1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx Ethernet driver for Linux
4  *
5  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * Ethernet port config (0x00 is not present on IXP42X):
8  *
9  * logical port		0x00		0x10		0x20
10  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
11  * physical PortId	2		0		1
12  * TX queue		23		24		25
13  * RX-free queue	26		27		28
14  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
15  *
16  * Queue entries:
17  * bits 0 -> 1	- NPE ID (RX and TX-done)
18  * bits 0 -> 2	- priority (TX, per 802.1D)
19  * bits 3 -> 4	- port ID (user-set?)
20  * bits 5 -> 31	- physical descriptor address
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/etherdevice.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/of.h>
31 #include <linux/phy.h>
32 #include <linux/platform_device.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/slab.h>
35 #include <linux/module.h>
36 #include <mach/ixp46x_ts.h>
37 #include <linux/soc/ixp4xx/npe.h>
38 #include <linux/soc/ixp4xx/qmgr.h>
39 
40 #define DEBUG_DESC		0
41 #define DEBUG_RX		0
42 #define DEBUG_TX		0
43 #define DEBUG_PKT_BYTES		0
44 #define DEBUG_MDIO		0
45 #define DEBUG_CLOSE		0
46 
47 #define DRV_NAME		"ixp4xx_eth"
48 
49 #define MAX_NPES		3
50 
51 #define RX_DESCS		64 /* also length of all RX queues */
52 #define TX_DESCS		16 /* also length of all TX queues */
53 #define TXDONE_QUEUE_LEN	64 /* dwords */
54 
55 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
56 #define REGS_SIZE		0x1000
57 #define MAX_MRU			1536 /* 0x600 */
58 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
59 
60 #define NAPI_WEIGHT		16
61 #define MDIO_INTERVAL		(3 * HZ)
62 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
63 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
64 
65 #define NPE_ID(port_id)		((port_id) >> 4)
66 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
67 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
68 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
69 #define TXDONE_QUEUE		31
70 
71 #define PTP_SLAVE_MODE		1
72 #define PTP_MASTER_MODE		2
73 #define PORT2CHANNEL(p)		NPE_ID(p->id)
74 
75 /* TX Control Registers */
76 #define TX_CNTRL0_TX_EN		0x01
77 #define TX_CNTRL0_HALFDUPLEX	0x02
78 #define TX_CNTRL0_RETRY		0x04
79 #define TX_CNTRL0_PAD_EN	0x08
80 #define TX_CNTRL0_APPEND_FCS	0x10
81 #define TX_CNTRL0_2DEFER	0x20
82 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
83 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
84 
85 /* RX Control Registers */
86 #define RX_CNTRL0_RX_EN		0x01
87 #define RX_CNTRL0_PADSTRIP_EN	0x02
88 #define RX_CNTRL0_SEND_FCS	0x04
89 #define RX_CNTRL0_PAUSE_EN	0x08
90 #define RX_CNTRL0_LOOP_EN	0x10
91 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
92 #define RX_CNTRL0_RX_RUNT_EN	0x40
93 #define RX_CNTRL0_BCAST_DIS	0x80
94 #define RX_CNTRL1_DEFER_EN	0x01
95 
96 /* Core Control Register */
97 #define CORE_RESET		0x01
98 #define CORE_RX_FIFO_FLUSH	0x02
99 #define CORE_TX_FIFO_FLUSH	0x04
100 #define CORE_SEND_JAM		0x08
101 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
102 
103 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
104 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
105 				 TX_CNTRL0_2DEFER)
106 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
107 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
108 
109 
110 /* NPE message codes */
111 #define NPE_GETSTATUS			0x00
112 #define NPE_EDB_SETPORTADDRESS		0x01
113 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
114 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
115 #define NPE_GETSTATS			0x04
116 #define NPE_RESETSTATS			0x05
117 #define NPE_SETMAXFRAMELENGTHS		0x06
118 #define NPE_VLAN_SETRXTAGMODE		0x07
119 #define NPE_VLAN_SETDEFAULTRXVID	0x08
120 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
121 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
122 #define NPE_VLAN_SETRXQOSENTRY		0x0B
123 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
124 #define NPE_STP_SETBLOCKINGSTATE	0x0D
125 #define NPE_FW_SETFIREWALLMODE		0x0E
126 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
127 #define NPE_PC_SETAPMACTABLE		0x11
128 #define NPE_SETLOOPBACK_MODE		0x12
129 #define NPE_PC_SETBSSIDTABLE		0x13
130 #define NPE_ADDRESS_FILTER_CONFIG	0x14
131 #define NPE_APPENDFCSCONFIG		0x15
132 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
133 #define NPE_MAC_RECOVERY_START		0x17
134 
135 
136 #ifdef __ARMEB__
137 typedef struct sk_buff buffer_t;
138 #define free_buffer dev_kfree_skb
139 #define free_buffer_irq dev_consume_skb_irq
140 #else
141 typedef void buffer_t;
142 #define free_buffer kfree
143 #define free_buffer_irq kfree
144 #endif
145 
146 struct eth_regs {
147 	u32 tx_control[2], __res1[2];		/* 000 */
148 	u32 rx_control[2], __res2[2];		/* 010 */
149 	u32 random_seed, __res3[3];		/* 020 */
150 	u32 partial_empty_threshold, __res4;	/* 030 */
151 	u32 partial_full_threshold, __res5;	/* 038 */
152 	u32 tx_start_bytes, __res6[3];		/* 040 */
153 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
154 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
155 	u32 slot_time, __res9[3];		/* 070 */
156 	u32 mdio_command[4];			/* 080 */
157 	u32 mdio_status[4];			/* 090 */
158 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
159 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
160 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
161 	u32 hw_addr[6], __res13[61];		/* 0F0 */
162 	u32 core_control;			/* 1FC */
163 };
164 
165 struct port {
166 	struct resource *mem_res;
167 	struct eth_regs __iomem *regs;
168 	struct npe *npe;
169 	struct net_device *netdev;
170 	struct napi_struct napi;
171 	struct eth_plat_info *plat;
172 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
173 	struct desc *desc_tab;	/* coherent */
174 	u32 desc_tab_phys;
175 	int id;			/* logical port ID */
176 	int speed, duplex;
177 	u8 firmware[4];
178 	int hwts_tx_en;
179 	int hwts_rx_en;
180 };
181 
182 /* NPE message structure */
183 struct msg {
184 #ifdef __ARMEB__
185 	u8 cmd, eth_id, byte2, byte3;
186 	u8 byte4, byte5, byte6, byte7;
187 #else
188 	u8 byte3, byte2, eth_id, cmd;
189 	u8 byte7, byte6, byte5, byte4;
190 #endif
191 };
192 
193 /* Ethernet packet descriptor */
194 struct desc {
195 	u32 next;		/* pointer to next buffer, unused */
196 
197 #ifdef __ARMEB__
198 	u16 buf_len;		/* buffer length */
199 	u16 pkt_len;		/* packet length */
200 	u32 data;		/* pointer to data buffer in RAM */
201 	u8 dest_id;
202 	u8 src_id;
203 	u16 flags;
204 	u8 qos;
205 	u8 padlen;
206 	u16 vlan_tci;
207 #else
208 	u16 pkt_len;		/* packet length */
209 	u16 buf_len;		/* buffer length */
210 	u32 data;		/* pointer to data buffer in RAM */
211 	u16 flags;
212 	u8 src_id;
213 	u8 dest_id;
214 	u16 vlan_tci;
215 	u8 padlen;
216 	u8 qos;
217 #endif
218 
219 #ifdef __ARMEB__
220 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
221 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
222 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
223 #else
224 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
225 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
226 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
227 #endif
228 };
229 
230 
231 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
232 				 (n) * sizeof(struct desc))
233 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
234 
235 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
236 				 ((n) + RX_DESCS) * sizeof(struct desc))
237 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
238 
239 #ifndef __ARMEB__
240 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
241 {
242 	int i;
243 	for (i = 0; i < cnt; i++)
244 		dest[i] = swab32(src[i]);
245 }
246 #endif
247 
248 static spinlock_t mdio_lock;
249 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
250 static struct mii_bus *mdio_bus;
251 static int ports_open;
252 static struct port *npe_port_tab[MAX_NPES];
253 static struct dma_pool *dma_pool;
254 
255 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
256 {
257 	u8 *data = skb->data;
258 	unsigned int offset;
259 	u16 *hi, *id;
260 	u32 lo;
261 
262 	if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
263 		return 0;
264 
265 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
266 
267 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
268 		return 0;
269 
270 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
271 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
272 
273 	memcpy(&lo, &hi[1], sizeof(lo));
274 
275 	return (uid_hi == ntohs(*hi) &&
276 		uid_lo == ntohl(lo) &&
277 		seqid  == ntohs(*id));
278 }
279 
280 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
281 {
282 	struct skb_shared_hwtstamps *shhwtstamps;
283 	struct ixp46x_ts_regs *regs;
284 	u64 ns;
285 	u32 ch, hi, lo, val;
286 	u16 uid, seq;
287 
288 	if (!port->hwts_rx_en)
289 		return;
290 
291 	ch = PORT2CHANNEL(port);
292 
293 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
294 
295 	val = __raw_readl(&regs->channel[ch].ch_event);
296 
297 	if (!(val & RX_SNAPSHOT_LOCKED))
298 		return;
299 
300 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
301 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
302 
303 	uid = hi & 0xffff;
304 	seq = (hi >> 16) & 0xffff;
305 
306 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
307 		goto out;
308 
309 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
310 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
311 	ns = ((u64) hi) << 32;
312 	ns |= lo;
313 	ns <<= TICKS_NS_SHIFT;
314 
315 	shhwtstamps = skb_hwtstamps(skb);
316 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
317 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
318 out:
319 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
320 }
321 
322 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
323 {
324 	struct skb_shared_hwtstamps shhwtstamps;
325 	struct ixp46x_ts_regs *regs;
326 	struct skb_shared_info *shtx;
327 	u64 ns;
328 	u32 ch, cnt, hi, lo, val;
329 
330 	shtx = skb_shinfo(skb);
331 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
332 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
333 	else
334 		return;
335 
336 	ch = PORT2CHANNEL(port);
337 
338 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
339 
340 	/*
341 	 * This really stinks, but we have to poll for the Tx time stamp.
342 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
343 	 */
344 	for (cnt = 0; cnt < 100; cnt++) {
345 		val = __raw_readl(&regs->channel[ch].ch_event);
346 		if (val & TX_SNAPSHOT_LOCKED)
347 			break;
348 		udelay(1);
349 	}
350 	if (!(val & TX_SNAPSHOT_LOCKED)) {
351 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
352 		return;
353 	}
354 
355 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
356 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
357 	ns = ((u64) hi) << 32;
358 	ns |= lo;
359 	ns <<= TICKS_NS_SHIFT;
360 
361 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
362 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
363 	skb_tstamp_tx(skb, &shhwtstamps);
364 
365 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
366 }
367 
368 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
369 {
370 	struct hwtstamp_config cfg;
371 	struct ixp46x_ts_regs *regs;
372 	struct port *port = netdev_priv(netdev);
373 	int ch;
374 
375 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
376 		return -EFAULT;
377 
378 	if (cfg.flags) /* reserved for future extensions */
379 		return -EINVAL;
380 
381 	ch = PORT2CHANNEL(port);
382 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
383 
384 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
385 		return -ERANGE;
386 
387 	switch (cfg.rx_filter) {
388 	case HWTSTAMP_FILTER_NONE:
389 		port->hwts_rx_en = 0;
390 		break;
391 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
392 		port->hwts_rx_en = PTP_SLAVE_MODE;
393 		__raw_writel(0, &regs->channel[ch].ch_control);
394 		break;
395 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
396 		port->hwts_rx_en = PTP_MASTER_MODE;
397 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
398 		break;
399 	default:
400 		return -ERANGE;
401 	}
402 
403 	port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
404 
405 	/* Clear out any old time stamps. */
406 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
407 		     &regs->channel[ch].ch_event);
408 
409 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
410 }
411 
412 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
413 {
414 	struct hwtstamp_config cfg;
415 	struct port *port = netdev_priv(netdev);
416 
417 	cfg.flags = 0;
418 	cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
419 
420 	switch (port->hwts_rx_en) {
421 	case 0:
422 		cfg.rx_filter = HWTSTAMP_FILTER_NONE;
423 		break;
424 	case PTP_SLAVE_MODE:
425 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
426 		break;
427 	case PTP_MASTER_MODE:
428 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
429 		break;
430 	default:
431 		WARN_ON_ONCE(1);
432 		return -ERANGE;
433 	}
434 
435 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
436 }
437 
438 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
439 			   int write, u16 cmd)
440 {
441 	int cycles = 0;
442 
443 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
444 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
445 		return -1;
446 	}
447 
448 	if (write) {
449 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
450 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
451 	}
452 	__raw_writel(((phy_id << 5) | location) & 0xFF,
453 		     &mdio_regs->mdio_command[2]);
454 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
455 		     &mdio_regs->mdio_command[3]);
456 
457 	while ((cycles < MAX_MDIO_RETRIES) &&
458 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
459 		udelay(1);
460 		cycles++;
461 	}
462 
463 	if (cycles == MAX_MDIO_RETRIES) {
464 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
465 		       phy_id);
466 		return -1;
467 	}
468 
469 #if DEBUG_MDIO
470 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
471 	       phy_id, write ? "write" : "read", cycles);
472 #endif
473 
474 	if (write)
475 		return 0;
476 
477 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
478 #if DEBUG_MDIO
479 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
480 		       phy_id);
481 #endif
482 		return 0xFFFF; /* don't return error */
483 	}
484 
485 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
486 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
487 }
488 
489 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
490 {
491 	unsigned long flags;
492 	int ret;
493 
494 	spin_lock_irqsave(&mdio_lock, flags);
495 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
496 	spin_unlock_irqrestore(&mdio_lock, flags);
497 #if DEBUG_MDIO
498 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
499 	       phy_id, location, ret);
500 #endif
501 	return ret;
502 }
503 
504 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
505 			     u16 val)
506 {
507 	unsigned long flags;
508 	int ret;
509 
510 	spin_lock_irqsave(&mdio_lock, flags);
511 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
512 	spin_unlock_irqrestore(&mdio_lock, flags);
513 #if DEBUG_MDIO
514 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
515 	       bus->name, phy_id, location, val, ret);
516 #endif
517 	return ret;
518 }
519 
520 static int ixp4xx_mdio_register(void)
521 {
522 	int err;
523 
524 	if (!(mdio_bus = mdiobus_alloc()))
525 		return -ENOMEM;
526 
527 	if (cpu_is_ixp43x()) {
528 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
529 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
530 			return -ENODEV;
531 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
532 	} else {
533 		/* All MII PHY accesses use NPE-B Ethernet registers */
534 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
535 			return -ENODEV;
536 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
537 	}
538 
539 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
540 	spin_lock_init(&mdio_lock);
541 	mdio_bus->name = "IXP4xx MII Bus";
542 	mdio_bus->read = &ixp4xx_mdio_read;
543 	mdio_bus->write = &ixp4xx_mdio_write;
544 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
545 
546 	if ((err = mdiobus_register(mdio_bus)))
547 		mdiobus_free(mdio_bus);
548 	return err;
549 }
550 
551 static void ixp4xx_mdio_remove(void)
552 {
553 	mdiobus_unregister(mdio_bus);
554 	mdiobus_free(mdio_bus);
555 }
556 
557 
558 static void ixp4xx_adjust_link(struct net_device *dev)
559 {
560 	struct port *port = netdev_priv(dev);
561 	struct phy_device *phydev = dev->phydev;
562 
563 	if (!phydev->link) {
564 		if (port->speed) {
565 			port->speed = 0;
566 			printk(KERN_INFO "%s: link down\n", dev->name);
567 		}
568 		return;
569 	}
570 
571 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
572 		return;
573 
574 	port->speed = phydev->speed;
575 	port->duplex = phydev->duplex;
576 
577 	if (port->duplex)
578 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
579 			     &port->regs->tx_control[0]);
580 	else
581 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
582 			     &port->regs->tx_control[0]);
583 
584 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
585 	       dev->name, port->speed, port->duplex ? "full" : "half");
586 }
587 
588 
589 static inline void debug_pkt(struct net_device *dev, const char *func,
590 			     u8 *data, int len)
591 {
592 #if DEBUG_PKT_BYTES
593 	int i;
594 
595 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
596 	for (i = 0; i < len; i++) {
597 		if (i >= DEBUG_PKT_BYTES)
598 			break;
599 		printk("%s%02X",
600 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
601 		       data[i]);
602 	}
603 	printk("\n");
604 #endif
605 }
606 
607 
608 static inline void debug_desc(u32 phys, struct desc *desc)
609 {
610 #if DEBUG_DESC
611 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
612 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
613 	       phys, desc->next, desc->buf_len, desc->pkt_len,
614 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
615 	       desc->qos, desc->padlen, desc->vlan_tci,
616 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
617 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
618 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
619 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
620 #endif
621 }
622 
623 static inline int queue_get_desc(unsigned int queue, struct port *port,
624 				 int is_tx)
625 {
626 	u32 phys, tab_phys, n_desc;
627 	struct desc *tab;
628 
629 	if (!(phys = qmgr_get_entry(queue)))
630 		return -1;
631 
632 	phys &= ~0x1F; /* mask out non-address bits */
633 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
634 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
635 	n_desc = (phys - tab_phys) / sizeof(struct desc);
636 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
637 	debug_desc(phys, &tab[n_desc]);
638 	BUG_ON(tab[n_desc].next);
639 	return n_desc;
640 }
641 
642 static inline void queue_put_desc(unsigned int queue, u32 phys,
643 				  struct desc *desc)
644 {
645 	debug_desc(phys, desc);
646 	BUG_ON(phys & 0x1F);
647 	qmgr_put_entry(queue, phys);
648 	/* Don't check for queue overflow here, we've allocated sufficient
649 	   length and queues >= 32 don't support this check anyway. */
650 }
651 
652 
653 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
654 {
655 #ifdef __ARMEB__
656 	dma_unmap_single(&port->netdev->dev, desc->data,
657 			 desc->buf_len, DMA_TO_DEVICE);
658 #else
659 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
660 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
661 			 DMA_TO_DEVICE);
662 #endif
663 }
664 
665 
666 static void eth_rx_irq(void *pdev)
667 {
668 	struct net_device *dev = pdev;
669 	struct port *port = netdev_priv(dev);
670 
671 #if DEBUG_RX
672 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
673 #endif
674 	qmgr_disable_irq(port->plat->rxq);
675 	napi_schedule(&port->napi);
676 }
677 
678 static int eth_poll(struct napi_struct *napi, int budget)
679 {
680 	struct port *port = container_of(napi, struct port, napi);
681 	struct net_device *dev = port->netdev;
682 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
683 	int received = 0;
684 
685 #if DEBUG_RX
686 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
687 #endif
688 
689 	while (received < budget) {
690 		struct sk_buff *skb;
691 		struct desc *desc;
692 		int n;
693 #ifdef __ARMEB__
694 		struct sk_buff *temp;
695 		u32 phys;
696 #endif
697 
698 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
699 #if DEBUG_RX
700 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
701 			       dev->name);
702 #endif
703 			napi_complete(napi);
704 			qmgr_enable_irq(rxq);
705 			if (!qmgr_stat_below_low_watermark(rxq) &&
706 			    napi_reschedule(napi)) { /* not empty again */
707 #if DEBUG_RX
708 				printk(KERN_DEBUG "%s: eth_poll napi_reschedule succeeded\n",
709 				       dev->name);
710 #endif
711 				qmgr_disable_irq(rxq);
712 				continue;
713 			}
714 #if DEBUG_RX
715 			printk(KERN_DEBUG "%s: eth_poll all done\n",
716 			       dev->name);
717 #endif
718 			return received; /* all work done */
719 		}
720 
721 		desc = rx_desc_ptr(port, n);
722 
723 #ifdef __ARMEB__
724 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
725 			phys = dma_map_single(&dev->dev, skb->data,
726 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
727 			if (dma_mapping_error(&dev->dev, phys)) {
728 				dev_kfree_skb(skb);
729 				skb = NULL;
730 			}
731 		}
732 #else
733 		skb = netdev_alloc_skb(dev,
734 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
735 #endif
736 
737 		if (!skb) {
738 			dev->stats.rx_dropped++;
739 			/* put the desc back on RX-ready queue */
740 			desc->buf_len = MAX_MRU;
741 			desc->pkt_len = 0;
742 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
743 			continue;
744 		}
745 
746 		/* process received frame */
747 #ifdef __ARMEB__
748 		temp = skb;
749 		skb = port->rx_buff_tab[n];
750 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
751 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
752 #else
753 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
754 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
755 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
756 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
757 #endif
758 		skb_reserve(skb, NET_IP_ALIGN);
759 		skb_put(skb, desc->pkt_len);
760 
761 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
762 
763 		ixp_rx_timestamp(port, skb);
764 		skb->protocol = eth_type_trans(skb, dev);
765 		dev->stats.rx_packets++;
766 		dev->stats.rx_bytes += skb->len;
767 		netif_receive_skb(skb);
768 
769 		/* put the new buffer on RX-free queue */
770 #ifdef __ARMEB__
771 		port->rx_buff_tab[n] = temp;
772 		desc->data = phys + NET_IP_ALIGN;
773 #endif
774 		desc->buf_len = MAX_MRU;
775 		desc->pkt_len = 0;
776 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
777 		received++;
778 	}
779 
780 #if DEBUG_RX
781 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
782 #endif
783 	return received;		/* not all work done */
784 }
785 
786 
787 static void eth_txdone_irq(void *unused)
788 {
789 	u32 phys;
790 
791 #if DEBUG_TX
792 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
793 #endif
794 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
795 		u32 npe_id, n_desc;
796 		struct port *port;
797 		struct desc *desc;
798 		int start;
799 
800 		npe_id = phys & 3;
801 		BUG_ON(npe_id >= MAX_NPES);
802 		port = npe_port_tab[npe_id];
803 		BUG_ON(!port);
804 		phys &= ~0x1F; /* mask out non-address bits */
805 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
806 		BUG_ON(n_desc >= TX_DESCS);
807 		desc = tx_desc_ptr(port, n_desc);
808 		debug_desc(phys, desc);
809 
810 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
811 			port->netdev->stats.tx_packets++;
812 			port->netdev->stats.tx_bytes += desc->pkt_len;
813 
814 			dma_unmap_tx(port, desc);
815 #if DEBUG_TX
816 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
817 			       port->netdev->name, port->tx_buff_tab[n_desc]);
818 #endif
819 			free_buffer_irq(port->tx_buff_tab[n_desc]);
820 			port->tx_buff_tab[n_desc] = NULL;
821 		}
822 
823 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
824 		queue_put_desc(port->plat->txreadyq, phys, desc);
825 		if (start) { /* TX-ready queue was empty */
826 #if DEBUG_TX
827 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
828 			       port->netdev->name);
829 #endif
830 			netif_wake_queue(port->netdev);
831 		}
832 	}
833 }
834 
835 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
836 {
837 	struct port *port = netdev_priv(dev);
838 	unsigned int txreadyq = port->plat->txreadyq;
839 	int len, offset, bytes, n;
840 	void *mem;
841 	u32 phys;
842 	struct desc *desc;
843 
844 #if DEBUG_TX
845 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
846 #endif
847 
848 	if (unlikely(skb->len > MAX_MRU)) {
849 		dev_kfree_skb(skb);
850 		dev->stats.tx_errors++;
851 		return NETDEV_TX_OK;
852 	}
853 
854 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
855 
856 	len = skb->len;
857 #ifdef __ARMEB__
858 	offset = 0; /* no need to keep alignment */
859 	bytes = len;
860 	mem = skb->data;
861 #else
862 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
863 	bytes = ALIGN(offset + len, 4);
864 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
865 		dev_kfree_skb(skb);
866 		dev->stats.tx_dropped++;
867 		return NETDEV_TX_OK;
868 	}
869 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
870 #endif
871 
872 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
873 	if (dma_mapping_error(&dev->dev, phys)) {
874 		dev_kfree_skb(skb);
875 #ifndef __ARMEB__
876 		kfree(mem);
877 #endif
878 		dev->stats.tx_dropped++;
879 		return NETDEV_TX_OK;
880 	}
881 
882 	n = queue_get_desc(txreadyq, port, 1);
883 	BUG_ON(n < 0);
884 	desc = tx_desc_ptr(port, n);
885 
886 #ifdef __ARMEB__
887 	port->tx_buff_tab[n] = skb;
888 #else
889 	port->tx_buff_tab[n] = mem;
890 #endif
891 	desc->data = phys + offset;
892 	desc->buf_len = desc->pkt_len = len;
893 
894 	/* NPE firmware pads short frames with zeros internally */
895 	wmb();
896 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
897 
898 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
899 #if DEBUG_TX
900 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
901 #endif
902 		netif_stop_queue(dev);
903 		/* we could miss TX ready interrupt */
904 		/* really empty in fact */
905 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
906 #if DEBUG_TX
907 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
908 			       dev->name);
909 #endif
910 			netif_wake_queue(dev);
911 		}
912 	}
913 
914 #if DEBUG_TX
915 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
916 #endif
917 
918 	ixp_tx_timestamp(port, skb);
919 	skb_tx_timestamp(skb);
920 
921 #ifndef __ARMEB__
922 	dev_kfree_skb(skb);
923 #endif
924 	return NETDEV_TX_OK;
925 }
926 
927 
928 static void eth_set_mcast_list(struct net_device *dev)
929 {
930 	struct port *port = netdev_priv(dev);
931 	struct netdev_hw_addr *ha;
932 	u8 diffs[ETH_ALEN], *addr;
933 	int i;
934 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
935 
936 	if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
937 		for (i = 0; i < ETH_ALEN; i++) {
938 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
939 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
940 		}
941 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
942 			&port->regs->rx_control[0]);
943 		return;
944 	}
945 
946 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
947 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
948 			     &port->regs->rx_control[0]);
949 		return;
950 	}
951 
952 	eth_zero_addr(diffs);
953 
954 	addr = NULL;
955 	netdev_for_each_mc_addr(ha, dev) {
956 		if (!addr)
957 			addr = ha->addr; /* first MAC address */
958 		for (i = 0; i < ETH_ALEN; i++)
959 			diffs[i] |= addr[i] ^ ha->addr[i];
960 	}
961 
962 	for (i = 0; i < ETH_ALEN; i++) {
963 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
964 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
965 	}
966 
967 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
968 		     &port->regs->rx_control[0]);
969 }
970 
971 
972 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
973 {
974 	if (!netif_running(dev))
975 		return -EINVAL;
976 
977 	if (cpu_is_ixp46x()) {
978 		if (cmd == SIOCSHWTSTAMP)
979 			return hwtstamp_set(dev, req);
980 		if (cmd == SIOCGHWTSTAMP)
981 			return hwtstamp_get(dev, req);
982 	}
983 
984 	return phy_mii_ioctl(dev->phydev, req, cmd);
985 }
986 
987 /* ethtool support */
988 
989 static void ixp4xx_get_drvinfo(struct net_device *dev,
990 			       struct ethtool_drvinfo *info)
991 {
992 	struct port *port = netdev_priv(dev);
993 
994 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
995 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
996 		 port->firmware[0], port->firmware[1],
997 		 port->firmware[2], port->firmware[3]);
998 	strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
999 }
1000 
1001 int ixp46x_phc_index = -1;
1002 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1003 
1004 static int ixp4xx_get_ts_info(struct net_device *dev,
1005 			      struct ethtool_ts_info *info)
1006 {
1007 	if (!cpu_is_ixp46x()) {
1008 		info->so_timestamping =
1009 			SOF_TIMESTAMPING_TX_SOFTWARE |
1010 			SOF_TIMESTAMPING_RX_SOFTWARE |
1011 			SOF_TIMESTAMPING_SOFTWARE;
1012 		info->phc_index = -1;
1013 		return 0;
1014 	}
1015 	info->so_timestamping =
1016 		SOF_TIMESTAMPING_TX_HARDWARE |
1017 		SOF_TIMESTAMPING_RX_HARDWARE |
1018 		SOF_TIMESTAMPING_RAW_HARDWARE;
1019 	info->phc_index = ixp46x_phc_index;
1020 	info->tx_types =
1021 		(1 << HWTSTAMP_TX_OFF) |
1022 		(1 << HWTSTAMP_TX_ON);
1023 	info->rx_filters =
1024 		(1 << HWTSTAMP_FILTER_NONE) |
1025 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1026 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1027 	return 0;
1028 }
1029 
1030 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1031 	.get_drvinfo = ixp4xx_get_drvinfo,
1032 	.nway_reset = phy_ethtool_nway_reset,
1033 	.get_link = ethtool_op_get_link,
1034 	.get_ts_info = ixp4xx_get_ts_info,
1035 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1036 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1037 };
1038 
1039 
1040 static int request_queues(struct port *port)
1041 {
1042 	int err;
1043 
1044 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1045 				 "%s:RX-free", port->netdev->name);
1046 	if (err)
1047 		return err;
1048 
1049 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1050 				 "%s:RX", port->netdev->name);
1051 	if (err)
1052 		goto rel_rxfree;
1053 
1054 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1055 				 "%s:TX", port->netdev->name);
1056 	if (err)
1057 		goto rel_rx;
1058 
1059 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1060 				 "%s:TX-ready", port->netdev->name);
1061 	if (err)
1062 		goto rel_tx;
1063 
1064 	/* TX-done queue handles skbs sent out by the NPEs */
1065 	if (!ports_open) {
1066 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1067 					 "%s:TX-done", DRV_NAME);
1068 		if (err)
1069 			goto rel_txready;
1070 	}
1071 	return 0;
1072 
1073 rel_txready:
1074 	qmgr_release_queue(port->plat->txreadyq);
1075 rel_tx:
1076 	qmgr_release_queue(TX_QUEUE(port->id));
1077 rel_rx:
1078 	qmgr_release_queue(port->plat->rxq);
1079 rel_rxfree:
1080 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1081 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1082 	       port->netdev->name);
1083 	return err;
1084 }
1085 
1086 static void release_queues(struct port *port)
1087 {
1088 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1089 	qmgr_release_queue(port->plat->rxq);
1090 	qmgr_release_queue(TX_QUEUE(port->id));
1091 	qmgr_release_queue(port->plat->txreadyq);
1092 
1093 	if (!ports_open)
1094 		qmgr_release_queue(TXDONE_QUEUE);
1095 }
1096 
1097 static int init_queues(struct port *port)
1098 {
1099 	int i;
1100 
1101 	if (!ports_open) {
1102 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1103 					   POOL_ALLOC_SIZE, 32, 0);
1104 		if (!dma_pool)
1105 			return -ENOMEM;
1106 	}
1107 
1108 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1109 					      &port->desc_tab_phys)))
1110 		return -ENOMEM;
1111 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1112 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1113 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1114 
1115 	/* Setup RX buffers */
1116 	for (i = 0; i < RX_DESCS; i++) {
1117 		struct desc *desc = rx_desc_ptr(port, i);
1118 		buffer_t *buff; /* skb or kmalloc()ated memory */
1119 		void *data;
1120 #ifdef __ARMEB__
1121 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1122 			return -ENOMEM;
1123 		data = buff->data;
1124 #else
1125 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1126 			return -ENOMEM;
1127 		data = buff;
1128 #endif
1129 		desc->buf_len = MAX_MRU;
1130 		desc->data = dma_map_single(&port->netdev->dev, data,
1131 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1132 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1133 			free_buffer(buff);
1134 			return -EIO;
1135 		}
1136 		desc->data += NET_IP_ALIGN;
1137 		port->rx_buff_tab[i] = buff;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static void destroy_queues(struct port *port)
1144 {
1145 	int i;
1146 
1147 	if (port->desc_tab) {
1148 		for (i = 0; i < RX_DESCS; i++) {
1149 			struct desc *desc = rx_desc_ptr(port, i);
1150 			buffer_t *buff = port->rx_buff_tab[i];
1151 			if (buff) {
1152 				dma_unmap_single(&port->netdev->dev,
1153 						 desc->data - NET_IP_ALIGN,
1154 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1155 				free_buffer(buff);
1156 			}
1157 		}
1158 		for (i = 0; i < TX_DESCS; i++) {
1159 			struct desc *desc = tx_desc_ptr(port, i);
1160 			buffer_t *buff = port->tx_buff_tab[i];
1161 			if (buff) {
1162 				dma_unmap_tx(port, desc);
1163 				free_buffer(buff);
1164 			}
1165 		}
1166 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1167 		port->desc_tab = NULL;
1168 	}
1169 
1170 	if (!ports_open && dma_pool) {
1171 		dma_pool_destroy(dma_pool);
1172 		dma_pool = NULL;
1173 	}
1174 }
1175 
1176 static int eth_open(struct net_device *dev)
1177 {
1178 	struct port *port = netdev_priv(dev);
1179 	struct npe *npe = port->npe;
1180 	struct msg msg;
1181 	int i, err;
1182 
1183 	if (!npe_running(npe)) {
1184 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1185 		if (err)
1186 			return err;
1187 
1188 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1189 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1190 			       npe_name(npe));
1191 			return -EIO;
1192 		}
1193 		port->firmware[0] = msg.byte4;
1194 		port->firmware[1] = msg.byte5;
1195 		port->firmware[2] = msg.byte6;
1196 		port->firmware[3] = msg.byte7;
1197 	}
1198 
1199 	memset(&msg, 0, sizeof(msg));
1200 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1201 	msg.eth_id = port->id;
1202 	msg.byte5 = port->plat->rxq | 0x80;
1203 	msg.byte7 = port->plat->rxq << 4;
1204 	for (i = 0; i < 8; i++) {
1205 		msg.byte3 = i;
1206 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1207 			return -EIO;
1208 	}
1209 
1210 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1211 	msg.eth_id = PHYSICAL_ID(port->id);
1212 	msg.byte2 = dev->dev_addr[0];
1213 	msg.byte3 = dev->dev_addr[1];
1214 	msg.byte4 = dev->dev_addr[2];
1215 	msg.byte5 = dev->dev_addr[3];
1216 	msg.byte6 = dev->dev_addr[4];
1217 	msg.byte7 = dev->dev_addr[5];
1218 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1219 		return -EIO;
1220 
1221 	memset(&msg, 0, sizeof(msg));
1222 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1223 	msg.eth_id = port->id;
1224 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1225 		return -EIO;
1226 
1227 	if ((err = request_queues(port)) != 0)
1228 		return err;
1229 
1230 	if ((err = init_queues(port)) != 0) {
1231 		destroy_queues(port);
1232 		release_queues(port);
1233 		return err;
1234 	}
1235 
1236 	port->speed = 0;	/* force "link up" message */
1237 	phy_start(dev->phydev);
1238 
1239 	for (i = 0; i < ETH_ALEN; i++)
1240 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1241 	__raw_writel(0x08, &port->regs->random_seed);
1242 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1243 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1244 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1245 	__raw_writel(0x15, &port->regs->tx_deferral);
1246 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1247 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1248 	__raw_writel(0x80, &port->regs->slot_time);
1249 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1250 
1251 	/* Populate queues with buffers, no failure after this point */
1252 	for (i = 0; i < TX_DESCS; i++)
1253 		queue_put_desc(port->plat->txreadyq,
1254 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1255 
1256 	for (i = 0; i < RX_DESCS; i++)
1257 		queue_put_desc(RXFREE_QUEUE(port->id),
1258 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1259 
1260 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1261 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1262 	__raw_writel(0, &port->regs->rx_control[1]);
1263 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1264 
1265 	napi_enable(&port->napi);
1266 	eth_set_mcast_list(dev);
1267 	netif_start_queue(dev);
1268 
1269 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1270 		     eth_rx_irq, dev);
1271 	if (!ports_open) {
1272 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1273 			     eth_txdone_irq, NULL);
1274 		qmgr_enable_irq(TXDONE_QUEUE);
1275 	}
1276 	ports_open++;
1277 	/* we may already have RX data, enables IRQ */
1278 	napi_schedule(&port->napi);
1279 	return 0;
1280 }
1281 
1282 static int eth_close(struct net_device *dev)
1283 {
1284 	struct port *port = netdev_priv(dev);
1285 	struct msg msg;
1286 	int buffs = RX_DESCS; /* allocated RX buffers */
1287 	int i;
1288 
1289 	ports_open--;
1290 	qmgr_disable_irq(port->plat->rxq);
1291 	napi_disable(&port->napi);
1292 	netif_stop_queue(dev);
1293 
1294 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1295 		buffs--;
1296 
1297 	memset(&msg, 0, sizeof(msg));
1298 	msg.cmd = NPE_SETLOOPBACK_MODE;
1299 	msg.eth_id = port->id;
1300 	msg.byte3 = 1;
1301 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1302 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1303 
1304 	i = 0;
1305 	do {			/* drain RX buffers */
1306 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1307 			buffs--;
1308 		if (!buffs)
1309 			break;
1310 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1311 			/* we have to inject some packet */
1312 			struct desc *desc;
1313 			u32 phys;
1314 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1315 			BUG_ON(n < 0);
1316 			desc = tx_desc_ptr(port, n);
1317 			phys = tx_desc_phys(port, n);
1318 			desc->buf_len = desc->pkt_len = 1;
1319 			wmb();
1320 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1321 		}
1322 		udelay(1);
1323 	} while (++i < MAX_CLOSE_WAIT);
1324 
1325 	if (buffs)
1326 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1327 		       " left in NPE\n", dev->name, buffs);
1328 #if DEBUG_CLOSE
1329 	if (!buffs)
1330 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1331 #endif
1332 
1333 	buffs = TX_DESCS;
1334 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1335 		buffs--; /* cancel TX */
1336 
1337 	i = 0;
1338 	do {
1339 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1340 			buffs--;
1341 		if (!buffs)
1342 			break;
1343 	} while (++i < MAX_CLOSE_WAIT);
1344 
1345 	if (buffs)
1346 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1347 		       "left in NPE\n", dev->name, buffs);
1348 #if DEBUG_CLOSE
1349 	if (!buffs)
1350 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1351 #endif
1352 
1353 	msg.byte3 = 0;
1354 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1355 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1356 		       dev->name);
1357 
1358 	phy_stop(dev->phydev);
1359 
1360 	if (!ports_open)
1361 		qmgr_disable_irq(TXDONE_QUEUE);
1362 	destroy_queues(port);
1363 	release_queues(port);
1364 	return 0;
1365 }
1366 
1367 static const struct net_device_ops ixp4xx_netdev_ops = {
1368 	.ndo_open = eth_open,
1369 	.ndo_stop = eth_close,
1370 	.ndo_start_xmit = eth_xmit,
1371 	.ndo_set_rx_mode = eth_set_mcast_list,
1372 	.ndo_do_ioctl = eth_ioctl,
1373 	.ndo_set_mac_address = eth_mac_addr,
1374 	.ndo_validate_addr = eth_validate_addr,
1375 };
1376 
1377 static int eth_init_one(struct platform_device *pdev)
1378 {
1379 	struct port *port;
1380 	struct net_device *dev;
1381 	struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
1382 	struct phy_device *phydev = NULL;
1383 	u32 regs_phys;
1384 	char phy_id[MII_BUS_ID_SIZE + 3];
1385 	int err;
1386 
1387 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1388 		return -ENOMEM;
1389 
1390 	SET_NETDEV_DEV(dev, &pdev->dev);
1391 	port = netdev_priv(dev);
1392 	port->netdev = dev;
1393 	port->id = pdev->id;
1394 
1395 	switch (port->id) {
1396 	case IXP4XX_ETH_NPEA:
1397 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1398 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1399 		break;
1400 	case IXP4XX_ETH_NPEB:
1401 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1402 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1403 		break;
1404 	case IXP4XX_ETH_NPEC:
1405 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1406 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1407 		break;
1408 	default:
1409 		err = -ENODEV;
1410 		goto err_free;
1411 	}
1412 
1413 	dev->netdev_ops = &ixp4xx_netdev_ops;
1414 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1415 	dev->tx_queue_len = 100;
1416 
1417 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1418 
1419 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1420 		err = -EIO;
1421 		goto err_free;
1422 	}
1423 
1424 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1425 	if (!port->mem_res) {
1426 		err = -EBUSY;
1427 		goto err_npe_rel;
1428 	}
1429 
1430 	port->plat = plat;
1431 	npe_port_tab[NPE_ID(port->id)] = port;
1432 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1433 
1434 	platform_set_drvdata(pdev, dev);
1435 
1436 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1437 		     &port->regs->core_control);
1438 	udelay(50);
1439 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1440 	udelay(50);
1441 
1442 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1443 		mdio_bus->id, plat->phy);
1444 	phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1445 			     PHY_INTERFACE_MODE_MII);
1446 	if (IS_ERR(phydev)) {
1447 		err = PTR_ERR(phydev);
1448 		goto err_free_mem;
1449 	}
1450 
1451 	phydev->irq = PHY_POLL;
1452 
1453 	if ((err = register_netdev(dev)))
1454 		goto err_phy_dis;
1455 
1456 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1457 	       npe_name(port->npe));
1458 
1459 	return 0;
1460 
1461 err_phy_dis:
1462 	phy_disconnect(phydev);
1463 err_free_mem:
1464 	npe_port_tab[NPE_ID(port->id)] = NULL;
1465 	release_resource(port->mem_res);
1466 err_npe_rel:
1467 	npe_release(port->npe);
1468 err_free:
1469 	free_netdev(dev);
1470 	return err;
1471 }
1472 
1473 static int eth_remove_one(struct platform_device *pdev)
1474 {
1475 	struct net_device *dev = platform_get_drvdata(pdev);
1476 	struct phy_device *phydev = dev->phydev;
1477 	struct port *port = netdev_priv(dev);
1478 
1479 	unregister_netdev(dev);
1480 	phy_disconnect(phydev);
1481 	npe_port_tab[NPE_ID(port->id)] = NULL;
1482 	npe_release(port->npe);
1483 	release_resource(port->mem_res);
1484 	free_netdev(dev);
1485 	return 0;
1486 }
1487 
1488 static struct platform_driver ixp4xx_eth_driver = {
1489 	.driver.name	= DRV_NAME,
1490 	.probe		= eth_init_one,
1491 	.remove		= eth_remove_one,
1492 };
1493 
1494 static int __init eth_init_module(void)
1495 {
1496 	int err;
1497 
1498 	/*
1499 	 * FIXME: we bail out on device tree boot but this really needs
1500 	 * to be fixed in a nicer way: this registers the MDIO bus before
1501 	 * even matching the driver infrastructure, we should only probe
1502 	 * detected hardware.
1503 	 */
1504 	if (of_have_populated_dt())
1505 		return -ENODEV;
1506 	if ((err = ixp4xx_mdio_register()))
1507 		return err;
1508 	return platform_driver_register(&ixp4xx_eth_driver);
1509 }
1510 
1511 static void __exit eth_cleanup_module(void)
1512 {
1513 	platform_driver_unregister(&ixp4xx_eth_driver);
1514 	ixp4xx_mdio_remove();
1515 }
1516 
1517 MODULE_AUTHOR("Krzysztof Halasa");
1518 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1519 MODULE_LICENSE("GPL v2");
1520 MODULE_ALIAS("platform:ixp4xx_eth");
1521 module_init(eth_init_module);
1522 module_exit(eth_cleanup_module);
1523