1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 
37 #include "xilinx_axienet.h"
38 
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM		64
41 #define RX_BD_NUM		128
42 
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME		"xaxienet"
45 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION		"1.00a"
47 
48 #define AXIENET_REGS_N		32
49 
50 /* Match table for of_platform binding */
51 static const struct of_device_id axienet_of_match[] = {
52 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55 	{},
56 };
57 
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 	/* Turn on jumbo packet support for both Rx and Tx */
63 	{
64 		.opt = XAE_OPTION_JUMBO,
65 		.reg = XAE_TC_OFFSET,
66 		.m_or = XAE_TC_JUM_MASK,
67 	}, {
68 		.opt = XAE_OPTION_JUMBO,
69 		.reg = XAE_RCW1_OFFSET,
70 		.m_or = XAE_RCW1_JUM_MASK,
71 	}, { /* Turn on VLAN packet support for both Rx and Tx */
72 		.opt = XAE_OPTION_VLAN,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_VLAN_MASK,
75 	}, {
76 		.opt = XAE_OPTION_VLAN,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_VLAN_MASK,
79 	}, { /* Turn on FCS stripping on receive packets */
80 		.opt = XAE_OPTION_FCS_STRIP,
81 		.reg = XAE_RCW1_OFFSET,
82 		.m_or = XAE_RCW1_FCS_MASK,
83 	}, { /* Turn on FCS insertion on transmit packets */
84 		.opt = XAE_OPTION_FCS_INSERT,
85 		.reg = XAE_TC_OFFSET,
86 		.m_or = XAE_TC_FCS_MASK,
87 	}, { /* Turn off length/type field checking on receive packets */
88 		.opt = XAE_OPTION_LENTYPE_ERR,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_LT_DIS_MASK,
91 	}, { /* Turn on Rx flow control */
92 		.opt = XAE_OPTION_FLOW_CONTROL,
93 		.reg = XAE_FCC_OFFSET,
94 		.m_or = XAE_FCC_FCRX_MASK,
95 	}, { /* Turn on Tx flow control */
96 		.opt = XAE_OPTION_FLOW_CONTROL,
97 		.reg = XAE_FCC_OFFSET,
98 		.m_or = XAE_FCC_FCTX_MASK,
99 	}, { /* Turn on promiscuous frame filtering */
100 		.opt = XAE_OPTION_PROMISC,
101 		.reg = XAE_FMI_OFFSET,
102 		.m_or = XAE_FMI_PM_MASK,
103 	}, { /* Enable transmitter */
104 		.opt = XAE_OPTION_TXEN,
105 		.reg = XAE_TC_OFFSET,
106 		.m_or = XAE_TC_TX_MASK,
107 	}, { /* Enable receiver */
108 		.opt = XAE_OPTION_RXEN,
109 		.reg = XAE_RCW1_OFFSET,
110 		.m_or = XAE_RCW1_RX_MASK,
111 	},
112 	{}
113 };
114 
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:		Pointer to axienet local structure
118  * @reg:	Address offset from the base address of the Axi DMA core
119  *
120  * Return: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 	return in_be32(lp->dma_regs + reg);
127 }
128 
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:		Pointer to axienet local structure
132  * @reg:	Address offset from the base address of the Axi DMA core
133  * @value:	Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 				     off_t reg, u32 value)
140 {
141 	out_be32((lp->dma_regs + reg), value);
142 }
143 
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:	Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 	int i;
155 	struct axienet_local *lp = netdev_priv(ndev);
156 
157 	for (i = 0; i < RX_BD_NUM; i++) {
158 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 				 lp->max_frm_size, DMA_FROM_DEVICE);
160 		dev_kfree_skb((struct sk_buff *)
161 			      (lp->rx_bd_v[i].sw_id_offset));
162 	}
163 
164 	if (lp->rx_bd_v) {
165 		dma_free_coherent(ndev->dev.parent,
166 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 				  lp->rx_bd_v,
168 				  lp->rx_bd_p);
169 	}
170 	if (lp->tx_bd_v) {
171 		dma_free_coherent(ndev->dev.parent,
172 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 				  lp->tx_bd_v,
174 				  lp->tx_bd_p);
175 	}
176 }
177 
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:	Pointer to the net_device structure
181  *
182  * Return: 0, on success -ENOMEM, on failure
183  *
184  * This function is called to initialize the Rx and Tx DMA descriptor
185  * rings. This initializes the descriptors with required default values
186  * and is called when Axi Ethernet driver reset is called.
187  */
188 static int axienet_dma_bd_init(struct net_device *ndev)
189 {
190 	u32 cr;
191 	int i;
192 	struct sk_buff *skb;
193 	struct axienet_local *lp = netdev_priv(ndev);
194 
195 	/* Reset the indexes which are used for accessing the BDs */
196 	lp->tx_bd_ci = 0;
197 	lp->tx_bd_tail = 0;
198 	lp->rx_bd_ci = 0;
199 
200 	/* Allocate the Tx and Rx buffer descriptors. */
201 	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
202 					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
203 					  &lp->tx_bd_p, GFP_KERNEL);
204 	if (!lp->tx_bd_v)
205 		goto out;
206 
207 	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
208 					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
209 					  &lp->rx_bd_p, GFP_KERNEL);
210 	if (!lp->rx_bd_v)
211 		goto out;
212 
213 	for (i = 0; i < TX_BD_NUM; i++) {
214 		lp->tx_bd_v[i].next = lp->tx_bd_p +
215 				      sizeof(*lp->tx_bd_v) *
216 				      ((i + 1) % TX_BD_NUM);
217 	}
218 
219 	for (i = 0; i < RX_BD_NUM; i++) {
220 		lp->rx_bd_v[i].next = lp->rx_bd_p +
221 				      sizeof(*lp->rx_bd_v) *
222 				      ((i + 1) % RX_BD_NUM);
223 
224 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
225 		if (!skb)
226 			goto out;
227 
228 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
229 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
230 						     skb->data,
231 						     lp->max_frm_size,
232 						     DMA_FROM_DEVICE);
233 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
234 	}
235 
236 	/* Start updating the Rx channel control register */
237 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
238 	/* Update the interrupt coalesce count */
239 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
240 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
241 	/* Update the delay timer count */
242 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
243 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
244 	/* Enable coalesce, delay timer and error interrupts */
245 	cr |= XAXIDMA_IRQ_ALL_MASK;
246 	/* Write to the Rx channel control register */
247 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
248 
249 	/* Start updating the Tx channel control register */
250 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
251 	/* Update the interrupt coalesce count */
252 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
253 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
254 	/* Update the delay timer count */
255 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
256 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
257 	/* Enable coalesce, delay timer and error interrupts */
258 	cr |= XAXIDMA_IRQ_ALL_MASK;
259 	/* Write to the Tx channel control register */
260 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
261 
262 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
263 	 * halted state. This will make the Rx side ready for reception.
264 	 */
265 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
266 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
267 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
268 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
269 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
270 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
271 
272 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
273 	 * Tx channel is now ready to run. But only after we write to the
274 	 * tail pointer register that the Tx channel will start transmitting.
275 	 */
276 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
277 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
278 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
279 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
280 
281 	return 0;
282 out:
283 	axienet_dma_bd_release(ndev);
284 	return -ENOMEM;
285 }
286 
287 /**
288  * axienet_set_mac_address - Write the MAC address
289  * @ndev:	Pointer to the net_device structure
290  * @address:	6 byte Address to be written as MAC address
291  *
292  * This function is called to initialize the MAC address of the Axi Ethernet
293  * core. It writes to the UAW0 and UAW1 registers of the core.
294  */
295 static void axienet_set_mac_address(struct net_device *ndev, void *address)
296 {
297 	struct axienet_local *lp = netdev_priv(ndev);
298 
299 	if (address)
300 		memcpy(ndev->dev_addr, address, ETH_ALEN);
301 	if (!is_valid_ether_addr(ndev->dev_addr))
302 		eth_random_addr(ndev->dev_addr);
303 
304 	/* Set up unicast MAC address filter set its mac address */
305 	axienet_iow(lp, XAE_UAW0_OFFSET,
306 		    (ndev->dev_addr[0]) |
307 		    (ndev->dev_addr[1] << 8) |
308 		    (ndev->dev_addr[2] << 16) |
309 		    (ndev->dev_addr[3] << 24));
310 	axienet_iow(lp, XAE_UAW1_OFFSET,
311 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
312 		      ~XAE_UAW1_UNICASTADDR_MASK) |
313 		     (ndev->dev_addr[4] |
314 		     (ndev->dev_addr[5] << 8))));
315 }
316 
317 /**
318  * netdev_set_mac_address - Write the MAC address (from outside the driver)
319  * @ndev:	Pointer to the net_device structure
320  * @p:		6 byte Address to be written as MAC address
321  *
322  * Return: 0 for all conditions. Presently, there is no failure case.
323  *
324  * This function is called to initialize the MAC address of the Axi Ethernet
325  * core. It calls the core specific axienet_set_mac_address. This is the
326  * function that goes into net_device_ops structure entry ndo_set_mac_address.
327  */
328 static int netdev_set_mac_address(struct net_device *ndev, void *p)
329 {
330 	struct sockaddr *addr = p;
331 	axienet_set_mac_address(ndev, addr->sa_data);
332 	return 0;
333 }
334 
335 /**
336  * axienet_set_multicast_list - Prepare the multicast table
337  * @ndev:	Pointer to the net_device structure
338  *
339  * This function is called to initialize the multicast table during
340  * initialization. The Axi Ethernet basic multicast support has a four-entry
341  * multicast table which is initialized here. Additionally this function
342  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
343  * means whenever the multicast table entries need to be updated this
344  * function gets called.
345  */
346 static void axienet_set_multicast_list(struct net_device *ndev)
347 {
348 	int i;
349 	u32 reg, af0reg, af1reg;
350 	struct axienet_local *lp = netdev_priv(ndev);
351 
352 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
353 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
354 		/* We must make the kernel realize we had to move into
355 		 * promiscuous mode. If it was a promiscuous mode request
356 		 * the flag is already set. If not we set it.
357 		 */
358 		ndev->flags |= IFF_PROMISC;
359 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 		reg |= XAE_FMI_PM_MASK;
361 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 	} else if (!netdev_mc_empty(ndev)) {
364 		struct netdev_hw_addr *ha;
365 
366 		i = 0;
367 		netdev_for_each_mc_addr(ha, ndev) {
368 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 				break;
370 
371 			af0reg = (ha->addr[0]);
372 			af0reg |= (ha->addr[1] << 8);
373 			af0reg |= (ha->addr[2] << 16);
374 			af0reg |= (ha->addr[3] << 24);
375 
376 			af1reg = (ha->addr[4]);
377 			af1reg |= (ha->addr[5] << 8);
378 
379 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 			reg |= i;
381 
382 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 			i++;
386 		}
387 	} else {
388 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 		reg &= ~XAE_FMI_PM_MASK;
390 
391 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
392 
393 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 			reg |= i;
396 
397 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
400 		}
401 
402 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403 	}
404 }
405 
406 /**
407  * axienet_setoptions - Set an Axi Ethernet option
408  * @ndev:	Pointer to the net_device structure
409  * @options:	Option to be enabled/disabled
410  *
411  * The Axi Ethernet core has multiple features which can be selectively turned
412  * on or off. The typical options could be jumbo frame option, basic VLAN
413  * option, promiscuous mode option etc. This function is used to set or clear
414  * these options in the Axi Ethernet hardware. This is done through
415  * axienet_option structure .
416  */
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 {
419 	int reg;
420 	struct axienet_local *lp = netdev_priv(ndev);
421 	struct axienet_option *tp = &axienet_options[0];
422 
423 	while (tp->opt) {
424 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 		if (options & tp->opt)
426 			reg |= tp->m_or;
427 		axienet_iow(lp, tp->reg, reg);
428 		tp++;
429 	}
430 
431 	lp->options |= options;
432 }
433 
434 static void __axienet_device_reset(struct axienet_local *lp,
435 				   struct device *dev, off_t offset)
436 {
437 	u32 timeout;
438 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439 	 * process of Axi DMA takes a while to complete as all pending
440 	 * commands/transfers will be flushed or completed during this
441 	 * reset process.
442 	 */
443 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
444 	timeout = DELAY_OF_ONE_MILLISEC;
445 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
446 		udelay(1);
447 		if (--timeout == 0) {
448 			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
449 				   __func__);
450 			break;
451 		}
452 	}
453 }
454 
455 /**
456  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
457  * @ndev:	Pointer to the net_device structure
458  *
459  * This function is called to reset and initialize the Axi Ethernet core. This
460  * is typically called during initialization. It does a reset of the Axi DMA
461  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
462  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
463  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
464  * core.
465  */
466 static void axienet_device_reset(struct net_device *ndev)
467 {
468 	u32 axienet_status;
469 	struct axienet_local *lp = netdev_priv(ndev);
470 
471 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
472 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
473 
474 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
475 	lp->options |= XAE_OPTION_VLAN;
476 	lp->options &= (~XAE_OPTION_JUMBO);
477 
478 	if ((ndev->mtu > XAE_MTU) &&
479 		(ndev->mtu <= XAE_JUMBO_MTU)) {
480 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
481 					XAE_TRL_SIZE;
482 
483 		if (lp->max_frm_size <= lp->rxmem)
484 			lp->options |= XAE_OPTION_JUMBO;
485 	}
486 
487 	if (axienet_dma_bd_init(ndev)) {
488 		netdev_err(ndev, "%s: descriptor allocation failed\n",
489 			   __func__);
490 	}
491 
492 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
493 	axienet_status &= ~XAE_RCW1_RX_MASK;
494 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
495 
496 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
497 	if (axienet_status & XAE_INT_RXRJECT_MASK)
498 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
499 
500 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
501 
502 	/* Sync default options with HW but leave receiver and
503 	 * transmitter disabled.
504 	 */
505 	axienet_setoptions(ndev, lp->options &
506 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
507 	axienet_set_mac_address(ndev, NULL);
508 	axienet_set_multicast_list(ndev);
509 	axienet_setoptions(ndev, lp->options);
510 
511 	ndev->trans_start = jiffies;
512 }
513 
514 /**
515  * axienet_adjust_link - Adjust the PHY link speed/duplex.
516  * @ndev:	Pointer to the net_device structure
517  *
518  * This function is called to change the speed and duplex setting after
519  * auto negotiation is done by the PHY. This is the function that gets
520  * registered with the PHY interface through the "of_phy_connect" call.
521  */
522 static void axienet_adjust_link(struct net_device *ndev)
523 {
524 	u32 emmc_reg;
525 	u32 link_state;
526 	u32 setspeed = 1;
527 	struct axienet_local *lp = netdev_priv(ndev);
528 	struct phy_device *phy = lp->phy_dev;
529 
530 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
531 	if (lp->last_link != link_state) {
532 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
533 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
534 				setspeed = 0;
535 		} else {
536 			if ((phy->speed == SPEED_1000) &&
537 			    (lp->phy_type == XAE_PHY_TYPE_MII))
538 				setspeed = 0;
539 		}
540 
541 		if (setspeed == 1) {
542 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
543 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
544 
545 			switch (phy->speed) {
546 			case SPEED_1000:
547 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
548 				break;
549 			case SPEED_100:
550 				emmc_reg |= XAE_EMMC_LINKSPD_100;
551 				break;
552 			case SPEED_10:
553 				emmc_reg |= XAE_EMMC_LINKSPD_10;
554 				break;
555 			default:
556 				dev_err(&ndev->dev, "Speed other than 10, 100 "
557 					"or 1Gbps is not supported\n");
558 				break;
559 			}
560 
561 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
562 			lp->last_link = link_state;
563 			phy_print_status(phy);
564 		} else {
565 			netdev_err(ndev,
566 				   "Error setting Axi Ethernet mac speed\n");
567 		}
568 	}
569 }
570 
571 /**
572  * axienet_start_xmit_done - Invoked once a transmit is completed by the
573  * Axi DMA Tx channel.
574  * @ndev:	Pointer to the net_device structure
575  *
576  * This function is invoked from the Axi DMA Tx isr to notify the completion
577  * of transmit operation. It clears fields in the corresponding Tx BDs and
578  * unmaps the corresponding buffer so that CPU can regain ownership of the
579  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
580  * required.
581  */
582 static void axienet_start_xmit_done(struct net_device *ndev)
583 {
584 	u32 size = 0;
585 	u32 packets = 0;
586 	struct axienet_local *lp = netdev_priv(ndev);
587 	struct axidma_bd *cur_p;
588 	unsigned int status = 0;
589 
590 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
591 	status = cur_p->status;
592 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
593 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
594 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
595 				DMA_TO_DEVICE);
596 		if (cur_p->app4)
597 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
598 		/*cur_p->phys = 0;*/
599 		cur_p->app0 = 0;
600 		cur_p->app1 = 0;
601 		cur_p->app2 = 0;
602 		cur_p->app4 = 0;
603 		cur_p->status = 0;
604 
605 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
606 		packets++;
607 
608 		++lp->tx_bd_ci;
609 		lp->tx_bd_ci %= TX_BD_NUM;
610 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
611 		status = cur_p->status;
612 	}
613 
614 	ndev->stats.tx_packets += packets;
615 	ndev->stats.tx_bytes += size;
616 	netif_wake_queue(ndev);
617 }
618 
619 /**
620  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
621  * @lp:		Pointer to the axienet_local structure
622  * @num_frag:	The number of BDs to check for
623  *
624  * Return: 0, on success
625  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
626  *
627  * This function is invoked before BDs are allocated and transmission starts.
628  * This function returns 0 if a BD or group of BDs can be allocated for
629  * transmission. If the BD or any of the BDs are not free the function
630  * returns a busy status. This is invoked from axienet_start_xmit.
631  */
632 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
633 					    int num_frag)
634 {
635 	struct axidma_bd *cur_p;
636 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
637 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
638 		return NETDEV_TX_BUSY;
639 	return 0;
640 }
641 
642 /**
643  * axienet_start_xmit - Starts the transmission.
644  * @skb:	sk_buff pointer that contains data to be Txed.
645  * @ndev:	Pointer to net_device structure.
646  *
647  * Return: NETDEV_TX_OK, on success
648  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
649  *
650  * This function is invoked from upper layers to initiate transmission. The
651  * function uses the next available free BDs and populates their fields to
652  * start the transmission. Additionally if checksum offloading is supported,
653  * it populates AXI Stream Control fields with appropriate values.
654  */
655 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
656 {
657 	u32 ii;
658 	u32 num_frag;
659 	u32 csum_start_off;
660 	u32 csum_index_off;
661 	skb_frag_t *frag;
662 	dma_addr_t tail_p;
663 	struct axienet_local *lp = netdev_priv(ndev);
664 	struct axidma_bd *cur_p;
665 
666 	num_frag = skb_shinfo(skb)->nr_frags;
667 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
668 
669 	if (axienet_check_tx_bd_space(lp, num_frag)) {
670 		if (!netif_queue_stopped(ndev))
671 			netif_stop_queue(ndev);
672 		return NETDEV_TX_BUSY;
673 	}
674 
675 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
676 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
677 			/* Tx Full Checksum Offload Enabled */
678 			cur_p->app0 |= 2;
679 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
680 			csum_start_off = skb_transport_offset(skb);
681 			csum_index_off = csum_start_off + skb->csum_offset;
682 			/* Tx Partial Checksum Offload Enabled */
683 			cur_p->app0 |= 1;
684 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
685 		}
686 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
687 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
688 	}
689 
690 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
691 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
692 				     skb_headlen(skb), DMA_TO_DEVICE);
693 
694 	for (ii = 0; ii < num_frag; ii++) {
695 		++lp->tx_bd_tail;
696 		lp->tx_bd_tail %= TX_BD_NUM;
697 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
698 		frag = &skb_shinfo(skb)->frags[ii];
699 		cur_p->phys = dma_map_single(ndev->dev.parent,
700 					     skb_frag_address(frag),
701 					     skb_frag_size(frag),
702 					     DMA_TO_DEVICE);
703 		cur_p->cntrl = skb_frag_size(frag);
704 	}
705 
706 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
707 	cur_p->app4 = (unsigned long)skb;
708 
709 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
710 	/* Start the transfer */
711 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
712 	++lp->tx_bd_tail;
713 	lp->tx_bd_tail %= TX_BD_NUM;
714 
715 	return NETDEV_TX_OK;
716 }
717 
718 /**
719  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
720  *		  BD processing.
721  * @ndev:	Pointer to net_device structure.
722  *
723  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
724  * does minimal processing and invokes "netif_rx" to complete further
725  * processing.
726  */
727 static void axienet_recv(struct net_device *ndev)
728 {
729 	u32 length;
730 	u32 csumstatus;
731 	u32 size = 0;
732 	u32 packets = 0;
733 	dma_addr_t tail_p = 0;
734 	struct axienet_local *lp = netdev_priv(ndev);
735 	struct sk_buff *skb, *new_skb;
736 	struct axidma_bd *cur_p;
737 
738 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
739 
740 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
741 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
742 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
743 		length = cur_p->app4 & 0x0000FFFF;
744 
745 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
746 				 lp->max_frm_size,
747 				 DMA_FROM_DEVICE);
748 
749 		skb_put(skb, length);
750 		skb->protocol = eth_type_trans(skb, ndev);
751 		/*skb_checksum_none_assert(skb);*/
752 		skb->ip_summed = CHECKSUM_NONE;
753 
754 		/* if we're doing Rx csum offload, set it up */
755 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
756 			csumstatus = (cur_p->app2 &
757 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
758 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
759 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
760 				skb->ip_summed = CHECKSUM_UNNECESSARY;
761 			}
762 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
763 			   skb->protocol == htons(ETH_P_IP) &&
764 			   skb->len > 64) {
765 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
766 			skb->ip_summed = CHECKSUM_COMPLETE;
767 		}
768 
769 		netif_rx(skb);
770 
771 		size += length;
772 		packets++;
773 
774 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
775 		if (!new_skb)
776 			return;
777 
778 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
779 					     lp->max_frm_size,
780 					     DMA_FROM_DEVICE);
781 		cur_p->cntrl = lp->max_frm_size;
782 		cur_p->status = 0;
783 		cur_p->sw_id_offset = (u32) new_skb;
784 
785 		++lp->rx_bd_ci;
786 		lp->rx_bd_ci %= RX_BD_NUM;
787 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
788 	}
789 
790 	ndev->stats.rx_packets += packets;
791 	ndev->stats.rx_bytes += size;
792 
793 	if (tail_p)
794 		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
795 }
796 
797 /**
798  * axienet_tx_irq - Tx Done Isr.
799  * @irq:	irq number
800  * @_ndev:	net_device pointer
801  *
802  * Return: IRQ_HANDLED for all cases.
803  *
804  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
805  * to complete the BD processing.
806  */
807 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
808 {
809 	u32 cr;
810 	unsigned int status;
811 	struct net_device *ndev = _ndev;
812 	struct axienet_local *lp = netdev_priv(ndev);
813 
814 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
815 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
816 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
817 		axienet_start_xmit_done(lp->ndev);
818 		goto out;
819 	}
820 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
821 		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
822 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
823 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
824 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
825 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
826 
827 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
828 		/* Disable coalesce, delay timer and error interrupts */
829 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
830 		/* Write to the Tx channel control register */
831 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
832 
833 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
834 		/* Disable coalesce, delay timer and error interrupts */
835 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
836 		/* Write to the Rx channel control register */
837 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
838 
839 		tasklet_schedule(&lp->dma_err_tasklet);
840 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
841 	}
842 out:
843 	return IRQ_HANDLED;
844 }
845 
846 /**
847  * axienet_rx_irq - Rx Isr.
848  * @irq:	irq number
849  * @_ndev:	net_device pointer
850  *
851  * Return: IRQ_HANDLED for all cases.
852  *
853  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
854  * processing.
855  */
856 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
857 {
858 	u32 cr;
859 	unsigned int status;
860 	struct net_device *ndev = _ndev;
861 	struct axienet_local *lp = netdev_priv(ndev);
862 
863 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
864 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
865 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
866 		axienet_recv(lp->ndev);
867 		goto out;
868 	}
869 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
870 		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
871 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
872 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
873 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
874 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
875 
876 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
877 		/* Disable coalesce, delay timer and error interrupts */
878 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
879 		/* Finally write to the Tx channel control register */
880 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
881 
882 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
883 		/* Disable coalesce, delay timer and error interrupts */
884 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
885 		/* write to the Rx channel control register */
886 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
887 
888 		tasklet_schedule(&lp->dma_err_tasklet);
889 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
890 	}
891 out:
892 	return IRQ_HANDLED;
893 }
894 
895 static void axienet_dma_err_handler(unsigned long data);
896 
897 /**
898  * axienet_open - Driver open routine.
899  * @ndev:	Pointer to net_device structure
900  *
901  * Return: 0, on success.
902  *	    -ENODEV, if PHY cannot be connected to
903  *	    non-zero error value on failure
904  *
905  * This is the driver open routine. It calls phy_start to start the PHY device.
906  * It also allocates interrupt service routines, enables the interrupt lines
907  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908  * descriptors are initialized.
909  */
910 static int axienet_open(struct net_device *ndev)
911 {
912 	int ret, mdio_mcreg;
913 	struct axienet_local *lp = netdev_priv(ndev);
914 
915 	dev_dbg(&ndev->dev, "axienet_open()\n");
916 
917 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 	ret = axienet_mdio_wait_until_ready(lp);
919 	if (ret < 0)
920 		return ret;
921 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 	 * When we do an Axi Ethernet reset, it resets the complete core
923 	 * including the MDIO. If MDIO is not disabled when the reset
924 	 * process is started, MDIO will be broken afterwards.
925 	 */
926 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
927 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
928 	axienet_device_reset(ndev);
929 	/* Enable the MDIO */
930 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
931 	ret = axienet_mdio_wait_until_ready(lp);
932 	if (ret < 0)
933 		return ret;
934 
935 	if (lp->phy_node) {
936 		if (lp->phy_type == XAE_PHY_TYPE_GMII) {
937 			lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
938 					     axienet_adjust_link, 0,
939 					     PHY_INTERFACE_MODE_GMII);
940 		} else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
941 			lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
942 					     axienet_adjust_link, 0,
943 					     PHY_INTERFACE_MODE_RGMII_ID);
944 		}
945 
946 		if (!lp->phy_dev)
947 			dev_err(lp->dev, "of_phy_connect() failed\n");
948 		else
949 			phy_start(lp->phy_dev);
950 	}
951 
952 	/* Enable tasklets for Axi DMA error handling */
953 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
954 		     (unsigned long) lp);
955 
956 	/* Enable interrupts for Axi DMA Tx */
957 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
958 	if (ret)
959 		goto err_tx_irq;
960 	/* Enable interrupts for Axi DMA Rx */
961 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
962 	if (ret)
963 		goto err_rx_irq;
964 
965 	return 0;
966 
967 err_rx_irq:
968 	free_irq(lp->tx_irq, ndev);
969 err_tx_irq:
970 	if (lp->phy_dev)
971 		phy_disconnect(lp->phy_dev);
972 	lp->phy_dev = NULL;
973 	tasklet_kill(&lp->dma_err_tasklet);
974 	dev_err(lp->dev, "request_irq() failed\n");
975 	return ret;
976 }
977 
978 /**
979  * axienet_stop - Driver stop routine.
980  * @ndev:	Pointer to net_device structure
981  *
982  * Return: 0, on success.
983  *
984  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
985  * device. It also removes the interrupt handlers and disables the interrupts.
986  * The Axi DMA Tx/Rx BDs are released.
987  */
988 static int axienet_stop(struct net_device *ndev)
989 {
990 	u32 cr;
991 	struct axienet_local *lp = netdev_priv(ndev);
992 
993 	dev_dbg(&ndev->dev, "axienet_close()\n");
994 
995 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
996 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
997 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
998 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
999 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1000 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1001 	axienet_setoptions(ndev, lp->options &
1002 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1003 
1004 	tasklet_kill(&lp->dma_err_tasklet);
1005 
1006 	free_irq(lp->tx_irq, ndev);
1007 	free_irq(lp->rx_irq, ndev);
1008 
1009 	if (lp->phy_dev)
1010 		phy_disconnect(lp->phy_dev);
1011 	lp->phy_dev = NULL;
1012 
1013 	axienet_dma_bd_release(ndev);
1014 	return 0;
1015 }
1016 
1017 /**
1018  * axienet_change_mtu - Driver change mtu routine.
1019  * @ndev:	Pointer to net_device structure
1020  * @new_mtu:	New mtu value to be applied
1021  *
1022  * Return: Always returns 0 (success).
1023  *
1024  * This is the change mtu driver routine. It checks if the Axi Ethernet
1025  * hardware supports jumbo frames before changing the mtu. This can be
1026  * called only when the device is not up.
1027  */
1028 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029 {
1030 	struct axienet_local *lp = netdev_priv(ndev);
1031 
1032 	if (netif_running(ndev))
1033 		return -EBUSY;
1034 
1035 	if ((new_mtu + VLAN_ETH_HLEN +
1036 		XAE_TRL_SIZE) > lp->rxmem)
1037 		return -EINVAL;
1038 
1039 	if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1040 		return -EINVAL;
1041 
1042 	ndev->mtu = new_mtu;
1043 
1044 	return 0;
1045 }
1046 
1047 #ifdef CONFIG_NET_POLL_CONTROLLER
1048 /**
1049  * axienet_poll_controller - Axi Ethernet poll mechanism.
1050  * @ndev:	Pointer to net_device structure
1051  *
1052  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1053  * to polling the ISRs and are enabled back after the polling is done.
1054  */
1055 static void axienet_poll_controller(struct net_device *ndev)
1056 {
1057 	struct axienet_local *lp = netdev_priv(ndev);
1058 	disable_irq(lp->tx_irq);
1059 	disable_irq(lp->rx_irq);
1060 	axienet_rx_irq(lp->tx_irq, ndev);
1061 	axienet_tx_irq(lp->rx_irq, ndev);
1062 	enable_irq(lp->tx_irq);
1063 	enable_irq(lp->rx_irq);
1064 }
1065 #endif
1066 
1067 static const struct net_device_ops axienet_netdev_ops = {
1068 	.ndo_open = axienet_open,
1069 	.ndo_stop = axienet_stop,
1070 	.ndo_start_xmit = axienet_start_xmit,
1071 	.ndo_change_mtu	= axienet_change_mtu,
1072 	.ndo_set_mac_address = netdev_set_mac_address,
1073 	.ndo_validate_addr = eth_validate_addr,
1074 	.ndo_set_rx_mode = axienet_set_multicast_list,
1075 #ifdef CONFIG_NET_POLL_CONTROLLER
1076 	.ndo_poll_controller = axienet_poll_controller,
1077 #endif
1078 };
1079 
1080 /**
1081  * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1082  * @ndev:	Pointer to net_device structure
1083  * @ecmd:	Pointer to ethtool_cmd structure
1084  *
1085  * This implements ethtool command for getting PHY settings. If PHY could
1086  * not be found, the function returns -ENODEV. This function calls the
1087  * relevant PHY ethtool API to get the PHY settings.
1088  * Issue "ethtool ethX" under linux prompt to execute this function.
1089  *
1090  * Return: 0 on success, -ENODEV if PHY doesn't exist
1091  */
1092 static int axienet_ethtools_get_settings(struct net_device *ndev,
1093 					 struct ethtool_cmd *ecmd)
1094 {
1095 	struct axienet_local *lp = netdev_priv(ndev);
1096 	struct phy_device *phydev = lp->phy_dev;
1097 	if (!phydev)
1098 		return -ENODEV;
1099 	return phy_ethtool_gset(phydev, ecmd);
1100 }
1101 
1102 /**
1103  * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1104  * @ndev:	Pointer to net_device structure
1105  * @ecmd:	Pointer to ethtool_cmd structure
1106  *
1107  * This implements ethtool command for setting various PHY settings. If PHY
1108  * could not be found, the function returns -ENODEV. This function calls the
1109  * relevant PHY ethtool API to set the PHY.
1110  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1111  * function.
1112  *
1113  * Return: 0 on success, -ENODEV if PHY doesn't exist
1114  */
1115 static int axienet_ethtools_set_settings(struct net_device *ndev,
1116 					 struct ethtool_cmd *ecmd)
1117 {
1118 	struct axienet_local *lp = netdev_priv(ndev);
1119 	struct phy_device *phydev = lp->phy_dev;
1120 	if (!phydev)
1121 		return -ENODEV;
1122 	return phy_ethtool_sset(phydev, ecmd);
1123 }
1124 
1125 /**
1126  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1127  * @ndev:	Pointer to net_device structure
1128  * @ed:		Pointer to ethtool_drvinfo structure
1129  *
1130  * This implements ethtool command for getting the driver information.
1131  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1132  */
1133 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1134 					 struct ethtool_drvinfo *ed)
1135 {
1136 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1137 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1138 	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1139 }
1140 
1141 /**
1142  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1143  *				   AxiEthernet core.
1144  * @ndev:	Pointer to net_device structure
1145  *
1146  * This implements ethtool command for getting the total register length
1147  * information.
1148  *
1149  * Return: the total regs length
1150  */
1151 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1152 {
1153 	return sizeof(u32) * AXIENET_REGS_N;
1154 }
1155 
1156 /**
1157  * axienet_ethtools_get_regs - Dump the contents of all registers present
1158  *			       in AxiEthernet core.
1159  * @ndev:	Pointer to net_device structure
1160  * @regs:	Pointer to ethtool_regs structure
1161  * @ret:	Void pointer used to return the contents of the registers.
1162  *
1163  * This implements ethtool command for getting the Axi Ethernet register dump.
1164  * Issue "ethtool -d ethX" to execute this function.
1165  */
1166 static void axienet_ethtools_get_regs(struct net_device *ndev,
1167 				      struct ethtool_regs *regs, void *ret)
1168 {
1169 	u32 *data = (u32 *) ret;
1170 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1171 	struct axienet_local *lp = netdev_priv(ndev);
1172 
1173 	regs->version = 0;
1174 	regs->len = len;
1175 
1176 	memset(data, 0, len);
1177 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1178 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1179 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1180 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1181 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1182 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1183 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1184 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1185 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1186 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1187 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1188 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1189 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1190 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1191 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1192 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1193 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1194 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1195 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1196 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1197 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1198 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1199 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1200 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1201 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1202 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1203 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1204 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1205 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1206 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1207 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1208 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1209 }
1210 
1211 /**
1212  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1213  *				     Tx and Rx paths.
1214  * @ndev:	Pointer to net_device structure
1215  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1216  *
1217  * This implements ethtool command for getting axi ethernet pause frame
1218  * setting. Issue "ethtool -a ethX" to execute this function.
1219  */
1220 static void
1221 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1222 				struct ethtool_pauseparam *epauseparm)
1223 {
1224 	u32 regval;
1225 	struct axienet_local *lp = netdev_priv(ndev);
1226 	epauseparm->autoneg  = 0;
1227 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1228 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1229 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1230 }
1231 
1232 /**
1233  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1234  *				     settings.
1235  * @ndev:	Pointer to net_device structure
1236  * @epauseparm:Pointer to ethtool_pauseparam structure
1237  *
1238  * This implements ethtool command for enabling flow control on Rx and Tx
1239  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1240  * function.
1241  *
1242  * Return: 0 on success, -EFAULT if device is running
1243  */
1244 static int
1245 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1246 				struct ethtool_pauseparam *epauseparm)
1247 {
1248 	u32 regval = 0;
1249 	struct axienet_local *lp = netdev_priv(ndev);
1250 
1251 	if (netif_running(ndev)) {
1252 		netdev_err(ndev,
1253 			   "Please stop netif before applying configuration\n");
1254 		return -EFAULT;
1255 	}
1256 
1257 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1258 	if (epauseparm->tx_pause)
1259 		regval |= XAE_FCC_FCTX_MASK;
1260 	else
1261 		regval &= ~XAE_FCC_FCTX_MASK;
1262 	if (epauseparm->rx_pause)
1263 		regval |= XAE_FCC_FCRX_MASK;
1264 	else
1265 		regval &= ~XAE_FCC_FCRX_MASK;
1266 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1273  * @ndev:	Pointer to net_device structure
1274  * @ecoalesce:	Pointer to ethtool_coalesce structure
1275  *
1276  * This implements ethtool command for getting the DMA interrupt coalescing
1277  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1278  * execute this function.
1279  *
1280  * Return: 0 always
1281  */
1282 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1283 					 struct ethtool_coalesce *ecoalesce)
1284 {
1285 	u32 regval = 0;
1286 	struct axienet_local *lp = netdev_priv(ndev);
1287 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1288 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1289 					     >> XAXIDMA_COALESCE_SHIFT;
1290 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1291 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1292 					     >> XAXIDMA_COALESCE_SHIFT;
1293 	return 0;
1294 }
1295 
1296 /**
1297  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1298  * @ndev:	Pointer to net_device structure
1299  * @ecoalesce:	Pointer to ethtool_coalesce structure
1300  *
1301  * This implements ethtool command for setting the DMA interrupt coalescing
1302  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1303  * prompt to execute this function.
1304  *
1305  * Return: 0, on success, Non-zero error value on failure.
1306  */
1307 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1308 					 struct ethtool_coalesce *ecoalesce)
1309 {
1310 	struct axienet_local *lp = netdev_priv(ndev);
1311 
1312 	if (netif_running(ndev)) {
1313 		netdev_err(ndev,
1314 			   "Please stop netif before applying configuration\n");
1315 		return -EFAULT;
1316 	}
1317 
1318 	if ((ecoalesce->rx_coalesce_usecs) ||
1319 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1320 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1321 	    (ecoalesce->tx_coalesce_usecs) ||
1322 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1323 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1324 	    (ecoalesce->stats_block_coalesce_usecs) ||
1325 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1326 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1327 	    (ecoalesce->pkt_rate_low) ||
1328 	    (ecoalesce->rx_coalesce_usecs_low) ||
1329 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1330 	    (ecoalesce->tx_coalesce_usecs_low) ||
1331 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1332 	    (ecoalesce->pkt_rate_high) ||
1333 	    (ecoalesce->rx_coalesce_usecs_high) ||
1334 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1335 	    (ecoalesce->tx_coalesce_usecs_high) ||
1336 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1337 	    (ecoalesce->rate_sample_interval))
1338 		return -EOPNOTSUPP;
1339 	if (ecoalesce->rx_max_coalesced_frames)
1340 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1341 	if (ecoalesce->tx_max_coalesced_frames)
1342 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1343 
1344 	return 0;
1345 }
1346 
1347 static struct ethtool_ops axienet_ethtool_ops = {
1348 	.get_settings   = axienet_ethtools_get_settings,
1349 	.set_settings   = axienet_ethtools_set_settings,
1350 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1351 	.get_regs_len   = axienet_ethtools_get_regs_len,
1352 	.get_regs       = axienet_ethtools_get_regs,
1353 	.get_link       = ethtool_op_get_link,
1354 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1355 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1356 	.get_coalesce   = axienet_ethtools_get_coalesce,
1357 	.set_coalesce   = axienet_ethtools_set_coalesce,
1358 };
1359 
1360 /**
1361  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1362  * @data:	Data passed
1363  *
1364  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1365  * Tx/Rx BDs.
1366  */
1367 static void axienet_dma_err_handler(unsigned long data)
1368 {
1369 	u32 axienet_status;
1370 	u32 cr, i;
1371 	int mdio_mcreg;
1372 	struct axienet_local *lp = (struct axienet_local *) data;
1373 	struct net_device *ndev = lp->ndev;
1374 	struct axidma_bd *cur_p;
1375 
1376 	axienet_setoptions(ndev, lp->options &
1377 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1378 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1379 	axienet_mdio_wait_until_ready(lp);
1380 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1381 	 * When we do an Axi Ethernet reset, it resets the complete core
1382 	 * including the MDIO. So if MDIO is not disabled when the reset
1383 	 * process is started, MDIO will be broken afterwards.
1384 	 */
1385 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1386 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1387 
1388 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1389 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1390 
1391 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1392 	axienet_mdio_wait_until_ready(lp);
1393 
1394 	for (i = 0; i < TX_BD_NUM; i++) {
1395 		cur_p = &lp->tx_bd_v[i];
1396 		if (cur_p->phys)
1397 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1398 					 (cur_p->cntrl &
1399 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1400 					 DMA_TO_DEVICE);
1401 		if (cur_p->app4)
1402 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1403 		cur_p->phys = 0;
1404 		cur_p->cntrl = 0;
1405 		cur_p->status = 0;
1406 		cur_p->app0 = 0;
1407 		cur_p->app1 = 0;
1408 		cur_p->app2 = 0;
1409 		cur_p->app3 = 0;
1410 		cur_p->app4 = 0;
1411 		cur_p->sw_id_offset = 0;
1412 	}
1413 
1414 	for (i = 0; i < RX_BD_NUM; i++) {
1415 		cur_p = &lp->rx_bd_v[i];
1416 		cur_p->status = 0;
1417 		cur_p->app0 = 0;
1418 		cur_p->app1 = 0;
1419 		cur_p->app2 = 0;
1420 		cur_p->app3 = 0;
1421 		cur_p->app4 = 0;
1422 	}
1423 
1424 	lp->tx_bd_ci = 0;
1425 	lp->tx_bd_tail = 0;
1426 	lp->rx_bd_ci = 0;
1427 
1428 	/* Start updating the Rx channel control register */
1429 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1430 	/* Update the interrupt coalesce count */
1431 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1432 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1433 	/* Update the delay timer count */
1434 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1435 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1436 	/* Enable coalesce, delay timer and error interrupts */
1437 	cr |= XAXIDMA_IRQ_ALL_MASK;
1438 	/* Finally write to the Rx channel control register */
1439 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1440 
1441 	/* Start updating the Tx channel control register */
1442 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1443 	/* Update the interrupt coalesce count */
1444 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1445 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1446 	/* Update the delay timer count */
1447 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1448 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1449 	/* Enable coalesce, delay timer and error interrupts */
1450 	cr |= XAXIDMA_IRQ_ALL_MASK;
1451 	/* Finally write to the Tx channel control register */
1452 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1453 
1454 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1455 	 * halted state. This will make the Rx side ready for reception.
1456 	 */
1457 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1458 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1459 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1460 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1461 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1462 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1463 
1464 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1465 	 * Tx channel is now ready to run. But only after we write to the
1466 	 * tail pointer register that the Tx channel will start transmitting
1467 	 */
1468 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1469 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1470 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1471 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1472 
1473 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1474 	axienet_status &= ~XAE_RCW1_RX_MASK;
1475 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1476 
1477 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1478 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1479 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1480 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1481 
1482 	/* Sync default options with HW but leave receiver and
1483 	 * transmitter disabled.
1484 	 */
1485 	axienet_setoptions(ndev, lp->options &
1486 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1487 	axienet_set_mac_address(ndev, NULL);
1488 	axienet_set_multicast_list(ndev);
1489 	axienet_setoptions(ndev, lp->options);
1490 }
1491 
1492 /**
1493  * axienet_probe - Axi Ethernet probe function.
1494  * @pdev:	Pointer to platform device structure.
1495  *
1496  * Return: 0, on success
1497  *	    Non-zero error value on failure.
1498  *
1499  * This is the probe routine for Axi Ethernet driver. This is called before
1500  * any other driver routines are invoked. It allocates and sets up the Ethernet
1501  * device. Parses through device tree and populates fields of
1502  * axienet_local. It registers the Ethernet device.
1503  */
1504 static int axienet_probe(struct platform_device *pdev)
1505 {
1506 	int ret;
1507 	struct device_node *np;
1508 	struct axienet_local *lp;
1509 	struct net_device *ndev;
1510 	u8 mac_addr[6];
1511 	struct resource *ethres, dmares;
1512 	u32 value;
1513 
1514 	ndev = alloc_etherdev(sizeof(*lp));
1515 	if (!ndev)
1516 		return -ENOMEM;
1517 
1518 	platform_set_drvdata(pdev, ndev);
1519 
1520 	SET_NETDEV_DEV(ndev, &pdev->dev);
1521 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1522 	ndev->features = NETIF_F_SG;
1523 	ndev->netdev_ops = &axienet_netdev_ops;
1524 	ndev->ethtool_ops = &axienet_ethtool_ops;
1525 
1526 	lp = netdev_priv(ndev);
1527 	lp->ndev = ndev;
1528 	lp->dev = &pdev->dev;
1529 	lp->options = XAE_OPTION_DEFAULTS;
1530 	/* Map device registers */
1531 	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1532 	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1533 	if (IS_ERR(lp->regs)) {
1534 		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1535 		ret = PTR_ERR(lp->regs);
1536 		goto free_netdev;
1537 	}
1538 
1539 	/* Setup checksum offload, but default to off if not specified */
1540 	lp->features = 0;
1541 
1542 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1543 	if (!ret) {
1544 		switch (value) {
1545 		case 1:
1546 			lp->csum_offload_on_tx_path =
1547 				XAE_FEATURE_PARTIAL_TX_CSUM;
1548 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1549 			/* Can checksum TCP/UDP over IPv4. */
1550 			ndev->features |= NETIF_F_IP_CSUM;
1551 			break;
1552 		case 2:
1553 			lp->csum_offload_on_tx_path =
1554 				XAE_FEATURE_FULL_TX_CSUM;
1555 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1556 			/* Can checksum TCP/UDP over IPv4. */
1557 			ndev->features |= NETIF_F_IP_CSUM;
1558 			break;
1559 		default:
1560 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1561 		}
1562 	}
1563 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1564 	if (!ret) {
1565 		switch (value) {
1566 		case 1:
1567 			lp->csum_offload_on_rx_path =
1568 				XAE_FEATURE_PARTIAL_RX_CSUM;
1569 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1570 			break;
1571 		case 2:
1572 			lp->csum_offload_on_rx_path =
1573 				XAE_FEATURE_FULL_RX_CSUM;
1574 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1575 			break;
1576 		default:
1577 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1578 		}
1579 	}
1580 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1581 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1582 	 * we can enable jumbo option and start supporting jumbo frames.
1583 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1584 	 * the device-tree and accordingly set flags.
1585 	 */
1586 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1587 	of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1588 
1589 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1590 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1591 	if (IS_ERR(np)) {
1592 		dev_err(&pdev->dev, "could not find DMA node\n");
1593 		ret = PTR_ERR(np);
1594 		goto free_netdev;
1595 	}
1596 	ret = of_address_to_resource(np, 0, &dmares);
1597 	if (ret) {
1598 		dev_err(&pdev->dev, "unable to get DMA resource\n");
1599 		goto free_netdev;
1600 	}
1601 	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1602 	if (IS_ERR(lp->dma_regs)) {
1603 		dev_err(&pdev->dev, "could not map DMA regs\n");
1604 		ret = PTR_ERR(lp->dma_regs);
1605 		goto free_netdev;
1606 	}
1607 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1608 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1609 	of_node_put(np);
1610 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1611 		dev_err(&pdev->dev, "could not determine irqs\n");
1612 		ret = -ENOMEM;
1613 		goto free_netdev;
1614 	}
1615 
1616 	/* Retrieve the MAC address */
1617 	ret = of_property_read_u8_array(pdev->dev.of_node,
1618 					"local-mac-address", mac_addr, 6);
1619 	if (ret) {
1620 		dev_err(&pdev->dev, "could not find MAC address\n");
1621 		goto free_netdev;
1622 	}
1623 	axienet_set_mac_address(ndev, (void *)mac_addr);
1624 
1625 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1626 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1627 
1628 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1629 	if (lp->phy_node) {
1630 		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1631 		if (ret)
1632 			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1633 	}
1634 
1635 	ret = register_netdev(lp->ndev);
1636 	if (ret) {
1637 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1638 		goto free_netdev;
1639 	}
1640 
1641 	return 0;
1642 
1643 free_netdev:
1644 	free_netdev(ndev);
1645 
1646 	return ret;
1647 }
1648 
1649 static int axienet_remove(struct platform_device *pdev)
1650 {
1651 	struct net_device *ndev = platform_get_drvdata(pdev);
1652 	struct axienet_local *lp = netdev_priv(ndev);
1653 
1654 	axienet_mdio_teardown(lp);
1655 	unregister_netdev(ndev);
1656 
1657 	of_node_put(lp->phy_node);
1658 	lp->phy_node = NULL;
1659 
1660 	free_netdev(ndev);
1661 
1662 	return 0;
1663 }
1664 
1665 static struct platform_driver axienet_driver = {
1666 	.probe = axienet_probe,
1667 	.remove = axienet_remove,
1668 	.driver = {
1669 		 .name = "xilinx_axienet",
1670 		 .of_match_table = axienet_of_match,
1671 	},
1672 };
1673 
1674 module_platform_driver(axienet_driver);
1675 
1676 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1677 MODULE_AUTHOR("Xilinx");
1678 MODULE_LICENSE("GPL");
1679