1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel IXP4xx Ethernet driver for Linux 4 * 5 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl> 6 * 7 * Ethernet port config (0x00 is not present on IXP42X): 8 * 9 * logical port 0x00 0x10 0x20 10 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C) 11 * physical PortId 2 0 1 12 * TX queue 23 24 25 13 * RX-free queue 26 27 28 14 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable 15 * 16 * Queue entries: 17 * bits 0 -> 1 - NPE ID (RX and TX-done) 18 * bits 0 -> 2 - priority (TX, per 802.1D) 19 * bits 3 -> 4 - port ID (user-set?) 20 * bits 5 -> 31 - physical descriptor address 21 */ 22 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmapool.h> 26 #include <linux/etherdevice.h> 27 #include <linux/io.h> 28 #include <linux/kernel.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/phy.h> 33 #include <linux/platform_data/eth_ixp4xx.h> 34 #include <linux/platform_device.h> 35 #include <linux/ptp_classify.h> 36 #include <linux/slab.h> 37 #include <linux/module.h> 38 #include <linux/soc/ixp4xx/npe.h> 39 #include <linux/soc/ixp4xx/qmgr.h> 40 #include <linux/soc/ixp4xx/cpu.h> 41 42 #include "ixp46x_ts.h" 43 44 #define DEBUG_DESC 0 45 #define DEBUG_RX 0 46 #define DEBUG_TX 0 47 #define DEBUG_PKT_BYTES 0 48 #define DEBUG_MDIO 0 49 #define DEBUG_CLOSE 0 50 51 #define DRV_NAME "ixp4xx_eth" 52 53 #define MAX_NPES 3 54 55 #define RX_DESCS 64 /* also length of all RX queues */ 56 #define TX_DESCS 16 /* also length of all TX queues */ 57 #define TXDONE_QUEUE_LEN 64 /* dwords */ 58 59 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) 60 #define REGS_SIZE 0x1000 61 #define MAX_MRU 1536 /* 0x600 */ 62 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4) 63 64 #define NAPI_WEIGHT 16 65 #define MDIO_INTERVAL (3 * HZ) 66 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */ 67 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */ 68 69 #define NPE_ID(port_id) ((port_id) >> 4) 70 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3) 71 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23) 72 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26) 73 #define TXDONE_QUEUE 31 74 75 #define PTP_SLAVE_MODE 1 76 #define PTP_MASTER_MODE 2 77 #define PORT2CHANNEL(p) NPE_ID(p->id) 78 79 /* TX Control Registers */ 80 #define TX_CNTRL0_TX_EN 0x01 81 #define TX_CNTRL0_HALFDUPLEX 0x02 82 #define TX_CNTRL0_RETRY 0x04 83 #define TX_CNTRL0_PAD_EN 0x08 84 #define TX_CNTRL0_APPEND_FCS 0x10 85 #define TX_CNTRL0_2DEFER 0x20 86 #define TX_CNTRL0_RMII 0x40 /* reduced MII */ 87 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */ 88 89 /* RX Control Registers */ 90 #define RX_CNTRL0_RX_EN 0x01 91 #define RX_CNTRL0_PADSTRIP_EN 0x02 92 #define RX_CNTRL0_SEND_FCS 0x04 93 #define RX_CNTRL0_PAUSE_EN 0x08 94 #define RX_CNTRL0_LOOP_EN 0x10 95 #define RX_CNTRL0_ADDR_FLTR_EN 0x20 96 #define RX_CNTRL0_RX_RUNT_EN 0x40 97 #define RX_CNTRL0_BCAST_DIS 0x80 98 #define RX_CNTRL1_DEFER_EN 0x01 99 100 /* Core Control Register */ 101 #define CORE_RESET 0x01 102 #define CORE_RX_FIFO_FLUSH 0x02 103 #define CORE_TX_FIFO_FLUSH 0x04 104 #define CORE_SEND_JAM 0x08 105 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */ 106 107 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \ 108 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \ 109 TX_CNTRL0_2DEFER) 110 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN 111 #define DEFAULT_CORE_CNTRL CORE_MDC_EN 112 113 114 /* NPE message codes */ 115 #define NPE_GETSTATUS 0x00 116 #define NPE_EDB_SETPORTADDRESS 0x01 117 #define NPE_EDB_GETMACADDRESSDATABASE 0x02 118 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03 119 #define NPE_GETSTATS 0x04 120 #define NPE_RESETSTATS 0x05 121 #define NPE_SETMAXFRAMELENGTHS 0x06 122 #define NPE_VLAN_SETRXTAGMODE 0x07 123 #define NPE_VLAN_SETDEFAULTRXVID 0x08 124 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09 125 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A 126 #define NPE_VLAN_SETRXQOSENTRY 0x0B 127 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C 128 #define NPE_STP_SETBLOCKINGSTATE 0x0D 129 #define NPE_FW_SETFIREWALLMODE 0x0E 130 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F 131 #define NPE_PC_SETAPMACTABLE 0x11 132 #define NPE_SETLOOPBACK_MODE 0x12 133 #define NPE_PC_SETBSSIDTABLE 0x13 134 #define NPE_ADDRESS_FILTER_CONFIG 0x14 135 #define NPE_APPENDFCSCONFIG 0x15 136 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16 137 #define NPE_MAC_RECOVERY_START 0x17 138 139 140 #ifdef __ARMEB__ 141 typedef struct sk_buff buffer_t; 142 #define free_buffer dev_kfree_skb 143 #define free_buffer_irq dev_consume_skb_irq 144 #else 145 typedef void buffer_t; 146 #define free_buffer kfree 147 #define free_buffer_irq kfree 148 #endif 149 150 struct eth_regs { 151 u32 tx_control[2], __res1[2]; /* 000 */ 152 u32 rx_control[2], __res2[2]; /* 010 */ 153 u32 random_seed, __res3[3]; /* 020 */ 154 u32 partial_empty_threshold, __res4; /* 030 */ 155 u32 partial_full_threshold, __res5; /* 038 */ 156 u32 tx_start_bytes, __res6[3]; /* 040 */ 157 u32 tx_deferral, rx_deferral, __res7[2];/* 050 */ 158 u32 tx_2part_deferral[2], __res8[2]; /* 060 */ 159 u32 slot_time, __res9[3]; /* 070 */ 160 u32 mdio_command[4]; /* 080 */ 161 u32 mdio_status[4]; /* 090 */ 162 u32 mcast_mask[6], __res10[2]; /* 0A0 */ 163 u32 mcast_addr[6], __res11[2]; /* 0C0 */ 164 u32 int_clock_threshold, __res12[3]; /* 0E0 */ 165 u32 hw_addr[6], __res13[61]; /* 0F0 */ 166 u32 core_control; /* 1FC */ 167 }; 168 169 struct port { 170 struct eth_regs __iomem *regs; 171 struct ixp46x_ts_regs __iomem *timesync_regs; 172 int phc_index; 173 struct npe *npe; 174 struct net_device *netdev; 175 struct napi_struct napi; 176 struct eth_plat_info *plat; 177 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; 178 struct desc *desc_tab; /* coherent */ 179 dma_addr_t desc_tab_phys; 180 int id; /* logical port ID */ 181 int speed, duplex; 182 u8 firmware[4]; 183 int hwts_tx_en; 184 int hwts_rx_en; 185 }; 186 187 /* NPE message structure */ 188 struct msg { 189 #ifdef __ARMEB__ 190 u8 cmd, eth_id, byte2, byte3; 191 u8 byte4, byte5, byte6, byte7; 192 #else 193 u8 byte3, byte2, eth_id, cmd; 194 u8 byte7, byte6, byte5, byte4; 195 #endif 196 }; 197 198 /* Ethernet packet descriptor */ 199 struct desc { 200 u32 next; /* pointer to next buffer, unused */ 201 202 #ifdef __ARMEB__ 203 u16 buf_len; /* buffer length */ 204 u16 pkt_len; /* packet length */ 205 u32 data; /* pointer to data buffer in RAM */ 206 u8 dest_id; 207 u8 src_id; 208 u16 flags; 209 u8 qos; 210 u8 padlen; 211 u16 vlan_tci; 212 #else 213 u16 pkt_len; /* packet length */ 214 u16 buf_len; /* buffer length */ 215 u32 data; /* pointer to data buffer in RAM */ 216 u16 flags; 217 u8 src_id; 218 u8 dest_id; 219 u16 vlan_tci; 220 u8 padlen; 221 u8 qos; 222 #endif 223 224 #ifdef __ARMEB__ 225 u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3; 226 u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1; 227 u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5; 228 #else 229 u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0; 230 u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4; 231 u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2; 232 #endif 233 }; 234 235 236 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ 237 (n) * sizeof(struct desc)) 238 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) 239 240 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ 241 ((n) + RX_DESCS) * sizeof(struct desc)) 242 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) 243 244 #ifndef __ARMEB__ 245 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) 246 { 247 int i; 248 for (i = 0; i < cnt; i++) 249 dest[i] = swab32(src[i]); 250 } 251 #endif 252 253 static DEFINE_SPINLOCK(mdio_lock); 254 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */ 255 static struct mii_bus *mdio_bus; 256 static struct device_node *mdio_bus_np; 257 static int ports_open; 258 static struct port *npe_port_tab[MAX_NPES]; 259 static struct dma_pool *dma_pool; 260 261 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid) 262 { 263 u8 *data = skb->data; 264 unsigned int offset; 265 u16 *hi, *id; 266 u32 lo; 267 268 if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4) 269 return 0; 270 271 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; 272 273 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid)) 274 return 0; 275 276 hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID); 277 id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); 278 279 memcpy(&lo, &hi[1], sizeof(lo)); 280 281 return (uid_hi == ntohs(*hi) && 282 uid_lo == ntohl(lo) && 283 seqid == ntohs(*id)); 284 } 285 286 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb) 287 { 288 struct skb_shared_hwtstamps *shhwtstamps; 289 struct ixp46x_ts_regs *regs; 290 u64 ns; 291 u32 ch, hi, lo, val; 292 u16 uid, seq; 293 294 if (!port->hwts_rx_en) 295 return; 296 297 ch = PORT2CHANNEL(port); 298 299 regs = port->timesync_regs; 300 301 val = __raw_readl(®s->channel[ch].ch_event); 302 303 if (!(val & RX_SNAPSHOT_LOCKED)) 304 return; 305 306 lo = __raw_readl(®s->channel[ch].src_uuid_lo); 307 hi = __raw_readl(®s->channel[ch].src_uuid_hi); 308 309 uid = hi & 0xffff; 310 seq = (hi >> 16) & 0xffff; 311 312 if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq))) 313 goto out; 314 315 lo = __raw_readl(®s->channel[ch].rx_snap_lo); 316 hi = __raw_readl(®s->channel[ch].rx_snap_hi); 317 ns = ((u64) hi) << 32; 318 ns |= lo; 319 ns <<= TICKS_NS_SHIFT; 320 321 shhwtstamps = skb_hwtstamps(skb); 322 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 323 shhwtstamps->hwtstamp = ns_to_ktime(ns); 324 out: 325 __raw_writel(RX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event); 326 } 327 328 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb) 329 { 330 struct skb_shared_hwtstamps shhwtstamps; 331 struct ixp46x_ts_regs *regs; 332 struct skb_shared_info *shtx; 333 u64 ns; 334 u32 ch, cnt, hi, lo, val; 335 336 shtx = skb_shinfo(skb); 337 if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en)) 338 shtx->tx_flags |= SKBTX_IN_PROGRESS; 339 else 340 return; 341 342 ch = PORT2CHANNEL(port); 343 344 regs = port->timesync_regs; 345 346 /* 347 * This really stinks, but we have to poll for the Tx time stamp. 348 * Usually, the time stamp is ready after 4 to 6 microseconds. 349 */ 350 for (cnt = 0; cnt < 100; cnt++) { 351 val = __raw_readl(®s->channel[ch].ch_event); 352 if (val & TX_SNAPSHOT_LOCKED) 353 break; 354 udelay(1); 355 } 356 if (!(val & TX_SNAPSHOT_LOCKED)) { 357 shtx->tx_flags &= ~SKBTX_IN_PROGRESS; 358 return; 359 } 360 361 lo = __raw_readl(®s->channel[ch].tx_snap_lo); 362 hi = __raw_readl(®s->channel[ch].tx_snap_hi); 363 ns = ((u64) hi) << 32; 364 ns |= lo; 365 ns <<= TICKS_NS_SHIFT; 366 367 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 368 shhwtstamps.hwtstamp = ns_to_ktime(ns); 369 skb_tstamp_tx(skb, &shhwtstamps); 370 371 __raw_writel(TX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event); 372 } 373 374 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 375 { 376 struct hwtstamp_config cfg; 377 struct ixp46x_ts_regs *regs; 378 struct port *port = netdev_priv(netdev); 379 int ret; 380 int ch; 381 382 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 383 return -EFAULT; 384 385 if (cfg.flags) /* reserved for future extensions */ 386 return -EINVAL; 387 388 ret = ixp46x_ptp_find(&port->timesync_regs, &port->phc_index); 389 if (ret) 390 return ret; 391 392 ch = PORT2CHANNEL(port); 393 regs = port->timesync_regs; 394 395 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 396 return -ERANGE; 397 398 switch (cfg.rx_filter) { 399 case HWTSTAMP_FILTER_NONE: 400 port->hwts_rx_en = 0; 401 break; 402 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 403 port->hwts_rx_en = PTP_SLAVE_MODE; 404 __raw_writel(0, ®s->channel[ch].ch_control); 405 break; 406 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 407 port->hwts_rx_en = PTP_MASTER_MODE; 408 __raw_writel(MASTER_MODE, ®s->channel[ch].ch_control); 409 break; 410 default: 411 return -ERANGE; 412 } 413 414 port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON; 415 416 /* Clear out any old time stamps. */ 417 __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED, 418 ®s->channel[ch].ch_event); 419 420 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 421 } 422 423 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 424 { 425 struct hwtstamp_config cfg; 426 struct port *port = netdev_priv(netdev); 427 428 cfg.flags = 0; 429 cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 430 431 switch (port->hwts_rx_en) { 432 case 0: 433 cfg.rx_filter = HWTSTAMP_FILTER_NONE; 434 break; 435 case PTP_SLAVE_MODE: 436 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 437 break; 438 case PTP_MASTER_MODE: 439 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 440 break; 441 default: 442 WARN_ON_ONCE(1); 443 return -ERANGE; 444 } 445 446 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 447 } 448 449 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location, 450 int write, u16 cmd) 451 { 452 int cycles = 0; 453 454 if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) { 455 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name); 456 return -1; 457 } 458 459 if (write) { 460 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]); 461 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]); 462 } 463 __raw_writel(((phy_id << 5) | location) & 0xFF, 464 &mdio_regs->mdio_command[2]); 465 __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */, 466 &mdio_regs->mdio_command[3]); 467 468 while ((cycles < MAX_MDIO_RETRIES) && 469 (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) { 470 udelay(1); 471 cycles++; 472 } 473 474 if (cycles == MAX_MDIO_RETRIES) { 475 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name, 476 phy_id); 477 return -1; 478 } 479 480 #if DEBUG_MDIO 481 printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name, 482 phy_id, write ? "write" : "read", cycles); 483 #endif 484 485 if (write) 486 return 0; 487 488 if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) { 489 #if DEBUG_MDIO 490 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name, 491 phy_id); 492 #endif 493 return 0xFFFF; /* don't return error */ 494 } 495 496 return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) | 497 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8); 498 } 499 500 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location) 501 { 502 unsigned long flags; 503 int ret; 504 505 spin_lock_irqsave(&mdio_lock, flags); 506 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0); 507 spin_unlock_irqrestore(&mdio_lock, flags); 508 #if DEBUG_MDIO 509 printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name, 510 phy_id, location, ret); 511 #endif 512 return ret; 513 } 514 515 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location, 516 u16 val) 517 { 518 unsigned long flags; 519 int ret; 520 521 spin_lock_irqsave(&mdio_lock, flags); 522 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val); 523 spin_unlock_irqrestore(&mdio_lock, flags); 524 #if DEBUG_MDIO 525 printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n", 526 bus->name, phy_id, location, val, ret); 527 #endif 528 return ret; 529 } 530 531 static int ixp4xx_mdio_register(struct eth_regs __iomem *regs) 532 { 533 int err; 534 535 if (!(mdio_bus = mdiobus_alloc())) 536 return -ENOMEM; 537 538 mdio_regs = regs; 539 __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control); 540 mdio_bus->name = "IXP4xx MII Bus"; 541 mdio_bus->read = &ixp4xx_mdio_read; 542 mdio_bus->write = &ixp4xx_mdio_write; 543 snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0"); 544 545 err = of_mdiobus_register(mdio_bus, mdio_bus_np); 546 if (err) 547 mdiobus_free(mdio_bus); 548 return err; 549 } 550 551 static void ixp4xx_mdio_remove(void) 552 { 553 mdiobus_unregister(mdio_bus); 554 mdiobus_free(mdio_bus); 555 } 556 557 558 static void ixp4xx_adjust_link(struct net_device *dev) 559 { 560 struct port *port = netdev_priv(dev); 561 struct phy_device *phydev = dev->phydev; 562 563 if (!phydev->link) { 564 if (port->speed) { 565 port->speed = 0; 566 printk(KERN_INFO "%s: link down\n", dev->name); 567 } 568 return; 569 } 570 571 if (port->speed == phydev->speed && port->duplex == phydev->duplex) 572 return; 573 574 port->speed = phydev->speed; 575 port->duplex = phydev->duplex; 576 577 if (port->duplex) 578 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX, 579 &port->regs->tx_control[0]); 580 else 581 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX, 582 &port->regs->tx_control[0]); 583 584 netdev_info(dev, "%s: link up, speed %u Mb/s, %s duplex\n", 585 dev->name, port->speed, port->duplex ? "full" : "half"); 586 } 587 588 589 static inline void debug_pkt(struct net_device *dev, const char *func, 590 u8 *data, int len) 591 { 592 #if DEBUG_PKT_BYTES 593 int i; 594 595 netdev_debug(dev, "%s(%i) ", func, len); 596 for (i = 0; i < len; i++) { 597 if (i >= DEBUG_PKT_BYTES) 598 break; 599 printk("%s%02X", 600 ((i == 6) || (i == 12) || (i >= 14)) ? " " : "", 601 data[i]); 602 } 603 printk("\n"); 604 #endif 605 } 606 607 608 static inline void debug_desc(u32 phys, struct desc *desc) 609 { 610 #if DEBUG_DESC 611 printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X" 612 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n", 613 phys, desc->next, desc->buf_len, desc->pkt_len, 614 desc->data, desc->dest_id, desc->src_id, desc->flags, 615 desc->qos, desc->padlen, desc->vlan_tci, 616 desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2, 617 desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5, 618 desc->src_mac_0, desc->src_mac_1, desc->src_mac_2, 619 desc->src_mac_3, desc->src_mac_4, desc->src_mac_5); 620 #endif 621 } 622 623 static inline int queue_get_desc(unsigned int queue, struct port *port, 624 int is_tx) 625 { 626 u32 phys, tab_phys, n_desc; 627 struct desc *tab; 628 629 if (!(phys = qmgr_get_entry(queue))) 630 return -1; 631 632 phys &= ~0x1F; /* mask out non-address bits */ 633 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); 634 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); 635 n_desc = (phys - tab_phys) / sizeof(struct desc); 636 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); 637 debug_desc(phys, &tab[n_desc]); 638 BUG_ON(tab[n_desc].next); 639 return n_desc; 640 } 641 642 static inline void queue_put_desc(unsigned int queue, u32 phys, 643 struct desc *desc) 644 { 645 debug_desc(phys, desc); 646 BUG_ON(phys & 0x1F); 647 qmgr_put_entry(queue, phys); 648 /* Don't check for queue overflow here, we've allocated sufficient 649 length and queues >= 32 don't support this check anyway. */ 650 } 651 652 653 static inline void dma_unmap_tx(struct port *port, struct desc *desc) 654 { 655 #ifdef __ARMEB__ 656 dma_unmap_single(&port->netdev->dev, desc->data, 657 desc->buf_len, DMA_TO_DEVICE); 658 #else 659 dma_unmap_single(&port->netdev->dev, desc->data & ~3, 660 ALIGN((desc->data & 3) + desc->buf_len, 4), 661 DMA_TO_DEVICE); 662 #endif 663 } 664 665 666 static void eth_rx_irq(void *pdev) 667 { 668 struct net_device *dev = pdev; 669 struct port *port = netdev_priv(dev); 670 671 #if DEBUG_RX 672 printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name); 673 #endif 674 qmgr_disable_irq(port->plat->rxq); 675 napi_schedule(&port->napi); 676 } 677 678 static int eth_poll(struct napi_struct *napi, int budget) 679 { 680 struct port *port = container_of(napi, struct port, napi); 681 struct net_device *dev = port->netdev; 682 unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id); 683 int received = 0; 684 685 #if DEBUG_RX 686 netdev_debug(dev, "eth_poll\n"); 687 #endif 688 689 while (received < budget) { 690 struct sk_buff *skb; 691 struct desc *desc; 692 int n; 693 #ifdef __ARMEB__ 694 struct sk_buff *temp; 695 u32 phys; 696 #endif 697 698 if ((n = queue_get_desc(rxq, port, 0)) < 0) { 699 #if DEBUG_RX 700 netdev_debug(dev, "eth_poll napi_complete\n"); 701 #endif 702 napi_complete(napi); 703 qmgr_enable_irq(rxq); 704 if (!qmgr_stat_below_low_watermark(rxq) && 705 napi_reschedule(napi)) { /* not empty again */ 706 #if DEBUG_RX 707 netdev_debug(dev, "eth_poll napi_reschedule succeeded\n"); 708 #endif 709 qmgr_disable_irq(rxq); 710 continue; 711 } 712 #if DEBUG_RX 713 netdev_debug(dev, "eth_poll all done\n"); 714 #endif 715 return received; /* all work done */ 716 } 717 718 desc = rx_desc_ptr(port, n); 719 720 #ifdef __ARMEB__ 721 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) { 722 phys = dma_map_single(&dev->dev, skb->data, 723 RX_BUFF_SIZE, DMA_FROM_DEVICE); 724 if (dma_mapping_error(&dev->dev, phys)) { 725 dev_kfree_skb(skb); 726 skb = NULL; 727 } 728 } 729 #else 730 skb = netdev_alloc_skb(dev, 731 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4)); 732 #endif 733 734 if (!skb) { 735 dev->stats.rx_dropped++; 736 /* put the desc back on RX-ready queue */ 737 desc->buf_len = MAX_MRU; 738 desc->pkt_len = 0; 739 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 740 continue; 741 } 742 743 /* process received frame */ 744 #ifdef __ARMEB__ 745 temp = skb; 746 skb = port->rx_buff_tab[n]; 747 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN, 748 RX_BUFF_SIZE, DMA_FROM_DEVICE); 749 #else 750 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN, 751 RX_BUFF_SIZE, DMA_FROM_DEVICE); 752 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], 753 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4); 754 #endif 755 skb_reserve(skb, NET_IP_ALIGN); 756 skb_put(skb, desc->pkt_len); 757 758 debug_pkt(dev, "eth_poll", skb->data, skb->len); 759 760 ixp_rx_timestamp(port, skb); 761 skb->protocol = eth_type_trans(skb, dev); 762 dev->stats.rx_packets++; 763 dev->stats.rx_bytes += skb->len; 764 netif_receive_skb(skb); 765 766 /* put the new buffer on RX-free queue */ 767 #ifdef __ARMEB__ 768 port->rx_buff_tab[n] = temp; 769 desc->data = phys + NET_IP_ALIGN; 770 #endif 771 desc->buf_len = MAX_MRU; 772 desc->pkt_len = 0; 773 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 774 received++; 775 } 776 777 #if DEBUG_RX 778 netdev_debug(dev, "eth_poll(): end, not all work done\n"); 779 #endif 780 return received; /* not all work done */ 781 } 782 783 784 static void eth_txdone_irq(void *unused) 785 { 786 u32 phys; 787 788 #if DEBUG_TX 789 printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n"); 790 #endif 791 while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) { 792 u32 npe_id, n_desc; 793 struct port *port; 794 struct desc *desc; 795 int start; 796 797 npe_id = phys & 3; 798 BUG_ON(npe_id >= MAX_NPES); 799 port = npe_port_tab[npe_id]; 800 BUG_ON(!port); 801 phys &= ~0x1F; /* mask out non-address bits */ 802 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc); 803 BUG_ON(n_desc >= TX_DESCS); 804 desc = tx_desc_ptr(port, n_desc); 805 debug_desc(phys, desc); 806 807 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */ 808 port->netdev->stats.tx_packets++; 809 port->netdev->stats.tx_bytes += desc->pkt_len; 810 811 dma_unmap_tx(port, desc); 812 #if DEBUG_TX 813 printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n", 814 port->netdev->name, port->tx_buff_tab[n_desc]); 815 #endif 816 free_buffer_irq(port->tx_buff_tab[n_desc]); 817 port->tx_buff_tab[n_desc] = NULL; 818 } 819 820 start = qmgr_stat_below_low_watermark(port->plat->txreadyq); 821 queue_put_desc(port->plat->txreadyq, phys, desc); 822 if (start) { /* TX-ready queue was empty */ 823 #if DEBUG_TX 824 printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n", 825 port->netdev->name); 826 #endif 827 netif_wake_queue(port->netdev); 828 } 829 } 830 } 831 832 static int eth_xmit(struct sk_buff *skb, struct net_device *dev) 833 { 834 struct port *port = netdev_priv(dev); 835 unsigned int txreadyq = port->plat->txreadyq; 836 int len, offset, bytes, n; 837 void *mem; 838 u32 phys; 839 struct desc *desc; 840 841 #if DEBUG_TX 842 netdev_debug(dev, "eth_xmit\n"); 843 #endif 844 845 if (unlikely(skb->len > MAX_MRU)) { 846 dev_kfree_skb(skb); 847 dev->stats.tx_errors++; 848 return NETDEV_TX_OK; 849 } 850 851 debug_pkt(dev, "eth_xmit", skb->data, skb->len); 852 853 len = skb->len; 854 #ifdef __ARMEB__ 855 offset = 0; /* no need to keep alignment */ 856 bytes = len; 857 mem = skb->data; 858 #else 859 offset = (uintptr_t)skb->data & 3; /* keep 32-bit alignment */ 860 bytes = ALIGN(offset + len, 4); 861 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { 862 dev_kfree_skb(skb); 863 dev->stats.tx_dropped++; 864 return NETDEV_TX_OK; 865 } 866 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4); 867 #endif 868 869 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); 870 if (dma_mapping_error(&dev->dev, phys)) { 871 dev_kfree_skb(skb); 872 #ifndef __ARMEB__ 873 kfree(mem); 874 #endif 875 dev->stats.tx_dropped++; 876 return NETDEV_TX_OK; 877 } 878 879 n = queue_get_desc(txreadyq, port, 1); 880 BUG_ON(n < 0); 881 desc = tx_desc_ptr(port, n); 882 883 #ifdef __ARMEB__ 884 port->tx_buff_tab[n] = skb; 885 #else 886 port->tx_buff_tab[n] = mem; 887 #endif 888 desc->data = phys + offset; 889 desc->buf_len = desc->pkt_len = len; 890 891 /* NPE firmware pads short frames with zeros internally */ 892 wmb(); 893 queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc); 894 895 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ 896 #if DEBUG_TX 897 netdev_debug(dev, "eth_xmit queue full\n"); 898 #endif 899 netif_stop_queue(dev); 900 /* we could miss TX ready interrupt */ 901 /* really empty in fact */ 902 if (!qmgr_stat_below_low_watermark(txreadyq)) { 903 #if DEBUG_TX 904 netdev_debug(dev, "eth_xmit ready again\n"); 905 #endif 906 netif_wake_queue(dev); 907 } 908 } 909 910 #if DEBUG_TX 911 netdev_debug(dev, "eth_xmit end\n"); 912 #endif 913 914 ixp_tx_timestamp(port, skb); 915 skb_tx_timestamp(skb); 916 917 #ifndef __ARMEB__ 918 dev_kfree_skb(skb); 919 #endif 920 return NETDEV_TX_OK; 921 } 922 923 924 static void eth_set_mcast_list(struct net_device *dev) 925 { 926 struct port *port = netdev_priv(dev); 927 struct netdev_hw_addr *ha; 928 u8 diffs[ETH_ALEN], *addr; 929 int i; 930 static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; 931 932 if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) { 933 for (i = 0; i < ETH_ALEN; i++) { 934 __raw_writel(allmulti[i], &port->regs->mcast_addr[i]); 935 __raw_writel(allmulti[i], &port->regs->mcast_mask[i]); 936 } 937 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN, 938 &port->regs->rx_control[0]); 939 return; 940 } 941 942 if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) { 943 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN, 944 &port->regs->rx_control[0]); 945 return; 946 } 947 948 eth_zero_addr(diffs); 949 950 addr = NULL; 951 netdev_for_each_mc_addr(ha, dev) { 952 if (!addr) 953 addr = ha->addr; /* first MAC address */ 954 for (i = 0; i < ETH_ALEN; i++) 955 diffs[i] |= addr[i] ^ ha->addr[i]; 956 } 957 958 for (i = 0; i < ETH_ALEN; i++) { 959 __raw_writel(addr[i], &port->regs->mcast_addr[i]); 960 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]); 961 } 962 963 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN, 964 &port->regs->rx_control[0]); 965 } 966 967 968 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 969 { 970 if (!netif_running(dev)) 971 return -EINVAL; 972 973 if (cpu_is_ixp46x()) { 974 if (cmd == SIOCSHWTSTAMP) 975 return hwtstamp_set(dev, req); 976 if (cmd == SIOCGHWTSTAMP) 977 return hwtstamp_get(dev, req); 978 } 979 980 return phy_mii_ioctl(dev->phydev, req, cmd); 981 } 982 983 /* ethtool support */ 984 985 static void ixp4xx_get_drvinfo(struct net_device *dev, 986 struct ethtool_drvinfo *info) 987 { 988 struct port *port = netdev_priv(dev); 989 990 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 991 snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u", 992 port->firmware[0], port->firmware[1], 993 port->firmware[2], port->firmware[3]); 994 strlcpy(info->bus_info, "internal", sizeof(info->bus_info)); 995 } 996 997 static int ixp4xx_get_ts_info(struct net_device *dev, 998 struct ethtool_ts_info *info) 999 { 1000 struct port *port = netdev_priv(dev); 1001 1002 if (port->phc_index < 0) 1003 ixp46x_ptp_find(&port->timesync_regs, &port->phc_index); 1004 1005 info->phc_index = port->phc_index; 1006 1007 if (info->phc_index < 0) { 1008 info->so_timestamping = 1009 SOF_TIMESTAMPING_TX_SOFTWARE | 1010 SOF_TIMESTAMPING_RX_SOFTWARE | 1011 SOF_TIMESTAMPING_SOFTWARE; 1012 return 0; 1013 } 1014 info->so_timestamping = 1015 SOF_TIMESTAMPING_TX_HARDWARE | 1016 SOF_TIMESTAMPING_RX_HARDWARE | 1017 SOF_TIMESTAMPING_RAW_HARDWARE; 1018 info->tx_types = 1019 (1 << HWTSTAMP_TX_OFF) | 1020 (1 << HWTSTAMP_TX_ON); 1021 info->rx_filters = 1022 (1 << HWTSTAMP_FILTER_NONE) | 1023 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 1024 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ); 1025 return 0; 1026 } 1027 1028 static const struct ethtool_ops ixp4xx_ethtool_ops = { 1029 .get_drvinfo = ixp4xx_get_drvinfo, 1030 .nway_reset = phy_ethtool_nway_reset, 1031 .get_link = ethtool_op_get_link, 1032 .get_ts_info = ixp4xx_get_ts_info, 1033 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1034 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1035 }; 1036 1037 1038 static int request_queues(struct port *port) 1039 { 1040 int err; 1041 1042 err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0, 1043 "%s:RX-free", port->netdev->name); 1044 if (err) 1045 return err; 1046 1047 err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0, 1048 "%s:RX", port->netdev->name); 1049 if (err) 1050 goto rel_rxfree; 1051 1052 err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0, 1053 "%s:TX", port->netdev->name); 1054 if (err) 1055 goto rel_rx; 1056 1057 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, 1058 "%s:TX-ready", port->netdev->name); 1059 if (err) 1060 goto rel_tx; 1061 1062 /* TX-done queue handles skbs sent out by the NPEs */ 1063 if (!ports_open) { 1064 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0, 1065 "%s:TX-done", DRV_NAME); 1066 if (err) 1067 goto rel_txready; 1068 } 1069 return 0; 1070 1071 rel_txready: 1072 qmgr_release_queue(port->plat->txreadyq); 1073 rel_tx: 1074 qmgr_release_queue(TX_QUEUE(port->id)); 1075 rel_rx: 1076 qmgr_release_queue(port->plat->rxq); 1077 rel_rxfree: 1078 qmgr_release_queue(RXFREE_QUEUE(port->id)); 1079 printk(KERN_DEBUG "%s: unable to request hardware queues\n", 1080 port->netdev->name); 1081 return err; 1082 } 1083 1084 static void release_queues(struct port *port) 1085 { 1086 qmgr_release_queue(RXFREE_QUEUE(port->id)); 1087 qmgr_release_queue(port->plat->rxq); 1088 qmgr_release_queue(TX_QUEUE(port->id)); 1089 qmgr_release_queue(port->plat->txreadyq); 1090 1091 if (!ports_open) 1092 qmgr_release_queue(TXDONE_QUEUE); 1093 } 1094 1095 static int init_queues(struct port *port) 1096 { 1097 int i; 1098 1099 if (!ports_open) { 1100 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, 1101 POOL_ALLOC_SIZE, 32, 0); 1102 if (!dma_pool) 1103 return -ENOMEM; 1104 } 1105 1106 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, 1107 &port->desc_tab_phys))) 1108 return -ENOMEM; 1109 memset(port->desc_tab, 0, POOL_ALLOC_SIZE); 1110 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ 1111 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); 1112 1113 /* Setup RX buffers */ 1114 for (i = 0; i < RX_DESCS; i++) { 1115 struct desc *desc = rx_desc_ptr(port, i); 1116 buffer_t *buff; /* skb or kmalloc()ated memory */ 1117 void *data; 1118 #ifdef __ARMEB__ 1119 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE))) 1120 return -ENOMEM; 1121 data = buff->data; 1122 #else 1123 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL))) 1124 return -ENOMEM; 1125 data = buff; 1126 #endif 1127 desc->buf_len = MAX_MRU; 1128 desc->data = dma_map_single(&port->netdev->dev, data, 1129 RX_BUFF_SIZE, DMA_FROM_DEVICE); 1130 if (dma_mapping_error(&port->netdev->dev, desc->data)) { 1131 free_buffer(buff); 1132 return -EIO; 1133 } 1134 desc->data += NET_IP_ALIGN; 1135 port->rx_buff_tab[i] = buff; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static void destroy_queues(struct port *port) 1142 { 1143 int i; 1144 1145 if (port->desc_tab) { 1146 for (i = 0; i < RX_DESCS; i++) { 1147 struct desc *desc = rx_desc_ptr(port, i); 1148 buffer_t *buff = port->rx_buff_tab[i]; 1149 if (buff) { 1150 dma_unmap_single(&port->netdev->dev, 1151 desc->data - NET_IP_ALIGN, 1152 RX_BUFF_SIZE, DMA_FROM_DEVICE); 1153 free_buffer(buff); 1154 } 1155 } 1156 for (i = 0; i < TX_DESCS; i++) { 1157 struct desc *desc = tx_desc_ptr(port, i); 1158 buffer_t *buff = port->tx_buff_tab[i]; 1159 if (buff) { 1160 dma_unmap_tx(port, desc); 1161 free_buffer(buff); 1162 } 1163 } 1164 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); 1165 port->desc_tab = NULL; 1166 } 1167 1168 if (!ports_open && dma_pool) { 1169 dma_pool_destroy(dma_pool); 1170 dma_pool = NULL; 1171 } 1172 } 1173 1174 static int eth_open(struct net_device *dev) 1175 { 1176 struct port *port = netdev_priv(dev); 1177 struct npe *npe = port->npe; 1178 struct msg msg; 1179 int i, err; 1180 1181 if (!npe_running(npe)) { 1182 err = npe_load_firmware(npe, npe_name(npe), &dev->dev); 1183 if (err) 1184 return err; 1185 1186 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) { 1187 netdev_err(dev, "%s not responding\n", npe_name(npe)); 1188 return -EIO; 1189 } 1190 port->firmware[0] = msg.byte4; 1191 port->firmware[1] = msg.byte5; 1192 port->firmware[2] = msg.byte6; 1193 port->firmware[3] = msg.byte7; 1194 } 1195 1196 memset(&msg, 0, sizeof(msg)); 1197 msg.cmd = NPE_VLAN_SETRXQOSENTRY; 1198 msg.eth_id = port->id; 1199 msg.byte5 = port->plat->rxq | 0x80; 1200 msg.byte7 = port->plat->rxq << 4; 1201 for (i = 0; i < 8; i++) { 1202 msg.byte3 = i; 1203 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ")) 1204 return -EIO; 1205 } 1206 1207 msg.cmd = NPE_EDB_SETPORTADDRESS; 1208 msg.eth_id = PHYSICAL_ID(port->id); 1209 msg.byte2 = dev->dev_addr[0]; 1210 msg.byte3 = dev->dev_addr[1]; 1211 msg.byte4 = dev->dev_addr[2]; 1212 msg.byte5 = dev->dev_addr[3]; 1213 msg.byte6 = dev->dev_addr[4]; 1214 msg.byte7 = dev->dev_addr[5]; 1215 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC")) 1216 return -EIO; 1217 1218 memset(&msg, 0, sizeof(msg)); 1219 msg.cmd = NPE_FW_SETFIREWALLMODE; 1220 msg.eth_id = port->id; 1221 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE")) 1222 return -EIO; 1223 1224 if ((err = request_queues(port)) != 0) 1225 return err; 1226 1227 if ((err = init_queues(port)) != 0) { 1228 destroy_queues(port); 1229 release_queues(port); 1230 return err; 1231 } 1232 1233 port->speed = 0; /* force "link up" message */ 1234 phy_start(dev->phydev); 1235 1236 for (i = 0; i < ETH_ALEN; i++) 1237 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]); 1238 __raw_writel(0x08, &port->regs->random_seed); 1239 __raw_writel(0x12, &port->regs->partial_empty_threshold); 1240 __raw_writel(0x30, &port->regs->partial_full_threshold); 1241 __raw_writel(0x08, &port->regs->tx_start_bytes); 1242 __raw_writel(0x15, &port->regs->tx_deferral); 1243 __raw_writel(0x08, &port->regs->tx_2part_deferral[0]); 1244 __raw_writel(0x07, &port->regs->tx_2part_deferral[1]); 1245 __raw_writel(0x80, &port->regs->slot_time); 1246 __raw_writel(0x01, &port->regs->int_clock_threshold); 1247 1248 /* Populate queues with buffers, no failure after this point */ 1249 for (i = 0; i < TX_DESCS; i++) 1250 queue_put_desc(port->plat->txreadyq, 1251 tx_desc_phys(port, i), tx_desc_ptr(port, i)); 1252 1253 for (i = 0; i < RX_DESCS; i++) 1254 queue_put_desc(RXFREE_QUEUE(port->id), 1255 rx_desc_phys(port, i), rx_desc_ptr(port, i)); 1256 1257 __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]); 1258 __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]); 1259 __raw_writel(0, &port->regs->rx_control[1]); 1260 __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]); 1261 1262 napi_enable(&port->napi); 1263 eth_set_mcast_list(dev); 1264 netif_start_queue(dev); 1265 1266 qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY, 1267 eth_rx_irq, dev); 1268 if (!ports_open) { 1269 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY, 1270 eth_txdone_irq, NULL); 1271 qmgr_enable_irq(TXDONE_QUEUE); 1272 } 1273 ports_open++; 1274 /* we may already have RX data, enables IRQ */ 1275 napi_schedule(&port->napi); 1276 return 0; 1277 } 1278 1279 static int eth_close(struct net_device *dev) 1280 { 1281 struct port *port = netdev_priv(dev); 1282 struct msg msg; 1283 int buffs = RX_DESCS; /* allocated RX buffers */ 1284 int i; 1285 1286 ports_open--; 1287 qmgr_disable_irq(port->plat->rxq); 1288 napi_disable(&port->napi); 1289 netif_stop_queue(dev); 1290 1291 while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0) 1292 buffs--; 1293 1294 memset(&msg, 0, sizeof(msg)); 1295 msg.cmd = NPE_SETLOOPBACK_MODE; 1296 msg.eth_id = port->id; 1297 msg.byte3 = 1; 1298 if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK")) 1299 netdev_crit(dev, "unable to enable loopback\n"); 1300 1301 i = 0; 1302 do { /* drain RX buffers */ 1303 while (queue_get_desc(port->plat->rxq, port, 0) >= 0) 1304 buffs--; 1305 if (!buffs) 1306 break; 1307 if (qmgr_stat_empty(TX_QUEUE(port->id))) { 1308 /* we have to inject some packet */ 1309 struct desc *desc; 1310 u32 phys; 1311 int n = queue_get_desc(port->plat->txreadyq, port, 1); 1312 BUG_ON(n < 0); 1313 desc = tx_desc_ptr(port, n); 1314 phys = tx_desc_phys(port, n); 1315 desc->buf_len = desc->pkt_len = 1; 1316 wmb(); 1317 queue_put_desc(TX_QUEUE(port->id), phys, desc); 1318 } 1319 udelay(1); 1320 } while (++i < MAX_CLOSE_WAIT); 1321 1322 if (buffs) 1323 netdev_crit(dev, "unable to drain RX queue, %i buffer(s)" 1324 " left in NPE\n", buffs); 1325 #if DEBUG_CLOSE 1326 if (!buffs) 1327 netdev_debug(dev, "draining RX queue took %i cycles\n", i); 1328 #endif 1329 1330 buffs = TX_DESCS; 1331 while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0) 1332 buffs--; /* cancel TX */ 1333 1334 i = 0; 1335 do { 1336 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) 1337 buffs--; 1338 if (!buffs) 1339 break; 1340 } while (++i < MAX_CLOSE_WAIT); 1341 1342 if (buffs) 1343 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) " 1344 "left in NPE\n", buffs); 1345 #if DEBUG_CLOSE 1346 if (!buffs) 1347 netdev_debug(dev, "draining TX queues took %i cycles\n", i); 1348 #endif 1349 1350 msg.byte3 = 0; 1351 if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK")) 1352 netdev_crit(dev, "unable to disable loopback\n"); 1353 1354 phy_stop(dev->phydev); 1355 1356 if (!ports_open) 1357 qmgr_disable_irq(TXDONE_QUEUE); 1358 destroy_queues(port); 1359 release_queues(port); 1360 return 0; 1361 } 1362 1363 static const struct net_device_ops ixp4xx_netdev_ops = { 1364 .ndo_open = eth_open, 1365 .ndo_stop = eth_close, 1366 .ndo_start_xmit = eth_xmit, 1367 .ndo_set_rx_mode = eth_set_mcast_list, 1368 .ndo_eth_ioctl = eth_ioctl, 1369 .ndo_set_mac_address = eth_mac_addr, 1370 .ndo_validate_addr = eth_validate_addr, 1371 }; 1372 1373 #ifdef CONFIG_OF 1374 static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev) 1375 { 1376 struct device_node *np = dev->of_node; 1377 struct of_phandle_args queue_spec; 1378 struct of_phandle_args npe_spec; 1379 struct device_node *mdio_np; 1380 struct eth_plat_info *plat; 1381 int ret; 1382 1383 plat = devm_kzalloc(dev, sizeof(*plat), GFP_KERNEL); 1384 if (!plat) 1385 return NULL; 1386 1387 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0, 1388 &npe_spec); 1389 if (ret) { 1390 dev_err(dev, "no NPE engine specified\n"); 1391 return NULL; 1392 } 1393 /* NPE ID 0x00, 0x10, 0x20... */ 1394 plat->npe = (npe_spec.args[0] << 4); 1395 1396 /* Check if this device has an MDIO bus */ 1397 mdio_np = of_get_child_by_name(np, "mdio"); 1398 if (mdio_np) { 1399 plat->has_mdio = true; 1400 mdio_bus_np = mdio_np; 1401 /* DO NOT put the mdio_np, it will be used */ 1402 } 1403 1404 /* Get the rx queue as a resource from queue manager */ 1405 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0, 1406 &queue_spec); 1407 if (ret) { 1408 dev_err(dev, "no rx queue phandle\n"); 1409 return NULL; 1410 } 1411 plat->rxq = queue_spec.args[0]; 1412 1413 /* Get the txready queue as resource from queue manager */ 1414 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0, 1415 &queue_spec); 1416 if (ret) { 1417 dev_err(dev, "no txready queue phandle\n"); 1418 return NULL; 1419 } 1420 plat->txreadyq = queue_spec.args[0]; 1421 1422 return plat; 1423 } 1424 #else 1425 static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev) 1426 { 1427 return NULL; 1428 } 1429 #endif 1430 1431 static int ixp4xx_eth_probe(struct platform_device *pdev) 1432 { 1433 struct phy_device *phydev = NULL; 1434 struct device *dev = &pdev->dev; 1435 struct device_node *np = dev->of_node; 1436 struct eth_plat_info *plat; 1437 struct net_device *ndev; 1438 struct port *port; 1439 int err; 1440 1441 if (np) { 1442 plat = ixp4xx_of_get_platdata(dev); 1443 if (!plat) 1444 return -ENODEV; 1445 } else { 1446 plat = dev_get_platdata(dev); 1447 if (!plat) 1448 return -ENODEV; 1449 plat->npe = pdev->id; 1450 switch (plat->npe) { 1451 case IXP4XX_ETH_NPEA: 1452 /* If the MDIO bus is not up yet, defer probe */ 1453 break; 1454 case IXP4XX_ETH_NPEB: 1455 /* On all except IXP43x, NPE-B is used for the MDIO bus. 1456 * If there is no NPE-B in the feature set, bail out, 1457 * else we have the MDIO bus here. 1458 */ 1459 if (!cpu_is_ixp43x()) { 1460 if (!(ixp4xx_read_feature_bits() & 1461 IXP4XX_FEATURE_NPEB_ETH0)) 1462 return -ENODEV; 1463 /* Else register the MDIO bus on NPE-B */ 1464 plat->has_mdio = true; 1465 } 1466 break; 1467 case IXP4XX_ETH_NPEC: 1468 /* IXP43x lacks NPE-B and uses NPE-C for the MDIO bus 1469 * access, if there is no NPE-C, no bus, nothing works, 1470 * so bail out. 1471 */ 1472 if (cpu_is_ixp43x()) { 1473 if (!(ixp4xx_read_feature_bits() & 1474 IXP4XX_FEATURE_NPEC_ETH)) 1475 return -ENODEV; 1476 /* Else register the MDIO bus on NPE-B */ 1477 plat->has_mdio = true; 1478 } 1479 break; 1480 default: 1481 return -ENODEV; 1482 } 1483 } 1484 1485 if (!(ndev = devm_alloc_etherdev(dev, sizeof(struct port)))) 1486 return -ENOMEM; 1487 1488 SET_NETDEV_DEV(ndev, dev); 1489 port = netdev_priv(ndev); 1490 port->netdev = ndev; 1491 port->id = plat->npe; 1492 port->phc_index = -1; 1493 1494 /* Get the port resource and remap */ 1495 port->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); 1496 if (IS_ERR(port->regs)) 1497 return PTR_ERR(port->regs); 1498 1499 /* Register the MDIO bus if we have it */ 1500 if (plat->has_mdio) { 1501 err = ixp4xx_mdio_register(port->regs); 1502 if (err) { 1503 dev_err(dev, "failed to register MDIO bus\n"); 1504 return err; 1505 } 1506 } 1507 /* If the instance with the MDIO bus has not yet appeared, 1508 * defer probing until it gets probed. 1509 */ 1510 if (!mdio_bus) 1511 return -EPROBE_DEFER; 1512 1513 ndev->netdev_ops = &ixp4xx_netdev_ops; 1514 ndev->ethtool_ops = &ixp4xx_ethtool_ops; 1515 ndev->tx_queue_len = 100; 1516 /* Inherit the DMA masks from the platform device */ 1517 ndev->dev.dma_mask = dev->dma_mask; 1518 ndev->dev.coherent_dma_mask = dev->coherent_dma_mask; 1519 1520 netif_napi_add(ndev, &port->napi, eth_poll, NAPI_WEIGHT); 1521 1522 if (!(port->npe = npe_request(NPE_ID(port->id)))) 1523 return -EIO; 1524 1525 port->plat = plat; 1526 npe_port_tab[NPE_ID(port->id)] = port; 1527 memcpy(ndev->dev_addr, plat->hwaddr, ETH_ALEN); 1528 1529 platform_set_drvdata(pdev, ndev); 1530 1531 __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET, 1532 &port->regs->core_control); 1533 udelay(50); 1534 __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control); 1535 udelay(50); 1536 1537 if (np) { 1538 phydev = of_phy_get_and_connect(ndev, np, ixp4xx_adjust_link); 1539 } else { 1540 phydev = mdiobus_get_phy(mdio_bus, plat->phy); 1541 if (!phydev) { 1542 err = -ENODEV; 1543 dev_err(dev, "could not connect phydev (%d)\n", err); 1544 goto err_free_mem; 1545 } 1546 err = phy_connect_direct(ndev, phydev, ixp4xx_adjust_link, 1547 PHY_INTERFACE_MODE_MII); 1548 if (err) 1549 goto err_free_mem; 1550 1551 } 1552 if (!phydev) { 1553 err = -ENODEV; 1554 dev_err(dev, "no phydev\n"); 1555 goto err_free_mem; 1556 } 1557 1558 phydev->irq = PHY_POLL; 1559 1560 if ((err = register_netdev(ndev))) 1561 goto err_phy_dis; 1562 1563 netdev_info(ndev, "%s: MII PHY %i on %s\n", ndev->name, plat->phy, 1564 npe_name(port->npe)); 1565 1566 return 0; 1567 1568 err_phy_dis: 1569 phy_disconnect(phydev); 1570 err_free_mem: 1571 npe_port_tab[NPE_ID(port->id)] = NULL; 1572 npe_release(port->npe); 1573 return err; 1574 } 1575 1576 static int ixp4xx_eth_remove(struct platform_device *pdev) 1577 { 1578 struct net_device *ndev = platform_get_drvdata(pdev); 1579 struct phy_device *phydev = ndev->phydev; 1580 struct port *port = netdev_priv(ndev); 1581 1582 unregister_netdev(ndev); 1583 phy_disconnect(phydev); 1584 ixp4xx_mdio_remove(); 1585 npe_port_tab[NPE_ID(port->id)] = NULL; 1586 npe_release(port->npe); 1587 return 0; 1588 } 1589 1590 static const struct of_device_id ixp4xx_eth_of_match[] = { 1591 { 1592 .compatible = "intel,ixp4xx-ethernet", 1593 }, 1594 { }, 1595 }; 1596 1597 static struct platform_driver ixp4xx_eth_driver = { 1598 .driver = { 1599 .name = DRV_NAME, 1600 .of_match_table = of_match_ptr(ixp4xx_eth_of_match), 1601 }, 1602 .probe = ixp4xx_eth_probe, 1603 .remove = ixp4xx_eth_remove, 1604 }; 1605 module_platform_driver(ixp4xx_eth_driver); 1606 1607 MODULE_AUTHOR("Krzysztof Halasa"); 1608 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver"); 1609 MODULE_LICENSE("GPL v2"); 1610 MODULE_ALIAS("platform:ixp4xx_eth"); 1611