1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx Axi Ethernet device driver 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 9 * Copyright (c) 2010 - 2011 PetaLogix 10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 12 * 13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 14 * and Spartan6. 15 * 16 * TODO: 17 * - Add Axi Fifo support. 18 * - Factor out Axi DMA code into separate driver. 19 * - Test and fix basic multicast filtering. 20 * - Add support for extended multicast filtering. 21 * - Test basic VLAN support. 22 * - Add support for extended VLAN support. 23 */ 24 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/module.h> 29 #include <linux/netdevice.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_address.h> 35 #include <linux/platform_device.h> 36 #include <linux/skbuff.h> 37 #include <linux/math64.h> 38 #include <linux/phy.h> 39 #include <linux/mii.h> 40 #include <linux/ethtool.h> 41 42 #include "xilinx_axienet.h" 43 44 /* Descriptors defines for Tx and Rx DMA */ 45 #define TX_BD_NUM_DEFAULT 128 46 #define RX_BD_NUM_DEFAULT 1024 47 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) 48 #define TX_BD_NUM_MAX 4096 49 #define RX_BD_NUM_MAX 4096 50 51 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ 52 #define DRIVER_NAME "xaxienet" 53 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" 54 #define DRIVER_VERSION "1.00a" 55 56 #define AXIENET_REGS_N 40 57 58 /* Match table for of_platform binding */ 59 static const struct of_device_id axienet_of_match[] = { 60 { .compatible = "xlnx,axi-ethernet-1.00.a", }, 61 { .compatible = "xlnx,axi-ethernet-1.01.a", }, 62 { .compatible = "xlnx,axi-ethernet-2.01.a", }, 63 {}, 64 }; 65 66 MODULE_DEVICE_TABLE(of, axienet_of_match); 67 68 /* Option table for setting up Axi Ethernet hardware options */ 69 static struct axienet_option axienet_options[] = { 70 /* Turn on jumbo packet support for both Rx and Tx */ 71 { 72 .opt = XAE_OPTION_JUMBO, 73 .reg = XAE_TC_OFFSET, 74 .m_or = XAE_TC_JUM_MASK, 75 }, { 76 .opt = XAE_OPTION_JUMBO, 77 .reg = XAE_RCW1_OFFSET, 78 .m_or = XAE_RCW1_JUM_MASK, 79 }, { /* Turn on VLAN packet support for both Rx and Tx */ 80 .opt = XAE_OPTION_VLAN, 81 .reg = XAE_TC_OFFSET, 82 .m_or = XAE_TC_VLAN_MASK, 83 }, { 84 .opt = XAE_OPTION_VLAN, 85 .reg = XAE_RCW1_OFFSET, 86 .m_or = XAE_RCW1_VLAN_MASK, 87 }, { /* Turn on FCS stripping on receive packets */ 88 .opt = XAE_OPTION_FCS_STRIP, 89 .reg = XAE_RCW1_OFFSET, 90 .m_or = XAE_RCW1_FCS_MASK, 91 }, { /* Turn on FCS insertion on transmit packets */ 92 .opt = XAE_OPTION_FCS_INSERT, 93 .reg = XAE_TC_OFFSET, 94 .m_or = XAE_TC_FCS_MASK, 95 }, { /* Turn off length/type field checking on receive packets */ 96 .opt = XAE_OPTION_LENTYPE_ERR, 97 .reg = XAE_RCW1_OFFSET, 98 .m_or = XAE_RCW1_LT_DIS_MASK, 99 }, { /* Turn on Rx flow control */ 100 .opt = XAE_OPTION_FLOW_CONTROL, 101 .reg = XAE_FCC_OFFSET, 102 .m_or = XAE_FCC_FCRX_MASK, 103 }, { /* Turn on Tx flow control */ 104 .opt = XAE_OPTION_FLOW_CONTROL, 105 .reg = XAE_FCC_OFFSET, 106 .m_or = XAE_FCC_FCTX_MASK, 107 }, { /* Turn on promiscuous frame filtering */ 108 .opt = XAE_OPTION_PROMISC, 109 .reg = XAE_FMI_OFFSET, 110 .m_or = XAE_FMI_PM_MASK, 111 }, { /* Enable transmitter */ 112 .opt = XAE_OPTION_TXEN, 113 .reg = XAE_TC_OFFSET, 114 .m_or = XAE_TC_TX_MASK, 115 }, { /* Enable receiver */ 116 .opt = XAE_OPTION_RXEN, 117 .reg = XAE_RCW1_OFFSET, 118 .m_or = XAE_RCW1_RX_MASK, 119 }, 120 {} 121 }; 122 123 /** 124 * axienet_dma_in32 - Memory mapped Axi DMA register read 125 * @lp: Pointer to axienet local structure 126 * @reg: Address offset from the base address of the Axi DMA core 127 * 128 * Return: The contents of the Axi DMA register 129 * 130 * This function returns the contents of the corresponding Axi DMA register. 131 */ 132 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) 133 { 134 return ioread32(lp->dma_regs + reg); 135 } 136 137 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, 138 struct axidma_bd *desc) 139 { 140 desc->phys = lower_32_bits(addr); 141 if (lp->features & XAE_FEATURE_DMA_64BIT) 142 desc->phys_msb = upper_32_bits(addr); 143 } 144 145 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, 146 struct axidma_bd *desc) 147 { 148 dma_addr_t ret = desc->phys; 149 150 if (lp->features & XAE_FEATURE_DMA_64BIT) 151 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; 152 153 return ret; 154 } 155 156 /** 157 * axienet_dma_bd_release - Release buffer descriptor rings 158 * @ndev: Pointer to the net_device structure 159 * 160 * This function is used to release the descriptors allocated in 161 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet 162 * driver stop api is called. 163 */ 164 static void axienet_dma_bd_release(struct net_device *ndev) 165 { 166 int i; 167 struct axienet_local *lp = netdev_priv(ndev); 168 169 /* If we end up here, tx_bd_v must have been DMA allocated. */ 170 dma_free_coherent(lp->dev, 171 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 172 lp->tx_bd_v, 173 lp->tx_bd_p); 174 175 if (!lp->rx_bd_v) 176 return; 177 178 for (i = 0; i < lp->rx_bd_num; i++) { 179 dma_addr_t phys; 180 181 /* A NULL skb means this descriptor has not been initialised 182 * at all. 183 */ 184 if (!lp->rx_bd_v[i].skb) 185 break; 186 187 dev_kfree_skb(lp->rx_bd_v[i].skb); 188 189 /* For each descriptor, we programmed cntrl with the (non-zero) 190 * descriptor size, after it had been successfully allocated. 191 * So a non-zero value in there means we need to unmap it. 192 */ 193 if (lp->rx_bd_v[i].cntrl) { 194 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); 195 dma_unmap_single(lp->dev, phys, 196 lp->max_frm_size, DMA_FROM_DEVICE); 197 } 198 } 199 200 dma_free_coherent(lp->dev, 201 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 202 lp->rx_bd_v, 203 lp->rx_bd_p); 204 } 205 206 /** 207 * axienet_usec_to_timer - Calculate IRQ delay timer value 208 * @lp: Pointer to the axienet_local structure 209 * @coalesce_usec: Microseconds to convert into timer value 210 */ 211 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) 212 { 213 u32 result; 214 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ 215 216 if (lp->axi_clk) 217 clk_rate = clk_get_rate(lp->axi_clk); 218 219 /* 1 Timeout Interval = 125 * (clock period of SG clock) */ 220 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, 221 (u64)125000000); 222 if (result > 255) 223 result = 255; 224 225 return result; 226 } 227 228 /** 229 * axienet_dma_start - Set up DMA registers and start DMA operation 230 * @lp: Pointer to the axienet_local structure 231 */ 232 static void axienet_dma_start(struct axienet_local *lp) 233 { 234 /* Start updating the Rx channel control register */ 235 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | 236 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 237 /* Only set interrupt delay timer if not generating an interrupt on 238 * the first RX packet. Otherwise leave at 0 to disable delay interrupt. 239 */ 240 if (lp->coalesce_count_rx > 1) 241 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) 242 << XAXIDMA_DELAY_SHIFT) | 243 XAXIDMA_IRQ_DELAY_MASK; 244 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 245 246 /* Start updating the Tx channel control register */ 247 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | 248 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 249 /* Only set interrupt delay timer if not generating an interrupt on 250 * the first TX packet. Otherwise leave at 0 to disable delay interrupt. 251 */ 252 if (lp->coalesce_count_tx > 1) 253 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) 254 << XAXIDMA_DELAY_SHIFT) | 255 XAXIDMA_IRQ_DELAY_MASK; 256 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 257 258 /* Populate the tail pointer and bring the Rx Axi DMA engine out of 259 * halted state. This will make the Rx side ready for reception. 260 */ 261 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); 262 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 263 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 264 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + 265 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); 266 267 /* Write to the RS (Run-stop) bit in the Tx channel control register. 268 * Tx channel is now ready to run. But only after we write to the 269 * tail pointer register that the Tx channel will start transmitting. 270 */ 271 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); 272 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 273 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 274 } 275 276 /** 277 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA 278 * @ndev: Pointer to the net_device structure 279 * 280 * Return: 0, on success -ENOMEM, on failure 281 * 282 * This function is called to initialize the Rx and Tx DMA descriptor 283 * rings. This initializes the descriptors with required default values 284 * and is called when Axi Ethernet driver reset is called. 285 */ 286 static int axienet_dma_bd_init(struct net_device *ndev) 287 { 288 int i; 289 struct sk_buff *skb; 290 struct axienet_local *lp = netdev_priv(ndev); 291 292 /* Reset the indexes which are used for accessing the BDs */ 293 lp->tx_bd_ci = 0; 294 lp->tx_bd_tail = 0; 295 lp->rx_bd_ci = 0; 296 297 /* Allocate the Tx and Rx buffer descriptors. */ 298 lp->tx_bd_v = dma_alloc_coherent(lp->dev, 299 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 300 &lp->tx_bd_p, GFP_KERNEL); 301 if (!lp->tx_bd_v) 302 return -ENOMEM; 303 304 lp->rx_bd_v = dma_alloc_coherent(lp->dev, 305 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 306 &lp->rx_bd_p, GFP_KERNEL); 307 if (!lp->rx_bd_v) 308 goto out; 309 310 for (i = 0; i < lp->tx_bd_num; i++) { 311 dma_addr_t addr = lp->tx_bd_p + 312 sizeof(*lp->tx_bd_v) * 313 ((i + 1) % lp->tx_bd_num); 314 315 lp->tx_bd_v[i].next = lower_32_bits(addr); 316 if (lp->features & XAE_FEATURE_DMA_64BIT) 317 lp->tx_bd_v[i].next_msb = upper_32_bits(addr); 318 } 319 320 for (i = 0; i < lp->rx_bd_num; i++) { 321 dma_addr_t addr; 322 323 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * 324 ((i + 1) % lp->rx_bd_num); 325 lp->rx_bd_v[i].next = lower_32_bits(addr); 326 if (lp->features & XAE_FEATURE_DMA_64BIT) 327 lp->rx_bd_v[i].next_msb = upper_32_bits(addr); 328 329 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); 330 if (!skb) 331 goto out; 332 333 lp->rx_bd_v[i].skb = skb; 334 addr = dma_map_single(lp->dev, skb->data, 335 lp->max_frm_size, DMA_FROM_DEVICE); 336 if (dma_mapping_error(lp->dev, addr)) { 337 netdev_err(ndev, "DMA mapping error\n"); 338 goto out; 339 } 340 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); 341 342 lp->rx_bd_v[i].cntrl = lp->max_frm_size; 343 } 344 345 axienet_dma_start(lp); 346 347 return 0; 348 out: 349 axienet_dma_bd_release(ndev); 350 return -ENOMEM; 351 } 352 353 /** 354 * axienet_set_mac_address - Write the MAC address 355 * @ndev: Pointer to the net_device structure 356 * @address: 6 byte Address to be written as MAC address 357 * 358 * This function is called to initialize the MAC address of the Axi Ethernet 359 * core. It writes to the UAW0 and UAW1 registers of the core. 360 */ 361 static void axienet_set_mac_address(struct net_device *ndev, 362 const void *address) 363 { 364 struct axienet_local *lp = netdev_priv(ndev); 365 366 if (address) 367 eth_hw_addr_set(ndev, address); 368 if (!is_valid_ether_addr(ndev->dev_addr)) 369 eth_hw_addr_random(ndev); 370 371 /* Set up unicast MAC address filter set its mac address */ 372 axienet_iow(lp, XAE_UAW0_OFFSET, 373 (ndev->dev_addr[0]) | 374 (ndev->dev_addr[1] << 8) | 375 (ndev->dev_addr[2] << 16) | 376 (ndev->dev_addr[3] << 24)); 377 axienet_iow(lp, XAE_UAW1_OFFSET, 378 (((axienet_ior(lp, XAE_UAW1_OFFSET)) & 379 ~XAE_UAW1_UNICASTADDR_MASK) | 380 (ndev->dev_addr[4] | 381 (ndev->dev_addr[5] << 8)))); 382 } 383 384 /** 385 * netdev_set_mac_address - Write the MAC address (from outside the driver) 386 * @ndev: Pointer to the net_device structure 387 * @p: 6 byte Address to be written as MAC address 388 * 389 * Return: 0 for all conditions. Presently, there is no failure case. 390 * 391 * This function is called to initialize the MAC address of the Axi Ethernet 392 * core. It calls the core specific axienet_set_mac_address. This is the 393 * function that goes into net_device_ops structure entry ndo_set_mac_address. 394 */ 395 static int netdev_set_mac_address(struct net_device *ndev, void *p) 396 { 397 struct sockaddr *addr = p; 398 axienet_set_mac_address(ndev, addr->sa_data); 399 return 0; 400 } 401 402 /** 403 * axienet_set_multicast_list - Prepare the multicast table 404 * @ndev: Pointer to the net_device structure 405 * 406 * This function is called to initialize the multicast table during 407 * initialization. The Axi Ethernet basic multicast support has a four-entry 408 * multicast table which is initialized here. Additionally this function 409 * goes into the net_device_ops structure entry ndo_set_multicast_list. This 410 * means whenever the multicast table entries need to be updated this 411 * function gets called. 412 */ 413 static void axienet_set_multicast_list(struct net_device *ndev) 414 { 415 int i = 0; 416 u32 reg, af0reg, af1reg; 417 struct axienet_local *lp = netdev_priv(ndev); 418 419 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || 420 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { 421 /* We must make the kernel realize we had to move into 422 * promiscuous mode. If it was a promiscuous mode request 423 * the flag is already set. If not we set it. 424 */ 425 ndev->flags |= IFF_PROMISC; 426 reg = axienet_ior(lp, XAE_FMI_OFFSET); 427 reg |= XAE_FMI_PM_MASK; 428 axienet_iow(lp, XAE_FMI_OFFSET, reg); 429 dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); 430 } else if (!netdev_mc_empty(ndev)) { 431 struct netdev_hw_addr *ha; 432 433 reg = axienet_ior(lp, XAE_FMI_OFFSET); 434 reg &= ~XAE_FMI_PM_MASK; 435 axienet_iow(lp, XAE_FMI_OFFSET, reg); 436 437 netdev_for_each_mc_addr(ha, ndev) { 438 if (i >= XAE_MULTICAST_CAM_TABLE_NUM) 439 break; 440 441 af0reg = (ha->addr[0]); 442 af0reg |= (ha->addr[1] << 8); 443 af0reg |= (ha->addr[2] << 16); 444 af0reg |= (ha->addr[3] << 24); 445 446 af1reg = (ha->addr[4]); 447 af1reg |= (ha->addr[5] << 8); 448 449 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; 450 reg |= i; 451 452 axienet_iow(lp, XAE_FMI_OFFSET, reg); 453 axienet_iow(lp, XAE_AF0_OFFSET, af0reg); 454 axienet_iow(lp, XAE_AF1_OFFSET, af1reg); 455 axienet_iow(lp, XAE_FFE_OFFSET, 1); 456 i++; 457 } 458 } else { 459 reg = axienet_ior(lp, XAE_FMI_OFFSET); 460 reg &= ~XAE_FMI_PM_MASK; 461 462 axienet_iow(lp, XAE_FMI_OFFSET, reg); 463 dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); 464 } 465 466 for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { 467 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; 468 reg |= i; 469 axienet_iow(lp, XAE_FMI_OFFSET, reg); 470 axienet_iow(lp, XAE_FFE_OFFSET, 0); 471 } 472 } 473 474 /** 475 * axienet_setoptions - Set an Axi Ethernet option 476 * @ndev: Pointer to the net_device structure 477 * @options: Option to be enabled/disabled 478 * 479 * The Axi Ethernet core has multiple features which can be selectively turned 480 * on or off. The typical options could be jumbo frame option, basic VLAN 481 * option, promiscuous mode option etc. This function is used to set or clear 482 * these options in the Axi Ethernet hardware. This is done through 483 * axienet_option structure . 484 */ 485 static void axienet_setoptions(struct net_device *ndev, u32 options) 486 { 487 int reg; 488 struct axienet_local *lp = netdev_priv(ndev); 489 struct axienet_option *tp = &axienet_options[0]; 490 491 while (tp->opt) { 492 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); 493 if (options & tp->opt) 494 reg |= tp->m_or; 495 axienet_iow(lp, tp->reg, reg); 496 tp++; 497 } 498 499 lp->options |= options; 500 } 501 502 static int __axienet_device_reset(struct axienet_local *lp) 503 { 504 u32 value; 505 int ret; 506 507 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset 508 * process of Axi DMA takes a while to complete as all pending 509 * commands/transfers will be flushed or completed during this 510 * reset process. 511 * Note that even though both TX and RX have their own reset register, 512 * they both reset the entire DMA core, so only one needs to be used. 513 */ 514 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); 515 ret = read_poll_timeout(axienet_dma_in32, value, 516 !(value & XAXIDMA_CR_RESET_MASK), 517 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 518 XAXIDMA_TX_CR_OFFSET); 519 if (ret) { 520 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); 521 return ret; 522 } 523 524 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ 525 ret = read_poll_timeout(axienet_ior, value, 526 value & XAE_INT_PHYRSTCMPLT_MASK, 527 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 528 XAE_IS_OFFSET); 529 if (ret) { 530 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); 531 return ret; 532 } 533 534 return 0; 535 } 536 537 /** 538 * axienet_dma_stop - Stop DMA operation 539 * @lp: Pointer to the axienet_local structure 540 */ 541 static void axienet_dma_stop(struct axienet_local *lp) 542 { 543 int count; 544 u32 cr, sr; 545 546 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 547 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 548 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 549 synchronize_irq(lp->rx_irq); 550 551 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 552 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 553 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 554 synchronize_irq(lp->tx_irq); 555 556 /* Give DMAs a chance to halt gracefully */ 557 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 558 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 559 msleep(20); 560 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 561 } 562 563 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 564 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 565 msleep(20); 566 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 567 } 568 569 /* Do a reset to ensure DMA is really stopped */ 570 axienet_lock_mii(lp); 571 __axienet_device_reset(lp); 572 axienet_unlock_mii(lp); 573 } 574 575 /** 576 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. 577 * @ndev: Pointer to the net_device structure 578 * 579 * This function is called to reset and initialize the Axi Ethernet core. This 580 * is typically called during initialization. It does a reset of the Axi DMA 581 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines 582 * are connected to Axi Ethernet reset lines, this in turn resets the Axi 583 * Ethernet core. No separate hardware reset is done for the Axi Ethernet 584 * core. 585 * Returns 0 on success or a negative error number otherwise. 586 */ 587 static int axienet_device_reset(struct net_device *ndev) 588 { 589 u32 axienet_status; 590 struct axienet_local *lp = netdev_priv(ndev); 591 int ret; 592 593 ret = __axienet_device_reset(lp); 594 if (ret) 595 return ret; 596 597 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; 598 lp->options |= XAE_OPTION_VLAN; 599 lp->options &= (~XAE_OPTION_JUMBO); 600 601 if ((ndev->mtu > XAE_MTU) && 602 (ndev->mtu <= XAE_JUMBO_MTU)) { 603 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + 604 XAE_TRL_SIZE; 605 606 if (lp->max_frm_size <= lp->rxmem) 607 lp->options |= XAE_OPTION_JUMBO; 608 } 609 610 ret = axienet_dma_bd_init(ndev); 611 if (ret) { 612 netdev_err(ndev, "%s: descriptor allocation failed\n", 613 __func__); 614 return ret; 615 } 616 617 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 618 axienet_status &= ~XAE_RCW1_RX_MASK; 619 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 620 621 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 622 if (axienet_status & XAE_INT_RXRJECT_MASK) 623 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 624 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 625 XAE_INT_RECV_ERROR_MASK : 0); 626 627 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 628 629 /* Sync default options with HW but leave receiver and 630 * transmitter disabled. 631 */ 632 axienet_setoptions(ndev, lp->options & 633 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 634 axienet_set_mac_address(ndev, NULL); 635 axienet_set_multicast_list(ndev); 636 axienet_setoptions(ndev, lp->options); 637 638 netif_trans_update(ndev); 639 640 return 0; 641 } 642 643 /** 644 * axienet_free_tx_chain - Clean up a series of linked TX descriptors. 645 * @lp: Pointer to the axienet_local structure 646 * @first_bd: Index of first descriptor to clean up 647 * @nr_bds: Max number of descriptors to clean up 648 * @force: Whether to clean descriptors even if not complete 649 * @sizep: Pointer to a u32 filled with the total sum of all bytes 650 * in all cleaned-up descriptors. Ignored if NULL. 651 * @budget: NAPI budget (use 0 when not called from NAPI poll) 652 * 653 * Would either be called after a successful transmit operation, or after 654 * there was an error when setting up the chain. 655 * Returns the number of descriptors handled. 656 */ 657 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, 658 int nr_bds, bool force, u32 *sizep, int budget) 659 { 660 struct axidma_bd *cur_p; 661 unsigned int status; 662 dma_addr_t phys; 663 int i; 664 665 for (i = 0; i < nr_bds; i++) { 666 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; 667 status = cur_p->status; 668 669 /* If force is not specified, clean up only descriptors 670 * that have been completed by the MAC. 671 */ 672 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) 673 break; 674 675 /* Ensure we see complete descriptor update */ 676 dma_rmb(); 677 phys = desc_get_phys_addr(lp, cur_p); 678 dma_unmap_single(lp->dev, phys, 679 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), 680 DMA_TO_DEVICE); 681 682 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) 683 napi_consume_skb(cur_p->skb, budget); 684 685 cur_p->app0 = 0; 686 cur_p->app1 = 0; 687 cur_p->app2 = 0; 688 cur_p->app4 = 0; 689 cur_p->skb = NULL; 690 /* ensure our transmit path and device don't prematurely see status cleared */ 691 wmb(); 692 cur_p->cntrl = 0; 693 cur_p->status = 0; 694 695 if (sizep) 696 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 697 } 698 699 return i; 700 } 701 702 /** 703 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy 704 * @lp: Pointer to the axienet_local structure 705 * @num_frag: The number of BDs to check for 706 * 707 * Return: 0, on success 708 * NETDEV_TX_BUSY, if any of the descriptors are not free 709 * 710 * This function is invoked before BDs are allocated and transmission starts. 711 * This function returns 0 if a BD or group of BDs can be allocated for 712 * transmission. If the BD or any of the BDs are not free the function 713 * returns a busy status. 714 */ 715 static inline int axienet_check_tx_bd_space(struct axienet_local *lp, 716 int num_frag) 717 { 718 struct axidma_bd *cur_p; 719 720 /* Ensure we see all descriptor updates from device or TX polling */ 721 rmb(); 722 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % 723 lp->tx_bd_num]; 724 if (cur_p->cntrl) 725 return NETDEV_TX_BUSY; 726 return 0; 727 } 728 729 /** 730 * axienet_tx_poll - Invoked once a transmit is completed by the 731 * Axi DMA Tx channel. 732 * @napi: Pointer to NAPI structure. 733 * @budget: Max number of TX packets to process. 734 * 735 * Return: Number of TX packets processed. 736 * 737 * This function is invoked from the NAPI processing to notify the completion 738 * of transmit operation. It clears fields in the corresponding Tx BDs and 739 * unmaps the corresponding buffer so that CPU can regain ownership of the 740 * buffer. It finally invokes "netif_wake_queue" to restart transmission if 741 * required. 742 */ 743 static int axienet_tx_poll(struct napi_struct *napi, int budget) 744 { 745 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); 746 struct net_device *ndev = lp->ndev; 747 u32 size = 0; 748 int packets; 749 750 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget); 751 752 if (packets) { 753 lp->tx_bd_ci += packets; 754 if (lp->tx_bd_ci >= lp->tx_bd_num) 755 lp->tx_bd_ci %= lp->tx_bd_num; 756 757 u64_stats_update_begin(&lp->tx_stat_sync); 758 u64_stats_add(&lp->tx_packets, packets); 759 u64_stats_add(&lp->tx_bytes, size); 760 u64_stats_update_end(&lp->tx_stat_sync); 761 762 /* Matches barrier in axienet_start_xmit */ 763 smp_mb(); 764 765 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 766 netif_wake_queue(ndev); 767 } 768 769 if (packets < budget && napi_complete_done(napi, packets)) { 770 /* Re-enable TX completion interrupts. This should 771 * cause an immediate interrupt if any TX packets are 772 * already pending. 773 */ 774 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 775 } 776 return packets; 777 } 778 779 /** 780 * axienet_start_xmit - Starts the transmission. 781 * @skb: sk_buff pointer that contains data to be Txed. 782 * @ndev: Pointer to net_device structure. 783 * 784 * Return: NETDEV_TX_OK, on success 785 * NETDEV_TX_BUSY, if any of the descriptors are not free 786 * 787 * This function is invoked from upper layers to initiate transmission. The 788 * function uses the next available free BDs and populates their fields to 789 * start the transmission. Additionally if checksum offloading is supported, 790 * it populates AXI Stream Control fields with appropriate values. 791 */ 792 static netdev_tx_t 793 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 794 { 795 u32 ii; 796 u32 num_frag; 797 u32 csum_start_off; 798 u32 csum_index_off; 799 skb_frag_t *frag; 800 dma_addr_t tail_p, phys; 801 u32 orig_tail_ptr, new_tail_ptr; 802 struct axienet_local *lp = netdev_priv(ndev); 803 struct axidma_bd *cur_p; 804 805 orig_tail_ptr = lp->tx_bd_tail; 806 new_tail_ptr = orig_tail_ptr; 807 808 num_frag = skb_shinfo(skb)->nr_frags; 809 cur_p = &lp->tx_bd_v[orig_tail_ptr]; 810 811 if (axienet_check_tx_bd_space(lp, num_frag + 1)) { 812 /* Should not happen as last start_xmit call should have 813 * checked for sufficient space and queue should only be 814 * woken when sufficient space is available. 815 */ 816 netif_stop_queue(ndev); 817 if (net_ratelimit()) 818 netdev_warn(ndev, "TX ring unexpectedly full\n"); 819 return NETDEV_TX_BUSY; 820 } 821 822 if (skb->ip_summed == CHECKSUM_PARTIAL) { 823 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 824 /* Tx Full Checksum Offload Enabled */ 825 cur_p->app0 |= 2; 826 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 827 csum_start_off = skb_transport_offset(skb); 828 csum_index_off = csum_start_off + skb->csum_offset; 829 /* Tx Partial Checksum Offload Enabled */ 830 cur_p->app0 |= 1; 831 cur_p->app1 = (csum_start_off << 16) | csum_index_off; 832 } 833 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 834 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ 835 } 836 837 phys = dma_map_single(lp->dev, skb->data, 838 skb_headlen(skb), DMA_TO_DEVICE); 839 if (unlikely(dma_mapping_error(lp->dev, phys))) { 840 if (net_ratelimit()) 841 netdev_err(ndev, "TX DMA mapping error\n"); 842 ndev->stats.tx_dropped++; 843 return NETDEV_TX_OK; 844 } 845 desc_set_phys_addr(lp, phys, cur_p); 846 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; 847 848 for (ii = 0; ii < num_frag; ii++) { 849 if (++new_tail_ptr >= lp->tx_bd_num) 850 new_tail_ptr = 0; 851 cur_p = &lp->tx_bd_v[new_tail_ptr]; 852 frag = &skb_shinfo(skb)->frags[ii]; 853 phys = dma_map_single(lp->dev, 854 skb_frag_address(frag), 855 skb_frag_size(frag), 856 DMA_TO_DEVICE); 857 if (unlikely(dma_mapping_error(lp->dev, phys))) { 858 if (net_ratelimit()) 859 netdev_err(ndev, "TX DMA mapping error\n"); 860 ndev->stats.tx_dropped++; 861 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, 862 true, NULL, 0); 863 return NETDEV_TX_OK; 864 } 865 desc_set_phys_addr(lp, phys, cur_p); 866 cur_p->cntrl = skb_frag_size(frag); 867 } 868 869 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; 870 cur_p->skb = skb; 871 872 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; 873 if (++new_tail_ptr >= lp->tx_bd_num) 874 new_tail_ptr = 0; 875 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); 876 877 /* Start the transfer */ 878 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); 879 880 /* Stop queue if next transmit may not have space */ 881 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { 882 netif_stop_queue(ndev); 883 884 /* Matches barrier in axienet_tx_poll */ 885 smp_mb(); 886 887 /* Space might have just been freed - check again */ 888 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 889 netif_wake_queue(ndev); 890 } 891 892 return NETDEV_TX_OK; 893 } 894 895 /** 896 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. 897 * @napi: Pointer to NAPI structure. 898 * @budget: Max number of RX packets to process. 899 * 900 * Return: Number of RX packets processed. 901 */ 902 static int axienet_rx_poll(struct napi_struct *napi, int budget) 903 { 904 u32 length; 905 u32 csumstatus; 906 u32 size = 0; 907 int packets = 0; 908 dma_addr_t tail_p = 0; 909 struct axidma_bd *cur_p; 910 struct sk_buff *skb, *new_skb; 911 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); 912 913 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 914 915 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 916 dma_addr_t phys; 917 918 /* Ensure we see complete descriptor update */ 919 dma_rmb(); 920 921 skb = cur_p->skb; 922 cur_p->skb = NULL; 923 924 /* skb could be NULL if a previous pass already received the 925 * packet for this slot in the ring, but failed to refill it 926 * with a newly allocated buffer. In this case, don't try to 927 * receive it again. 928 */ 929 if (likely(skb)) { 930 length = cur_p->app4 & 0x0000FFFF; 931 932 phys = desc_get_phys_addr(lp, cur_p); 933 dma_unmap_single(lp->dev, phys, lp->max_frm_size, 934 DMA_FROM_DEVICE); 935 936 skb_put(skb, length); 937 skb->protocol = eth_type_trans(skb, lp->ndev); 938 /*skb_checksum_none_assert(skb);*/ 939 skb->ip_summed = CHECKSUM_NONE; 940 941 /* if we're doing Rx csum offload, set it up */ 942 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { 943 csumstatus = (cur_p->app2 & 944 XAE_FULL_CSUM_STATUS_MASK) >> 3; 945 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || 946 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { 947 skb->ip_summed = CHECKSUM_UNNECESSARY; 948 } 949 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && 950 skb->protocol == htons(ETH_P_IP) && 951 skb->len > 64) { 952 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); 953 skb->ip_summed = CHECKSUM_COMPLETE; 954 } 955 956 napi_gro_receive(napi, skb); 957 958 size += length; 959 packets++; 960 } 961 962 new_skb = napi_alloc_skb(napi, lp->max_frm_size); 963 if (!new_skb) 964 break; 965 966 phys = dma_map_single(lp->dev, new_skb->data, 967 lp->max_frm_size, 968 DMA_FROM_DEVICE); 969 if (unlikely(dma_mapping_error(lp->dev, phys))) { 970 if (net_ratelimit()) 971 netdev_err(lp->ndev, "RX DMA mapping error\n"); 972 dev_kfree_skb(new_skb); 973 break; 974 } 975 desc_set_phys_addr(lp, phys, cur_p); 976 977 cur_p->cntrl = lp->max_frm_size; 978 cur_p->status = 0; 979 cur_p->skb = new_skb; 980 981 /* Only update tail_p to mark this slot as usable after it has 982 * been successfully refilled. 983 */ 984 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 985 986 if (++lp->rx_bd_ci >= lp->rx_bd_num) 987 lp->rx_bd_ci = 0; 988 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 989 } 990 991 u64_stats_update_begin(&lp->rx_stat_sync); 992 u64_stats_add(&lp->rx_packets, packets); 993 u64_stats_add(&lp->rx_bytes, size); 994 u64_stats_update_end(&lp->rx_stat_sync); 995 996 if (tail_p) 997 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); 998 999 if (packets < budget && napi_complete_done(napi, packets)) { 1000 /* Re-enable RX completion interrupts. This should 1001 * cause an immediate interrupt if any RX packets are 1002 * already pending. 1003 */ 1004 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 1005 } 1006 return packets; 1007 } 1008 1009 /** 1010 * axienet_tx_irq - Tx Done Isr. 1011 * @irq: irq number 1012 * @_ndev: net_device pointer 1013 * 1014 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. 1015 * 1016 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the 1017 * TX BD processing. 1018 */ 1019 static irqreturn_t axienet_tx_irq(int irq, void *_ndev) 1020 { 1021 unsigned int status; 1022 struct net_device *ndev = _ndev; 1023 struct axienet_local *lp = netdev_priv(ndev); 1024 1025 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1026 1027 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1028 return IRQ_NONE; 1029 1030 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); 1031 1032 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1033 netdev_err(ndev, "DMA Tx error 0x%x\n", status); 1034 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1035 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, 1036 (lp->tx_bd_v[lp->tx_bd_ci]).phys); 1037 schedule_work(&lp->dma_err_task); 1038 } else { 1039 /* Disable further TX completion interrupts and schedule 1040 * NAPI to handle the completions. 1041 */ 1042 u32 cr = lp->tx_dma_cr; 1043 1044 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1045 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 1046 1047 napi_schedule(&lp->napi_tx); 1048 } 1049 1050 return IRQ_HANDLED; 1051 } 1052 1053 /** 1054 * axienet_rx_irq - Rx Isr. 1055 * @irq: irq number 1056 * @_ndev: net_device pointer 1057 * 1058 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. 1059 * 1060 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD 1061 * processing. 1062 */ 1063 static irqreturn_t axienet_rx_irq(int irq, void *_ndev) 1064 { 1065 unsigned int status; 1066 struct net_device *ndev = _ndev; 1067 struct axienet_local *lp = netdev_priv(ndev); 1068 1069 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1070 1071 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1072 return IRQ_NONE; 1073 1074 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); 1075 1076 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1077 netdev_err(ndev, "DMA Rx error 0x%x\n", status); 1078 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1079 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, 1080 (lp->rx_bd_v[lp->rx_bd_ci]).phys); 1081 schedule_work(&lp->dma_err_task); 1082 } else { 1083 /* Disable further RX completion interrupts and schedule 1084 * NAPI receive. 1085 */ 1086 u32 cr = lp->rx_dma_cr; 1087 1088 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1089 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 1090 1091 napi_schedule(&lp->napi_rx); 1092 } 1093 1094 return IRQ_HANDLED; 1095 } 1096 1097 /** 1098 * axienet_eth_irq - Ethernet core Isr. 1099 * @irq: irq number 1100 * @_ndev: net_device pointer 1101 * 1102 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. 1103 * 1104 * Handle miscellaneous conditions indicated by Ethernet core IRQ. 1105 */ 1106 static irqreturn_t axienet_eth_irq(int irq, void *_ndev) 1107 { 1108 struct net_device *ndev = _ndev; 1109 struct axienet_local *lp = netdev_priv(ndev); 1110 unsigned int pending; 1111 1112 pending = axienet_ior(lp, XAE_IP_OFFSET); 1113 if (!pending) 1114 return IRQ_NONE; 1115 1116 if (pending & XAE_INT_RXFIFOOVR_MASK) 1117 ndev->stats.rx_missed_errors++; 1118 1119 if (pending & XAE_INT_RXRJECT_MASK) 1120 ndev->stats.rx_frame_errors++; 1121 1122 axienet_iow(lp, XAE_IS_OFFSET, pending); 1123 return IRQ_HANDLED; 1124 } 1125 1126 static void axienet_dma_err_handler(struct work_struct *work); 1127 1128 /** 1129 * axienet_open - Driver open routine. 1130 * @ndev: Pointer to net_device structure 1131 * 1132 * Return: 0, on success. 1133 * non-zero error value on failure 1134 * 1135 * This is the driver open routine. It calls phylink_start to start the 1136 * PHY device. 1137 * It also allocates interrupt service routines, enables the interrupt lines 1138 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer 1139 * descriptors are initialized. 1140 */ 1141 static int axienet_open(struct net_device *ndev) 1142 { 1143 int ret; 1144 struct axienet_local *lp = netdev_priv(ndev); 1145 1146 dev_dbg(&ndev->dev, "axienet_open()\n"); 1147 1148 /* When we do an Axi Ethernet reset, it resets the complete core 1149 * including the MDIO. MDIO must be disabled before resetting. 1150 * Hold MDIO bus lock to avoid MDIO accesses during the reset. 1151 */ 1152 axienet_lock_mii(lp); 1153 ret = axienet_device_reset(ndev); 1154 axienet_unlock_mii(lp); 1155 1156 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); 1157 if (ret) { 1158 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); 1159 return ret; 1160 } 1161 1162 phylink_start(lp->phylink); 1163 1164 /* Enable worker thread for Axi DMA error handling */ 1165 lp->stopping = false; 1166 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); 1167 1168 napi_enable(&lp->napi_rx); 1169 napi_enable(&lp->napi_tx); 1170 1171 /* Enable interrupts for Axi DMA Tx */ 1172 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, 1173 ndev->name, ndev); 1174 if (ret) 1175 goto err_tx_irq; 1176 /* Enable interrupts for Axi DMA Rx */ 1177 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, 1178 ndev->name, ndev); 1179 if (ret) 1180 goto err_rx_irq; 1181 /* Enable interrupts for Axi Ethernet core (if defined) */ 1182 if (lp->eth_irq > 0) { 1183 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1184 ndev->name, ndev); 1185 if (ret) 1186 goto err_eth_irq; 1187 } 1188 1189 return 0; 1190 1191 err_eth_irq: 1192 free_irq(lp->rx_irq, ndev); 1193 err_rx_irq: 1194 free_irq(lp->tx_irq, ndev); 1195 err_tx_irq: 1196 napi_disable(&lp->napi_tx); 1197 napi_disable(&lp->napi_rx); 1198 phylink_stop(lp->phylink); 1199 phylink_disconnect_phy(lp->phylink); 1200 cancel_work_sync(&lp->dma_err_task); 1201 dev_err(lp->dev, "request_irq() failed\n"); 1202 return ret; 1203 } 1204 1205 /** 1206 * axienet_stop - Driver stop routine. 1207 * @ndev: Pointer to net_device structure 1208 * 1209 * Return: 0, on success. 1210 * 1211 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY 1212 * device. It also removes the interrupt handlers and disables the interrupts. 1213 * The Axi DMA Tx/Rx BDs are released. 1214 */ 1215 static int axienet_stop(struct net_device *ndev) 1216 { 1217 struct axienet_local *lp = netdev_priv(ndev); 1218 1219 dev_dbg(&ndev->dev, "axienet_close()\n"); 1220 1221 WRITE_ONCE(lp->stopping, true); 1222 flush_work(&lp->dma_err_task); 1223 1224 napi_disable(&lp->napi_tx); 1225 napi_disable(&lp->napi_rx); 1226 1227 phylink_stop(lp->phylink); 1228 phylink_disconnect_phy(lp->phylink); 1229 1230 axienet_setoptions(ndev, lp->options & 1231 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1232 1233 axienet_dma_stop(lp); 1234 1235 axienet_iow(lp, XAE_IE_OFFSET, 0); 1236 1237 cancel_work_sync(&lp->dma_err_task); 1238 1239 if (lp->eth_irq > 0) 1240 free_irq(lp->eth_irq, ndev); 1241 free_irq(lp->tx_irq, ndev); 1242 free_irq(lp->rx_irq, ndev); 1243 1244 axienet_dma_bd_release(ndev); 1245 return 0; 1246 } 1247 1248 /** 1249 * axienet_change_mtu - Driver change mtu routine. 1250 * @ndev: Pointer to net_device structure 1251 * @new_mtu: New mtu value to be applied 1252 * 1253 * Return: Always returns 0 (success). 1254 * 1255 * This is the change mtu driver routine. It checks if the Axi Ethernet 1256 * hardware supports jumbo frames before changing the mtu. This can be 1257 * called only when the device is not up. 1258 */ 1259 static int axienet_change_mtu(struct net_device *ndev, int new_mtu) 1260 { 1261 struct axienet_local *lp = netdev_priv(ndev); 1262 1263 if (netif_running(ndev)) 1264 return -EBUSY; 1265 1266 if ((new_mtu + VLAN_ETH_HLEN + 1267 XAE_TRL_SIZE) > lp->rxmem) 1268 return -EINVAL; 1269 1270 ndev->mtu = new_mtu; 1271 1272 return 0; 1273 } 1274 1275 #ifdef CONFIG_NET_POLL_CONTROLLER 1276 /** 1277 * axienet_poll_controller - Axi Ethernet poll mechanism. 1278 * @ndev: Pointer to net_device structure 1279 * 1280 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior 1281 * to polling the ISRs and are enabled back after the polling is done. 1282 */ 1283 static void axienet_poll_controller(struct net_device *ndev) 1284 { 1285 struct axienet_local *lp = netdev_priv(ndev); 1286 disable_irq(lp->tx_irq); 1287 disable_irq(lp->rx_irq); 1288 axienet_rx_irq(lp->tx_irq, ndev); 1289 axienet_tx_irq(lp->rx_irq, ndev); 1290 enable_irq(lp->tx_irq); 1291 enable_irq(lp->rx_irq); 1292 } 1293 #endif 1294 1295 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1296 { 1297 struct axienet_local *lp = netdev_priv(dev); 1298 1299 if (!netif_running(dev)) 1300 return -EINVAL; 1301 1302 return phylink_mii_ioctl(lp->phylink, rq, cmd); 1303 } 1304 1305 static void 1306 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 1307 { 1308 struct axienet_local *lp = netdev_priv(dev); 1309 unsigned int start; 1310 1311 netdev_stats_to_stats64(stats, &dev->stats); 1312 1313 do { 1314 start = u64_stats_fetch_begin(&lp->rx_stat_sync); 1315 stats->rx_packets = u64_stats_read(&lp->rx_packets); 1316 stats->rx_bytes = u64_stats_read(&lp->rx_bytes); 1317 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); 1318 1319 do { 1320 start = u64_stats_fetch_begin(&lp->tx_stat_sync); 1321 stats->tx_packets = u64_stats_read(&lp->tx_packets); 1322 stats->tx_bytes = u64_stats_read(&lp->tx_bytes); 1323 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); 1324 } 1325 1326 static const struct net_device_ops axienet_netdev_ops = { 1327 .ndo_open = axienet_open, 1328 .ndo_stop = axienet_stop, 1329 .ndo_start_xmit = axienet_start_xmit, 1330 .ndo_get_stats64 = axienet_get_stats64, 1331 .ndo_change_mtu = axienet_change_mtu, 1332 .ndo_set_mac_address = netdev_set_mac_address, 1333 .ndo_validate_addr = eth_validate_addr, 1334 .ndo_eth_ioctl = axienet_ioctl, 1335 .ndo_set_rx_mode = axienet_set_multicast_list, 1336 #ifdef CONFIG_NET_POLL_CONTROLLER 1337 .ndo_poll_controller = axienet_poll_controller, 1338 #endif 1339 }; 1340 1341 /** 1342 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. 1343 * @ndev: Pointer to net_device structure 1344 * @ed: Pointer to ethtool_drvinfo structure 1345 * 1346 * This implements ethtool command for getting the driver information. 1347 * Issue "ethtool -i ethX" under linux prompt to execute this function. 1348 */ 1349 static void axienet_ethtools_get_drvinfo(struct net_device *ndev, 1350 struct ethtool_drvinfo *ed) 1351 { 1352 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); 1353 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); 1354 } 1355 1356 /** 1357 * axienet_ethtools_get_regs_len - Get the total regs length present in the 1358 * AxiEthernet core. 1359 * @ndev: Pointer to net_device structure 1360 * 1361 * This implements ethtool command for getting the total register length 1362 * information. 1363 * 1364 * Return: the total regs length 1365 */ 1366 static int axienet_ethtools_get_regs_len(struct net_device *ndev) 1367 { 1368 return sizeof(u32) * AXIENET_REGS_N; 1369 } 1370 1371 /** 1372 * axienet_ethtools_get_regs - Dump the contents of all registers present 1373 * in AxiEthernet core. 1374 * @ndev: Pointer to net_device structure 1375 * @regs: Pointer to ethtool_regs structure 1376 * @ret: Void pointer used to return the contents of the registers. 1377 * 1378 * This implements ethtool command for getting the Axi Ethernet register dump. 1379 * Issue "ethtool -d ethX" to execute this function. 1380 */ 1381 static void axienet_ethtools_get_regs(struct net_device *ndev, 1382 struct ethtool_regs *regs, void *ret) 1383 { 1384 u32 *data = (u32 *)ret; 1385 size_t len = sizeof(u32) * AXIENET_REGS_N; 1386 struct axienet_local *lp = netdev_priv(ndev); 1387 1388 regs->version = 0; 1389 regs->len = len; 1390 1391 memset(data, 0, len); 1392 data[0] = axienet_ior(lp, XAE_RAF_OFFSET); 1393 data[1] = axienet_ior(lp, XAE_TPF_OFFSET); 1394 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); 1395 data[3] = axienet_ior(lp, XAE_IS_OFFSET); 1396 data[4] = axienet_ior(lp, XAE_IP_OFFSET); 1397 data[5] = axienet_ior(lp, XAE_IE_OFFSET); 1398 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); 1399 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); 1400 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); 1401 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); 1402 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); 1403 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); 1404 data[12] = axienet_ior(lp, XAE_PPST_OFFSET); 1405 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); 1406 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); 1407 data[15] = axienet_ior(lp, XAE_TC_OFFSET); 1408 data[16] = axienet_ior(lp, XAE_FCC_OFFSET); 1409 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); 1410 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); 1411 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 1412 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); 1413 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); 1414 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); 1415 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); 1416 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); 1417 data[29] = axienet_ior(lp, XAE_FMI_OFFSET); 1418 data[30] = axienet_ior(lp, XAE_AF0_OFFSET); 1419 data[31] = axienet_ior(lp, XAE_AF1_OFFSET); 1420 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 1421 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1422 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); 1423 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); 1424 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 1425 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1426 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); 1427 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); 1428 } 1429 1430 static void 1431 axienet_ethtools_get_ringparam(struct net_device *ndev, 1432 struct ethtool_ringparam *ering, 1433 struct kernel_ethtool_ringparam *kernel_ering, 1434 struct netlink_ext_ack *extack) 1435 { 1436 struct axienet_local *lp = netdev_priv(ndev); 1437 1438 ering->rx_max_pending = RX_BD_NUM_MAX; 1439 ering->rx_mini_max_pending = 0; 1440 ering->rx_jumbo_max_pending = 0; 1441 ering->tx_max_pending = TX_BD_NUM_MAX; 1442 ering->rx_pending = lp->rx_bd_num; 1443 ering->rx_mini_pending = 0; 1444 ering->rx_jumbo_pending = 0; 1445 ering->tx_pending = lp->tx_bd_num; 1446 } 1447 1448 static int 1449 axienet_ethtools_set_ringparam(struct net_device *ndev, 1450 struct ethtool_ringparam *ering, 1451 struct kernel_ethtool_ringparam *kernel_ering, 1452 struct netlink_ext_ack *extack) 1453 { 1454 struct axienet_local *lp = netdev_priv(ndev); 1455 1456 if (ering->rx_pending > RX_BD_NUM_MAX || 1457 ering->rx_mini_pending || 1458 ering->rx_jumbo_pending || 1459 ering->tx_pending < TX_BD_NUM_MIN || 1460 ering->tx_pending > TX_BD_NUM_MAX) 1461 return -EINVAL; 1462 1463 if (netif_running(ndev)) 1464 return -EBUSY; 1465 1466 lp->rx_bd_num = ering->rx_pending; 1467 lp->tx_bd_num = ering->tx_pending; 1468 return 0; 1469 } 1470 1471 /** 1472 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for 1473 * Tx and Rx paths. 1474 * @ndev: Pointer to net_device structure 1475 * @epauseparm: Pointer to ethtool_pauseparam structure. 1476 * 1477 * This implements ethtool command for getting axi ethernet pause frame 1478 * setting. Issue "ethtool -a ethX" to execute this function. 1479 */ 1480 static void 1481 axienet_ethtools_get_pauseparam(struct net_device *ndev, 1482 struct ethtool_pauseparam *epauseparm) 1483 { 1484 struct axienet_local *lp = netdev_priv(ndev); 1485 1486 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); 1487 } 1488 1489 /** 1490 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) 1491 * settings. 1492 * @ndev: Pointer to net_device structure 1493 * @epauseparm:Pointer to ethtool_pauseparam structure 1494 * 1495 * This implements ethtool command for enabling flow control on Rx and Tx 1496 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this 1497 * function. 1498 * 1499 * Return: 0 on success, -EFAULT if device is running 1500 */ 1501 static int 1502 axienet_ethtools_set_pauseparam(struct net_device *ndev, 1503 struct ethtool_pauseparam *epauseparm) 1504 { 1505 struct axienet_local *lp = netdev_priv(ndev); 1506 1507 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); 1508 } 1509 1510 /** 1511 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. 1512 * @ndev: Pointer to net_device structure 1513 * @ecoalesce: Pointer to ethtool_coalesce structure 1514 * @kernel_coal: ethtool CQE mode setting structure 1515 * @extack: extack for reporting error messages 1516 * 1517 * This implements ethtool command for getting the DMA interrupt coalescing 1518 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to 1519 * execute this function. 1520 * 1521 * Return: 0 always 1522 */ 1523 static int 1524 axienet_ethtools_get_coalesce(struct net_device *ndev, 1525 struct ethtool_coalesce *ecoalesce, 1526 struct kernel_ethtool_coalesce *kernel_coal, 1527 struct netlink_ext_ack *extack) 1528 { 1529 struct axienet_local *lp = netdev_priv(ndev); 1530 1531 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; 1532 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; 1533 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; 1534 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; 1535 return 0; 1536 } 1537 1538 /** 1539 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. 1540 * @ndev: Pointer to net_device structure 1541 * @ecoalesce: Pointer to ethtool_coalesce structure 1542 * @kernel_coal: ethtool CQE mode setting structure 1543 * @extack: extack for reporting error messages 1544 * 1545 * This implements ethtool command for setting the DMA interrupt coalescing 1546 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux 1547 * prompt to execute this function. 1548 * 1549 * Return: 0, on success, Non-zero error value on failure. 1550 */ 1551 static int 1552 axienet_ethtools_set_coalesce(struct net_device *ndev, 1553 struct ethtool_coalesce *ecoalesce, 1554 struct kernel_ethtool_coalesce *kernel_coal, 1555 struct netlink_ext_ack *extack) 1556 { 1557 struct axienet_local *lp = netdev_priv(ndev); 1558 1559 if (netif_running(ndev)) { 1560 netdev_err(ndev, 1561 "Please stop netif before applying configuration\n"); 1562 return -EFAULT; 1563 } 1564 1565 if (ecoalesce->rx_max_coalesced_frames) 1566 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; 1567 if (ecoalesce->rx_coalesce_usecs) 1568 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; 1569 if (ecoalesce->tx_max_coalesced_frames) 1570 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; 1571 if (ecoalesce->tx_coalesce_usecs) 1572 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; 1573 1574 return 0; 1575 } 1576 1577 static int 1578 axienet_ethtools_get_link_ksettings(struct net_device *ndev, 1579 struct ethtool_link_ksettings *cmd) 1580 { 1581 struct axienet_local *lp = netdev_priv(ndev); 1582 1583 return phylink_ethtool_ksettings_get(lp->phylink, cmd); 1584 } 1585 1586 static int 1587 axienet_ethtools_set_link_ksettings(struct net_device *ndev, 1588 const struct ethtool_link_ksettings *cmd) 1589 { 1590 struct axienet_local *lp = netdev_priv(ndev); 1591 1592 return phylink_ethtool_ksettings_set(lp->phylink, cmd); 1593 } 1594 1595 static int axienet_ethtools_nway_reset(struct net_device *dev) 1596 { 1597 struct axienet_local *lp = netdev_priv(dev); 1598 1599 return phylink_ethtool_nway_reset(lp->phylink); 1600 } 1601 1602 static const struct ethtool_ops axienet_ethtool_ops = { 1603 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | 1604 ETHTOOL_COALESCE_USECS, 1605 .get_drvinfo = axienet_ethtools_get_drvinfo, 1606 .get_regs_len = axienet_ethtools_get_regs_len, 1607 .get_regs = axienet_ethtools_get_regs, 1608 .get_link = ethtool_op_get_link, 1609 .get_ringparam = axienet_ethtools_get_ringparam, 1610 .set_ringparam = axienet_ethtools_set_ringparam, 1611 .get_pauseparam = axienet_ethtools_get_pauseparam, 1612 .set_pauseparam = axienet_ethtools_set_pauseparam, 1613 .get_coalesce = axienet_ethtools_get_coalesce, 1614 .set_coalesce = axienet_ethtools_set_coalesce, 1615 .get_link_ksettings = axienet_ethtools_get_link_ksettings, 1616 .set_link_ksettings = axienet_ethtools_set_link_ksettings, 1617 .nway_reset = axienet_ethtools_nway_reset, 1618 }; 1619 1620 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) 1621 { 1622 return container_of(pcs, struct axienet_local, pcs); 1623 } 1624 1625 static void axienet_pcs_get_state(struct phylink_pcs *pcs, 1626 struct phylink_link_state *state) 1627 { 1628 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1629 1630 phylink_mii_c22_pcs_get_state(pcs_phy, state); 1631 } 1632 1633 static void axienet_pcs_an_restart(struct phylink_pcs *pcs) 1634 { 1635 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1636 1637 phylink_mii_c22_pcs_an_restart(pcs_phy); 1638 } 1639 1640 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 1641 phy_interface_t interface, 1642 const unsigned long *advertising, 1643 bool permit_pause_to_mac) 1644 { 1645 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1646 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; 1647 struct axienet_local *lp = netdev_priv(ndev); 1648 int ret; 1649 1650 if (lp->switch_x_sgmii) { 1651 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, 1652 interface == PHY_INTERFACE_MODE_SGMII ? 1653 XLNX_MII_STD_SELECT_SGMII : 0); 1654 if (ret < 0) { 1655 netdev_warn(ndev, 1656 "Failed to switch PHY interface: %d\n", 1657 ret); 1658 return ret; 1659 } 1660 } 1661 1662 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, 1663 neg_mode); 1664 if (ret < 0) 1665 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); 1666 1667 return ret; 1668 } 1669 1670 static const struct phylink_pcs_ops axienet_pcs_ops = { 1671 .pcs_get_state = axienet_pcs_get_state, 1672 .pcs_config = axienet_pcs_config, 1673 .pcs_an_restart = axienet_pcs_an_restart, 1674 }; 1675 1676 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, 1677 phy_interface_t interface) 1678 { 1679 struct net_device *ndev = to_net_dev(config->dev); 1680 struct axienet_local *lp = netdev_priv(ndev); 1681 1682 if (interface == PHY_INTERFACE_MODE_1000BASEX || 1683 interface == PHY_INTERFACE_MODE_SGMII) 1684 return &lp->pcs; 1685 1686 return NULL; 1687 } 1688 1689 static void axienet_mac_config(struct phylink_config *config, unsigned int mode, 1690 const struct phylink_link_state *state) 1691 { 1692 /* nothing meaningful to do */ 1693 } 1694 1695 static void axienet_mac_link_down(struct phylink_config *config, 1696 unsigned int mode, 1697 phy_interface_t interface) 1698 { 1699 /* nothing meaningful to do */ 1700 } 1701 1702 static void axienet_mac_link_up(struct phylink_config *config, 1703 struct phy_device *phy, 1704 unsigned int mode, phy_interface_t interface, 1705 int speed, int duplex, 1706 bool tx_pause, bool rx_pause) 1707 { 1708 struct net_device *ndev = to_net_dev(config->dev); 1709 struct axienet_local *lp = netdev_priv(ndev); 1710 u32 emmc_reg, fcc_reg; 1711 1712 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); 1713 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 1714 1715 switch (speed) { 1716 case SPEED_1000: 1717 emmc_reg |= XAE_EMMC_LINKSPD_1000; 1718 break; 1719 case SPEED_100: 1720 emmc_reg |= XAE_EMMC_LINKSPD_100; 1721 break; 1722 case SPEED_10: 1723 emmc_reg |= XAE_EMMC_LINKSPD_10; 1724 break; 1725 default: 1726 dev_err(&ndev->dev, 1727 "Speed other than 10, 100 or 1Gbps is not supported\n"); 1728 break; 1729 } 1730 1731 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); 1732 1733 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); 1734 if (tx_pause) 1735 fcc_reg |= XAE_FCC_FCTX_MASK; 1736 else 1737 fcc_reg &= ~XAE_FCC_FCTX_MASK; 1738 if (rx_pause) 1739 fcc_reg |= XAE_FCC_FCRX_MASK; 1740 else 1741 fcc_reg &= ~XAE_FCC_FCRX_MASK; 1742 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); 1743 } 1744 1745 static const struct phylink_mac_ops axienet_phylink_ops = { 1746 .mac_select_pcs = axienet_mac_select_pcs, 1747 .mac_config = axienet_mac_config, 1748 .mac_link_down = axienet_mac_link_down, 1749 .mac_link_up = axienet_mac_link_up, 1750 }; 1751 1752 /** 1753 * axienet_dma_err_handler - Work queue task for Axi DMA Error 1754 * @work: pointer to work_struct 1755 * 1756 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the 1757 * Tx/Rx BDs. 1758 */ 1759 static void axienet_dma_err_handler(struct work_struct *work) 1760 { 1761 u32 i; 1762 u32 axienet_status; 1763 struct axidma_bd *cur_p; 1764 struct axienet_local *lp = container_of(work, struct axienet_local, 1765 dma_err_task); 1766 struct net_device *ndev = lp->ndev; 1767 1768 /* Don't bother if we are going to stop anyway */ 1769 if (READ_ONCE(lp->stopping)) 1770 return; 1771 1772 napi_disable(&lp->napi_tx); 1773 napi_disable(&lp->napi_rx); 1774 1775 axienet_setoptions(ndev, lp->options & 1776 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1777 1778 axienet_dma_stop(lp); 1779 1780 for (i = 0; i < lp->tx_bd_num; i++) { 1781 cur_p = &lp->tx_bd_v[i]; 1782 if (cur_p->cntrl) { 1783 dma_addr_t addr = desc_get_phys_addr(lp, cur_p); 1784 1785 dma_unmap_single(lp->dev, addr, 1786 (cur_p->cntrl & 1787 XAXIDMA_BD_CTRL_LENGTH_MASK), 1788 DMA_TO_DEVICE); 1789 } 1790 if (cur_p->skb) 1791 dev_kfree_skb_irq(cur_p->skb); 1792 cur_p->phys = 0; 1793 cur_p->phys_msb = 0; 1794 cur_p->cntrl = 0; 1795 cur_p->status = 0; 1796 cur_p->app0 = 0; 1797 cur_p->app1 = 0; 1798 cur_p->app2 = 0; 1799 cur_p->app3 = 0; 1800 cur_p->app4 = 0; 1801 cur_p->skb = NULL; 1802 } 1803 1804 for (i = 0; i < lp->rx_bd_num; i++) { 1805 cur_p = &lp->rx_bd_v[i]; 1806 cur_p->status = 0; 1807 cur_p->app0 = 0; 1808 cur_p->app1 = 0; 1809 cur_p->app2 = 0; 1810 cur_p->app3 = 0; 1811 cur_p->app4 = 0; 1812 } 1813 1814 lp->tx_bd_ci = 0; 1815 lp->tx_bd_tail = 0; 1816 lp->rx_bd_ci = 0; 1817 1818 axienet_dma_start(lp); 1819 1820 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 1821 axienet_status &= ~XAE_RCW1_RX_MASK; 1822 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 1823 1824 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 1825 if (axienet_status & XAE_INT_RXRJECT_MASK) 1826 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 1827 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 1828 XAE_INT_RECV_ERROR_MASK : 0); 1829 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 1830 1831 /* Sync default options with HW but leave receiver and 1832 * transmitter disabled. 1833 */ 1834 axienet_setoptions(ndev, lp->options & 1835 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1836 axienet_set_mac_address(ndev, NULL); 1837 axienet_set_multicast_list(ndev); 1838 napi_enable(&lp->napi_rx); 1839 napi_enable(&lp->napi_tx); 1840 axienet_setoptions(ndev, lp->options); 1841 } 1842 1843 /** 1844 * axienet_probe - Axi Ethernet probe function. 1845 * @pdev: Pointer to platform device structure. 1846 * 1847 * Return: 0, on success 1848 * Non-zero error value on failure. 1849 * 1850 * This is the probe routine for Axi Ethernet driver. This is called before 1851 * any other driver routines are invoked. It allocates and sets up the Ethernet 1852 * device. Parses through device tree and populates fields of 1853 * axienet_local. It registers the Ethernet device. 1854 */ 1855 static int axienet_probe(struct platform_device *pdev) 1856 { 1857 int ret; 1858 struct device_node *np; 1859 struct axienet_local *lp; 1860 struct net_device *ndev; 1861 struct resource *ethres; 1862 u8 mac_addr[ETH_ALEN]; 1863 int addr_width = 32; 1864 u32 value; 1865 1866 ndev = alloc_etherdev(sizeof(*lp)); 1867 if (!ndev) 1868 return -ENOMEM; 1869 1870 platform_set_drvdata(pdev, ndev); 1871 1872 SET_NETDEV_DEV(ndev, &pdev->dev); 1873 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ 1874 ndev->features = NETIF_F_SG; 1875 ndev->netdev_ops = &axienet_netdev_ops; 1876 ndev->ethtool_ops = &axienet_ethtool_ops; 1877 1878 /* MTU range: 64 - 9000 */ 1879 ndev->min_mtu = 64; 1880 ndev->max_mtu = XAE_JUMBO_MTU; 1881 1882 lp = netdev_priv(ndev); 1883 lp->ndev = ndev; 1884 lp->dev = &pdev->dev; 1885 lp->options = XAE_OPTION_DEFAULTS; 1886 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 1887 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 1888 1889 u64_stats_init(&lp->rx_stat_sync); 1890 u64_stats_init(&lp->tx_stat_sync); 1891 1892 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); 1893 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); 1894 1895 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); 1896 if (!lp->axi_clk) { 1897 /* For backward compatibility, if named AXI clock is not present, 1898 * treat the first clock specified as the AXI clock. 1899 */ 1900 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); 1901 } 1902 if (IS_ERR(lp->axi_clk)) { 1903 ret = PTR_ERR(lp->axi_clk); 1904 goto free_netdev; 1905 } 1906 ret = clk_prepare_enable(lp->axi_clk); 1907 if (ret) { 1908 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); 1909 goto free_netdev; 1910 } 1911 1912 lp->misc_clks[0].id = "axis_clk"; 1913 lp->misc_clks[1].id = "ref_clk"; 1914 lp->misc_clks[2].id = "mgt_clk"; 1915 1916 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); 1917 if (ret) 1918 goto cleanup_clk; 1919 1920 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 1921 if (ret) 1922 goto cleanup_clk; 1923 1924 /* Map device registers */ 1925 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); 1926 if (IS_ERR(lp->regs)) { 1927 ret = PTR_ERR(lp->regs); 1928 goto cleanup_clk; 1929 } 1930 lp->regs_start = ethres->start; 1931 1932 /* Setup checksum offload, but default to off if not specified */ 1933 lp->features = 0; 1934 1935 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); 1936 if (!ret) { 1937 switch (value) { 1938 case 1: 1939 lp->csum_offload_on_tx_path = 1940 XAE_FEATURE_PARTIAL_TX_CSUM; 1941 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; 1942 /* Can checksum TCP/UDP over IPv4. */ 1943 ndev->features |= NETIF_F_IP_CSUM; 1944 break; 1945 case 2: 1946 lp->csum_offload_on_tx_path = 1947 XAE_FEATURE_FULL_TX_CSUM; 1948 lp->features |= XAE_FEATURE_FULL_TX_CSUM; 1949 /* Can checksum TCP/UDP over IPv4. */ 1950 ndev->features |= NETIF_F_IP_CSUM; 1951 break; 1952 default: 1953 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; 1954 } 1955 } 1956 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); 1957 if (!ret) { 1958 switch (value) { 1959 case 1: 1960 lp->csum_offload_on_rx_path = 1961 XAE_FEATURE_PARTIAL_RX_CSUM; 1962 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; 1963 break; 1964 case 2: 1965 lp->csum_offload_on_rx_path = 1966 XAE_FEATURE_FULL_RX_CSUM; 1967 lp->features |= XAE_FEATURE_FULL_RX_CSUM; 1968 break; 1969 default: 1970 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; 1971 } 1972 } 1973 /* For supporting jumbo frames, the Axi Ethernet hardware must have 1974 * a larger Rx/Tx Memory. Typically, the size must be large so that 1975 * we can enable jumbo option and start supporting jumbo frames. 1976 * Here we check for memory allocated for Rx/Tx in the hardware from 1977 * the device-tree and accordingly set flags. 1978 */ 1979 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); 1980 1981 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, 1982 "xlnx,switch-x-sgmii"); 1983 1984 /* Start with the proprietary, and broken phy_type */ 1985 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); 1986 if (!ret) { 1987 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); 1988 switch (value) { 1989 case XAE_PHY_TYPE_MII: 1990 lp->phy_mode = PHY_INTERFACE_MODE_MII; 1991 break; 1992 case XAE_PHY_TYPE_GMII: 1993 lp->phy_mode = PHY_INTERFACE_MODE_GMII; 1994 break; 1995 case XAE_PHY_TYPE_RGMII_2_0: 1996 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; 1997 break; 1998 case XAE_PHY_TYPE_SGMII: 1999 lp->phy_mode = PHY_INTERFACE_MODE_SGMII; 2000 break; 2001 case XAE_PHY_TYPE_1000BASE_X: 2002 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; 2003 break; 2004 default: 2005 ret = -EINVAL; 2006 goto cleanup_clk; 2007 } 2008 } else { 2009 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); 2010 if (ret) 2011 goto cleanup_clk; 2012 } 2013 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && 2014 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { 2015 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); 2016 ret = -EINVAL; 2017 goto cleanup_clk; 2018 } 2019 2020 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ 2021 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); 2022 if (np) { 2023 struct resource dmares; 2024 2025 ret = of_address_to_resource(np, 0, &dmares); 2026 if (ret) { 2027 dev_err(&pdev->dev, 2028 "unable to get DMA resource\n"); 2029 of_node_put(np); 2030 goto cleanup_clk; 2031 } 2032 lp->dma_regs = devm_ioremap_resource(&pdev->dev, 2033 &dmares); 2034 lp->rx_irq = irq_of_parse_and_map(np, 1); 2035 lp->tx_irq = irq_of_parse_and_map(np, 0); 2036 of_node_put(np); 2037 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2038 } else { 2039 /* Check for these resources directly on the Ethernet node. */ 2040 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); 2041 lp->rx_irq = platform_get_irq(pdev, 1); 2042 lp->tx_irq = platform_get_irq(pdev, 0); 2043 lp->eth_irq = platform_get_irq_optional(pdev, 2); 2044 } 2045 if (IS_ERR(lp->dma_regs)) { 2046 dev_err(&pdev->dev, "could not map DMA regs\n"); 2047 ret = PTR_ERR(lp->dma_regs); 2048 goto cleanup_clk; 2049 } 2050 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) { 2051 dev_err(&pdev->dev, "could not determine irqs\n"); 2052 ret = -ENOMEM; 2053 goto cleanup_clk; 2054 } 2055 2056 /* Reset core now that clocks are enabled, prior to accessing MDIO */ 2057 ret = __axienet_device_reset(lp); 2058 if (ret) 2059 goto cleanup_clk; 2060 2061 /* Autodetect the need for 64-bit DMA pointers. 2062 * When the IP is configured for a bus width bigger than 32 bits, 2063 * writing the MSB registers is mandatory, even if they are all 0. 2064 * We can detect this case by writing all 1's to one such register 2065 * and see if that sticks: when the IP is configured for 32 bits 2066 * only, those registers are RES0. 2067 * Those MSB registers were introduced in IP v7.1, which we check first. 2068 */ 2069 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { 2070 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; 2071 2072 iowrite32(0x0, desc); 2073 if (ioread32(desc) == 0) { /* sanity check */ 2074 iowrite32(0xffffffff, desc); 2075 if (ioread32(desc) > 0) { 2076 lp->features |= XAE_FEATURE_DMA_64BIT; 2077 addr_width = 64; 2078 dev_info(&pdev->dev, 2079 "autodetected 64-bit DMA range\n"); 2080 } 2081 iowrite32(0x0, desc); 2082 } 2083 } 2084 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { 2085 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); 2086 ret = -EINVAL; 2087 goto cleanup_clk; 2088 } 2089 2090 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); 2091 if (ret) { 2092 dev_err(&pdev->dev, "No suitable DMA available\n"); 2093 goto cleanup_clk; 2094 } 2095 2096 /* Check for Ethernet core IRQ (optional) */ 2097 if (lp->eth_irq <= 0) 2098 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); 2099 2100 /* Retrieve the MAC address */ 2101 ret = of_get_mac_address(pdev->dev.of_node, mac_addr); 2102 if (!ret) { 2103 axienet_set_mac_address(ndev, mac_addr); 2104 } else { 2105 dev_warn(&pdev->dev, "could not find MAC address property: %d\n", 2106 ret); 2107 axienet_set_mac_address(ndev, NULL); 2108 } 2109 2110 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; 2111 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; 2112 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; 2113 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; 2114 2115 ret = axienet_mdio_setup(lp); 2116 if (ret) 2117 dev_warn(&pdev->dev, 2118 "error registering MDIO bus: %d\n", ret); 2119 2120 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || 2121 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { 2122 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); 2123 if (!np) { 2124 /* Deprecated: Always use "pcs-handle" for pcs_phy. 2125 * Falling back to "phy-handle" here is only for 2126 * backward compatibility with old device trees. 2127 */ 2128 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 2129 } 2130 if (!np) { 2131 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); 2132 ret = -EINVAL; 2133 goto cleanup_mdio; 2134 } 2135 lp->pcs_phy = of_mdio_find_device(np); 2136 if (!lp->pcs_phy) { 2137 ret = -EPROBE_DEFER; 2138 of_node_put(np); 2139 goto cleanup_mdio; 2140 } 2141 of_node_put(np); 2142 lp->pcs.ops = &axienet_pcs_ops; 2143 lp->pcs.neg_mode = true; 2144 lp->pcs.poll = true; 2145 } 2146 2147 lp->phylink_config.dev = &ndev->dev; 2148 lp->phylink_config.type = PHYLINK_NETDEV; 2149 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | 2150 MAC_10FD | MAC_100FD | MAC_1000FD; 2151 2152 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); 2153 if (lp->switch_x_sgmii) { 2154 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 2155 lp->phylink_config.supported_interfaces); 2156 __set_bit(PHY_INTERFACE_MODE_SGMII, 2157 lp->phylink_config.supported_interfaces); 2158 } 2159 2160 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, 2161 lp->phy_mode, 2162 &axienet_phylink_ops); 2163 if (IS_ERR(lp->phylink)) { 2164 ret = PTR_ERR(lp->phylink); 2165 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); 2166 goto cleanup_mdio; 2167 } 2168 2169 ret = register_netdev(lp->ndev); 2170 if (ret) { 2171 dev_err(lp->dev, "register_netdev() error (%i)\n", ret); 2172 goto cleanup_phylink; 2173 } 2174 2175 return 0; 2176 2177 cleanup_phylink: 2178 phylink_destroy(lp->phylink); 2179 2180 cleanup_mdio: 2181 if (lp->pcs_phy) 2182 put_device(&lp->pcs_phy->dev); 2183 if (lp->mii_bus) 2184 axienet_mdio_teardown(lp); 2185 cleanup_clk: 2186 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2187 clk_disable_unprepare(lp->axi_clk); 2188 2189 free_netdev: 2190 free_netdev(ndev); 2191 2192 return ret; 2193 } 2194 2195 static int axienet_remove(struct platform_device *pdev) 2196 { 2197 struct net_device *ndev = platform_get_drvdata(pdev); 2198 struct axienet_local *lp = netdev_priv(ndev); 2199 2200 unregister_netdev(ndev); 2201 2202 if (lp->phylink) 2203 phylink_destroy(lp->phylink); 2204 2205 if (lp->pcs_phy) 2206 put_device(&lp->pcs_phy->dev); 2207 2208 axienet_mdio_teardown(lp); 2209 2210 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2211 clk_disable_unprepare(lp->axi_clk); 2212 2213 free_netdev(ndev); 2214 2215 return 0; 2216 } 2217 2218 static void axienet_shutdown(struct platform_device *pdev) 2219 { 2220 struct net_device *ndev = platform_get_drvdata(pdev); 2221 2222 rtnl_lock(); 2223 netif_device_detach(ndev); 2224 2225 if (netif_running(ndev)) 2226 dev_close(ndev); 2227 2228 rtnl_unlock(); 2229 } 2230 2231 static int axienet_suspend(struct device *dev) 2232 { 2233 struct net_device *ndev = dev_get_drvdata(dev); 2234 2235 if (!netif_running(ndev)) 2236 return 0; 2237 2238 netif_device_detach(ndev); 2239 2240 rtnl_lock(); 2241 axienet_stop(ndev); 2242 rtnl_unlock(); 2243 2244 return 0; 2245 } 2246 2247 static int axienet_resume(struct device *dev) 2248 { 2249 struct net_device *ndev = dev_get_drvdata(dev); 2250 2251 if (!netif_running(ndev)) 2252 return 0; 2253 2254 rtnl_lock(); 2255 axienet_open(ndev); 2256 rtnl_unlock(); 2257 2258 netif_device_attach(ndev); 2259 2260 return 0; 2261 } 2262 2263 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, 2264 axienet_suspend, axienet_resume); 2265 2266 static struct platform_driver axienet_driver = { 2267 .probe = axienet_probe, 2268 .remove = axienet_remove, 2269 .shutdown = axienet_shutdown, 2270 .driver = { 2271 .name = "xilinx_axienet", 2272 .pm = &axienet_pm_ops, 2273 .of_match_table = axienet_of_match, 2274 }, 2275 }; 2276 2277 module_platform_driver(axienet_driver); 2278 2279 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); 2280 MODULE_AUTHOR("Xilinx"); 2281 MODULE_LICENSE("GPL"); 2282