1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port		0x00		0x10		0x20
13  * NPE			0 (NPE-A)	1 (NPE-B)	2 (NPE-C)
14  * physical PortId	2		0		1
15  * TX queue		23		24		25
16  * RX-free queue	26		27		28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1	- NPE ID (RX and TX-done)
22  * bits 0 -> 2	- priority (TX, per 802.1D)
23  * bits 3 -> 4	- port ID (user-set?)
24  * bits 5 -> 31	- physical descriptor address
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
42 
43 #define DEBUG_DESC		0
44 #define DEBUG_RX		0
45 #define DEBUG_TX		0
46 #define DEBUG_PKT_BYTES		0
47 #define DEBUG_MDIO		0
48 #define DEBUG_CLOSE		0
49 
50 #define DRV_NAME		"ixp4xx_eth"
51 
52 #define MAX_NPES		3
53 
54 #define RX_DESCS		64 /* also length of all RX queues */
55 #define TX_DESCS		16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN	64 /* dwords */
57 
58 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE		0x1000
60 #define MAX_MRU			1536 /* 0x600 */
61 #define RX_BUFF_SIZE		ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
62 
63 #define NAPI_WEIGHT		16
64 #define MDIO_INTERVAL		(3 * HZ)
65 #define MAX_MDIO_RETRIES	100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT		1000 /* microseconds, typically 2-3 cycles */
67 
68 #define NPE_ID(port_id)		((port_id) >> 4)
69 #define PHYSICAL_ID(port_id)	((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id)	(NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id)	(NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE		31
73 
74 #define PTP_SLAVE_MODE		1
75 #define PTP_MASTER_MODE		2
76 #define PORT2CHANNEL(p)		NPE_ID(p->id)
77 
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN		0x01
80 #define TX_CNTRL0_HALFDUPLEX	0x02
81 #define TX_CNTRL0_RETRY		0x04
82 #define TX_CNTRL0_PAD_EN	0x08
83 #define TX_CNTRL0_APPEND_FCS	0x10
84 #define TX_CNTRL0_2DEFER	0x20
85 #define TX_CNTRL0_RMII		0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES	0x0F /* 4 bits */
87 
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN		0x01
90 #define RX_CNTRL0_PADSTRIP_EN	0x02
91 #define RX_CNTRL0_SEND_FCS	0x04
92 #define RX_CNTRL0_PAUSE_EN	0x08
93 #define RX_CNTRL0_LOOP_EN	0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN	0x20
95 #define RX_CNTRL0_RX_RUNT_EN	0x40
96 #define RX_CNTRL0_BCAST_DIS	0x80
97 #define RX_CNTRL1_DEFER_EN	0x01
98 
99 /* Core Control Register */
100 #define CORE_RESET		0x01
101 #define CORE_RX_FIFO_FLUSH	0x02
102 #define CORE_TX_FIFO_FLUSH	0x04
103 #define CORE_SEND_JAM		0x08
104 #define CORE_MDC_EN		0x10 /* MDIO using NPE-B ETH-0 only */
105 
106 #define DEFAULT_TX_CNTRL0	(TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |	\
107 				 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108 				 TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0	RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL	CORE_MDC_EN
111 
112 
113 /* NPE message codes */
114 #define NPE_GETSTATUS			0x00
115 #define NPE_EDB_SETPORTADDRESS		0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE	0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE	0x03
118 #define NPE_GETSTATS			0x04
119 #define NPE_RESETSTATS			0x05
120 #define NPE_SETMAXFRAMELENGTHS		0x06
121 #define NPE_VLAN_SETRXTAGMODE		0x07
122 #define NPE_VLAN_SETDEFAULTRXVID	0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY	0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE	0x0A
125 #define NPE_VLAN_SETRXQOSENTRY		0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE	0x0D
128 #define NPE_FW_SETFIREWALLMODE		0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE		0x11
131 #define NPE_SETLOOPBACK_MODE		0x12
132 #define NPE_PC_SETBSSIDTABLE		0x13
133 #define NPE_ADDRESS_FILTER_CONFIG	0x14
134 #define NPE_APPENDFCSCONFIG		0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE	0x16
136 #define NPE_MAC_RECOVERY_START		0x17
137 
138 
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_consume_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
148 
149 struct eth_regs {
150 	u32 tx_control[2], __res1[2];		/* 000 */
151 	u32 rx_control[2], __res2[2];		/* 010 */
152 	u32 random_seed, __res3[3];		/* 020 */
153 	u32 partial_empty_threshold, __res4;	/* 030 */
154 	u32 partial_full_threshold, __res5;	/* 038 */
155 	u32 tx_start_bytes, __res6[3];		/* 040 */
156 	u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157 	u32 tx_2part_deferral[2], __res8[2];	/* 060 */
158 	u32 slot_time, __res9[3];		/* 070 */
159 	u32 mdio_command[4];			/* 080 */
160 	u32 mdio_status[4];			/* 090 */
161 	u32 mcast_mask[6], __res10[2];		/* 0A0 */
162 	u32 mcast_addr[6], __res11[2];		/* 0C0 */
163 	u32 int_clock_threshold, __res12[3];	/* 0E0 */
164 	u32 hw_addr[6], __res13[61];		/* 0F0 */
165 	u32 core_control;			/* 1FC */
166 };
167 
168 struct port {
169 	struct resource *mem_res;
170 	struct eth_regs __iomem *regs;
171 	struct npe *npe;
172 	struct net_device *netdev;
173 	struct napi_struct napi;
174 	struct eth_plat_info *plat;
175 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
176 	struct desc *desc_tab;	/* coherent */
177 	u32 desc_tab_phys;
178 	int id;			/* logical port ID */
179 	int speed, duplex;
180 	u8 firmware[4];
181 	int hwts_tx_en;
182 	int hwts_rx_en;
183 };
184 
185 /* NPE message structure */
186 struct msg {
187 #ifdef __ARMEB__
188 	u8 cmd, eth_id, byte2, byte3;
189 	u8 byte4, byte5, byte6, byte7;
190 #else
191 	u8 byte3, byte2, eth_id, cmd;
192 	u8 byte7, byte6, byte5, byte4;
193 #endif
194 };
195 
196 /* Ethernet packet descriptor */
197 struct desc {
198 	u32 next;		/* pointer to next buffer, unused */
199 
200 #ifdef __ARMEB__
201 	u16 buf_len;		/* buffer length */
202 	u16 pkt_len;		/* packet length */
203 	u32 data;		/* pointer to data buffer in RAM */
204 	u8 dest_id;
205 	u8 src_id;
206 	u16 flags;
207 	u8 qos;
208 	u8 padlen;
209 	u16 vlan_tci;
210 #else
211 	u16 pkt_len;		/* packet length */
212 	u16 buf_len;		/* buffer length */
213 	u32 data;		/* pointer to data buffer in RAM */
214 	u16 flags;
215 	u8 src_id;
216 	u8 dest_id;
217 	u16 vlan_tci;
218 	u8 padlen;
219 	u8 qos;
220 #endif
221 
222 #ifdef __ARMEB__
223 	u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
224 	u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
225 	u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
226 #else
227 	u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
228 	u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
229 	u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
230 #endif
231 };
232 
233 
234 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
235 				 (n) * sizeof(struct desc))
236 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
237 
238 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
239 				 ((n) + RX_DESCS) * sizeof(struct desc))
240 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
241 
242 #ifndef __ARMEB__
243 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
244 {
245 	int i;
246 	for (i = 0; i < cnt; i++)
247 		dest[i] = swab32(src[i]);
248 }
249 #endif
250 
251 static spinlock_t mdio_lock;
252 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
253 static struct mii_bus *mdio_bus;
254 static int ports_open;
255 static struct port *npe_port_tab[MAX_NPES];
256 static struct dma_pool *dma_pool;
257 
258 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
259 {
260 	u8 *data = skb->data;
261 	unsigned int offset;
262 	u16 *hi, *id;
263 	u32 lo;
264 
265 	if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
266 		return 0;
267 
268 	offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
269 
270 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
271 		return 0;
272 
273 	hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
274 	id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
275 
276 	memcpy(&lo, &hi[1], sizeof(lo));
277 
278 	return (uid_hi == ntohs(*hi) &&
279 		uid_lo == ntohl(lo) &&
280 		seqid  == ntohs(*id));
281 }
282 
283 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
284 {
285 	struct skb_shared_hwtstamps *shhwtstamps;
286 	struct ixp46x_ts_regs *regs;
287 	u64 ns;
288 	u32 ch, hi, lo, val;
289 	u16 uid, seq;
290 
291 	if (!port->hwts_rx_en)
292 		return;
293 
294 	ch = PORT2CHANNEL(port);
295 
296 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
297 
298 	val = __raw_readl(&regs->channel[ch].ch_event);
299 
300 	if (!(val & RX_SNAPSHOT_LOCKED))
301 		return;
302 
303 	lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
304 	hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
305 
306 	uid = hi & 0xffff;
307 	seq = (hi >> 16) & 0xffff;
308 
309 	if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
310 		goto out;
311 
312 	lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
313 	hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
314 	ns = ((u64) hi) << 32;
315 	ns |= lo;
316 	ns <<= TICKS_NS_SHIFT;
317 
318 	shhwtstamps = skb_hwtstamps(skb);
319 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
320 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
321 out:
322 	__raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
323 }
324 
325 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
326 {
327 	struct skb_shared_hwtstamps shhwtstamps;
328 	struct ixp46x_ts_regs *regs;
329 	struct skb_shared_info *shtx;
330 	u64 ns;
331 	u32 ch, cnt, hi, lo, val;
332 
333 	shtx = skb_shinfo(skb);
334 	if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
335 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
336 	else
337 		return;
338 
339 	ch = PORT2CHANNEL(port);
340 
341 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
342 
343 	/*
344 	 * This really stinks, but we have to poll for the Tx time stamp.
345 	 * Usually, the time stamp is ready after 4 to 6 microseconds.
346 	 */
347 	for (cnt = 0; cnt < 100; cnt++) {
348 		val = __raw_readl(&regs->channel[ch].ch_event);
349 		if (val & TX_SNAPSHOT_LOCKED)
350 			break;
351 		udelay(1);
352 	}
353 	if (!(val & TX_SNAPSHOT_LOCKED)) {
354 		shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
355 		return;
356 	}
357 
358 	lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
359 	hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
360 	ns = ((u64) hi) << 32;
361 	ns |= lo;
362 	ns <<= TICKS_NS_SHIFT;
363 
364 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
365 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
366 	skb_tstamp_tx(skb, &shhwtstamps);
367 
368 	__raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
369 }
370 
371 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
372 {
373 	struct hwtstamp_config cfg;
374 	struct ixp46x_ts_regs *regs;
375 	struct port *port = netdev_priv(netdev);
376 	int ch;
377 
378 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
379 		return -EFAULT;
380 
381 	if (cfg.flags) /* reserved for future extensions */
382 		return -EINVAL;
383 
384 	ch = PORT2CHANNEL(port);
385 	regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
386 
387 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
388 		return -ERANGE;
389 
390 	switch (cfg.rx_filter) {
391 	case HWTSTAMP_FILTER_NONE:
392 		port->hwts_rx_en = 0;
393 		break;
394 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
395 		port->hwts_rx_en = PTP_SLAVE_MODE;
396 		__raw_writel(0, &regs->channel[ch].ch_control);
397 		break;
398 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
399 		port->hwts_rx_en = PTP_MASTER_MODE;
400 		__raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
401 		break;
402 	default:
403 		return -ERANGE;
404 	}
405 
406 	port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
407 
408 	/* Clear out any old time stamps. */
409 	__raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
410 		     &regs->channel[ch].ch_event);
411 
412 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
413 }
414 
415 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
416 {
417 	struct hwtstamp_config cfg;
418 	struct port *port = netdev_priv(netdev);
419 
420 	cfg.flags = 0;
421 	cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
422 
423 	switch (port->hwts_rx_en) {
424 	case 0:
425 		cfg.rx_filter = HWTSTAMP_FILTER_NONE;
426 		break;
427 	case PTP_SLAVE_MODE:
428 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
429 		break;
430 	case PTP_MASTER_MODE:
431 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
432 		break;
433 	default:
434 		WARN_ON_ONCE(1);
435 		return -ERANGE;
436 	}
437 
438 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
439 }
440 
441 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
442 			   int write, u16 cmd)
443 {
444 	int cycles = 0;
445 
446 	if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
447 		printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
448 		return -1;
449 	}
450 
451 	if (write) {
452 		__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
453 		__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
454 	}
455 	__raw_writel(((phy_id << 5) | location) & 0xFF,
456 		     &mdio_regs->mdio_command[2]);
457 	__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
458 		     &mdio_regs->mdio_command[3]);
459 
460 	while ((cycles < MAX_MDIO_RETRIES) &&
461 	       (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
462 		udelay(1);
463 		cycles++;
464 	}
465 
466 	if (cycles == MAX_MDIO_RETRIES) {
467 		printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
468 		       phy_id);
469 		return -1;
470 	}
471 
472 #if DEBUG_MDIO
473 	printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
474 	       phy_id, write ? "write" : "read", cycles);
475 #endif
476 
477 	if (write)
478 		return 0;
479 
480 	if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
481 #if DEBUG_MDIO
482 		printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
483 		       phy_id);
484 #endif
485 		return 0xFFFF; /* don't return error */
486 	}
487 
488 	return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
489 		((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
490 }
491 
492 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
493 {
494 	unsigned long flags;
495 	int ret;
496 
497 	spin_lock_irqsave(&mdio_lock, flags);
498 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
499 	spin_unlock_irqrestore(&mdio_lock, flags);
500 #if DEBUG_MDIO
501 	printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
502 	       phy_id, location, ret);
503 #endif
504 	return ret;
505 }
506 
507 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
508 			     u16 val)
509 {
510 	unsigned long flags;
511 	int ret;
512 
513 	spin_lock_irqsave(&mdio_lock, flags);
514 	ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
515 	spin_unlock_irqrestore(&mdio_lock, flags);
516 #if DEBUG_MDIO
517 	printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
518 	       bus->name, phy_id, location, val, ret);
519 #endif
520 	return ret;
521 }
522 
523 static int ixp4xx_mdio_register(void)
524 {
525 	int err;
526 
527 	if (!(mdio_bus = mdiobus_alloc()))
528 		return -ENOMEM;
529 
530 	if (cpu_is_ixp43x()) {
531 		/* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
532 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
533 			return -ENODEV;
534 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
535 	} else {
536 		/* All MII PHY accesses use NPE-B Ethernet registers */
537 		if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
538 			return -ENODEV;
539 		mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
540 	}
541 
542 	__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
543 	spin_lock_init(&mdio_lock);
544 	mdio_bus->name = "IXP4xx MII Bus";
545 	mdio_bus->read = &ixp4xx_mdio_read;
546 	mdio_bus->write = &ixp4xx_mdio_write;
547 	snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
548 
549 	if ((err = mdiobus_register(mdio_bus)))
550 		mdiobus_free(mdio_bus);
551 	return err;
552 }
553 
554 static void ixp4xx_mdio_remove(void)
555 {
556 	mdiobus_unregister(mdio_bus);
557 	mdiobus_free(mdio_bus);
558 }
559 
560 
561 static void ixp4xx_adjust_link(struct net_device *dev)
562 {
563 	struct port *port = netdev_priv(dev);
564 	struct phy_device *phydev = dev->phydev;
565 
566 	if (!phydev->link) {
567 		if (port->speed) {
568 			port->speed = 0;
569 			printk(KERN_INFO "%s: link down\n", dev->name);
570 		}
571 		return;
572 	}
573 
574 	if (port->speed == phydev->speed && port->duplex == phydev->duplex)
575 		return;
576 
577 	port->speed = phydev->speed;
578 	port->duplex = phydev->duplex;
579 
580 	if (port->duplex)
581 		__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
582 			     &port->regs->tx_control[0]);
583 	else
584 		__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
585 			     &port->regs->tx_control[0]);
586 
587 	printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
588 	       dev->name, port->speed, port->duplex ? "full" : "half");
589 }
590 
591 
592 static inline void debug_pkt(struct net_device *dev, const char *func,
593 			     u8 *data, int len)
594 {
595 #if DEBUG_PKT_BYTES
596 	int i;
597 
598 	printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
599 	for (i = 0; i < len; i++) {
600 		if (i >= DEBUG_PKT_BYTES)
601 			break;
602 		printk("%s%02X",
603 		       ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
604 		       data[i]);
605 	}
606 	printk("\n");
607 #endif
608 }
609 
610 
611 static inline void debug_desc(u32 phys, struct desc *desc)
612 {
613 #if DEBUG_DESC
614 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
615 	       " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
616 	       phys, desc->next, desc->buf_len, desc->pkt_len,
617 	       desc->data, desc->dest_id, desc->src_id, desc->flags,
618 	       desc->qos, desc->padlen, desc->vlan_tci,
619 	       desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
620 	       desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
621 	       desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
622 	       desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
623 #endif
624 }
625 
626 static inline int queue_get_desc(unsigned int queue, struct port *port,
627 				 int is_tx)
628 {
629 	u32 phys, tab_phys, n_desc;
630 	struct desc *tab;
631 
632 	if (!(phys = qmgr_get_entry(queue)))
633 		return -1;
634 
635 	phys &= ~0x1F; /* mask out non-address bits */
636 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
637 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
638 	n_desc = (phys - tab_phys) / sizeof(struct desc);
639 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
640 	debug_desc(phys, &tab[n_desc]);
641 	BUG_ON(tab[n_desc].next);
642 	return n_desc;
643 }
644 
645 static inline void queue_put_desc(unsigned int queue, u32 phys,
646 				  struct desc *desc)
647 {
648 	debug_desc(phys, desc);
649 	BUG_ON(phys & 0x1F);
650 	qmgr_put_entry(queue, phys);
651 	/* Don't check for queue overflow here, we've allocated sufficient
652 	   length and queues >= 32 don't support this check anyway. */
653 }
654 
655 
656 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
657 {
658 #ifdef __ARMEB__
659 	dma_unmap_single(&port->netdev->dev, desc->data,
660 			 desc->buf_len, DMA_TO_DEVICE);
661 #else
662 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
663 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
664 			 DMA_TO_DEVICE);
665 #endif
666 }
667 
668 
669 static void eth_rx_irq(void *pdev)
670 {
671 	struct net_device *dev = pdev;
672 	struct port *port = netdev_priv(dev);
673 
674 #if DEBUG_RX
675 	printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
676 #endif
677 	qmgr_disable_irq(port->plat->rxq);
678 	napi_schedule(&port->napi);
679 }
680 
681 static int eth_poll(struct napi_struct *napi, int budget)
682 {
683 	struct port *port = container_of(napi, struct port, napi);
684 	struct net_device *dev = port->netdev;
685 	unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
686 	int received = 0;
687 
688 #if DEBUG_RX
689 	printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
690 #endif
691 
692 	while (received < budget) {
693 		struct sk_buff *skb;
694 		struct desc *desc;
695 		int n;
696 #ifdef __ARMEB__
697 		struct sk_buff *temp;
698 		u32 phys;
699 #endif
700 
701 		if ((n = queue_get_desc(rxq, port, 0)) < 0) {
702 #if DEBUG_RX
703 			printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
704 			       dev->name);
705 #endif
706 			napi_complete(napi);
707 			qmgr_enable_irq(rxq);
708 			if (!qmgr_stat_below_low_watermark(rxq) &&
709 			    napi_reschedule(napi)) { /* not empty again */
710 #if DEBUG_RX
711 				printk(KERN_DEBUG "%s: eth_poll napi_reschedule succeeded\n",
712 				       dev->name);
713 #endif
714 				qmgr_disable_irq(rxq);
715 				continue;
716 			}
717 #if DEBUG_RX
718 			printk(KERN_DEBUG "%s: eth_poll all done\n",
719 			       dev->name);
720 #endif
721 			return received; /* all work done */
722 		}
723 
724 		desc = rx_desc_ptr(port, n);
725 
726 #ifdef __ARMEB__
727 		if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
728 			phys = dma_map_single(&dev->dev, skb->data,
729 					      RX_BUFF_SIZE, DMA_FROM_DEVICE);
730 			if (dma_mapping_error(&dev->dev, phys)) {
731 				dev_kfree_skb(skb);
732 				skb = NULL;
733 			}
734 		}
735 #else
736 		skb = netdev_alloc_skb(dev,
737 				       ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
738 #endif
739 
740 		if (!skb) {
741 			dev->stats.rx_dropped++;
742 			/* put the desc back on RX-ready queue */
743 			desc->buf_len = MAX_MRU;
744 			desc->pkt_len = 0;
745 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
746 			continue;
747 		}
748 
749 		/* process received frame */
750 #ifdef __ARMEB__
751 		temp = skb;
752 		skb = port->rx_buff_tab[n];
753 		dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
754 				 RX_BUFF_SIZE, DMA_FROM_DEVICE);
755 #else
756 		dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
757 					RX_BUFF_SIZE, DMA_FROM_DEVICE);
758 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
759 			      ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
760 #endif
761 		skb_reserve(skb, NET_IP_ALIGN);
762 		skb_put(skb, desc->pkt_len);
763 
764 		debug_pkt(dev, "eth_poll", skb->data, skb->len);
765 
766 		ixp_rx_timestamp(port, skb);
767 		skb->protocol = eth_type_trans(skb, dev);
768 		dev->stats.rx_packets++;
769 		dev->stats.rx_bytes += skb->len;
770 		netif_receive_skb(skb);
771 
772 		/* put the new buffer on RX-free queue */
773 #ifdef __ARMEB__
774 		port->rx_buff_tab[n] = temp;
775 		desc->data = phys + NET_IP_ALIGN;
776 #endif
777 		desc->buf_len = MAX_MRU;
778 		desc->pkt_len = 0;
779 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
780 		received++;
781 	}
782 
783 #if DEBUG_RX
784 	printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
785 #endif
786 	return received;		/* not all work done */
787 }
788 
789 
790 static void eth_txdone_irq(void *unused)
791 {
792 	u32 phys;
793 
794 #if DEBUG_TX
795 	printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
796 #endif
797 	while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
798 		u32 npe_id, n_desc;
799 		struct port *port;
800 		struct desc *desc;
801 		int start;
802 
803 		npe_id = phys & 3;
804 		BUG_ON(npe_id >= MAX_NPES);
805 		port = npe_port_tab[npe_id];
806 		BUG_ON(!port);
807 		phys &= ~0x1F; /* mask out non-address bits */
808 		n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
809 		BUG_ON(n_desc >= TX_DESCS);
810 		desc = tx_desc_ptr(port, n_desc);
811 		debug_desc(phys, desc);
812 
813 		if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
814 			port->netdev->stats.tx_packets++;
815 			port->netdev->stats.tx_bytes += desc->pkt_len;
816 
817 			dma_unmap_tx(port, desc);
818 #if DEBUG_TX
819 			printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
820 			       port->netdev->name, port->tx_buff_tab[n_desc]);
821 #endif
822 			free_buffer_irq(port->tx_buff_tab[n_desc]);
823 			port->tx_buff_tab[n_desc] = NULL;
824 		}
825 
826 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
827 		queue_put_desc(port->plat->txreadyq, phys, desc);
828 		if (start) { /* TX-ready queue was empty */
829 #if DEBUG_TX
830 			printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
831 			       port->netdev->name);
832 #endif
833 			netif_wake_queue(port->netdev);
834 		}
835 	}
836 }
837 
838 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
839 {
840 	struct port *port = netdev_priv(dev);
841 	unsigned int txreadyq = port->plat->txreadyq;
842 	int len, offset, bytes, n;
843 	void *mem;
844 	u32 phys;
845 	struct desc *desc;
846 
847 #if DEBUG_TX
848 	printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
849 #endif
850 
851 	if (unlikely(skb->len > MAX_MRU)) {
852 		dev_kfree_skb(skb);
853 		dev->stats.tx_errors++;
854 		return NETDEV_TX_OK;
855 	}
856 
857 	debug_pkt(dev, "eth_xmit", skb->data, skb->len);
858 
859 	len = skb->len;
860 #ifdef __ARMEB__
861 	offset = 0; /* no need to keep alignment */
862 	bytes = len;
863 	mem = skb->data;
864 #else
865 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
866 	bytes = ALIGN(offset + len, 4);
867 	if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
868 		dev_kfree_skb(skb);
869 		dev->stats.tx_dropped++;
870 		return NETDEV_TX_OK;
871 	}
872 	memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
873 #endif
874 
875 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
876 	if (dma_mapping_error(&dev->dev, phys)) {
877 		dev_kfree_skb(skb);
878 #ifndef __ARMEB__
879 		kfree(mem);
880 #endif
881 		dev->stats.tx_dropped++;
882 		return NETDEV_TX_OK;
883 	}
884 
885 	n = queue_get_desc(txreadyq, port, 1);
886 	BUG_ON(n < 0);
887 	desc = tx_desc_ptr(port, n);
888 
889 #ifdef __ARMEB__
890 	port->tx_buff_tab[n] = skb;
891 #else
892 	port->tx_buff_tab[n] = mem;
893 #endif
894 	desc->data = phys + offset;
895 	desc->buf_len = desc->pkt_len = len;
896 
897 	/* NPE firmware pads short frames with zeros internally */
898 	wmb();
899 	queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
900 
901 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
902 #if DEBUG_TX
903 		printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
904 #endif
905 		netif_stop_queue(dev);
906 		/* we could miss TX ready interrupt */
907 		/* really empty in fact */
908 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
909 #if DEBUG_TX
910 			printk(KERN_DEBUG "%s: eth_xmit ready again\n",
911 			       dev->name);
912 #endif
913 			netif_wake_queue(dev);
914 		}
915 	}
916 
917 #if DEBUG_TX
918 	printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
919 #endif
920 
921 	ixp_tx_timestamp(port, skb);
922 	skb_tx_timestamp(skb);
923 
924 #ifndef __ARMEB__
925 	dev_kfree_skb(skb);
926 #endif
927 	return NETDEV_TX_OK;
928 }
929 
930 
931 static void eth_set_mcast_list(struct net_device *dev)
932 {
933 	struct port *port = netdev_priv(dev);
934 	struct netdev_hw_addr *ha;
935 	u8 diffs[ETH_ALEN], *addr;
936 	int i;
937 	static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
938 
939 	if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
940 		for (i = 0; i < ETH_ALEN; i++) {
941 			__raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
942 			__raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
943 		}
944 		__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
945 			&port->regs->rx_control[0]);
946 		return;
947 	}
948 
949 	if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
950 		__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
951 			     &port->regs->rx_control[0]);
952 		return;
953 	}
954 
955 	eth_zero_addr(diffs);
956 
957 	addr = NULL;
958 	netdev_for_each_mc_addr(ha, dev) {
959 		if (!addr)
960 			addr = ha->addr; /* first MAC address */
961 		for (i = 0; i < ETH_ALEN; i++)
962 			diffs[i] |= addr[i] ^ ha->addr[i];
963 	}
964 
965 	for (i = 0; i < ETH_ALEN; i++) {
966 		__raw_writel(addr[i], &port->regs->mcast_addr[i]);
967 		__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
968 	}
969 
970 	__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
971 		     &port->regs->rx_control[0]);
972 }
973 
974 
975 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
976 {
977 	if (!netif_running(dev))
978 		return -EINVAL;
979 
980 	if (cpu_is_ixp46x()) {
981 		if (cmd == SIOCSHWTSTAMP)
982 			return hwtstamp_set(dev, req);
983 		if (cmd == SIOCGHWTSTAMP)
984 			return hwtstamp_get(dev, req);
985 	}
986 
987 	return phy_mii_ioctl(dev->phydev, req, cmd);
988 }
989 
990 /* ethtool support */
991 
992 static void ixp4xx_get_drvinfo(struct net_device *dev,
993 			       struct ethtool_drvinfo *info)
994 {
995 	struct port *port = netdev_priv(dev);
996 
997 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
998 	snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
999 		 port->firmware[0], port->firmware[1],
1000 		 port->firmware[2], port->firmware[3]);
1001 	strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
1002 }
1003 
1004 int ixp46x_phc_index = -1;
1005 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1006 
1007 static int ixp4xx_get_ts_info(struct net_device *dev,
1008 			      struct ethtool_ts_info *info)
1009 {
1010 	if (!cpu_is_ixp46x()) {
1011 		info->so_timestamping =
1012 			SOF_TIMESTAMPING_TX_SOFTWARE |
1013 			SOF_TIMESTAMPING_RX_SOFTWARE |
1014 			SOF_TIMESTAMPING_SOFTWARE;
1015 		info->phc_index = -1;
1016 		return 0;
1017 	}
1018 	info->so_timestamping =
1019 		SOF_TIMESTAMPING_TX_HARDWARE |
1020 		SOF_TIMESTAMPING_RX_HARDWARE |
1021 		SOF_TIMESTAMPING_RAW_HARDWARE;
1022 	info->phc_index = ixp46x_phc_index;
1023 	info->tx_types =
1024 		(1 << HWTSTAMP_TX_OFF) |
1025 		(1 << HWTSTAMP_TX_ON);
1026 	info->rx_filters =
1027 		(1 << HWTSTAMP_FILTER_NONE) |
1028 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1029 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1030 	return 0;
1031 }
1032 
1033 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1034 	.get_drvinfo = ixp4xx_get_drvinfo,
1035 	.nway_reset = phy_ethtool_nway_reset,
1036 	.get_link = ethtool_op_get_link,
1037 	.get_ts_info = ixp4xx_get_ts_info,
1038 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1039 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1040 };
1041 
1042 
1043 static int request_queues(struct port *port)
1044 {
1045 	int err;
1046 
1047 	err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1048 				 "%s:RX-free", port->netdev->name);
1049 	if (err)
1050 		return err;
1051 
1052 	err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1053 				 "%s:RX", port->netdev->name);
1054 	if (err)
1055 		goto rel_rxfree;
1056 
1057 	err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1058 				 "%s:TX", port->netdev->name);
1059 	if (err)
1060 		goto rel_rx;
1061 
1062 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1063 				 "%s:TX-ready", port->netdev->name);
1064 	if (err)
1065 		goto rel_tx;
1066 
1067 	/* TX-done queue handles skbs sent out by the NPEs */
1068 	if (!ports_open) {
1069 		err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1070 					 "%s:TX-done", DRV_NAME);
1071 		if (err)
1072 			goto rel_txready;
1073 	}
1074 	return 0;
1075 
1076 rel_txready:
1077 	qmgr_release_queue(port->plat->txreadyq);
1078 rel_tx:
1079 	qmgr_release_queue(TX_QUEUE(port->id));
1080 rel_rx:
1081 	qmgr_release_queue(port->plat->rxq);
1082 rel_rxfree:
1083 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1084 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1085 	       port->netdev->name);
1086 	return err;
1087 }
1088 
1089 static void release_queues(struct port *port)
1090 {
1091 	qmgr_release_queue(RXFREE_QUEUE(port->id));
1092 	qmgr_release_queue(port->plat->rxq);
1093 	qmgr_release_queue(TX_QUEUE(port->id));
1094 	qmgr_release_queue(port->plat->txreadyq);
1095 
1096 	if (!ports_open)
1097 		qmgr_release_queue(TXDONE_QUEUE);
1098 }
1099 
1100 static int init_queues(struct port *port)
1101 {
1102 	int i;
1103 
1104 	if (!ports_open) {
1105 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1106 					   POOL_ALLOC_SIZE, 32, 0);
1107 		if (!dma_pool)
1108 			return -ENOMEM;
1109 	}
1110 
1111 	if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1112 					      &port->desc_tab_phys)))
1113 		return -ENOMEM;
1114 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1115 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1116 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1117 
1118 	/* Setup RX buffers */
1119 	for (i = 0; i < RX_DESCS; i++) {
1120 		struct desc *desc = rx_desc_ptr(port, i);
1121 		buffer_t *buff; /* skb or kmalloc()ated memory */
1122 		void *data;
1123 #ifdef __ARMEB__
1124 		if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1125 			return -ENOMEM;
1126 		data = buff->data;
1127 #else
1128 		if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1129 			return -ENOMEM;
1130 		data = buff;
1131 #endif
1132 		desc->buf_len = MAX_MRU;
1133 		desc->data = dma_map_single(&port->netdev->dev, data,
1134 					    RX_BUFF_SIZE, DMA_FROM_DEVICE);
1135 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1136 			free_buffer(buff);
1137 			return -EIO;
1138 		}
1139 		desc->data += NET_IP_ALIGN;
1140 		port->rx_buff_tab[i] = buff;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void destroy_queues(struct port *port)
1147 {
1148 	int i;
1149 
1150 	if (port->desc_tab) {
1151 		for (i = 0; i < RX_DESCS; i++) {
1152 			struct desc *desc = rx_desc_ptr(port, i);
1153 			buffer_t *buff = port->rx_buff_tab[i];
1154 			if (buff) {
1155 				dma_unmap_single(&port->netdev->dev,
1156 						 desc->data - NET_IP_ALIGN,
1157 						 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1158 				free_buffer(buff);
1159 			}
1160 		}
1161 		for (i = 0; i < TX_DESCS; i++) {
1162 			struct desc *desc = tx_desc_ptr(port, i);
1163 			buffer_t *buff = port->tx_buff_tab[i];
1164 			if (buff) {
1165 				dma_unmap_tx(port, desc);
1166 				free_buffer(buff);
1167 			}
1168 		}
1169 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1170 		port->desc_tab = NULL;
1171 	}
1172 
1173 	if (!ports_open && dma_pool) {
1174 		dma_pool_destroy(dma_pool);
1175 		dma_pool = NULL;
1176 	}
1177 }
1178 
1179 static int eth_open(struct net_device *dev)
1180 {
1181 	struct port *port = netdev_priv(dev);
1182 	struct npe *npe = port->npe;
1183 	struct msg msg;
1184 	int i, err;
1185 
1186 	if (!npe_running(npe)) {
1187 		err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1188 		if (err)
1189 			return err;
1190 
1191 		if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1192 			printk(KERN_ERR "%s: %s not responding\n", dev->name,
1193 			       npe_name(npe));
1194 			return -EIO;
1195 		}
1196 		port->firmware[0] = msg.byte4;
1197 		port->firmware[1] = msg.byte5;
1198 		port->firmware[2] = msg.byte6;
1199 		port->firmware[3] = msg.byte7;
1200 	}
1201 
1202 	memset(&msg, 0, sizeof(msg));
1203 	msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1204 	msg.eth_id = port->id;
1205 	msg.byte5 = port->plat->rxq | 0x80;
1206 	msg.byte7 = port->plat->rxq << 4;
1207 	for (i = 0; i < 8; i++) {
1208 		msg.byte3 = i;
1209 		if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1210 			return -EIO;
1211 	}
1212 
1213 	msg.cmd = NPE_EDB_SETPORTADDRESS;
1214 	msg.eth_id = PHYSICAL_ID(port->id);
1215 	msg.byte2 = dev->dev_addr[0];
1216 	msg.byte3 = dev->dev_addr[1];
1217 	msg.byte4 = dev->dev_addr[2];
1218 	msg.byte5 = dev->dev_addr[3];
1219 	msg.byte6 = dev->dev_addr[4];
1220 	msg.byte7 = dev->dev_addr[5];
1221 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1222 		return -EIO;
1223 
1224 	memset(&msg, 0, sizeof(msg));
1225 	msg.cmd = NPE_FW_SETFIREWALLMODE;
1226 	msg.eth_id = port->id;
1227 	if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1228 		return -EIO;
1229 
1230 	if ((err = request_queues(port)) != 0)
1231 		return err;
1232 
1233 	if ((err = init_queues(port)) != 0) {
1234 		destroy_queues(port);
1235 		release_queues(port);
1236 		return err;
1237 	}
1238 
1239 	port->speed = 0;	/* force "link up" message */
1240 	phy_start(dev->phydev);
1241 
1242 	for (i = 0; i < ETH_ALEN; i++)
1243 		__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1244 	__raw_writel(0x08, &port->regs->random_seed);
1245 	__raw_writel(0x12, &port->regs->partial_empty_threshold);
1246 	__raw_writel(0x30, &port->regs->partial_full_threshold);
1247 	__raw_writel(0x08, &port->regs->tx_start_bytes);
1248 	__raw_writel(0x15, &port->regs->tx_deferral);
1249 	__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1250 	__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1251 	__raw_writel(0x80, &port->regs->slot_time);
1252 	__raw_writel(0x01, &port->regs->int_clock_threshold);
1253 
1254 	/* Populate queues with buffers, no failure after this point */
1255 	for (i = 0; i < TX_DESCS; i++)
1256 		queue_put_desc(port->plat->txreadyq,
1257 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1258 
1259 	for (i = 0; i < RX_DESCS; i++)
1260 		queue_put_desc(RXFREE_QUEUE(port->id),
1261 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1262 
1263 	__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1264 	__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1265 	__raw_writel(0, &port->regs->rx_control[1]);
1266 	__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1267 
1268 	napi_enable(&port->napi);
1269 	eth_set_mcast_list(dev);
1270 	netif_start_queue(dev);
1271 
1272 	qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1273 		     eth_rx_irq, dev);
1274 	if (!ports_open) {
1275 		qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1276 			     eth_txdone_irq, NULL);
1277 		qmgr_enable_irq(TXDONE_QUEUE);
1278 	}
1279 	ports_open++;
1280 	/* we may already have RX data, enables IRQ */
1281 	napi_schedule(&port->napi);
1282 	return 0;
1283 }
1284 
1285 static int eth_close(struct net_device *dev)
1286 {
1287 	struct port *port = netdev_priv(dev);
1288 	struct msg msg;
1289 	int buffs = RX_DESCS; /* allocated RX buffers */
1290 	int i;
1291 
1292 	ports_open--;
1293 	qmgr_disable_irq(port->plat->rxq);
1294 	napi_disable(&port->napi);
1295 	netif_stop_queue(dev);
1296 
1297 	while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1298 		buffs--;
1299 
1300 	memset(&msg, 0, sizeof(msg));
1301 	msg.cmd = NPE_SETLOOPBACK_MODE;
1302 	msg.eth_id = port->id;
1303 	msg.byte3 = 1;
1304 	if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1305 		printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1306 
1307 	i = 0;
1308 	do {			/* drain RX buffers */
1309 		while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1310 			buffs--;
1311 		if (!buffs)
1312 			break;
1313 		if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1314 			/* we have to inject some packet */
1315 			struct desc *desc;
1316 			u32 phys;
1317 			int n = queue_get_desc(port->plat->txreadyq, port, 1);
1318 			BUG_ON(n < 0);
1319 			desc = tx_desc_ptr(port, n);
1320 			phys = tx_desc_phys(port, n);
1321 			desc->buf_len = desc->pkt_len = 1;
1322 			wmb();
1323 			queue_put_desc(TX_QUEUE(port->id), phys, desc);
1324 		}
1325 		udelay(1);
1326 	} while (++i < MAX_CLOSE_WAIT);
1327 
1328 	if (buffs)
1329 		printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1330 		       " left in NPE\n", dev->name, buffs);
1331 #if DEBUG_CLOSE
1332 	if (!buffs)
1333 		printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1334 #endif
1335 
1336 	buffs = TX_DESCS;
1337 	while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1338 		buffs--; /* cancel TX */
1339 
1340 	i = 0;
1341 	do {
1342 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1343 			buffs--;
1344 		if (!buffs)
1345 			break;
1346 	} while (++i < MAX_CLOSE_WAIT);
1347 
1348 	if (buffs)
1349 		printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1350 		       "left in NPE\n", dev->name, buffs);
1351 #if DEBUG_CLOSE
1352 	if (!buffs)
1353 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1354 #endif
1355 
1356 	msg.byte3 = 0;
1357 	if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1358 		printk(KERN_CRIT "%s: unable to disable loopback\n",
1359 		       dev->name);
1360 
1361 	phy_stop(dev->phydev);
1362 
1363 	if (!ports_open)
1364 		qmgr_disable_irq(TXDONE_QUEUE);
1365 	destroy_queues(port);
1366 	release_queues(port);
1367 	return 0;
1368 }
1369 
1370 static const struct net_device_ops ixp4xx_netdev_ops = {
1371 	.ndo_open = eth_open,
1372 	.ndo_stop = eth_close,
1373 	.ndo_start_xmit = eth_xmit,
1374 	.ndo_set_rx_mode = eth_set_mcast_list,
1375 	.ndo_do_ioctl = eth_ioctl,
1376 	.ndo_set_mac_address = eth_mac_addr,
1377 	.ndo_validate_addr = eth_validate_addr,
1378 };
1379 
1380 static int eth_init_one(struct platform_device *pdev)
1381 {
1382 	struct port *port;
1383 	struct net_device *dev;
1384 	struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
1385 	struct phy_device *phydev = NULL;
1386 	u32 regs_phys;
1387 	char phy_id[MII_BUS_ID_SIZE + 3];
1388 	int err;
1389 
1390 	if (!(dev = alloc_etherdev(sizeof(struct port))))
1391 		return -ENOMEM;
1392 
1393 	SET_NETDEV_DEV(dev, &pdev->dev);
1394 	port = netdev_priv(dev);
1395 	port->netdev = dev;
1396 	port->id = pdev->id;
1397 
1398 	switch (port->id) {
1399 	case IXP4XX_ETH_NPEA:
1400 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1401 		regs_phys  = IXP4XX_EthA_BASE_PHYS;
1402 		break;
1403 	case IXP4XX_ETH_NPEB:
1404 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1405 		regs_phys  = IXP4XX_EthB_BASE_PHYS;
1406 		break;
1407 	case IXP4XX_ETH_NPEC:
1408 		port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1409 		regs_phys  = IXP4XX_EthC_BASE_PHYS;
1410 		break;
1411 	default:
1412 		err = -ENODEV;
1413 		goto err_free;
1414 	}
1415 
1416 	dev->netdev_ops = &ixp4xx_netdev_ops;
1417 	dev->ethtool_ops = &ixp4xx_ethtool_ops;
1418 	dev->tx_queue_len = 100;
1419 
1420 	netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1421 
1422 	if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1423 		err = -EIO;
1424 		goto err_free;
1425 	}
1426 
1427 	port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1428 	if (!port->mem_res) {
1429 		err = -EBUSY;
1430 		goto err_npe_rel;
1431 	}
1432 
1433 	port->plat = plat;
1434 	npe_port_tab[NPE_ID(port->id)] = port;
1435 	memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1436 
1437 	platform_set_drvdata(pdev, dev);
1438 
1439 	__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1440 		     &port->regs->core_control);
1441 	udelay(50);
1442 	__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1443 	udelay(50);
1444 
1445 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1446 		mdio_bus->id, plat->phy);
1447 	phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1448 			     PHY_INTERFACE_MODE_MII);
1449 	if (IS_ERR(phydev)) {
1450 		err = PTR_ERR(phydev);
1451 		goto err_free_mem;
1452 	}
1453 
1454 	phydev->irq = PHY_POLL;
1455 
1456 	if ((err = register_netdev(dev)))
1457 		goto err_phy_dis;
1458 
1459 	printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1460 	       npe_name(port->npe));
1461 
1462 	return 0;
1463 
1464 err_phy_dis:
1465 	phy_disconnect(phydev);
1466 err_free_mem:
1467 	npe_port_tab[NPE_ID(port->id)] = NULL;
1468 	release_resource(port->mem_res);
1469 err_npe_rel:
1470 	npe_release(port->npe);
1471 err_free:
1472 	free_netdev(dev);
1473 	return err;
1474 }
1475 
1476 static int eth_remove_one(struct platform_device *pdev)
1477 {
1478 	struct net_device *dev = platform_get_drvdata(pdev);
1479 	struct phy_device *phydev = dev->phydev;
1480 	struct port *port = netdev_priv(dev);
1481 
1482 	unregister_netdev(dev);
1483 	phy_disconnect(phydev);
1484 	npe_port_tab[NPE_ID(port->id)] = NULL;
1485 	npe_release(port->npe);
1486 	release_resource(port->mem_res);
1487 	free_netdev(dev);
1488 	return 0;
1489 }
1490 
1491 static struct platform_driver ixp4xx_eth_driver = {
1492 	.driver.name	= DRV_NAME,
1493 	.probe		= eth_init_one,
1494 	.remove		= eth_remove_one,
1495 };
1496 
1497 static int __init eth_init_module(void)
1498 {
1499 	int err;
1500 	if ((err = ixp4xx_mdio_register()))
1501 		return err;
1502 	return platform_driver_register(&ixp4xx_eth_driver);
1503 }
1504 
1505 static void __exit eth_cleanup_module(void)
1506 {
1507 	platform_driver_unregister(&ixp4xx_eth_driver);
1508 	ixp4xx_mdio_remove();
1509 }
1510 
1511 MODULE_AUTHOR("Krzysztof Halasa");
1512 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1513 MODULE_LICENSE("GPL v2");
1514 MODULE_ALIAS("platform:ixp4xx_eth");
1515 module_init(eth_init_module);
1516 module_exit(eth_cleanup_module);
1517