan_tci;
211 #else
212 	u16 pkt_len;		/* packet length */
213 	u16 buf_len;		/* buffer length */
214 	u32 data;		/* pointer to data buffer in RAM */
215 	u16 flags;
216 	u8 src_id;
217 	u8 dest_id;
218 	u16 vlan_tci;
219 	u8 padlen;
220 	u8 qos;
221 #endif
222 
223 #ifdef __ARMEB__
224 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
225 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
226 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
227 #else
228 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
229 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
230 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
231 #endif
232 };
233 
234 
235 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
236 				 (n) * sizeof(struct desc))
237 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
238 
239 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
240 				 ((n) + RX_DESCS) * sizeof(struct desc))
241 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
242 
243 #ifndef __ARMEB__
244 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
245 {
246 	int i;
247 	for (i = 0; i < cnt; i++)
248 		dest[i] = swab32(src[i]);
249 }
250 #endif
251 
252 static spinlock_t mdio_lock;
253 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
254 static struct mii_bus *mdio_bus;
255 static int ports_open;
256 static struct port *npe_port_tab[MAX_NPES];
257 static struct dma_pool *dma_pool;
258 
259 static struct sock_filter ptp_filter[] = {
260 	PTP_FILTER
261 };
262 
263 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
264 {
265 	u8 *data = skb->data;
266 	unsigned int offset;
267 	u16 *hi, *id;
268 	u32 lo;
269 
270 	if (sk_run_filter(skb, ptp_filter) != PTP_CLASS_V1_IPV4)
271 		return 0;
272 
273 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
274 
275 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
276 		return 0;
277 
278 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
279 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
280 
281 	memcpy(&lo, &hi[1], sizeof(lo));
282 
283 	return (uid_hi == ntohs(*hi) &&
284 		uid_lo == ntohl(lo) &&
285 		seqid  == ntohs(*id));
286 }
287 
288 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
289 {
290 	struct skb_shared_hwtstamps *shhwtstamps;
291 	struct ixp46x_ts_regs *regs;
292 	u64 ns;
293 	u32 ch, hi, lo, val;
294 	u16 uid, seq;
295 
296 	if (!port->hwts_rx_en)
297 		return;
298 
299 	ch = PORT2CHANNEL(port);
300 
301 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
302 
303 	val = __raw_readl(&regs->channel[ch].ch_event);
304 
305 	if (!(val & RX_SNAPSHOT_LOCKED))
306 		return;
307 
308 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
309 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
310 
311 	uid = hi & 0xffff;
312 	seq = (hi >> 16) & 0xffff;
313 
314 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
315 		goto out;
316 
317 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
318 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
319 	ns = ((u64) hi) << 32;
320 	ns |= lo;
321 	ns <<= TICKS_NS_SHIFT;
322 
323 	shhwtstamps = skb_hwtstamps(skb);
324 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
325 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
326 out:
327 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
328 }
329 
330 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
331 {
332 	struct skb_shared_hwtstamps shhwtstamps;
333 	struct ixp46x_ts_regs *regs;
334 	struct skb_shared_info *shtx;
335 	u64 ns;
336 	u32 ch, cnt, hi, lo, val;
337 
338 	shtx = skb_shinfo(skb);
339 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
340 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
341 	else
342 		return;
343 
344 	ch = PORT2CHANNEL(port);
345 
346 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
347 
348 	/*
349 	 * This really stinks, but we have to poll for the Tx time stamp.
350 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
351 	 */
352 	for (cnt = 0; cnt < 100; cnt++) {
353 		val = __raw_readl(&regs->channel[ch].ch_event);
354 		if (val & TX_SNAPSHOT_LOCKED)
355 			break;
356 		udelay(1);
357 	}
358 	if (!(val & TX_SNAPSHOT_LOCKED)) {
359 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
360 		return;
361 	}
362 
363 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
364 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
365 	ns = ((u64) hi) << 32;
366 	ns |= lo;
367 	ns <<= TICKS_NS_SHIFT;
368 
369 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
370 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
371 	skb_tstamp_tx(skb, &shhwtstamps);
372 
373 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
374 }
375 
376 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
377 {
378 	struct hwtstamp_config cfg;
379 	struct ixp46x_ts_regs *regs;
380 	struct port *port = netdev_priv(netdev);
381 	int ch;
382 
383 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
384 		return -EFAULT;
385 
386 	if (cfg.flags) /* reserved for future extensions */
387 		return -EINVAL;
388 
389 	ch = PORT2CHANNEL(port);
390 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
391 
392 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
393 		return -ERANGE;
394 
395 	switch (cfg.rx_filter) {
396 	case HWTSTAMP_FILTER_NONE:
397 		port->hwts_rx_en = 0;
398 		break;
399 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
400 		port->hwts_rx_en = PTP_SLAVE_MODE;
401 		__raw_writel(0, &regs->channel[ch].ch_control);
402 		break;
403 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
404 		port->hwts_rx_en = PTP_MASTER_MODE;
405 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
406 		break;
407 	default:
408 		return -ERANGE;
409 	}
410 
411 	port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
412 
413 	/* Clear out any old time stamps. */
414 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
415 		     &regs->channel[ch].ch_event);
416 
417 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
418 }
419 
420 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
421 			   int write, u16 cmd)
422 {
423 	int cycles = 0;
424 
425 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
426 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
427 		return -1;
428 	}
429 
430 	if (write) {
431 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
432 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
433 	}
434 	__raw_writel(((phy_id << 5) | location) & 0xFF,
435 		     &mdio_regs->mdio_command[2]);
436 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
437 		     &mdio_regs->mdio_command[3]);
438 
439 	while ((cycles < MAX_MDIO_RETRIES) &&
440 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
441 		udelay(1);
442 		cycles++;
443 	}
444 
445 	if (cycles == MAX_MDIO_RETRIES) {
446 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
447 		       phy_id);
448 		return -1;
449 	}
450 
451 #if DEBUG_MDIO
452 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
453 	       phy_id, write ? "write" : "read", cycles);
454 #endif
455 
456 	if (write)
457 		return 0;
458 
459 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
460 #if DEBUG_MDIO
461 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
462 		       phy_id);
463 #endif
464 		return 0xFFFF; /* don't return error */
465 	}
466 
467 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
468 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
469 }
470 
471 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
472 {
473 	unsigned long flags;
474 	int ret;
475 
476 	spin_lock_irqsave(&mdio_lock, flags);
477 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
478 	spin_unlock_irqrestore(&mdio_lock, flags);
479 #if DEBUG_MDIO
480 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
481 	       phy_id, location, ret);
482 #endif
483 	return ret;
484 }
485 
486 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
487 			     u16 val)
488 {
489 	unsigned long flags;
490 	int ret;
491 
492 	spin_lock_irqsave(&mdio_lock, flags);
493 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
494 	spin_unlock_irqrestore(&mdio_lock, flags);
495 #if DEBUG_MDIO
496 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
497 	       bus->name, phy_id, location, val, ret);
498 #endif
499 	return ret;
500 }
501 
502 static int ixp4xx_mdio_register(void)
503 {
504 	int err;
505 
506 	if (!(mdio_bus = mdiobus_alloc()))
507 		return -ENOMEM;
508 
509 	if (cpu_is_ixp43x()) {
510 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
511 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
512 			return -ENODEV;
513 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
514 	} else {
515 		/* All MII PHY accesses use NPE-B Ethernet registers */
516 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
517 			return -ENODEV;
518 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
519 	}
520 
521 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
522 	spin_lock_init(&mdio_lock);
523 	mdio_bus->name = "IXP4xx MII Bus";
524 	mdio_bus->read = &ixp4xx_mdio_read;
525 	mdio_bus->write = &ixp4xx_mdio_write;
526 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
527 
528 	if ((err = mdiobus_register(mdio_bus)))
529 		mdiobus_free(mdio_bus);
530 	return err;
531 }
532 
533 static void ixp4xx_mdio_remove(void)
534 {
535 	mdiobus_unregister(mdio_bus);
536 	mdiobus_free(mdio_bus);
537 }
538 
539 
540 static void ixp4xx_adjust_link(struct net_device *dev)
541 {
542 	struct port *port = netdev_priv(dev);
543 	struct phy_device *phydev = port->phydev;
544 
545 	if (!phydev->link) {
546 		if (port->speed) {
547 			port->speed = 0;
548 			printk(KERN_INFO "%s: link down\n", dev->name);
549 		}
550 		return;
551 	}
552 
553 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
554 		return;
555 
556 	port->speed = phydev->speed;
557 	port->duplex = phydev->duplex;
558 
559 	if (port->duplex)
560 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
561 			     &port->regs->tx_control[0]);
562 	else
563 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
564 			     &port->regs->tx_control[0]);
565 
566 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
567 	       dev->name, port->speed, port->duplex ? "full" : "half");
568 }
569 
570 
571 static inline void debug_pkt(struct net_device *dev, const char *func,
572 			     u8 *data, int len)
573 {
574 #if DEBUG_PKT_BYTES
575 	int i;
576 
577 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
578 	for (i = 0; i < len; i++) {
579 		if (i >= DEBUG_PKT_BYTES)
580 			break;
581 		printk("%s%02X",
582 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
583 		       data[i]);
584 	}
585 	printk("\n");
586 #endif
587 }
588 
589 
590 static inline void debug_desc(u32 phys, struct desc *desc)
591 {
592 #if DEBUG_DESC
593 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
594 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
595 	       phys, desc->next, desc->buf_len, desc->pkt_len,
596 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
597 	       desc->qos, desc->padlen, desc->vlan_tci,
598 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
599 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
600 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
601 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
602 #endif
603 }
604 
605 static inline int queue_get_desc(unsigned int queue, struct port *port,
606 				 int is_tx)
607 {
608 	u32 phys, tab_phys, n_desc;
609 	struct desc *tab;
610 
611 	if (!(phys = qmgr_get_entry(queue)))
612 		return -1;
613 
614 	phys &= ~0x1F; /* mask out non-address bits */
615 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
616 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
617 	n_desc = (phys - tab_phys) / sizeof(struct desc);
618 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
619 	debug_desc(phys, &tab[n_desc]);
620 	BUG_ON(tab[n_desc].next);
621 	return n_desc;
622 }
623 
624 static inline void queue_put_desc(unsigned int queue, u32 phys,
625 				  struct desc *desc)
626 {
627 	debug_desc(phys, desc);
628 	BUG_ON(phys & 0x1F);
629 	qmgr_put_entry(queue, phys);
630 	/* Don't check for queue overflow here, we've allocated sufficient
631 	   length and queues >= 32 don't support this check anyway. */
632 }
633 
634 
635 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
636 {
637 #ifdef __ARMEB__
638 	dma_unmap_single(&port->netdev->dev, desc->data,
639 			 desc->buf_len, DMA_TO_DEVICE);
640 #else
641 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
642 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
643 			 DMA_TO_DEVICE);
644 #endif
645 }
646 
647 
648 static void eth_rx_irq(void *pdev)
649 {
650 	struct net_device *dev = pdev;
651 	struct port *port = netdev_priv(dev);
652 
653 #if DEBUG_RX
654 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
655 #endif
656 	qmgr_disable_irq(port->plat->rxq);
657 	napi_schedule(&port->napi);
658 }
659 
660 static int eth_poll(struct napi_struct *napi, int budget)
661 {
662 	struct port *port = container_of(napi, struct port, napi);
663 	struct net_device *dev = port->netdev;
664 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
665 	int received = 0;
666 
667 #if DEBUG_RX
668 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
669 #endif
670 
671 	while (received < budget) {
672 		struct sk_buff *skb;
673 		struct desc *desc;
674 		int n;
675 #ifdef __ARMEB__
676 		struct sk_buff *temp;
677 		u32 phys;
678 #endif
679 
680 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
681 #if DEBUG_RX
682 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
683 			       dev->name);
684 #endif
685 			napi_complete(napi);
686 			qmgr_enable_irq(rxq);
687 			if (!qmgr_stat_below_low_watermark(rxq) &&
688 			    napi_reschedule(napi)) { /* not empty again */
689 #if DEBUG_RX
690 				printk(KERN_DEBUG "%s: eth_poll"
691 				       " napi_reschedule successed\n",
692 				       dev->name);
693 #endif
694 				qmgr_disable_irq(rxq);
695 				continue;
696 			}
697 #if DEBUG_RX
698 			printk(KERN_DEBUG "%s: eth_poll all done\n",
699 			       dev->name);
700 #endif
701 			return received; /* all work done */
702 		}
703 
704 		desc = rx_desc_ptr(port, n);
705 
706 #ifdef __ARMEB__
707 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
708 			phys = dma_map_single(&dev->dev, skb->data,
709 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
710 			if (dma_mapping_error(&dev->dev, phys)) {
711 				dev_kfree_skb(skb);
712 				skb = NULL;
713 			}
714 		}
715 #else
716 		skb = netdev_alloc_skb(dev,
717 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
718 #endif
719 
720 		if (!skb) {
721 			dev->stats.rx_dropped++;
722 			/* put the desc back on RX-ready queue */
723 			desc->buf_len = MAX_MRU;
724 			desc->pkt_len = 0;
725 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
726 			continue;
727 		}
728 
729 		/* process received frame */
730 #ifdef __ARMEB__
731 		temp = skb;
732 		skb = port->rx_buff_tab[n];
733 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
734 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
735 #else
736 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
737 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
738 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
739 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
740 #endif
741 		skb_reserve(skb, NET_IP_ALIGN);
742 		skb_put(skb, desc->pkt_len);
743 
744 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
745 
746 		ixp_rx_timestamp(port, skb);
747 		skb->protocol = eth_type_trans(skb, dev);
748 		dev->stats.rx_packets++;
749 		dev->stats.rx_bytes += skb->len;
750 		netif_receive_skb(skb);
751 
752 		/* put the new buffer on RX-free queue */
753 #ifdef __ARMEB__
754 		port->rx_buff_tab[n] = temp;
755 		desc->data = phys + NET_IP_ALIGN;
756 #endif
757 		desc->buf_len = MAX_MRU;
758 		desc->pkt_len = 0;
759 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
760 		received++;
761 	}
762 
763 #if DEBUG_RX
764 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
765 #endif
766 	return received;		/* not all work done */
767 }
768 
769 
770 static void eth_txdone_irq(void *unused)
771 {
772 	u32 phys;
773 
774 #if DEBUG_TX
775 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
776 #endif
777 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
778 		u32 npe_id, n_desc;
779 		struct port *port;
780 		struct desc *desc;
781 		int start;
782 
783 		npe_id = phys & 3;
784 		BUG_ON(npe_id >= MAX_NPES);
785 		port = npe_port_tab[npe_id];
786 		BUG_ON(!port);
787 		phys &= ~0x1F; /* mask out non-address bits */
788 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
789 		BUG_ON(n_desc >= TX_DESCS);
790 		desc = tx_desc_ptr(port, n_desc);
791 		debug_desc(phys, desc);
792 
793 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
794 			port->netdev->stats.tx_packets++;
795 			port->netdev->stats.tx_bytes += desc->pkt_len;
796 
797 			dma_unmap_tx(port, desc);
798 #if DEBUG_TX
799 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
800 			       port->netdev->name, port->tx_buff_tab[n_desc]);
801 #endif
802 			free_buffer_irq(port->tx_buff_tab[n_desc]);
803 			port->tx_buff_tab[n_desc] = NULL;
804 		}
805 
806 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
807 		queue_put_desc(port->plat->txreadyq, phys, desc);
808 		if (start) { /* TX-ready queue was empty */
809 #if DEBUG_TX
810 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
811 			       port->netdev->name);
812 #endif
813 			netif_wake_queue(port->netdev);
814 		}
815 	}
816 }
817 
818 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
819 {
820 	struct port *port = netdev_priv(dev);
821 	unsigned int txreadyq = port->plat->txreadyq;
822 	int len, offset, bytes, n;
823 	void *mem;
824 	u32 phys;
825 	struct desc *desc;
826 
827 #if DEBUG_TX
828 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
829 #endif
830 
831 	if (unlikely(skb->len > MAX_MRU)) {
832 		dev_kfree_skb(skb);
833 		dev->stats.tx_errors++;
834 		return NETDEV_TX_OK;
835 	}
836 
837 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
838 
839 	len = skb->len;
840 #ifdef __ARMEB__
841 	offset = 0; /* no need to keep alignment */
842 	bytes = len;
843 	mem = skb->data;
844 #else
845 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
846 	bytes = ALIGN(offset + len, 4);
847 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
848 		dev_kfree_skb(skb);
849 		dev->stats.tx_dropped++;
850 		return NETDEV_TX_OK;
851 	}
852 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
853 #endif
854 
855 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
856 	if (dma_mapping_error(&dev->dev, phys)) {
857 		dev_kfree_skb(skb);
858 #ifndef __ARMEB__
859 		kfree(mem);
860 #endif
861 		dev->stats.tx_dropped++;
862 		return NETDEV_TX_OK;
863 	}
864 
865 	n = queue_get_desc(txreadyq, port, 1);
866 	BUG_ON(n < 0);
867 	desc = tx_desc_ptr(port, n);
868 
869 #ifdef __ARMEB__
870 	port->tx_buff_tab[n] = skb;
871 #else
872 	port->tx_buff_tab[n] = mem;
873 #endif
874 	desc->data = phys + offset;
875 	desc->buf_len = desc->pkt_len = len;
876 
877 	/* NPE firmware pads short frames with zeros internally */
878 	wmb();
879 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
880 
881 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
882 #if DEBUG_TX
883 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
884 #endif
885 		netif_stop_queue(dev);
886 		/* we could miss TX ready interrupt */
887 		/* really empty in fact */
888 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
889 #if DEBUG_TX
890 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
891 			       dev->name);
892 #endif
893 			netif_wake_queue(dev);
894 		}
895 	}
896 
897 #if DEBUG_TX
898 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
899 #endif
900 
901 	ixp_tx_timestamp(port, skb);
902 	skb_tx_timestamp(skb);
903 
904 #ifndef __ARMEB__
905 	dev_kfree_skb(skb);
906 #endif
907 	return NETDEV_TX_OK;
908 }
909 
910 
911 static void eth_set_mcast_list(struct net_device *dev)
912 {
913 	struct port *port = netdev_priv(dev);
914 	struct netdev_hw_addr *ha;
915 	u8 diffs[ETH_ALEN], *addr;
916 	int i;
917 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
918 
919 	if (dev->flags & IFF_ALLMULTI) {
920 		for (i = 0; i < ETH_ALEN; i++) {
921 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
922 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
923 		}
924 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
925 			&port->regs->rx_control[0]);
926 		return;
927 	}
928 
929 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
930 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
931 			     &port->regs->rx_control[0]);
932 		return;
933 	}
934 
935 	memset(diffs, 0, ETH_ALEN);
936 
937 	addr = NULL;
938 	netdev_for_each_mc_addr(ha, dev) {
939 		if (!addr)
940 			addr = ha->addr; /* first MAC address */
941 		for (i = 0; i < ETH_ALEN; i++)
942 			diffs[i] |= addr[i] ^ ha->addr[i];
943 	}
944 
945 	for (i = 0; i < ETH_ALEN; i++) {
946 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
947 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
948 	}
949 
950 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
951 		     &port->regs->rx_control[0]);
952 }
953 
954 
955 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
956 {
957 	struct port *port = netdev_priv(dev);
958 
959 	if (!netif_running(dev))
960 		return -EINVAL;
961 
962 	if (cpu_is_ixp46x() && cmd == SIOCSHWTSTAMP)
963 		return hwtstamp_ioctl(dev, req, cmd);
964 
965 	return phy_mii_ioctl(port->phydev, req, cmd);
966 }
967 
968 /* ethtool support */
969 
970 static void ixp4xx_get_drvinfo(struct net_device *dev,
971 			       struct ethtool_drvinfo *info)
972 {
973 	struct port *port = netdev_priv(dev);
974 
975 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
976 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
977 		 port->firmware[0], port->firmware[1],
978 		 port->firmware[2], port->firmware[3]);
979 	strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
980 }
981 
982 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
983 {
984 	struct port *port = netdev_priv(dev);
985 	return phy_ethtool_gset(port->phydev, cmd);
986 }
987 
988 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
989 {
990 	struct port *port = netdev_priv(dev);
991 	return phy_ethtool_sset(port->phydev, cmd);
992 }
993 
994 static int ixp4xx_nway_reset(struct net_device *dev)
995 {
996 	struct port *port = netdev_priv(dev);
997 	return phy_start_aneg(port->phydev);
998 }
999 
1000 int ixp46x_phc_index = -1;
1001 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1002 
1003 static int ixp4xx_get_ts_info(struct net_device *dev,
1004 			      struct ethtool_ts_info *info)
1005 {
1006 	if (!cpu_is_ixp46x()) {
1007 		info->so_timestamping =
1008 			SOF_TIMESTAMPING_TX_SOFTWARE |
1009 			SOF_TIMESTAMPING_RX_SOFTWARE |
1010 			SOF_TIMESTAMPING_SOFTWARE;
1011 		info->phc_index = -1;
1012 		return 0;
1013 	}
1014 	info->so_timestamping =
1015 		SOF_TIMESTAMPING_TX_HARDWARE |
1016 		SOF_TIMESTAMPING_RX_HARDWARE |
1017 		SOF_TIMESTAMPING_RAW_HARDWARE;
1018 	info->phc_index = ixp46x_phc_index;
1019 	info->tx_types =
1020 		(1 << HWTSTAMP_TX_OFF) |
1021 		(1 << HWTSTAMP_TX_ON);
1022 	info->rx_filters =
1023 		(1 << HWTSTAMP_FILTER_NONE) |
1024 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1025 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1026 	return 0;
1027 }
1028 
1029 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1030 	.get_drvinfo = ixp4xx_get_drvinfo,
1031 	.get_settings = ixp4xx_get_settings,
1032 	.set_settings = ixp4xx_set_settings,
1033 	.nway_reset = ixp4xx_nway_reset,
1034 	.get_link = ethtool_op_get_link,
1035 	.get_ts_info = ixp4xx_get_ts_info,
1036 };
1037 
1038 
1039 static int request_queues(struct port *port)
1040 {
1041 	int err;
1042 
1043 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1044 				 "%s:RX-free", port->netdev->name);
1045 	if (err)
1046 		return err;
1047 
1048 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1049 				 "%s:RX", port->netdev->name);
1050 	if (err)
1051 		goto rel_rxfree;
1052 
1053 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1054 				 "%s:TX", port->netdev->name);
1055 	if (err)
1056 		goto rel_rx;
1057 
1058 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1059 				 "%s:TX-ready", port->netdev->name);
1060 	if (err)
1061 		goto rel_tx;
1062 
1063 	/* TX-done queue handles skbs sent out by the NPEs */
1064 	if (!ports_open) {
1065 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1066 					 "%s:TX-done", DRV_NAME);
1067 		if (err)
1068 			goto rel_txready;
1069 	}
1070 	return 0;
1071 
1072 rel_txready:
1073 	qmgr_release_queue(port->plat->txreadyq);
1074 rel_tx:
1075 	qmgr_release_queue(TX_QUEUE(port->id));
1076 rel_rx:
1077 	qmgr_release_queue(port->plat->rxq);
1078 rel_rxfree:
1079 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1080 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1081 	       port->netdev->name);
1082 	return err;
1083 }
1084 
1085 static void release_queues(struct port *port)
1086 {
1087 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1088 	qmgr_release_queue(port->plat->rxq);
1089 	qmgr_release_queue(TX_QUEUE(port->id));
1090 	qmgr_release_queue(port->plat->txreadyq);
1091 
1092 	if (!ports_open)
1093 		qmgr_release_queue(TXDONE_QUEUE);
1094 }
1095 
1096 static int init_queues(struct port *port)
1097 {
1098 	int i;
1099 
1100 	if (!ports_open) {
1101 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1102 					   POOL_ALLOC_SIZE, 32, 0);
1103 		if (!dma_pool)
1104 			return -ENOMEM;
1105 	}
1106 
1107 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1108 					      &port->desc_tab_phys)))
1109 		return -ENOMEM;
1110 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1111 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1112 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1113 
1114 	/* Setup RX buffers */
1115 	for (i = 0; i < RX_DESCS; i++) {
1116 		struct desc *desc = rx_desc_ptr(port, i);
1117 		buffer_t *buff; /* skb or kmalloc()ated memory */
1118 		void *data;
1119 #ifdef __ARMEB__
1120 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1121 			return -ENOMEM;
1122 		data = buff->data;
1123 #else
1124 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1125 			return -ENOMEM;
1126 		data = buff;
1127 #endif
1128 		desc->buf_len = MAX_MRU;
1129 		desc->data = dma_map_single(&port->netdev->dev, data,
1130 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1131 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1132 			free_buffer(buff);
1133 			return -EIO;
1134 		}
1135 		desc->data += NET_IP_ALIGN;
1136 		port->rx_buff_tab[i] = buff;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static void destroy_queues(struct port *port)
1143 {
1144 	int i;
1145 
1146 	if (port->desc_tab) {
1147 		for (i = 0; i < RX_DESCS; i++) {
1148 			struct desc *desc = rx_desc_ptr(port, i);
1149 			buffer_t *buff = port->rx_buff_tab[i];
1150 			if (buff) {
1151 				dma_unmap_single(&port->netdev->dev,
1152 						 desc->data - NET_IP_ALIGN,
1153 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1154 				free_buffer(buff);
1155 			}
1156 		}
1157 		for (i = 0; i < TX_DESCS; i++) {
1158 			struct desc *desc = tx_desc_ptr(port, i);
1159 			buffer_t *buff = port->tx_buff_tab[i];
1160 			if (buff) {
1161 				dma_unmap_tx(port, desc);
1162 				free_buffer(buff);
1163 			}
1164 		}
1165 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1166 		port->desc_tab = NULL;
1167 	}
1168 
1169 	if (!ports_open && dma_pool) {
1170 		dma_pool_destroy(dma_pool);
1171 		dma_pool = NULL;
1172 	}
1173 }
1174 
1175 static int eth_open(struct net_device *dev)
1176 {
1177 	struct port *port = netdev_priv(dev);
1178 	struct npe *npe = port->npe;
1179 	struct msg msg;
1180 	int i, err;
1181 
1182 	if (!npe_running(npe)) {
1183 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1184 		if (err)
1185 			return err;
1186 
1187 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1188 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1189 			       npe_name(npe));
1190 			return -EIO;
1191 		}
1192 		port->firmware[0] = msg.byte4;
1193 		port->firmware[1] = msg.byte5;
1194 		port->firmware[2] = msg.byte6;
1195 		port->firmware[3] = msg.byte7;
1196 	}
1197 
1198 	memset(&msg, 0, sizeof(msg));
1199 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1200 	msg.eth_id = port->id;
1201 	msg.byte5 = port->plat->rxq | 0x80;
1202 	msg.byte7 = port->plat->rxq << 4;
1203 	for (i = 0; i < 8; i++) {
1204 		msg.byte3 = i;
1205 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1206 			return -EIO;
1207 	}
1208 
1209 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1210 	msg.eth_id = PHYSICAL_ID(port->id);
1211 	msg.byte2 = dev->dev_addr[0];
1212 	msg.byte3 = dev->dev_addr[1];
1213 	msg.byte4 = dev->dev_addr[2];
1214 	msg.byte5 = dev->dev_addr[3];
1215 	msg.byte6 = dev->dev_addr[4];
1216 	msg.byte7 = dev->dev_addr[5];
1217 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1218 		return -EIO;
1219 
1220 	memset(&msg, 0, sizeof(msg));
1221 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1222 	msg.eth_id = port->id;
1223 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1224 		return -EIO;
1225 
1226 	if ((err = request_queues(port)) != 0)
1227 		return err;
1228 
1229 	if ((err = init_queues(port)) != 0) {
1230 		destroy_queues(port);
1231 		release_queues(port);
1232 		return err;
1233 	}
1234 
1235 	port->speed = 0;	/* force "link up" message */
1236 	phy_start(port->phydev);
1237 
1238 	for (i = 0; i < ETH_ALEN; i++)
1239 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1240 	__raw_writel(0x08, &port->regs->random_seed);
1241 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1242 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1243 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1244 	__raw_writel(0x15, &port->regs->tx_deferral);
1245 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1246 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1247 	__raw_writel(0x80, &port->regs->slot_time);
1248 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1249 
1250 	/* Populate queues with buffers, no failure after this point */
1251 	for (i = 0; i < TX_DESCS; i++)
1252 		queue_put_desc(port->plat->txreadyq,
1253 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1254 
1255 	for (i = 0; i < RX_DESCS; i++)
1256 		queue_put_desc(RXFREE_QUEUE(port->id),
1257 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1258 
1259 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1260 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1261 	__raw_writel(0, &port->regs->rx_control[1]);
1262 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1263 
1264 	napi_enable(&port->napi);
1265 	eth_set_mcast_list(dev);
1266 	netif_start_queue(dev);
1267 
1268 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1269 		     eth_rx_irq, dev);
1270 	if (!ports_open) {
1271 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1272 			     eth_txdone_irq, NULL);
1273 		qmgr_enable_irq(TXDONE_QUEUE);
1274 	}
1275 	ports_open++;
1276 	/* we may already have RX data, enables IRQ */
1277 	napi_schedule(&port->napi);
1278 	return 0;
1279 }
1280 
1281 static int eth_close(struct net_device *dev)
1282 {
1283 	struct port *port = netdev_priv(dev);
1284 	struct msg msg;
1285 	int buffs = RX_DESCS; /* allocated RX buffers */
1286 	int i;
1287 
1288 	ports_open--;
1289 	qmgr_disable_irq(port->plat->rxq);
1290 	napi_disable(&port->napi);
1291 	netif_stop_queue(dev);
1292 
1293 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1294 		buffs--;
1295 
1296 	memset(&msg, 0, sizeof(msg));
1297 	msg.cmd = NPE_SETLOOPBACK_MODE;
1298 	msg.eth_id = port->id;
1299 	msg.byte3 = 1;
1300 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1301 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1302 
1303 	i = 0;
1304 	do {			/* drain RX buffers */
1305 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1306 			buffs--;
1307 		if (!buffs)
1308 			break;
1309 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1310 			/* we have to inject some packet */
1311 			struct desc *desc;
1312 			u32 phys;
1313 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1314 			BUG_ON(n < 0);
1315 			desc = tx_desc_ptr(port, n);
1316 			phys = tx_desc_phys(port, n);
1317 			desc->buf_len = desc->pkt_len = 1;
1318 			wmb();
1319 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1320 		}
1321 		udelay(1);
1322 	} while (++i < MAX_CLOSE_WAIT);
1323 
1324 	if (buffs)
1325 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1326 		       " left in NPE\n", dev->name, buffs);
1327 #if DEBUG_CLOSE
1328 	if (!buffs)
1329 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1330 #endif
1331 
1332 	buffs = TX_DESCS;
1333 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1334 		buffs--; /* cancel TX */
1335 
1336 	i = 0;
1337 	do {
1338 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1339 			buffs--;
1340 		if (!buffs)
1341 			break;
1342 	} while (++i < MAX_CLOSE_WAIT);
1343 
1344 	if (buffs)
1345 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1346 		       "left in NPE\n", dev->name, buffs);
1347 #if DEBUG_CLOSE
1348 	if (!buffs)
1349 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1350 #endif
1351 
1352 	msg.byte3 = 0;
1353 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1354 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1355 		       dev->name);
1356 
1357 	phy_stop(port->phydev);
1358 
1359 	if (!ports_open)
1360 		qmgr_disable_irq(TXDONE_QUEUE);
1361 	destroy_queues(port);
1362 	release_queues(port);
1363 	return 0;
1364 }
1365 
1366 static const struct net_device_ops ixp4xx_netdev_ops = {
1367 	.ndo_open = eth_open,
1368 	.ndo_stop = eth_close,
1369 	.ndo_start_xmit = eth_xmit,
1370 	.ndo_set_rx_mode = eth_set_mcast_list,
1371 	.ndo_do_ioctl = eth_ioctl,
1372 	.ndo_change_mtu = eth_change_mtu,
1373 	.ndo_set_mac_address = eth_mac_addr,
1374 	.ndo_validate_addr = eth_validate_addr,
1375 };
1376 
1377 static int eth_init_one(struct platform_device *pdev)
1378 {
1379 	struct port *port;
1380 	struct net_device *dev;
1381 	struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
1382 	u32 regs_phys;
1383 	char phy_id[MII_BUS_ID_SIZE + 3];
1384 	int err;
1385 
1386 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
1387 		pr_err("ixp4xx_eth: bad ptp filter\n");
1388 		return -EINVAL;
1389 	}
1390 
1391 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1392 		return -ENOMEM;
1393 
1394 	SET_NETDEV_DEV(dev, &pdev->dev);
1395 	port = netdev_priv(dev);
1396 	port->netdev = dev;
1397 	port->id = pdev->id;
1398 
1399 	switch (port->id) {
1400 	case IXP4XX_ETH_NPEA:
1401 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1402 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1403 		break;
1404 	case IXP4XX_ETH_NPEB:
1405 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1406 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1407 		break;
1408 	case IXP4XX_ETH_NPEC:
1409 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1410 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1411 		break;
1412 	default:
1413 		err = -ENODEV;
1414 		goto err_free;
1415 	}
1416 
1417 	dev->netdev_ops = &ixp4xx_netdev_ops;
1418 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1419 	dev->tx_queue_len = 100;
1420 
1421 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1422 
1423 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1424 		err = -EIO;
1425 		goto err_free;
1426 	}
1427 
1428 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1429 	if (!port->mem_res) {
1430 		err = -EBUSY;
1431 		goto err_npe_rel;
1432 	}
1433 
1434 	port->plat = plat;
1435 	npe_port_tab[NPE_ID(port->id)] = port;
1436 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1437 
1438 	platform_set_drvdata(pdev, dev);
1439 
1440 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1441 		     &port->regs->core_control);
1442 	udelay(50);
1443 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1444 	udelay(50);
1445 
1446 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1447 		mdio_bus->id, plat->phy);
1448 	port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1449 				   PHY_INTERFACE_MODE_MII);
1450 	if (IS_ERR(port->phydev)) {
1451 		err = PTR_ERR(port->phydev);
1452 		goto err_free_mem;
1453 	}
1454 
1455 	port->phydev->irq = PHY_POLL;
1456 
1457 	if ((err = register_netdev(dev)))
1458 		goto err_phy_dis;
1459 
1460 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1461 	       npe_name(port->npe));
1462 
1463 	return 0;
1464 
1465 err_phy_dis:
1466 	phy_disconnect(port->phydev);
1467 err_free_mem:
1468 	npe_port_tab[NPE_ID(port->id)] = NULL;
1469 	release_resource(port->mem_res);
1470 err_npe_rel:
1471 	npe_release(port->npe);
1472 err_free:
1473 	free_netdev(dev);
1474 	return err;
1475 }
1476 
1477 static int eth_remove_one(struct platform_device *pdev)
1478 {
1479 	struct net_device *dev = platform_get_drvdata(pdev);
1480 	struct port *port = netdev_priv(dev);
1481 
1482 	unregister_netdev(dev);
1483 	phy_disconnect(port->phydev);
1484 	npe_port_tab[NPE_ID(port->id)] = NULL;
1485 	npe_release(port->npe);
1486 	release_resource(port->mem_res);
1487 	free_netdev(dev);
1488 	return 0;
1489 }
1490 
1491 static struct platform_driver ixp4xx_eth_driver = {
1492 	.driver.name	= DRV_NAME,
1493 	.probe		= eth_init_one,
1494 	.remove		= eth_remove_one,
1495 };
1496 
1497 static int __init eth_init_module(void)
1498 {
1499 	int err;
1500 	if ((err = ixp4xx_mdio_register()))
1501 		return err;
1502 	return platform_driver_register(&ixp4xx_eth_driver);
1503 }
1504 
1505 static void __exit eth_cleanup_module(void)
1506 {
1507 	platform_driver_unregister(&ixp4xx_eth_driver);
1508 	ixp4xx_mdio_remove();
1509 }
1510 
1511 MODULE_AUTHOR("Krzysztof Halasa");
1512 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1513 MODULE_LICENSE("GPL v2");
1514 MODULE_ALIAS("platform:ixp4xx_eth");
1515 module_init(eth_init_module);
1516 module_exit(eth_cleanup_module);
1517