xref: /openbmc/linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 
42 #include "xilinx_axienet.h"
43 
44 /* Descriptors defines for Tx and Rx DMA */
45 #define TX_BD_NUM_DEFAULT		128
46 #define RX_BD_NUM_DEFAULT		1024
47 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
48 #define TX_BD_NUM_MAX			4096
49 #define RX_BD_NUM_MAX			4096
50 
51 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
52 #define DRIVER_NAME		"xaxienet"
53 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
54 #define DRIVER_VERSION		"1.00a"
55 
56 #define AXIENET_REGS_N		40
57 
58 /* Match table for of_platform binding */
59 static const struct of_device_id axienet_of_match[] = {
60 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
61 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
62 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
63 	{},
64 };
65 
66 MODULE_DEVICE_TABLE(of, axienet_of_match);
67 
68 /* Option table for setting up Axi Ethernet hardware options */
69 static struct axienet_option axienet_options[] = {
70 	/* Turn on jumbo packet support for both Rx and Tx */
71 	{
72 		.opt = XAE_OPTION_JUMBO,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_JUM_MASK,
75 	}, {
76 		.opt = XAE_OPTION_JUMBO,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_JUM_MASK,
79 	}, { /* Turn on VLAN packet support for both Rx and Tx */
80 		.opt = XAE_OPTION_VLAN,
81 		.reg = XAE_TC_OFFSET,
82 		.m_or = XAE_TC_VLAN_MASK,
83 	}, {
84 		.opt = XAE_OPTION_VLAN,
85 		.reg = XAE_RCW1_OFFSET,
86 		.m_or = XAE_RCW1_VLAN_MASK,
87 	}, { /* Turn on FCS stripping on receive packets */
88 		.opt = XAE_OPTION_FCS_STRIP,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_FCS_MASK,
91 	}, { /* Turn on FCS insertion on transmit packets */
92 		.opt = XAE_OPTION_FCS_INSERT,
93 		.reg = XAE_TC_OFFSET,
94 		.m_or = XAE_TC_FCS_MASK,
95 	}, { /* Turn off length/type field checking on receive packets */
96 		.opt = XAE_OPTION_LENTYPE_ERR,
97 		.reg = XAE_RCW1_OFFSET,
98 		.m_or = XAE_RCW1_LT_DIS_MASK,
99 	}, { /* Turn on Rx flow control */
100 		.opt = XAE_OPTION_FLOW_CONTROL,
101 		.reg = XAE_FCC_OFFSET,
102 		.m_or = XAE_FCC_FCRX_MASK,
103 	}, { /* Turn on Tx flow control */
104 		.opt = XAE_OPTION_FLOW_CONTROL,
105 		.reg = XAE_FCC_OFFSET,
106 		.m_or = XAE_FCC_FCTX_MASK,
107 	}, { /* Turn on promiscuous frame filtering */
108 		.opt = XAE_OPTION_PROMISC,
109 		.reg = XAE_FMI_OFFSET,
110 		.m_or = XAE_FMI_PM_MASK,
111 	}, { /* Enable transmitter */
112 		.opt = XAE_OPTION_TXEN,
113 		.reg = XAE_TC_OFFSET,
114 		.m_or = XAE_TC_TX_MASK,
115 	}, { /* Enable receiver */
116 		.opt = XAE_OPTION_RXEN,
117 		.reg = XAE_RCW1_OFFSET,
118 		.m_or = XAE_RCW1_RX_MASK,
119 	},
120 	{}
121 };
122 
123 /**
124  * axienet_dma_in32 - Memory mapped Axi DMA register read
125  * @lp:		Pointer to axienet local structure
126  * @reg:	Address offset from the base address of the Axi DMA core
127  *
128  * Return: The contents of the Axi DMA register
129  *
130  * This function returns the contents of the corresponding Axi DMA register.
131  */
132 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
133 {
134 	return ioread32(lp->dma_regs + reg);
135 }
136 
137 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
138 			       struct axidma_bd *desc)
139 {
140 	desc->phys = lower_32_bits(addr);
141 	if (lp->features & XAE_FEATURE_DMA_64BIT)
142 		desc->phys_msb = upper_32_bits(addr);
143 }
144 
145 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
146 				     struct axidma_bd *desc)
147 {
148 	dma_addr_t ret = desc->phys;
149 
150 	if (lp->features & XAE_FEATURE_DMA_64BIT)
151 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
152 
153 	return ret;
154 }
155 
156 /**
157  * axienet_dma_bd_release - Release buffer descriptor rings
158  * @ndev:	Pointer to the net_device structure
159  *
160  * This function is used to release the descriptors allocated in
161  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
162  * driver stop api is called.
163  */
164 static void axienet_dma_bd_release(struct net_device *ndev)
165 {
166 	int i;
167 	struct axienet_local *lp = netdev_priv(ndev);
168 
169 	/* If we end up here, tx_bd_v must have been DMA allocated. */
170 	dma_free_coherent(lp->dev,
171 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
172 			  lp->tx_bd_v,
173 			  lp->tx_bd_p);
174 
175 	if (!lp->rx_bd_v)
176 		return;
177 
178 	for (i = 0; i < lp->rx_bd_num; i++) {
179 		dma_addr_t phys;
180 
181 		/* A NULL skb means this descriptor has not been initialised
182 		 * at all.
183 		 */
184 		if (!lp->rx_bd_v[i].skb)
185 			break;
186 
187 		dev_kfree_skb(lp->rx_bd_v[i].skb);
188 
189 		/* For each descriptor, we programmed cntrl with the (non-zero)
190 		 * descriptor size, after it had been successfully allocated.
191 		 * So a non-zero value in there means we need to unmap it.
192 		 */
193 		if (lp->rx_bd_v[i].cntrl) {
194 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
195 			dma_unmap_single(lp->dev, phys,
196 					 lp->max_frm_size, DMA_FROM_DEVICE);
197 		}
198 	}
199 
200 	dma_free_coherent(lp->dev,
201 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
202 			  lp->rx_bd_v,
203 			  lp->rx_bd_p);
204 }
205 
206 /**
207  * axienet_usec_to_timer - Calculate IRQ delay timer value
208  * @lp:		Pointer to the axienet_local structure
209  * @coalesce_usec: Microseconds to convert into timer value
210  */
211 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
212 {
213 	u32 result;
214 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
215 
216 	if (lp->axi_clk)
217 		clk_rate = clk_get_rate(lp->axi_clk);
218 
219 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
220 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
221 					 (u64)125000000);
222 	if (result > 255)
223 		result = 255;
224 
225 	return result;
226 }
227 
228 /**
229  * axienet_dma_start - Set up DMA registers and start DMA operation
230  * @lp:		Pointer to the axienet_local structure
231  */
232 static void axienet_dma_start(struct axienet_local *lp)
233 {
234 	/* Start updating the Rx channel control register */
235 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
236 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
237 	/* Only set interrupt delay timer if not generating an interrupt on
238 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
239 	 */
240 	if (lp->coalesce_count_rx > 1)
241 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
242 					<< XAXIDMA_DELAY_SHIFT) |
243 				 XAXIDMA_IRQ_DELAY_MASK;
244 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
245 
246 	/* Start updating the Tx channel control register */
247 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
248 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
249 	/* Only set interrupt delay timer if not generating an interrupt on
250 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
251 	 */
252 	if (lp->coalesce_count_tx > 1)
253 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
254 					<< XAXIDMA_DELAY_SHIFT) |
255 				 XAXIDMA_IRQ_DELAY_MASK;
256 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
257 
258 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
259 	 * halted state. This will make the Rx side ready for reception.
260 	 */
261 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
262 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
263 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
264 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
265 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
266 
267 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
268 	 * Tx channel is now ready to run. But only after we write to the
269 	 * tail pointer register that the Tx channel will start transmitting.
270 	 */
271 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
272 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
273 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
274 }
275 
276 /**
277  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
278  * @ndev:	Pointer to the net_device structure
279  *
280  * Return: 0, on success -ENOMEM, on failure
281  *
282  * This function is called to initialize the Rx and Tx DMA descriptor
283  * rings. This initializes the descriptors with required default values
284  * and is called when Axi Ethernet driver reset is called.
285  */
286 static int axienet_dma_bd_init(struct net_device *ndev)
287 {
288 	int i;
289 	struct sk_buff *skb;
290 	struct axienet_local *lp = netdev_priv(ndev);
291 
292 	/* Reset the indexes which are used for accessing the BDs */
293 	lp->tx_bd_ci = 0;
294 	lp->tx_bd_tail = 0;
295 	lp->rx_bd_ci = 0;
296 
297 	/* Allocate the Tx and Rx buffer descriptors. */
298 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
299 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
300 					 &lp->tx_bd_p, GFP_KERNEL);
301 	if (!lp->tx_bd_v)
302 		return -ENOMEM;
303 
304 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
305 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
306 					 &lp->rx_bd_p, GFP_KERNEL);
307 	if (!lp->rx_bd_v)
308 		goto out;
309 
310 	for (i = 0; i < lp->tx_bd_num; i++) {
311 		dma_addr_t addr = lp->tx_bd_p +
312 				  sizeof(*lp->tx_bd_v) *
313 				  ((i + 1) % lp->tx_bd_num);
314 
315 		lp->tx_bd_v[i].next = lower_32_bits(addr);
316 		if (lp->features & XAE_FEATURE_DMA_64BIT)
317 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
318 	}
319 
320 	for (i = 0; i < lp->rx_bd_num; i++) {
321 		dma_addr_t addr;
322 
323 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
324 			((i + 1) % lp->rx_bd_num);
325 		lp->rx_bd_v[i].next = lower_32_bits(addr);
326 		if (lp->features & XAE_FEATURE_DMA_64BIT)
327 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
328 
329 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
330 		if (!skb)
331 			goto out;
332 
333 		lp->rx_bd_v[i].skb = skb;
334 		addr = dma_map_single(lp->dev, skb->data,
335 				      lp->max_frm_size, DMA_FROM_DEVICE);
336 		if (dma_mapping_error(lp->dev, addr)) {
337 			netdev_err(ndev, "DMA mapping error\n");
338 			goto out;
339 		}
340 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
341 
342 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
343 	}
344 
345 	axienet_dma_start(lp);
346 
347 	return 0;
348 out:
349 	axienet_dma_bd_release(ndev);
350 	return -ENOMEM;
351 }
352 
353 /**
354  * axienet_set_mac_address - Write the MAC address
355  * @ndev:	Pointer to the net_device structure
356  * @address:	6 byte Address to be written as MAC address
357  *
358  * This function is called to initialize the MAC address of the Axi Ethernet
359  * core. It writes to the UAW0 and UAW1 registers of the core.
360  */
361 static void axienet_set_mac_address(struct net_device *ndev,
362 				    const void *address)
363 {
364 	struct axienet_local *lp = netdev_priv(ndev);
365 
366 	if (address)
367 		eth_hw_addr_set(ndev, address);
368 	if (!is_valid_ether_addr(ndev->dev_addr))
369 		eth_hw_addr_random(ndev);
370 
371 	/* Set up unicast MAC address filter set its mac address */
372 	axienet_iow(lp, XAE_UAW0_OFFSET,
373 		    (ndev->dev_addr[0]) |
374 		    (ndev->dev_addr[1] << 8) |
375 		    (ndev->dev_addr[2] << 16) |
376 		    (ndev->dev_addr[3] << 24));
377 	axienet_iow(lp, XAE_UAW1_OFFSET,
378 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
379 		      ~XAE_UAW1_UNICASTADDR_MASK) |
380 		     (ndev->dev_addr[4] |
381 		     (ndev->dev_addr[5] << 8))));
382 }
383 
384 /**
385  * netdev_set_mac_address - Write the MAC address (from outside the driver)
386  * @ndev:	Pointer to the net_device structure
387  * @p:		6 byte Address to be written as MAC address
388  *
389  * Return: 0 for all conditions. Presently, there is no failure case.
390  *
391  * This function is called to initialize the MAC address of the Axi Ethernet
392  * core. It calls the core specific axienet_set_mac_address. This is the
393  * function that goes into net_device_ops structure entry ndo_set_mac_address.
394  */
395 static int netdev_set_mac_address(struct net_device *ndev, void *p)
396 {
397 	struct sockaddr *addr = p;
398 	axienet_set_mac_address(ndev, addr->sa_data);
399 	return 0;
400 }
401 
402 /**
403  * axienet_set_multicast_list - Prepare the multicast table
404  * @ndev:	Pointer to the net_device structure
405  *
406  * This function is called to initialize the multicast table during
407  * initialization. The Axi Ethernet basic multicast support has a four-entry
408  * multicast table which is initialized here. Additionally this function
409  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
410  * means whenever the multicast table entries need to be updated this
411  * function gets called.
412  */
413 static void axienet_set_multicast_list(struct net_device *ndev)
414 {
415 	int i = 0;
416 	u32 reg, af0reg, af1reg;
417 	struct axienet_local *lp = netdev_priv(ndev);
418 
419 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
420 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
421 		/* We must make the kernel realize we had to move into
422 		 * promiscuous mode. If it was a promiscuous mode request
423 		 * the flag is already set. If not we set it.
424 		 */
425 		ndev->flags |= IFF_PROMISC;
426 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
427 		reg |= XAE_FMI_PM_MASK;
428 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
429 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
430 	} else if (!netdev_mc_empty(ndev)) {
431 		struct netdev_hw_addr *ha;
432 
433 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
434 		reg &= ~XAE_FMI_PM_MASK;
435 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
436 
437 		netdev_for_each_mc_addr(ha, ndev) {
438 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
439 				break;
440 
441 			af0reg = (ha->addr[0]);
442 			af0reg |= (ha->addr[1] << 8);
443 			af0reg |= (ha->addr[2] << 16);
444 			af0reg |= (ha->addr[3] << 24);
445 
446 			af1reg = (ha->addr[4]);
447 			af1reg |= (ha->addr[5] << 8);
448 
449 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
450 			reg |= i;
451 
452 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
453 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
454 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
455 			axienet_iow(lp, XAE_FFE_OFFSET, 1);
456 			i++;
457 		}
458 	} else {
459 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
460 		reg &= ~XAE_FMI_PM_MASK;
461 
462 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
463 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
464 	}
465 
466 	for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
467 		reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
468 		reg |= i;
469 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
470 		axienet_iow(lp, XAE_FFE_OFFSET, 0);
471 	}
472 }
473 
474 /**
475  * axienet_setoptions - Set an Axi Ethernet option
476  * @ndev:	Pointer to the net_device structure
477  * @options:	Option to be enabled/disabled
478  *
479  * The Axi Ethernet core has multiple features which can be selectively turned
480  * on or off. The typical options could be jumbo frame option, basic VLAN
481  * option, promiscuous mode option etc. This function is used to set or clear
482  * these options in the Axi Ethernet hardware. This is done through
483  * axienet_option structure .
484  */
485 static void axienet_setoptions(struct net_device *ndev, u32 options)
486 {
487 	int reg;
488 	struct axienet_local *lp = netdev_priv(ndev);
489 	struct axienet_option *tp = &axienet_options[0];
490 
491 	while (tp->opt) {
492 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
493 		if (options & tp->opt)
494 			reg |= tp->m_or;
495 		axienet_iow(lp, tp->reg, reg);
496 		tp++;
497 	}
498 
499 	lp->options |= options;
500 }
501 
502 static int __axienet_device_reset(struct axienet_local *lp)
503 {
504 	u32 value;
505 	int ret;
506 
507 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
508 	 * process of Axi DMA takes a while to complete as all pending
509 	 * commands/transfers will be flushed or completed during this
510 	 * reset process.
511 	 * Note that even though both TX and RX have their own reset register,
512 	 * they both reset the entire DMA core, so only one needs to be used.
513 	 */
514 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
515 	ret = read_poll_timeout(axienet_dma_in32, value,
516 				!(value & XAXIDMA_CR_RESET_MASK),
517 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
518 				XAXIDMA_TX_CR_OFFSET);
519 	if (ret) {
520 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
521 		return ret;
522 	}
523 
524 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
525 	ret = read_poll_timeout(axienet_ior, value,
526 				value & XAE_INT_PHYRSTCMPLT_MASK,
527 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
528 				XAE_IS_OFFSET);
529 	if (ret) {
530 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
531 		return ret;
532 	}
533 
534 	return 0;
535 }
536 
537 /**
538  * axienet_dma_stop - Stop DMA operation
539  * @lp:		Pointer to the axienet_local structure
540  */
541 static void axienet_dma_stop(struct axienet_local *lp)
542 {
543 	int count;
544 	u32 cr, sr;
545 
546 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
547 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
548 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
549 	synchronize_irq(lp->rx_irq);
550 
551 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
552 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
553 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
554 	synchronize_irq(lp->tx_irq);
555 
556 	/* Give DMAs a chance to halt gracefully */
557 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
558 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
559 		msleep(20);
560 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
561 	}
562 
563 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
564 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
565 		msleep(20);
566 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
567 	}
568 
569 	/* Do a reset to ensure DMA is really stopped */
570 	axienet_lock_mii(lp);
571 	__axienet_device_reset(lp);
572 	axienet_unlock_mii(lp);
573 }
574 
575 /**
576  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
577  * @ndev:	Pointer to the net_device structure
578  *
579  * This function is called to reset and initialize the Axi Ethernet core. This
580  * is typically called during initialization. It does a reset of the Axi DMA
581  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
582  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
583  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
584  * core.
585  * Returns 0 on success or a negative error number otherwise.
586  */
587 static int axienet_device_reset(struct net_device *ndev)
588 {
589 	u32 axienet_status;
590 	struct axienet_local *lp = netdev_priv(ndev);
591 	int ret;
592 
593 	ret = __axienet_device_reset(lp);
594 	if (ret)
595 		return ret;
596 
597 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
598 	lp->options |= XAE_OPTION_VLAN;
599 	lp->options &= (~XAE_OPTION_JUMBO);
600 
601 	if ((ndev->mtu > XAE_MTU) &&
602 	    (ndev->mtu <= XAE_JUMBO_MTU)) {
603 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
604 					XAE_TRL_SIZE;
605 
606 		if (lp->max_frm_size <= lp->rxmem)
607 			lp->options |= XAE_OPTION_JUMBO;
608 	}
609 
610 	ret = axienet_dma_bd_init(ndev);
611 	if (ret) {
612 		netdev_err(ndev, "%s: descriptor allocation failed\n",
613 			   __func__);
614 		return ret;
615 	}
616 
617 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
618 	axienet_status &= ~XAE_RCW1_RX_MASK;
619 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
620 
621 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
622 	if (axienet_status & XAE_INT_RXRJECT_MASK)
623 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
624 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
625 		    XAE_INT_RECV_ERROR_MASK : 0);
626 
627 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
628 
629 	/* Sync default options with HW but leave receiver and
630 	 * transmitter disabled.
631 	 */
632 	axienet_setoptions(ndev, lp->options &
633 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
634 	axienet_set_mac_address(ndev, NULL);
635 	axienet_set_multicast_list(ndev);
636 	axienet_setoptions(ndev, lp->options);
637 
638 	netif_trans_update(ndev);
639 
640 	return 0;
641 }
642 
643 /**
644  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
645  * @lp:		Pointer to the axienet_local structure
646  * @first_bd:	Index of first descriptor to clean up
647  * @nr_bds:	Max number of descriptors to clean up
648  * @force:	Whether to clean descriptors even if not complete
649  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
650  *		in all cleaned-up descriptors. Ignored if NULL.
651  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
652  *
653  * Would either be called after a successful transmit operation, or after
654  * there was an error when setting up the chain.
655  * Returns the number of descriptors handled.
656  */
657 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
658 				 int nr_bds, bool force, u32 *sizep, int budget)
659 {
660 	struct axidma_bd *cur_p;
661 	unsigned int status;
662 	dma_addr_t phys;
663 	int i;
664 
665 	for (i = 0; i < nr_bds; i++) {
666 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
667 		status = cur_p->status;
668 
669 		/* If force is not specified, clean up only descriptors
670 		 * that have been completed by the MAC.
671 		 */
672 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
673 			break;
674 
675 		/* Ensure we see complete descriptor update */
676 		dma_rmb();
677 		phys = desc_get_phys_addr(lp, cur_p);
678 		dma_unmap_single(lp->dev, phys,
679 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
680 				 DMA_TO_DEVICE);
681 
682 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
683 			napi_consume_skb(cur_p->skb, budget);
684 
685 		cur_p->app0 = 0;
686 		cur_p->app1 = 0;
687 		cur_p->app2 = 0;
688 		cur_p->app4 = 0;
689 		cur_p->skb = NULL;
690 		/* ensure our transmit path and device don't prematurely see status cleared */
691 		wmb();
692 		cur_p->cntrl = 0;
693 		cur_p->status = 0;
694 
695 		if (sizep)
696 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
697 	}
698 
699 	return i;
700 }
701 
702 /**
703  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
704  * @lp:		Pointer to the axienet_local structure
705  * @num_frag:	The number of BDs to check for
706  *
707  * Return: 0, on success
708  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
709  *
710  * This function is invoked before BDs are allocated and transmission starts.
711  * This function returns 0 if a BD or group of BDs can be allocated for
712  * transmission. If the BD or any of the BDs are not free the function
713  * returns a busy status.
714  */
715 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
716 					    int num_frag)
717 {
718 	struct axidma_bd *cur_p;
719 
720 	/* Ensure we see all descriptor updates from device or TX polling */
721 	rmb();
722 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
723 			     lp->tx_bd_num];
724 	if (cur_p->cntrl)
725 		return NETDEV_TX_BUSY;
726 	return 0;
727 }
728 
729 /**
730  * axienet_tx_poll - Invoked once a transmit is completed by the
731  * Axi DMA Tx channel.
732  * @napi:	Pointer to NAPI structure.
733  * @budget:	Max number of TX packets to process.
734  *
735  * Return: Number of TX packets processed.
736  *
737  * This function is invoked from the NAPI processing to notify the completion
738  * of transmit operation. It clears fields in the corresponding Tx BDs and
739  * unmaps the corresponding buffer so that CPU can regain ownership of the
740  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
741  * required.
742  */
743 static int axienet_tx_poll(struct napi_struct *napi, int budget)
744 {
745 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
746 	struct net_device *ndev = lp->ndev;
747 	u32 size = 0;
748 	int packets;
749 
750 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
751 
752 	if (packets) {
753 		lp->tx_bd_ci += packets;
754 		if (lp->tx_bd_ci >= lp->tx_bd_num)
755 			lp->tx_bd_ci %= lp->tx_bd_num;
756 
757 		u64_stats_update_begin(&lp->tx_stat_sync);
758 		u64_stats_add(&lp->tx_packets, packets);
759 		u64_stats_add(&lp->tx_bytes, size);
760 		u64_stats_update_end(&lp->tx_stat_sync);
761 
762 		/* Matches barrier in axienet_start_xmit */
763 		smp_mb();
764 
765 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
766 			netif_wake_queue(ndev);
767 	}
768 
769 	if (packets < budget && napi_complete_done(napi, packets)) {
770 		/* Re-enable TX completion interrupts. This should
771 		 * cause an immediate interrupt if any TX packets are
772 		 * already pending.
773 		 */
774 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
775 	}
776 	return packets;
777 }
778 
779 /**
780  * axienet_start_xmit - Starts the transmission.
781  * @skb:	sk_buff pointer that contains data to be Txed.
782  * @ndev:	Pointer to net_device structure.
783  *
784  * Return: NETDEV_TX_OK, on success
785  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
786  *
787  * This function is invoked from upper layers to initiate transmission. The
788  * function uses the next available free BDs and populates their fields to
789  * start the transmission. Additionally if checksum offloading is supported,
790  * it populates AXI Stream Control fields with appropriate values.
791  */
792 static netdev_tx_t
793 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
794 {
795 	u32 ii;
796 	u32 num_frag;
797 	u32 csum_start_off;
798 	u32 csum_index_off;
799 	skb_frag_t *frag;
800 	dma_addr_t tail_p, phys;
801 	u32 orig_tail_ptr, new_tail_ptr;
802 	struct axienet_local *lp = netdev_priv(ndev);
803 	struct axidma_bd *cur_p;
804 
805 	orig_tail_ptr = lp->tx_bd_tail;
806 	new_tail_ptr = orig_tail_ptr;
807 
808 	num_frag = skb_shinfo(skb)->nr_frags;
809 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
810 
811 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
812 		/* Should not happen as last start_xmit call should have
813 		 * checked for sufficient space and queue should only be
814 		 * woken when sufficient space is available.
815 		 */
816 		netif_stop_queue(ndev);
817 		if (net_ratelimit())
818 			netdev_warn(ndev, "TX ring unexpectedly full\n");
819 		return NETDEV_TX_BUSY;
820 	}
821 
822 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
823 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
824 			/* Tx Full Checksum Offload Enabled */
825 			cur_p->app0 |= 2;
826 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
827 			csum_start_off = skb_transport_offset(skb);
828 			csum_index_off = csum_start_off + skb->csum_offset;
829 			/* Tx Partial Checksum Offload Enabled */
830 			cur_p->app0 |= 1;
831 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
832 		}
833 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
834 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
835 	}
836 
837 	phys = dma_map_single(lp->dev, skb->data,
838 			      skb_headlen(skb), DMA_TO_DEVICE);
839 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
840 		if (net_ratelimit())
841 			netdev_err(ndev, "TX DMA mapping error\n");
842 		ndev->stats.tx_dropped++;
843 		return NETDEV_TX_OK;
844 	}
845 	desc_set_phys_addr(lp, phys, cur_p);
846 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
847 
848 	for (ii = 0; ii < num_frag; ii++) {
849 		if (++new_tail_ptr >= lp->tx_bd_num)
850 			new_tail_ptr = 0;
851 		cur_p = &lp->tx_bd_v[new_tail_ptr];
852 		frag = &skb_shinfo(skb)->frags[ii];
853 		phys = dma_map_single(lp->dev,
854 				      skb_frag_address(frag),
855 				      skb_frag_size(frag),
856 				      DMA_TO_DEVICE);
857 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
858 			if (net_ratelimit())
859 				netdev_err(ndev, "TX DMA mapping error\n");
860 			ndev->stats.tx_dropped++;
861 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
862 					      true, NULL, 0);
863 			return NETDEV_TX_OK;
864 		}
865 		desc_set_phys_addr(lp, phys, cur_p);
866 		cur_p->cntrl = skb_frag_size(frag);
867 	}
868 
869 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
870 	cur_p->skb = skb;
871 
872 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
873 	if (++new_tail_ptr >= lp->tx_bd_num)
874 		new_tail_ptr = 0;
875 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
876 
877 	/* Start the transfer */
878 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
879 
880 	/* Stop queue if next transmit may not have space */
881 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
882 		netif_stop_queue(ndev);
883 
884 		/* Matches barrier in axienet_tx_poll */
885 		smp_mb();
886 
887 		/* Space might have just been freed - check again */
888 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
889 			netif_wake_queue(ndev);
890 	}
891 
892 	return NETDEV_TX_OK;
893 }
894 
895 /**
896  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
897  * @napi:	Pointer to NAPI structure.
898  * @budget:	Max number of RX packets to process.
899  *
900  * Return: Number of RX packets processed.
901  */
902 static int axienet_rx_poll(struct napi_struct *napi, int budget)
903 {
904 	u32 length;
905 	u32 csumstatus;
906 	u32 size = 0;
907 	int packets = 0;
908 	dma_addr_t tail_p = 0;
909 	struct axidma_bd *cur_p;
910 	struct sk_buff *skb, *new_skb;
911 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
912 
913 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
914 
915 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
916 		dma_addr_t phys;
917 
918 		/* Ensure we see complete descriptor update */
919 		dma_rmb();
920 
921 		skb = cur_p->skb;
922 		cur_p->skb = NULL;
923 
924 		/* skb could be NULL if a previous pass already received the
925 		 * packet for this slot in the ring, but failed to refill it
926 		 * with a newly allocated buffer. In this case, don't try to
927 		 * receive it again.
928 		 */
929 		if (likely(skb)) {
930 			length = cur_p->app4 & 0x0000FFFF;
931 
932 			phys = desc_get_phys_addr(lp, cur_p);
933 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
934 					 DMA_FROM_DEVICE);
935 
936 			skb_put(skb, length);
937 			skb->protocol = eth_type_trans(skb, lp->ndev);
938 			/*skb_checksum_none_assert(skb);*/
939 			skb->ip_summed = CHECKSUM_NONE;
940 
941 			/* if we're doing Rx csum offload, set it up */
942 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
943 				csumstatus = (cur_p->app2 &
944 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
945 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
946 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
947 					skb->ip_summed = CHECKSUM_UNNECESSARY;
948 				}
949 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
950 				   skb->protocol == htons(ETH_P_IP) &&
951 				   skb->len > 64) {
952 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
953 				skb->ip_summed = CHECKSUM_COMPLETE;
954 			}
955 
956 			napi_gro_receive(napi, skb);
957 
958 			size += length;
959 			packets++;
960 		}
961 
962 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
963 		if (!new_skb)
964 			break;
965 
966 		phys = dma_map_single(lp->dev, new_skb->data,
967 				      lp->max_frm_size,
968 				      DMA_FROM_DEVICE);
969 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
970 			if (net_ratelimit())
971 				netdev_err(lp->ndev, "RX DMA mapping error\n");
972 			dev_kfree_skb(new_skb);
973 			break;
974 		}
975 		desc_set_phys_addr(lp, phys, cur_p);
976 
977 		cur_p->cntrl = lp->max_frm_size;
978 		cur_p->status = 0;
979 		cur_p->skb = new_skb;
980 
981 		/* Only update tail_p to mark this slot as usable after it has
982 		 * been successfully refilled.
983 		 */
984 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
985 
986 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
987 			lp->rx_bd_ci = 0;
988 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
989 	}
990 
991 	u64_stats_update_begin(&lp->rx_stat_sync);
992 	u64_stats_add(&lp->rx_packets, packets);
993 	u64_stats_add(&lp->rx_bytes, size);
994 	u64_stats_update_end(&lp->rx_stat_sync);
995 
996 	if (tail_p)
997 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
998 
999 	if (packets < budget && napi_complete_done(napi, packets)) {
1000 		/* Re-enable RX completion interrupts. This should
1001 		 * cause an immediate interrupt if any RX packets are
1002 		 * already pending.
1003 		 */
1004 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1005 	}
1006 	return packets;
1007 }
1008 
1009 /**
1010  * axienet_tx_irq - Tx Done Isr.
1011  * @irq:	irq number
1012  * @_ndev:	net_device pointer
1013  *
1014  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1015  *
1016  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1017  * TX BD processing.
1018  */
1019 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1020 {
1021 	unsigned int status;
1022 	struct net_device *ndev = _ndev;
1023 	struct axienet_local *lp = netdev_priv(ndev);
1024 
1025 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1026 
1027 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1028 		return IRQ_NONE;
1029 
1030 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1031 
1032 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1033 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1034 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1035 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1036 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1037 		schedule_work(&lp->dma_err_task);
1038 	} else {
1039 		/* Disable further TX completion interrupts and schedule
1040 		 * NAPI to handle the completions.
1041 		 */
1042 		u32 cr = lp->tx_dma_cr;
1043 
1044 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1045 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1046 
1047 		napi_schedule(&lp->napi_tx);
1048 	}
1049 
1050 	return IRQ_HANDLED;
1051 }
1052 
1053 /**
1054  * axienet_rx_irq - Rx Isr.
1055  * @irq:	irq number
1056  * @_ndev:	net_device pointer
1057  *
1058  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1059  *
1060  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1061  * processing.
1062  */
1063 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1064 {
1065 	unsigned int status;
1066 	struct net_device *ndev = _ndev;
1067 	struct axienet_local *lp = netdev_priv(ndev);
1068 
1069 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1070 
1071 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1072 		return IRQ_NONE;
1073 
1074 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1075 
1076 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1077 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1078 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1079 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1080 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1081 		schedule_work(&lp->dma_err_task);
1082 	} else {
1083 		/* Disable further RX completion interrupts and schedule
1084 		 * NAPI receive.
1085 		 */
1086 		u32 cr = lp->rx_dma_cr;
1087 
1088 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1089 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1090 
1091 		napi_schedule(&lp->napi_rx);
1092 	}
1093 
1094 	return IRQ_HANDLED;
1095 }
1096 
1097 /**
1098  * axienet_eth_irq - Ethernet core Isr.
1099  * @irq:	irq number
1100  * @_ndev:	net_device pointer
1101  *
1102  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1103  *
1104  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1105  */
1106 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1107 {
1108 	struct net_device *ndev = _ndev;
1109 	struct axienet_local *lp = netdev_priv(ndev);
1110 	unsigned int pending;
1111 
1112 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1113 	if (!pending)
1114 		return IRQ_NONE;
1115 
1116 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1117 		ndev->stats.rx_missed_errors++;
1118 
1119 	if (pending & XAE_INT_RXRJECT_MASK)
1120 		ndev->stats.rx_frame_errors++;
1121 
1122 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1123 	return IRQ_HANDLED;
1124 }
1125 
1126 static void axienet_dma_err_handler(struct work_struct *work);
1127 
1128 /**
1129  * axienet_open - Driver open routine.
1130  * @ndev:	Pointer to net_device structure
1131  *
1132  * Return: 0, on success.
1133  *	    non-zero error value on failure
1134  *
1135  * This is the driver open routine. It calls phylink_start to start the
1136  * PHY device.
1137  * It also allocates interrupt service routines, enables the interrupt lines
1138  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1139  * descriptors are initialized.
1140  */
1141 static int axienet_open(struct net_device *ndev)
1142 {
1143 	int ret;
1144 	struct axienet_local *lp = netdev_priv(ndev);
1145 
1146 	dev_dbg(&ndev->dev, "axienet_open()\n");
1147 
1148 	/* When we do an Axi Ethernet reset, it resets the complete core
1149 	 * including the MDIO. MDIO must be disabled before resetting.
1150 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1151 	 */
1152 	axienet_lock_mii(lp);
1153 	ret = axienet_device_reset(ndev);
1154 	axienet_unlock_mii(lp);
1155 
1156 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1157 	if (ret) {
1158 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1159 		return ret;
1160 	}
1161 
1162 	phylink_start(lp->phylink);
1163 
1164 	/* Enable worker thread for Axi DMA error handling */
1165 	lp->stopping = false;
1166 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1167 
1168 	napi_enable(&lp->napi_rx);
1169 	napi_enable(&lp->napi_tx);
1170 
1171 	/* Enable interrupts for Axi DMA Tx */
1172 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1173 			  ndev->name, ndev);
1174 	if (ret)
1175 		goto err_tx_irq;
1176 	/* Enable interrupts for Axi DMA Rx */
1177 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1178 			  ndev->name, ndev);
1179 	if (ret)
1180 		goto err_rx_irq;
1181 	/* Enable interrupts for Axi Ethernet core (if defined) */
1182 	if (lp->eth_irq > 0) {
1183 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1184 				  ndev->name, ndev);
1185 		if (ret)
1186 			goto err_eth_irq;
1187 	}
1188 
1189 	return 0;
1190 
1191 err_eth_irq:
1192 	free_irq(lp->rx_irq, ndev);
1193 err_rx_irq:
1194 	free_irq(lp->tx_irq, ndev);
1195 err_tx_irq:
1196 	napi_disable(&lp->napi_tx);
1197 	napi_disable(&lp->napi_rx);
1198 	phylink_stop(lp->phylink);
1199 	phylink_disconnect_phy(lp->phylink);
1200 	cancel_work_sync(&lp->dma_err_task);
1201 	dev_err(lp->dev, "request_irq() failed\n");
1202 	return ret;
1203 }
1204 
1205 /**
1206  * axienet_stop - Driver stop routine.
1207  * @ndev:	Pointer to net_device structure
1208  *
1209  * Return: 0, on success.
1210  *
1211  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1212  * device. It also removes the interrupt handlers and disables the interrupts.
1213  * The Axi DMA Tx/Rx BDs are released.
1214  */
1215 static int axienet_stop(struct net_device *ndev)
1216 {
1217 	struct axienet_local *lp = netdev_priv(ndev);
1218 
1219 	dev_dbg(&ndev->dev, "axienet_close()\n");
1220 
1221 	WRITE_ONCE(lp->stopping, true);
1222 	flush_work(&lp->dma_err_task);
1223 
1224 	napi_disable(&lp->napi_tx);
1225 	napi_disable(&lp->napi_rx);
1226 
1227 	phylink_stop(lp->phylink);
1228 	phylink_disconnect_phy(lp->phylink);
1229 
1230 	axienet_setoptions(ndev, lp->options &
1231 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1232 
1233 	axienet_dma_stop(lp);
1234 
1235 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1236 
1237 	cancel_work_sync(&lp->dma_err_task);
1238 
1239 	if (lp->eth_irq > 0)
1240 		free_irq(lp->eth_irq, ndev);
1241 	free_irq(lp->tx_irq, ndev);
1242 	free_irq(lp->rx_irq, ndev);
1243 
1244 	axienet_dma_bd_release(ndev);
1245 	return 0;
1246 }
1247 
1248 /**
1249  * axienet_change_mtu - Driver change mtu routine.
1250  * @ndev:	Pointer to net_device structure
1251  * @new_mtu:	New mtu value to be applied
1252  *
1253  * Return: Always returns 0 (success).
1254  *
1255  * This is the change mtu driver routine. It checks if the Axi Ethernet
1256  * hardware supports jumbo frames before changing the mtu. This can be
1257  * called only when the device is not up.
1258  */
1259 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1260 {
1261 	struct axienet_local *lp = netdev_priv(ndev);
1262 
1263 	if (netif_running(ndev))
1264 		return -EBUSY;
1265 
1266 	if ((new_mtu + VLAN_ETH_HLEN +
1267 		XAE_TRL_SIZE) > lp->rxmem)
1268 		return -EINVAL;
1269 
1270 	ndev->mtu = new_mtu;
1271 
1272 	return 0;
1273 }
1274 
1275 #ifdef CONFIG_NET_POLL_CONTROLLER
1276 /**
1277  * axienet_poll_controller - Axi Ethernet poll mechanism.
1278  * @ndev:	Pointer to net_device structure
1279  *
1280  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1281  * to polling the ISRs and are enabled back after the polling is done.
1282  */
1283 static void axienet_poll_controller(struct net_device *ndev)
1284 {
1285 	struct axienet_local *lp = netdev_priv(ndev);
1286 	disable_irq(lp->tx_irq);
1287 	disable_irq(lp->rx_irq);
1288 	axienet_rx_irq(lp->tx_irq, ndev);
1289 	axienet_tx_irq(lp->rx_irq, ndev);
1290 	enable_irq(lp->tx_irq);
1291 	enable_irq(lp->rx_irq);
1292 }
1293 #endif
1294 
1295 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1296 {
1297 	struct axienet_local *lp = netdev_priv(dev);
1298 
1299 	if (!netif_running(dev))
1300 		return -EINVAL;
1301 
1302 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1303 }
1304 
1305 static void
1306 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1307 {
1308 	struct axienet_local *lp = netdev_priv(dev);
1309 	unsigned int start;
1310 
1311 	netdev_stats_to_stats64(stats, &dev->stats);
1312 
1313 	do {
1314 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1315 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1316 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1317 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1318 
1319 	do {
1320 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1321 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1322 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1323 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1324 }
1325 
1326 static const struct net_device_ops axienet_netdev_ops = {
1327 	.ndo_open = axienet_open,
1328 	.ndo_stop = axienet_stop,
1329 	.ndo_start_xmit = axienet_start_xmit,
1330 	.ndo_get_stats64 = axienet_get_stats64,
1331 	.ndo_change_mtu	= axienet_change_mtu,
1332 	.ndo_set_mac_address = netdev_set_mac_address,
1333 	.ndo_validate_addr = eth_validate_addr,
1334 	.ndo_eth_ioctl = axienet_ioctl,
1335 	.ndo_set_rx_mode = axienet_set_multicast_list,
1336 #ifdef CONFIG_NET_POLL_CONTROLLER
1337 	.ndo_poll_controller = axienet_poll_controller,
1338 #endif
1339 };
1340 
1341 /**
1342  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1343  * @ndev:	Pointer to net_device structure
1344  * @ed:		Pointer to ethtool_drvinfo structure
1345  *
1346  * This implements ethtool command for getting the driver information.
1347  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1348  */
1349 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1350 					 struct ethtool_drvinfo *ed)
1351 {
1352 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1353 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1354 }
1355 
1356 /**
1357  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1358  *				   AxiEthernet core.
1359  * @ndev:	Pointer to net_device structure
1360  *
1361  * This implements ethtool command for getting the total register length
1362  * information.
1363  *
1364  * Return: the total regs length
1365  */
1366 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1367 {
1368 	return sizeof(u32) * AXIENET_REGS_N;
1369 }
1370 
1371 /**
1372  * axienet_ethtools_get_regs - Dump the contents of all registers present
1373  *			       in AxiEthernet core.
1374  * @ndev:	Pointer to net_device structure
1375  * @regs:	Pointer to ethtool_regs structure
1376  * @ret:	Void pointer used to return the contents of the registers.
1377  *
1378  * This implements ethtool command for getting the Axi Ethernet register dump.
1379  * Issue "ethtool -d ethX" to execute this function.
1380  */
1381 static void axienet_ethtools_get_regs(struct net_device *ndev,
1382 				      struct ethtool_regs *regs, void *ret)
1383 {
1384 	u32 *data = (u32 *)ret;
1385 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1386 	struct axienet_local *lp = netdev_priv(ndev);
1387 
1388 	regs->version = 0;
1389 	regs->len = len;
1390 
1391 	memset(data, 0, len);
1392 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1393 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1394 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1395 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1396 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1397 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1398 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1399 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1400 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1401 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1402 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1403 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1404 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1405 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1406 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1407 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1408 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1409 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1410 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1411 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1412 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1413 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1414 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1415 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1416 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1417 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1418 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1419 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1420 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1421 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1422 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1423 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1424 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1425 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1426 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1427 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1428 }
1429 
1430 static void
1431 axienet_ethtools_get_ringparam(struct net_device *ndev,
1432 			       struct ethtool_ringparam *ering,
1433 			       struct kernel_ethtool_ringparam *kernel_ering,
1434 			       struct netlink_ext_ack *extack)
1435 {
1436 	struct axienet_local *lp = netdev_priv(ndev);
1437 
1438 	ering->rx_max_pending = RX_BD_NUM_MAX;
1439 	ering->rx_mini_max_pending = 0;
1440 	ering->rx_jumbo_max_pending = 0;
1441 	ering->tx_max_pending = TX_BD_NUM_MAX;
1442 	ering->rx_pending = lp->rx_bd_num;
1443 	ering->rx_mini_pending = 0;
1444 	ering->rx_jumbo_pending = 0;
1445 	ering->tx_pending = lp->tx_bd_num;
1446 }
1447 
1448 static int
1449 axienet_ethtools_set_ringparam(struct net_device *ndev,
1450 			       struct ethtool_ringparam *ering,
1451 			       struct kernel_ethtool_ringparam *kernel_ering,
1452 			       struct netlink_ext_ack *extack)
1453 {
1454 	struct axienet_local *lp = netdev_priv(ndev);
1455 
1456 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1457 	    ering->rx_mini_pending ||
1458 	    ering->rx_jumbo_pending ||
1459 	    ering->tx_pending < TX_BD_NUM_MIN ||
1460 	    ering->tx_pending > TX_BD_NUM_MAX)
1461 		return -EINVAL;
1462 
1463 	if (netif_running(ndev))
1464 		return -EBUSY;
1465 
1466 	lp->rx_bd_num = ering->rx_pending;
1467 	lp->tx_bd_num = ering->tx_pending;
1468 	return 0;
1469 }
1470 
1471 /**
1472  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1473  *				     Tx and Rx paths.
1474  * @ndev:	Pointer to net_device structure
1475  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1476  *
1477  * This implements ethtool command for getting axi ethernet pause frame
1478  * setting. Issue "ethtool -a ethX" to execute this function.
1479  */
1480 static void
1481 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1482 				struct ethtool_pauseparam *epauseparm)
1483 {
1484 	struct axienet_local *lp = netdev_priv(ndev);
1485 
1486 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1487 }
1488 
1489 /**
1490  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1491  *				     settings.
1492  * @ndev:	Pointer to net_device structure
1493  * @epauseparm:Pointer to ethtool_pauseparam structure
1494  *
1495  * This implements ethtool command for enabling flow control on Rx and Tx
1496  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1497  * function.
1498  *
1499  * Return: 0 on success, -EFAULT if device is running
1500  */
1501 static int
1502 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1503 				struct ethtool_pauseparam *epauseparm)
1504 {
1505 	struct axienet_local *lp = netdev_priv(ndev);
1506 
1507 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1508 }
1509 
1510 /**
1511  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1512  * @ndev:	Pointer to net_device structure
1513  * @ecoalesce:	Pointer to ethtool_coalesce structure
1514  * @kernel_coal: ethtool CQE mode setting structure
1515  * @extack:	extack for reporting error messages
1516  *
1517  * This implements ethtool command for getting the DMA interrupt coalescing
1518  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1519  * execute this function.
1520  *
1521  * Return: 0 always
1522  */
1523 static int
1524 axienet_ethtools_get_coalesce(struct net_device *ndev,
1525 			      struct ethtool_coalesce *ecoalesce,
1526 			      struct kernel_ethtool_coalesce *kernel_coal,
1527 			      struct netlink_ext_ack *extack)
1528 {
1529 	struct axienet_local *lp = netdev_priv(ndev);
1530 
1531 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1532 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1533 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1534 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1535 	return 0;
1536 }
1537 
1538 /**
1539  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1540  * @ndev:	Pointer to net_device structure
1541  * @ecoalesce:	Pointer to ethtool_coalesce structure
1542  * @kernel_coal: ethtool CQE mode setting structure
1543  * @extack:	extack for reporting error messages
1544  *
1545  * This implements ethtool command for setting the DMA interrupt coalescing
1546  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1547  * prompt to execute this function.
1548  *
1549  * Return: 0, on success, Non-zero error value on failure.
1550  */
1551 static int
1552 axienet_ethtools_set_coalesce(struct net_device *ndev,
1553 			      struct ethtool_coalesce *ecoalesce,
1554 			      struct kernel_ethtool_coalesce *kernel_coal,
1555 			      struct netlink_ext_ack *extack)
1556 {
1557 	struct axienet_local *lp = netdev_priv(ndev);
1558 
1559 	if (netif_running(ndev)) {
1560 		netdev_err(ndev,
1561 			   "Please stop netif before applying configuration\n");
1562 		return -EFAULT;
1563 	}
1564 
1565 	if (ecoalesce->rx_max_coalesced_frames)
1566 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1567 	if (ecoalesce->rx_coalesce_usecs)
1568 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1569 	if (ecoalesce->tx_max_coalesced_frames)
1570 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1571 	if (ecoalesce->tx_coalesce_usecs)
1572 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1573 
1574 	return 0;
1575 }
1576 
1577 static int
1578 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1579 				    struct ethtool_link_ksettings *cmd)
1580 {
1581 	struct axienet_local *lp = netdev_priv(ndev);
1582 
1583 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1584 }
1585 
1586 static int
1587 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1588 				    const struct ethtool_link_ksettings *cmd)
1589 {
1590 	struct axienet_local *lp = netdev_priv(ndev);
1591 
1592 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1593 }
1594 
1595 static int axienet_ethtools_nway_reset(struct net_device *dev)
1596 {
1597 	struct axienet_local *lp = netdev_priv(dev);
1598 
1599 	return phylink_ethtool_nway_reset(lp->phylink);
1600 }
1601 
1602 static const struct ethtool_ops axienet_ethtool_ops = {
1603 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1604 				     ETHTOOL_COALESCE_USECS,
1605 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1606 	.get_regs_len   = axienet_ethtools_get_regs_len,
1607 	.get_regs       = axienet_ethtools_get_regs,
1608 	.get_link       = ethtool_op_get_link,
1609 	.get_ringparam	= axienet_ethtools_get_ringparam,
1610 	.set_ringparam	= axienet_ethtools_set_ringparam,
1611 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1612 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1613 	.get_coalesce   = axienet_ethtools_get_coalesce,
1614 	.set_coalesce   = axienet_ethtools_set_coalesce,
1615 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1616 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1617 	.nway_reset	= axienet_ethtools_nway_reset,
1618 };
1619 
1620 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1621 {
1622 	return container_of(pcs, struct axienet_local, pcs);
1623 }
1624 
1625 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1626 				  struct phylink_link_state *state)
1627 {
1628 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1629 
1630 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1631 }
1632 
1633 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1634 {
1635 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1636 
1637 	phylink_mii_c22_pcs_an_restart(pcs_phy);
1638 }
1639 
1640 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
1641 			      phy_interface_t interface,
1642 			      const unsigned long *advertising,
1643 			      bool permit_pause_to_mac)
1644 {
1645 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1646 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1647 	struct axienet_local *lp = netdev_priv(ndev);
1648 	int ret;
1649 
1650 	if (lp->switch_x_sgmii) {
1651 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1652 				    interface == PHY_INTERFACE_MODE_SGMII ?
1653 					XLNX_MII_STD_SELECT_SGMII : 0);
1654 		if (ret < 0) {
1655 			netdev_warn(ndev,
1656 				    "Failed to switch PHY interface: %d\n",
1657 				    ret);
1658 			return ret;
1659 		}
1660 	}
1661 
1662 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
1663 					 neg_mode);
1664 	if (ret < 0)
1665 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1666 
1667 	return ret;
1668 }
1669 
1670 static const struct phylink_pcs_ops axienet_pcs_ops = {
1671 	.pcs_get_state = axienet_pcs_get_state,
1672 	.pcs_config = axienet_pcs_config,
1673 	.pcs_an_restart = axienet_pcs_an_restart,
1674 };
1675 
1676 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1677 						  phy_interface_t interface)
1678 {
1679 	struct net_device *ndev = to_net_dev(config->dev);
1680 	struct axienet_local *lp = netdev_priv(ndev);
1681 
1682 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1683 	    interface ==  PHY_INTERFACE_MODE_SGMII)
1684 		return &lp->pcs;
1685 
1686 	return NULL;
1687 }
1688 
1689 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1690 			       const struct phylink_link_state *state)
1691 {
1692 	/* nothing meaningful to do */
1693 }
1694 
1695 static void axienet_mac_link_down(struct phylink_config *config,
1696 				  unsigned int mode,
1697 				  phy_interface_t interface)
1698 {
1699 	/* nothing meaningful to do */
1700 }
1701 
1702 static void axienet_mac_link_up(struct phylink_config *config,
1703 				struct phy_device *phy,
1704 				unsigned int mode, phy_interface_t interface,
1705 				int speed, int duplex,
1706 				bool tx_pause, bool rx_pause)
1707 {
1708 	struct net_device *ndev = to_net_dev(config->dev);
1709 	struct axienet_local *lp = netdev_priv(ndev);
1710 	u32 emmc_reg, fcc_reg;
1711 
1712 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1713 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1714 
1715 	switch (speed) {
1716 	case SPEED_1000:
1717 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1718 		break;
1719 	case SPEED_100:
1720 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1721 		break;
1722 	case SPEED_10:
1723 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1724 		break;
1725 	default:
1726 		dev_err(&ndev->dev,
1727 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1728 		break;
1729 	}
1730 
1731 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1732 
1733 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1734 	if (tx_pause)
1735 		fcc_reg |= XAE_FCC_FCTX_MASK;
1736 	else
1737 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1738 	if (rx_pause)
1739 		fcc_reg |= XAE_FCC_FCRX_MASK;
1740 	else
1741 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1742 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1743 }
1744 
1745 static const struct phylink_mac_ops axienet_phylink_ops = {
1746 	.mac_select_pcs = axienet_mac_select_pcs,
1747 	.mac_config = axienet_mac_config,
1748 	.mac_link_down = axienet_mac_link_down,
1749 	.mac_link_up = axienet_mac_link_up,
1750 };
1751 
1752 /**
1753  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1754  * @work:	pointer to work_struct
1755  *
1756  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1757  * Tx/Rx BDs.
1758  */
1759 static void axienet_dma_err_handler(struct work_struct *work)
1760 {
1761 	u32 i;
1762 	u32 axienet_status;
1763 	struct axidma_bd *cur_p;
1764 	struct axienet_local *lp = container_of(work, struct axienet_local,
1765 						dma_err_task);
1766 	struct net_device *ndev = lp->ndev;
1767 
1768 	/* Don't bother if we are going to stop anyway */
1769 	if (READ_ONCE(lp->stopping))
1770 		return;
1771 
1772 	napi_disable(&lp->napi_tx);
1773 	napi_disable(&lp->napi_rx);
1774 
1775 	axienet_setoptions(ndev, lp->options &
1776 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1777 
1778 	axienet_dma_stop(lp);
1779 
1780 	for (i = 0; i < lp->tx_bd_num; i++) {
1781 		cur_p = &lp->tx_bd_v[i];
1782 		if (cur_p->cntrl) {
1783 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1784 
1785 			dma_unmap_single(lp->dev, addr,
1786 					 (cur_p->cntrl &
1787 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1788 					 DMA_TO_DEVICE);
1789 		}
1790 		if (cur_p->skb)
1791 			dev_kfree_skb_irq(cur_p->skb);
1792 		cur_p->phys = 0;
1793 		cur_p->phys_msb = 0;
1794 		cur_p->cntrl = 0;
1795 		cur_p->status = 0;
1796 		cur_p->app0 = 0;
1797 		cur_p->app1 = 0;
1798 		cur_p->app2 = 0;
1799 		cur_p->app3 = 0;
1800 		cur_p->app4 = 0;
1801 		cur_p->skb = NULL;
1802 	}
1803 
1804 	for (i = 0; i < lp->rx_bd_num; i++) {
1805 		cur_p = &lp->rx_bd_v[i];
1806 		cur_p->status = 0;
1807 		cur_p->app0 = 0;
1808 		cur_p->app1 = 0;
1809 		cur_p->app2 = 0;
1810 		cur_p->app3 = 0;
1811 		cur_p->app4 = 0;
1812 	}
1813 
1814 	lp->tx_bd_ci = 0;
1815 	lp->tx_bd_tail = 0;
1816 	lp->rx_bd_ci = 0;
1817 
1818 	axienet_dma_start(lp);
1819 
1820 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1821 	axienet_status &= ~XAE_RCW1_RX_MASK;
1822 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1823 
1824 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1825 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1826 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1827 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1828 		    XAE_INT_RECV_ERROR_MASK : 0);
1829 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1830 
1831 	/* Sync default options with HW but leave receiver and
1832 	 * transmitter disabled.
1833 	 */
1834 	axienet_setoptions(ndev, lp->options &
1835 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1836 	axienet_set_mac_address(ndev, NULL);
1837 	axienet_set_multicast_list(ndev);
1838 	napi_enable(&lp->napi_rx);
1839 	napi_enable(&lp->napi_tx);
1840 	axienet_setoptions(ndev, lp->options);
1841 }
1842 
1843 /**
1844  * axienet_probe - Axi Ethernet probe function.
1845  * @pdev:	Pointer to platform device structure.
1846  *
1847  * Return: 0, on success
1848  *	    Non-zero error value on failure.
1849  *
1850  * This is the probe routine for Axi Ethernet driver. This is called before
1851  * any other driver routines are invoked. It allocates and sets up the Ethernet
1852  * device. Parses through device tree and populates fields of
1853  * axienet_local. It registers the Ethernet device.
1854  */
1855 static int axienet_probe(struct platform_device *pdev)
1856 {
1857 	int ret;
1858 	struct device_node *np;
1859 	struct axienet_local *lp;
1860 	struct net_device *ndev;
1861 	struct resource *ethres;
1862 	u8 mac_addr[ETH_ALEN];
1863 	int addr_width = 32;
1864 	u32 value;
1865 
1866 	ndev = alloc_etherdev(sizeof(*lp));
1867 	if (!ndev)
1868 		return -ENOMEM;
1869 
1870 	platform_set_drvdata(pdev, ndev);
1871 
1872 	SET_NETDEV_DEV(ndev, &pdev->dev);
1873 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1874 	ndev->features = NETIF_F_SG;
1875 	ndev->netdev_ops = &axienet_netdev_ops;
1876 	ndev->ethtool_ops = &axienet_ethtool_ops;
1877 
1878 	/* MTU range: 64 - 9000 */
1879 	ndev->min_mtu = 64;
1880 	ndev->max_mtu = XAE_JUMBO_MTU;
1881 
1882 	lp = netdev_priv(ndev);
1883 	lp->ndev = ndev;
1884 	lp->dev = &pdev->dev;
1885 	lp->options = XAE_OPTION_DEFAULTS;
1886 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1887 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1888 
1889 	u64_stats_init(&lp->rx_stat_sync);
1890 	u64_stats_init(&lp->tx_stat_sync);
1891 
1892 	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1893 	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1894 
1895 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1896 	if (!lp->axi_clk) {
1897 		/* For backward compatibility, if named AXI clock is not present,
1898 		 * treat the first clock specified as the AXI clock.
1899 		 */
1900 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1901 	}
1902 	if (IS_ERR(lp->axi_clk)) {
1903 		ret = PTR_ERR(lp->axi_clk);
1904 		goto free_netdev;
1905 	}
1906 	ret = clk_prepare_enable(lp->axi_clk);
1907 	if (ret) {
1908 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1909 		goto free_netdev;
1910 	}
1911 
1912 	lp->misc_clks[0].id = "axis_clk";
1913 	lp->misc_clks[1].id = "ref_clk";
1914 	lp->misc_clks[2].id = "mgt_clk";
1915 
1916 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1917 	if (ret)
1918 		goto cleanup_clk;
1919 
1920 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1921 	if (ret)
1922 		goto cleanup_clk;
1923 
1924 	/* Map device registers */
1925 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1926 	if (IS_ERR(lp->regs)) {
1927 		ret = PTR_ERR(lp->regs);
1928 		goto cleanup_clk;
1929 	}
1930 	lp->regs_start = ethres->start;
1931 
1932 	/* Setup checksum offload, but default to off if not specified */
1933 	lp->features = 0;
1934 
1935 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1936 	if (!ret) {
1937 		switch (value) {
1938 		case 1:
1939 			lp->csum_offload_on_tx_path =
1940 				XAE_FEATURE_PARTIAL_TX_CSUM;
1941 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1942 			/* Can checksum TCP/UDP over IPv4. */
1943 			ndev->features |= NETIF_F_IP_CSUM;
1944 			break;
1945 		case 2:
1946 			lp->csum_offload_on_tx_path =
1947 				XAE_FEATURE_FULL_TX_CSUM;
1948 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1949 			/* Can checksum TCP/UDP over IPv4. */
1950 			ndev->features |= NETIF_F_IP_CSUM;
1951 			break;
1952 		default:
1953 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1954 		}
1955 	}
1956 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1957 	if (!ret) {
1958 		switch (value) {
1959 		case 1:
1960 			lp->csum_offload_on_rx_path =
1961 				XAE_FEATURE_PARTIAL_RX_CSUM;
1962 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1963 			break;
1964 		case 2:
1965 			lp->csum_offload_on_rx_path =
1966 				XAE_FEATURE_FULL_RX_CSUM;
1967 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1968 			break;
1969 		default:
1970 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1971 		}
1972 	}
1973 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1974 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1975 	 * we can enable jumbo option and start supporting jumbo frames.
1976 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1977 	 * the device-tree and accordingly set flags.
1978 	 */
1979 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1980 
1981 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1982 						   "xlnx,switch-x-sgmii");
1983 
1984 	/* Start with the proprietary, and broken phy_type */
1985 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1986 	if (!ret) {
1987 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1988 		switch (value) {
1989 		case XAE_PHY_TYPE_MII:
1990 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1991 			break;
1992 		case XAE_PHY_TYPE_GMII:
1993 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1994 			break;
1995 		case XAE_PHY_TYPE_RGMII_2_0:
1996 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1997 			break;
1998 		case XAE_PHY_TYPE_SGMII:
1999 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2000 			break;
2001 		case XAE_PHY_TYPE_1000BASE_X:
2002 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2003 			break;
2004 		default:
2005 			ret = -EINVAL;
2006 			goto cleanup_clk;
2007 		}
2008 	} else {
2009 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2010 		if (ret)
2011 			goto cleanup_clk;
2012 	}
2013 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2014 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2015 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2016 		ret = -EINVAL;
2017 		goto cleanup_clk;
2018 	}
2019 
2020 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2021 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2022 	if (np) {
2023 		struct resource dmares;
2024 
2025 		ret = of_address_to_resource(np, 0, &dmares);
2026 		if (ret) {
2027 			dev_err(&pdev->dev,
2028 				"unable to get DMA resource\n");
2029 			of_node_put(np);
2030 			goto cleanup_clk;
2031 		}
2032 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2033 						     &dmares);
2034 		lp->rx_irq = irq_of_parse_and_map(np, 1);
2035 		lp->tx_irq = irq_of_parse_and_map(np, 0);
2036 		of_node_put(np);
2037 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2038 	} else {
2039 		/* Check for these resources directly on the Ethernet node. */
2040 		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2041 		lp->rx_irq = platform_get_irq(pdev, 1);
2042 		lp->tx_irq = platform_get_irq(pdev, 0);
2043 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2044 	}
2045 	if (IS_ERR(lp->dma_regs)) {
2046 		dev_err(&pdev->dev, "could not map DMA regs\n");
2047 		ret = PTR_ERR(lp->dma_regs);
2048 		goto cleanup_clk;
2049 	}
2050 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2051 		dev_err(&pdev->dev, "could not determine irqs\n");
2052 		ret = -ENOMEM;
2053 		goto cleanup_clk;
2054 	}
2055 
2056 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2057 	ret = __axienet_device_reset(lp);
2058 	if (ret)
2059 		goto cleanup_clk;
2060 
2061 	/* Autodetect the need for 64-bit DMA pointers.
2062 	 * When the IP is configured for a bus width bigger than 32 bits,
2063 	 * writing the MSB registers is mandatory, even if they are all 0.
2064 	 * We can detect this case by writing all 1's to one such register
2065 	 * and see if that sticks: when the IP is configured for 32 bits
2066 	 * only, those registers are RES0.
2067 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2068 	 */
2069 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2070 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2071 
2072 		iowrite32(0x0, desc);
2073 		if (ioread32(desc) == 0) {	/* sanity check */
2074 			iowrite32(0xffffffff, desc);
2075 			if (ioread32(desc) > 0) {
2076 				lp->features |= XAE_FEATURE_DMA_64BIT;
2077 				addr_width = 64;
2078 				dev_info(&pdev->dev,
2079 					 "autodetected 64-bit DMA range\n");
2080 			}
2081 			iowrite32(0x0, desc);
2082 		}
2083 	}
2084 	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2085 		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2086 		ret = -EINVAL;
2087 		goto cleanup_clk;
2088 	}
2089 
2090 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2091 	if (ret) {
2092 		dev_err(&pdev->dev, "No suitable DMA available\n");
2093 		goto cleanup_clk;
2094 	}
2095 
2096 	/* Check for Ethernet core IRQ (optional) */
2097 	if (lp->eth_irq <= 0)
2098 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2099 
2100 	/* Retrieve the MAC address */
2101 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2102 	if (!ret) {
2103 		axienet_set_mac_address(ndev, mac_addr);
2104 	} else {
2105 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2106 			 ret);
2107 		axienet_set_mac_address(ndev, NULL);
2108 	}
2109 
2110 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2111 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2112 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2113 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2114 
2115 	ret = axienet_mdio_setup(lp);
2116 	if (ret)
2117 		dev_warn(&pdev->dev,
2118 			 "error registering MDIO bus: %d\n", ret);
2119 
2120 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2121 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2122 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2123 		if (!np) {
2124 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2125 			 * Falling back to "phy-handle" here is only for
2126 			 * backward compatibility with old device trees.
2127 			 */
2128 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2129 		}
2130 		if (!np) {
2131 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2132 			ret = -EINVAL;
2133 			goto cleanup_mdio;
2134 		}
2135 		lp->pcs_phy = of_mdio_find_device(np);
2136 		if (!lp->pcs_phy) {
2137 			ret = -EPROBE_DEFER;
2138 			of_node_put(np);
2139 			goto cleanup_mdio;
2140 		}
2141 		of_node_put(np);
2142 		lp->pcs.ops = &axienet_pcs_ops;
2143 		lp->pcs.neg_mode = true;
2144 		lp->pcs.poll = true;
2145 	}
2146 
2147 	lp->phylink_config.dev = &ndev->dev;
2148 	lp->phylink_config.type = PHYLINK_NETDEV;
2149 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2150 		MAC_10FD | MAC_100FD | MAC_1000FD;
2151 
2152 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2153 	if (lp->switch_x_sgmii) {
2154 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2155 			  lp->phylink_config.supported_interfaces);
2156 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2157 			  lp->phylink_config.supported_interfaces);
2158 	}
2159 
2160 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2161 				     lp->phy_mode,
2162 				     &axienet_phylink_ops);
2163 	if (IS_ERR(lp->phylink)) {
2164 		ret = PTR_ERR(lp->phylink);
2165 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2166 		goto cleanup_mdio;
2167 	}
2168 
2169 	ret = register_netdev(lp->ndev);
2170 	if (ret) {
2171 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2172 		goto cleanup_phylink;
2173 	}
2174 
2175 	return 0;
2176 
2177 cleanup_phylink:
2178 	phylink_destroy(lp->phylink);
2179 
2180 cleanup_mdio:
2181 	if (lp->pcs_phy)
2182 		put_device(&lp->pcs_phy->dev);
2183 	if (lp->mii_bus)
2184 		axienet_mdio_teardown(lp);
2185 cleanup_clk:
2186 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2187 	clk_disable_unprepare(lp->axi_clk);
2188 
2189 free_netdev:
2190 	free_netdev(ndev);
2191 
2192 	return ret;
2193 }
2194 
2195 static int axienet_remove(struct platform_device *pdev)
2196 {
2197 	struct net_device *ndev = platform_get_drvdata(pdev);
2198 	struct axienet_local *lp = netdev_priv(ndev);
2199 
2200 	unregister_netdev(ndev);
2201 
2202 	if (lp->phylink)
2203 		phylink_destroy(lp->phylink);
2204 
2205 	if (lp->pcs_phy)
2206 		put_device(&lp->pcs_phy->dev);
2207 
2208 	axienet_mdio_teardown(lp);
2209 
2210 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2211 	clk_disable_unprepare(lp->axi_clk);
2212 
2213 	free_netdev(ndev);
2214 
2215 	return 0;
2216 }
2217 
2218 static void axienet_shutdown(struct platform_device *pdev)
2219 {
2220 	struct net_device *ndev = platform_get_drvdata(pdev);
2221 
2222 	rtnl_lock();
2223 	netif_device_detach(ndev);
2224 
2225 	if (netif_running(ndev))
2226 		dev_close(ndev);
2227 
2228 	rtnl_unlock();
2229 }
2230 
2231 static int axienet_suspend(struct device *dev)
2232 {
2233 	struct net_device *ndev = dev_get_drvdata(dev);
2234 
2235 	if (!netif_running(ndev))
2236 		return 0;
2237 
2238 	netif_device_detach(ndev);
2239 
2240 	rtnl_lock();
2241 	axienet_stop(ndev);
2242 	rtnl_unlock();
2243 
2244 	return 0;
2245 }
2246 
2247 static int axienet_resume(struct device *dev)
2248 {
2249 	struct net_device *ndev = dev_get_drvdata(dev);
2250 
2251 	if (!netif_running(ndev))
2252 		return 0;
2253 
2254 	rtnl_lock();
2255 	axienet_open(ndev);
2256 	rtnl_unlock();
2257 
2258 	netif_device_attach(ndev);
2259 
2260 	return 0;
2261 }
2262 
2263 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2264 				axienet_suspend, axienet_resume);
2265 
2266 static struct platform_driver axienet_driver = {
2267 	.probe = axienet_probe,
2268 	.remove = axienet_remove,
2269 	.shutdown = axienet_shutdown,
2270 	.driver = {
2271 		 .name = "xilinx_axienet",
2272 		 .pm = &axienet_pm_ops,
2273 		 .of_match_table = axienet_of_match,
2274 	},
2275 };
2276 
2277 module_platform_driver(axienet_driver);
2278 
2279 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2280 MODULE_AUTHOR("Xilinx");
2281 MODULE_LICENSE("GPL");
2282