1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 
37 #include "xilinx_axienet.h"
38 
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM		64
41 #define RX_BD_NUM		128
42 
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME		"xaxienet"
45 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION		"1.00a"
47 
48 #define AXIENET_REGS_N		32
49 
50 /* Match table for of_platform binding */
51 static const struct of_device_id axienet_of_match[] = {
52 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55 	{},
56 };
57 
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 	/* Turn on jumbo packet support for both Rx and Tx */
63 	{
64 		.opt = XAE_OPTION_JUMBO,
65 		.reg = XAE_TC_OFFSET,
66 		.m_or = XAE_TC_JUM_MASK,
67 	}, {
68 		.opt = XAE_OPTION_JUMBO,
69 		.reg = XAE_RCW1_OFFSET,
70 		.m_or = XAE_RCW1_JUM_MASK,
71 	}, { /* Turn on VLAN packet support for both Rx and Tx */
72 		.opt = XAE_OPTION_VLAN,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_VLAN_MASK,
75 	}, {
76 		.opt = XAE_OPTION_VLAN,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_VLAN_MASK,
79 	}, { /* Turn on FCS stripping on receive packets */
80 		.opt = XAE_OPTION_FCS_STRIP,
81 		.reg = XAE_RCW1_OFFSET,
82 		.m_or = XAE_RCW1_FCS_MASK,
83 	}, { /* Turn on FCS insertion on transmit packets */
84 		.opt = XAE_OPTION_FCS_INSERT,
85 		.reg = XAE_TC_OFFSET,
86 		.m_or = XAE_TC_FCS_MASK,
87 	}, { /* Turn off length/type field checking on receive packets */
88 		.opt = XAE_OPTION_LENTYPE_ERR,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_LT_DIS_MASK,
91 	}, { /* Turn on Rx flow control */
92 		.opt = XAE_OPTION_FLOW_CONTROL,
93 		.reg = XAE_FCC_OFFSET,
94 		.m_or = XAE_FCC_FCRX_MASK,
95 	}, { /* Turn on Tx flow control */
96 		.opt = XAE_OPTION_FLOW_CONTROL,
97 		.reg = XAE_FCC_OFFSET,
98 		.m_or = XAE_FCC_FCTX_MASK,
99 	}, { /* Turn on promiscuous frame filtering */
100 		.opt = XAE_OPTION_PROMISC,
101 		.reg = XAE_FMI_OFFSET,
102 		.m_or = XAE_FMI_PM_MASK,
103 	}, { /* Enable transmitter */
104 		.opt = XAE_OPTION_TXEN,
105 		.reg = XAE_TC_OFFSET,
106 		.m_or = XAE_TC_TX_MASK,
107 	}, { /* Enable receiver */
108 		.opt = XAE_OPTION_RXEN,
109 		.reg = XAE_RCW1_OFFSET,
110 		.m_or = XAE_RCW1_RX_MASK,
111 	},
112 	{}
113 };
114 
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:		Pointer to axienet local structure
118  * @reg:	Address offset from the base address of the Axi DMA core
119  *
120  * Return: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 	return in_be32(lp->dma_regs + reg);
127 }
128 
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:		Pointer to axienet local structure
132  * @reg:	Address offset from the base address of the Axi DMA core
133  * @value:	Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 				     off_t reg, u32 value)
140 {
141 	out_be32((lp->dma_regs + reg), value);
142 }
143 
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:	Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 	int i;
155 	struct axienet_local *lp = netdev_priv(ndev);
156 
157 	for (i = 0; i < RX_BD_NUM; i++) {
158 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 				 lp->max_frm_size, DMA_FROM_DEVICE);
160 		dev_kfree_skb((struct sk_buff *)
161 			      (lp->rx_bd_v[i].sw_id_offset));
162 	}
163 
164 	if (lp->rx_bd_v) {
165 		dma_free_coherent(ndev->dev.parent,
166 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 				  lp->rx_bd_v,
168 				  lp->rx_bd_p);
169 	}
170 	if (lp->tx_bd_v) {
171 		dma_free_coherent(ndev->dev.parent,
172 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 				  lp->tx_bd_v,
174 				  lp->tx_bd_p);
175 	}
176 }
177 
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:	Pointer to the net_device structure
181  *
182  * Return: 0, on success -ENOMEM, on failure
183  *
184  * This function is called to initialize the Rx and Tx DMA descriptor
185  * rings. This initializes the descriptors with required default values
186  * and is called when Axi Ethernet driver reset is called.
187  */
188 static int axienet_dma_bd_init(struct net_device *ndev)
189 {
190 	u32 cr;
191 	int i;
192 	struct sk_buff *skb;
193 	struct axienet_local *lp = netdev_priv(ndev);
194 
195 	/* Reset the indexes which are used for accessing the BDs */
196 	lp->tx_bd_ci = 0;
197 	lp->tx_bd_tail = 0;
198 	lp->rx_bd_ci = 0;
199 
200 	/* Allocate the Tx and Rx buffer descriptors. */
201 	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
202 					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
203 					  &lp->tx_bd_p, GFP_KERNEL);
204 	if (!lp->tx_bd_v)
205 		goto out;
206 
207 	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
208 					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
209 					  &lp->rx_bd_p, GFP_KERNEL);
210 	if (!lp->rx_bd_v)
211 		goto out;
212 
213 	for (i = 0; i < TX_BD_NUM; i++) {
214 		lp->tx_bd_v[i].next = lp->tx_bd_p +
215 				      sizeof(*lp->tx_bd_v) *
216 				      ((i + 1) % TX_BD_NUM);
217 	}
218 
219 	for (i = 0; i < RX_BD_NUM; i++) {
220 		lp->rx_bd_v[i].next = lp->rx_bd_p +
221 				      sizeof(*lp->rx_bd_v) *
222 				      ((i + 1) % RX_BD_NUM);
223 
224 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
225 		if (!skb)
226 			goto out;
227 
228 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
229 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
230 						     skb->data,
231 						     lp->max_frm_size,
232 						     DMA_FROM_DEVICE);
233 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
234 	}
235 
236 	/* Start updating the Rx channel control register */
237 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
238 	/* Update the interrupt coalesce count */
239 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
240 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
241 	/* Update the delay timer count */
242 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
243 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
244 	/* Enable coalesce, delay timer and error interrupts */
245 	cr |= XAXIDMA_IRQ_ALL_MASK;
246 	/* Write to the Rx channel control register */
247 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
248 
249 	/* Start updating the Tx channel control register */
250 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
251 	/* Update the interrupt coalesce count */
252 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
253 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
254 	/* Update the delay timer count */
255 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
256 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
257 	/* Enable coalesce, delay timer and error interrupts */
258 	cr |= XAXIDMA_IRQ_ALL_MASK;
259 	/* Write to the Tx channel control register */
260 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
261 
262 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
263 	 * halted state. This will make the Rx side ready for reception.
264 	 */
265 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
266 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
267 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
268 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
269 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
270 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
271 
272 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
273 	 * Tx channel is now ready to run. But only after we write to the
274 	 * tail pointer register that the Tx channel will start transmitting.
275 	 */
276 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
277 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
278 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
279 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
280 
281 	return 0;
282 out:
283 	axienet_dma_bd_release(ndev);
284 	return -ENOMEM;
285 }
286 
287 /**
288  * axienet_set_mac_address - Write the MAC address
289  * @ndev:	Pointer to the net_device structure
290  * @address:	6 byte Address to be written as MAC address
291  *
292  * This function is called to initialize the MAC address of the Axi Ethernet
293  * core. It writes to the UAW0 and UAW1 registers of the core.
294  */
295 static void axienet_set_mac_address(struct net_device *ndev, void *address)
296 {
297 	struct axienet_local *lp = netdev_priv(ndev);
298 
299 	if (address)
300 		memcpy(ndev->dev_addr, address, ETH_ALEN);
301 	if (!is_valid_ether_addr(ndev->dev_addr))
302 		eth_random_addr(ndev->dev_addr);
303 
304 	/* Set up unicast MAC address filter set its mac address */
305 	axienet_iow(lp, XAE_UAW0_OFFSET,
306 		    (ndev->dev_addr[0]) |
307 		    (ndev->dev_addr[1] << 8) |
308 		    (ndev->dev_addr[2] << 16) |
309 		    (ndev->dev_addr[3] << 24));
310 	axienet_iow(lp, XAE_UAW1_OFFSET,
311 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
312 		      ~XAE_UAW1_UNICASTADDR_MASK) |
313 		     (ndev->dev_addr[4] |
314 		     (ndev->dev_addr[5] << 8))));
315 }
316 
317 /**
318  * netdev_set_mac_address - Write the MAC address (from outside the driver)
319  * @ndev:	Pointer to the net_device structure
320  * @p:		6 byte Address to be written as MAC address
321  *
322  * Return: 0 for all conditions. Presently, there is no failure case.
323  *
324  * This function is called to initialize the MAC address of the Axi Ethernet
325  * core. It calls the core specific axienet_set_mac_address. This is the
326  * function that goes into net_device_ops structure entry ndo_set_mac_address.
327  */
328 static int netdev_set_mac_address(struct net_device *ndev, void *p)
329 {
330 	struct sockaddr *addr = p;
331 	axienet_set_mac_address(ndev, addr->sa_data);
332 	return 0;
333 }
334 
335 /**
336  * axienet_set_multicast_list - Prepare the multicast table
337  * @ndev:	Pointer to the net_device structure
338  *
339  * This function is called to initialize the multicast table during
340  * initialization. The Axi Ethernet basic multicast support has a four-entry
341  * multicast table which is initialized here. Additionally this function
342  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
343  * means whenever the multicast table entries need to be updated this
344  * function gets called.
345  */
346 static void axienet_set_multicast_list(struct net_device *ndev)
347 {
348 	int i;
349 	u32 reg, af0reg, af1reg;
350 	struct axienet_local *lp = netdev_priv(ndev);
351 
352 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
353 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
354 		/* We must make the kernel realize we had to move into
355 		 * promiscuous mode. If it was a promiscuous mode request
356 		 * the flag is already set. If not we set it.
357 		 */
358 		ndev->flags |= IFF_PROMISC;
359 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 		reg |= XAE_FMI_PM_MASK;
361 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 	} else if (!netdev_mc_empty(ndev)) {
364 		struct netdev_hw_addr *ha;
365 
366 		i = 0;
367 		netdev_for_each_mc_addr(ha, ndev) {
368 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 				break;
370 
371 			af0reg = (ha->addr[0]);
372 			af0reg |= (ha->addr[1] << 8);
373 			af0reg |= (ha->addr[2] << 16);
374 			af0reg |= (ha->addr[3] << 24);
375 
376 			af1reg = (ha->addr[4]);
377 			af1reg |= (ha->addr[5] << 8);
378 
379 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 			reg |= i;
381 
382 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 			i++;
386 		}
387 	} else {
388 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 		reg &= ~XAE_FMI_PM_MASK;
390 
391 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
392 
393 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 			reg |= i;
396 
397 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
400 		}
401 
402 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403 	}
404 }
405 
406 /**
407  * axienet_setoptions - Set an Axi Ethernet option
408  * @ndev:	Pointer to the net_device structure
409  * @options:	Option to be enabled/disabled
410  *
411  * The Axi Ethernet core has multiple features which can be selectively turned
412  * on or off. The typical options could be jumbo frame option, basic VLAN
413  * option, promiscuous mode option etc. This function is used to set or clear
414  * these options in the Axi Ethernet hardware. This is done through
415  * axienet_option structure .
416  */
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 {
419 	int reg;
420 	struct axienet_local *lp = netdev_priv(ndev);
421 	struct axienet_option *tp = &axienet_options[0];
422 
423 	while (tp->opt) {
424 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 		if (options & tp->opt)
426 			reg |= tp->m_or;
427 		axienet_iow(lp, tp->reg, reg);
428 		tp++;
429 	}
430 
431 	lp->options |= options;
432 }
433 
434 static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
435 {
436 	u32 timeout;
437 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
438 	 * process of Axi DMA takes a while to complete as all pending
439 	 * commands/transfers will be flushed or completed during this
440 	 * reset process.
441 	 */
442 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
443 	timeout = DELAY_OF_ONE_MILLISEC;
444 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
445 		udelay(1);
446 		if (--timeout == 0) {
447 			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
448 				   __func__);
449 			break;
450 		}
451 	}
452 }
453 
454 /**
455  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
456  * @ndev:	Pointer to the net_device structure
457  *
458  * This function is called to reset and initialize the Axi Ethernet core. This
459  * is typically called during initialization. It does a reset of the Axi DMA
460  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
461  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
462  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
463  * core.
464  */
465 static void axienet_device_reset(struct net_device *ndev)
466 {
467 	u32 axienet_status;
468 	struct axienet_local *lp = netdev_priv(ndev);
469 
470 	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
471 	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
472 
473 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
474 	lp->options |= XAE_OPTION_VLAN;
475 	lp->options &= (~XAE_OPTION_JUMBO);
476 
477 	if ((ndev->mtu > XAE_MTU) &&
478 		(ndev->mtu <= XAE_JUMBO_MTU)) {
479 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
480 					XAE_TRL_SIZE;
481 
482 		if (lp->max_frm_size <= lp->rxmem)
483 			lp->options |= XAE_OPTION_JUMBO;
484 	}
485 
486 	if (axienet_dma_bd_init(ndev)) {
487 		netdev_err(ndev, "%s: descriptor allocation failed\n",
488 			   __func__);
489 	}
490 
491 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
492 	axienet_status &= ~XAE_RCW1_RX_MASK;
493 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
494 
495 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
496 	if (axienet_status & XAE_INT_RXRJECT_MASK)
497 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
498 
499 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
500 
501 	/* Sync default options with HW but leave receiver and
502 	 * transmitter disabled.
503 	 */
504 	axienet_setoptions(ndev, lp->options &
505 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
506 	axienet_set_mac_address(ndev, NULL);
507 	axienet_set_multicast_list(ndev);
508 	axienet_setoptions(ndev, lp->options);
509 
510 	netif_trans_update(ndev);
511 }
512 
513 /**
514  * axienet_adjust_link - Adjust the PHY link speed/duplex.
515  * @ndev:	Pointer to the net_device structure
516  *
517  * This function is called to change the speed and duplex setting after
518  * auto negotiation is done by the PHY. This is the function that gets
519  * registered with the PHY interface through the "of_phy_connect" call.
520  */
521 static void axienet_adjust_link(struct net_device *ndev)
522 {
523 	u32 emmc_reg;
524 	u32 link_state;
525 	u32 setspeed = 1;
526 	struct axienet_local *lp = netdev_priv(ndev);
527 	struct phy_device *phy = ndev->phydev;
528 
529 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
530 	if (lp->last_link != link_state) {
531 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
532 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
533 				setspeed = 0;
534 		} else {
535 			if ((phy->speed == SPEED_1000) &&
536 			    (lp->phy_type == XAE_PHY_TYPE_MII))
537 				setspeed = 0;
538 		}
539 
540 		if (setspeed == 1) {
541 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
542 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
543 
544 			switch (phy->speed) {
545 			case SPEED_1000:
546 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
547 				break;
548 			case SPEED_100:
549 				emmc_reg |= XAE_EMMC_LINKSPD_100;
550 				break;
551 			case SPEED_10:
552 				emmc_reg |= XAE_EMMC_LINKSPD_10;
553 				break;
554 			default:
555 				dev_err(&ndev->dev, "Speed other than 10, 100 "
556 					"or 1Gbps is not supported\n");
557 				break;
558 			}
559 
560 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
561 			lp->last_link = link_state;
562 			phy_print_status(phy);
563 		} else {
564 			netdev_err(ndev,
565 				   "Error setting Axi Ethernet mac speed\n");
566 		}
567 	}
568 }
569 
570 /**
571  * axienet_start_xmit_done - Invoked once a transmit is completed by the
572  * Axi DMA Tx channel.
573  * @ndev:	Pointer to the net_device structure
574  *
575  * This function is invoked from the Axi DMA Tx isr to notify the completion
576  * of transmit operation. It clears fields in the corresponding Tx BDs and
577  * unmaps the corresponding buffer so that CPU can regain ownership of the
578  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
579  * required.
580  */
581 static void axienet_start_xmit_done(struct net_device *ndev)
582 {
583 	u32 size = 0;
584 	u32 packets = 0;
585 	struct axienet_local *lp = netdev_priv(ndev);
586 	struct axidma_bd *cur_p;
587 	unsigned int status = 0;
588 
589 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
590 	status = cur_p->status;
591 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
592 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
593 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
594 				DMA_TO_DEVICE);
595 		if (cur_p->app4)
596 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
597 		/*cur_p->phys = 0;*/
598 		cur_p->app0 = 0;
599 		cur_p->app1 = 0;
600 		cur_p->app2 = 0;
601 		cur_p->app4 = 0;
602 		cur_p->status = 0;
603 
604 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
605 		packets++;
606 
607 		++lp->tx_bd_ci;
608 		lp->tx_bd_ci %= TX_BD_NUM;
609 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
610 		status = cur_p->status;
611 	}
612 
613 	ndev->stats.tx_packets += packets;
614 	ndev->stats.tx_bytes += size;
615 	netif_wake_queue(ndev);
616 }
617 
618 /**
619  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
620  * @lp:		Pointer to the axienet_local structure
621  * @num_frag:	The number of BDs to check for
622  *
623  * Return: 0, on success
624  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
625  *
626  * This function is invoked before BDs are allocated and transmission starts.
627  * This function returns 0 if a BD or group of BDs can be allocated for
628  * transmission. If the BD or any of the BDs are not free the function
629  * returns a busy status. This is invoked from axienet_start_xmit.
630  */
631 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
632 					    int num_frag)
633 {
634 	struct axidma_bd *cur_p;
635 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
636 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
637 		return NETDEV_TX_BUSY;
638 	return 0;
639 }
640 
641 /**
642  * axienet_start_xmit - Starts the transmission.
643  * @skb:	sk_buff pointer that contains data to be Txed.
644  * @ndev:	Pointer to net_device structure.
645  *
646  * Return: NETDEV_TX_OK, on success
647  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
648  *
649  * This function is invoked from upper layers to initiate transmission. The
650  * function uses the next available free BDs and populates their fields to
651  * start the transmission. Additionally if checksum offloading is supported,
652  * it populates AXI Stream Control fields with appropriate values.
653  */
654 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
655 {
656 	u32 ii;
657 	u32 num_frag;
658 	u32 csum_start_off;
659 	u32 csum_index_off;
660 	skb_frag_t *frag;
661 	dma_addr_t tail_p;
662 	struct axienet_local *lp = netdev_priv(ndev);
663 	struct axidma_bd *cur_p;
664 
665 	num_frag = skb_shinfo(skb)->nr_frags;
666 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
667 
668 	if (axienet_check_tx_bd_space(lp, num_frag)) {
669 		if (!netif_queue_stopped(ndev))
670 			netif_stop_queue(ndev);
671 		return NETDEV_TX_BUSY;
672 	}
673 
674 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
675 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
676 			/* Tx Full Checksum Offload Enabled */
677 			cur_p->app0 |= 2;
678 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
679 			csum_start_off = skb_transport_offset(skb);
680 			csum_index_off = csum_start_off + skb->csum_offset;
681 			/* Tx Partial Checksum Offload Enabled */
682 			cur_p->app0 |= 1;
683 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
684 		}
685 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
686 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
687 	}
688 
689 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
690 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
691 				     skb_headlen(skb), DMA_TO_DEVICE);
692 
693 	for (ii = 0; ii < num_frag; ii++) {
694 		++lp->tx_bd_tail;
695 		lp->tx_bd_tail %= TX_BD_NUM;
696 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
697 		frag = &skb_shinfo(skb)->frags[ii];
698 		cur_p->phys = dma_map_single(ndev->dev.parent,
699 					     skb_frag_address(frag),
700 					     skb_frag_size(frag),
701 					     DMA_TO_DEVICE);
702 		cur_p->cntrl = skb_frag_size(frag);
703 	}
704 
705 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
706 	cur_p->app4 = (unsigned long)skb;
707 
708 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
709 	/* Start the transfer */
710 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
711 	++lp->tx_bd_tail;
712 	lp->tx_bd_tail %= TX_BD_NUM;
713 
714 	return NETDEV_TX_OK;
715 }
716 
717 /**
718  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
719  *		  BD processing.
720  * @ndev:	Pointer to net_device structure.
721  *
722  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
723  * does minimal processing and invokes "netif_rx" to complete further
724  * processing.
725  */
726 static void axienet_recv(struct net_device *ndev)
727 {
728 	u32 length;
729 	u32 csumstatus;
730 	u32 size = 0;
731 	u32 packets = 0;
732 	dma_addr_t tail_p = 0;
733 	struct axienet_local *lp = netdev_priv(ndev);
734 	struct sk_buff *skb, *new_skb;
735 	struct axidma_bd *cur_p;
736 
737 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
738 
739 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
740 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
741 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
742 		length = cur_p->app4 & 0x0000FFFF;
743 
744 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
745 				 lp->max_frm_size,
746 				 DMA_FROM_DEVICE);
747 
748 		skb_put(skb, length);
749 		skb->protocol = eth_type_trans(skb, ndev);
750 		/*skb_checksum_none_assert(skb);*/
751 		skb->ip_summed = CHECKSUM_NONE;
752 
753 		/* if we're doing Rx csum offload, set it up */
754 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
755 			csumstatus = (cur_p->app2 &
756 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
757 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
758 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
759 				skb->ip_summed = CHECKSUM_UNNECESSARY;
760 			}
761 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
762 			   skb->protocol == htons(ETH_P_IP) &&
763 			   skb->len > 64) {
764 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
765 			skb->ip_summed = CHECKSUM_COMPLETE;
766 		}
767 
768 		netif_rx(skb);
769 
770 		size += length;
771 		packets++;
772 
773 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
774 		if (!new_skb)
775 			return;
776 
777 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
778 					     lp->max_frm_size,
779 					     DMA_FROM_DEVICE);
780 		cur_p->cntrl = lp->max_frm_size;
781 		cur_p->status = 0;
782 		cur_p->sw_id_offset = (u32) new_skb;
783 
784 		++lp->rx_bd_ci;
785 		lp->rx_bd_ci %= RX_BD_NUM;
786 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
787 	}
788 
789 	ndev->stats.rx_packets += packets;
790 	ndev->stats.rx_bytes += size;
791 
792 	if (tail_p)
793 		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
794 }
795 
796 /**
797  * axienet_tx_irq - Tx Done Isr.
798  * @irq:	irq number
799  * @_ndev:	net_device pointer
800  *
801  * Return: IRQ_HANDLED for all cases.
802  *
803  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
804  * to complete the BD processing.
805  */
806 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
807 {
808 	u32 cr;
809 	unsigned int status;
810 	struct net_device *ndev = _ndev;
811 	struct axienet_local *lp = netdev_priv(ndev);
812 
813 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
814 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
815 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
816 		axienet_start_xmit_done(lp->ndev);
817 		goto out;
818 	}
819 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
820 		dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
821 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
822 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
823 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
824 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
825 
826 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
827 		/* Disable coalesce, delay timer and error interrupts */
828 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
829 		/* Write to the Tx channel control register */
830 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
831 
832 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
833 		/* Disable coalesce, delay timer and error interrupts */
834 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
835 		/* Write to the Rx channel control register */
836 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
837 
838 		tasklet_schedule(&lp->dma_err_tasklet);
839 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
840 	}
841 out:
842 	return IRQ_HANDLED;
843 }
844 
845 /**
846  * axienet_rx_irq - Rx Isr.
847  * @irq:	irq number
848  * @_ndev:	net_device pointer
849  *
850  * Return: IRQ_HANDLED for all cases.
851  *
852  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
853  * processing.
854  */
855 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
856 {
857 	u32 cr;
858 	unsigned int status;
859 	struct net_device *ndev = _ndev;
860 	struct axienet_local *lp = netdev_priv(ndev);
861 
862 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
863 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
864 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
865 		axienet_recv(lp->ndev);
866 		goto out;
867 	}
868 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
869 		dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
870 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
871 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
872 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
873 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
874 
875 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
876 		/* Disable coalesce, delay timer and error interrupts */
877 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
878 		/* Finally write to the Tx channel control register */
879 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
880 
881 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
882 		/* Disable coalesce, delay timer and error interrupts */
883 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
884 		/* write to the Rx channel control register */
885 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
886 
887 		tasklet_schedule(&lp->dma_err_tasklet);
888 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
889 	}
890 out:
891 	return IRQ_HANDLED;
892 }
893 
894 static void axienet_dma_err_handler(unsigned long data);
895 
896 /**
897  * axienet_open - Driver open routine.
898  * @ndev:	Pointer to net_device structure
899  *
900  * Return: 0, on success.
901  *	    -ENODEV, if PHY cannot be connected to
902  *	    non-zero error value on failure
903  *
904  * This is the driver open routine. It calls phy_start to start the PHY device.
905  * It also allocates interrupt service routines, enables the interrupt lines
906  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
907  * descriptors are initialized.
908  */
909 static int axienet_open(struct net_device *ndev)
910 {
911 	int ret, mdio_mcreg;
912 	struct axienet_local *lp = netdev_priv(ndev);
913 	struct phy_device *phydev = NULL;
914 
915 	dev_dbg(&ndev->dev, "axienet_open()\n");
916 
917 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 	ret = axienet_mdio_wait_until_ready(lp);
919 	if (ret < 0)
920 		return ret;
921 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 	 * When we do an Axi Ethernet reset, it resets the complete core
923 	 * including the MDIO. If MDIO is not disabled when the reset
924 	 * process is started, MDIO will be broken afterwards.
925 	 */
926 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
927 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
928 	axienet_device_reset(ndev);
929 	/* Enable the MDIO */
930 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
931 	ret = axienet_mdio_wait_until_ready(lp);
932 	if (ret < 0)
933 		return ret;
934 
935 	if (lp->phy_node) {
936 		if (lp->phy_type == XAE_PHY_TYPE_GMII) {
937 			phydev = of_phy_connect(lp->ndev, lp->phy_node,
938 						axienet_adjust_link, 0,
939 						PHY_INTERFACE_MODE_GMII);
940 		} else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
941 			phydev = of_phy_connect(lp->ndev, lp->phy_node,
942 						axienet_adjust_link, 0,
943 						PHY_INTERFACE_MODE_RGMII_ID);
944 		}
945 
946 		if (!phydev)
947 			dev_err(lp->dev, "of_phy_connect() failed\n");
948 		else
949 			phy_start(phydev);
950 	}
951 
952 	/* Enable tasklets for Axi DMA error handling */
953 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
954 		     (unsigned long) lp);
955 
956 	/* Enable interrupts for Axi DMA Tx */
957 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
958 	if (ret)
959 		goto err_tx_irq;
960 	/* Enable interrupts for Axi DMA Rx */
961 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
962 	if (ret)
963 		goto err_rx_irq;
964 
965 	return 0;
966 
967 err_rx_irq:
968 	free_irq(lp->tx_irq, ndev);
969 err_tx_irq:
970 	if (phydev)
971 		phy_disconnect(phydev);
972 	tasklet_kill(&lp->dma_err_tasklet);
973 	dev_err(lp->dev, "request_irq() failed\n");
974 	return ret;
975 }
976 
977 /**
978  * axienet_stop - Driver stop routine.
979  * @ndev:	Pointer to net_device structure
980  *
981  * Return: 0, on success.
982  *
983  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
984  * device. It also removes the interrupt handlers and disables the interrupts.
985  * The Axi DMA Tx/Rx BDs are released.
986  */
987 static int axienet_stop(struct net_device *ndev)
988 {
989 	u32 cr;
990 	struct axienet_local *lp = netdev_priv(ndev);
991 
992 	dev_dbg(&ndev->dev, "axienet_close()\n");
993 
994 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
995 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
996 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
997 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
998 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
999 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1000 	axienet_setoptions(ndev, lp->options &
1001 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1002 
1003 	tasklet_kill(&lp->dma_err_tasklet);
1004 
1005 	free_irq(lp->tx_irq, ndev);
1006 	free_irq(lp->rx_irq, ndev);
1007 
1008 	if (ndev->phydev)
1009 		phy_disconnect(ndev->phydev);
1010 
1011 	axienet_dma_bd_release(ndev);
1012 	return 0;
1013 }
1014 
1015 /**
1016  * axienet_change_mtu - Driver change mtu routine.
1017  * @ndev:	Pointer to net_device structure
1018  * @new_mtu:	New mtu value to be applied
1019  *
1020  * Return: Always returns 0 (success).
1021  *
1022  * This is the change mtu driver routine. It checks if the Axi Ethernet
1023  * hardware supports jumbo frames before changing the mtu. This can be
1024  * called only when the device is not up.
1025  */
1026 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1027 {
1028 	struct axienet_local *lp = netdev_priv(ndev);
1029 
1030 	if (netif_running(ndev))
1031 		return -EBUSY;
1032 
1033 	if ((new_mtu + VLAN_ETH_HLEN +
1034 		XAE_TRL_SIZE) > lp->rxmem)
1035 		return -EINVAL;
1036 
1037 	if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1038 		return -EINVAL;
1039 
1040 	ndev->mtu = new_mtu;
1041 
1042 	return 0;
1043 }
1044 
1045 #ifdef CONFIG_NET_POLL_CONTROLLER
1046 /**
1047  * axienet_poll_controller - Axi Ethernet poll mechanism.
1048  * @ndev:	Pointer to net_device structure
1049  *
1050  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1051  * to polling the ISRs and are enabled back after the polling is done.
1052  */
1053 static void axienet_poll_controller(struct net_device *ndev)
1054 {
1055 	struct axienet_local *lp = netdev_priv(ndev);
1056 	disable_irq(lp->tx_irq);
1057 	disable_irq(lp->rx_irq);
1058 	axienet_rx_irq(lp->tx_irq, ndev);
1059 	axienet_tx_irq(lp->rx_irq, ndev);
1060 	enable_irq(lp->tx_irq);
1061 	enable_irq(lp->rx_irq);
1062 }
1063 #endif
1064 
1065 static const struct net_device_ops axienet_netdev_ops = {
1066 	.ndo_open = axienet_open,
1067 	.ndo_stop = axienet_stop,
1068 	.ndo_start_xmit = axienet_start_xmit,
1069 	.ndo_change_mtu	= axienet_change_mtu,
1070 	.ndo_set_mac_address = netdev_set_mac_address,
1071 	.ndo_validate_addr = eth_validate_addr,
1072 	.ndo_set_rx_mode = axienet_set_multicast_list,
1073 #ifdef CONFIG_NET_POLL_CONTROLLER
1074 	.ndo_poll_controller = axienet_poll_controller,
1075 #endif
1076 };
1077 
1078 /**
1079  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1080  * @ndev:	Pointer to net_device structure
1081  * @ed:		Pointer to ethtool_drvinfo structure
1082  *
1083  * This implements ethtool command for getting the driver information.
1084  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1085  */
1086 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1087 					 struct ethtool_drvinfo *ed)
1088 {
1089 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1090 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1091 }
1092 
1093 /**
1094  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1095  *				   AxiEthernet core.
1096  * @ndev:	Pointer to net_device structure
1097  *
1098  * This implements ethtool command for getting the total register length
1099  * information.
1100  *
1101  * Return: the total regs length
1102  */
1103 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1104 {
1105 	return sizeof(u32) * AXIENET_REGS_N;
1106 }
1107 
1108 /**
1109  * axienet_ethtools_get_regs - Dump the contents of all registers present
1110  *			       in AxiEthernet core.
1111  * @ndev:	Pointer to net_device structure
1112  * @regs:	Pointer to ethtool_regs structure
1113  * @ret:	Void pointer used to return the contents of the registers.
1114  *
1115  * This implements ethtool command for getting the Axi Ethernet register dump.
1116  * Issue "ethtool -d ethX" to execute this function.
1117  */
1118 static void axienet_ethtools_get_regs(struct net_device *ndev,
1119 				      struct ethtool_regs *regs, void *ret)
1120 {
1121 	u32 *data = (u32 *) ret;
1122 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1123 	struct axienet_local *lp = netdev_priv(ndev);
1124 
1125 	regs->version = 0;
1126 	regs->len = len;
1127 
1128 	memset(data, 0, len);
1129 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1130 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1131 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1132 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1133 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1134 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1135 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1136 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1137 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1138 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1139 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1140 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1141 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1142 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1143 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1144 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1145 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1146 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1147 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1148 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1149 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1150 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1151 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1152 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1153 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1154 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1155 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1156 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1157 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1158 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1159 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1160 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1161 }
1162 
1163 /**
1164  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1165  *				     Tx and Rx paths.
1166  * @ndev:	Pointer to net_device structure
1167  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1168  *
1169  * This implements ethtool command for getting axi ethernet pause frame
1170  * setting. Issue "ethtool -a ethX" to execute this function.
1171  */
1172 static void
1173 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1174 				struct ethtool_pauseparam *epauseparm)
1175 {
1176 	u32 regval;
1177 	struct axienet_local *lp = netdev_priv(ndev);
1178 	epauseparm->autoneg  = 0;
1179 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1180 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1181 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1182 }
1183 
1184 /**
1185  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1186  *				     settings.
1187  * @ndev:	Pointer to net_device structure
1188  * @epauseparm:Pointer to ethtool_pauseparam structure
1189  *
1190  * This implements ethtool command for enabling flow control on Rx and Tx
1191  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1192  * function.
1193  *
1194  * Return: 0 on success, -EFAULT if device is running
1195  */
1196 static int
1197 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1198 				struct ethtool_pauseparam *epauseparm)
1199 {
1200 	u32 regval = 0;
1201 	struct axienet_local *lp = netdev_priv(ndev);
1202 
1203 	if (netif_running(ndev)) {
1204 		netdev_err(ndev,
1205 			   "Please stop netif before applying configuration\n");
1206 		return -EFAULT;
1207 	}
1208 
1209 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1210 	if (epauseparm->tx_pause)
1211 		regval |= XAE_FCC_FCTX_MASK;
1212 	else
1213 		regval &= ~XAE_FCC_FCTX_MASK;
1214 	if (epauseparm->rx_pause)
1215 		regval |= XAE_FCC_FCRX_MASK;
1216 	else
1217 		regval &= ~XAE_FCC_FCRX_MASK;
1218 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1225  * @ndev:	Pointer to net_device structure
1226  * @ecoalesce:	Pointer to ethtool_coalesce structure
1227  *
1228  * This implements ethtool command for getting the DMA interrupt coalescing
1229  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1230  * execute this function.
1231  *
1232  * Return: 0 always
1233  */
1234 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1235 					 struct ethtool_coalesce *ecoalesce)
1236 {
1237 	u32 regval = 0;
1238 	struct axienet_local *lp = netdev_priv(ndev);
1239 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1240 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1241 					     >> XAXIDMA_COALESCE_SHIFT;
1242 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1243 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1244 					     >> XAXIDMA_COALESCE_SHIFT;
1245 	return 0;
1246 }
1247 
1248 /**
1249  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1250  * @ndev:	Pointer to net_device structure
1251  * @ecoalesce:	Pointer to ethtool_coalesce structure
1252  *
1253  * This implements ethtool command for setting the DMA interrupt coalescing
1254  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1255  * prompt to execute this function.
1256  *
1257  * Return: 0, on success, Non-zero error value on failure.
1258  */
1259 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1260 					 struct ethtool_coalesce *ecoalesce)
1261 {
1262 	struct axienet_local *lp = netdev_priv(ndev);
1263 
1264 	if (netif_running(ndev)) {
1265 		netdev_err(ndev,
1266 			   "Please stop netif before applying configuration\n");
1267 		return -EFAULT;
1268 	}
1269 
1270 	if ((ecoalesce->rx_coalesce_usecs) ||
1271 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1272 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1273 	    (ecoalesce->tx_coalesce_usecs) ||
1274 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1275 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1276 	    (ecoalesce->stats_block_coalesce_usecs) ||
1277 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1278 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1279 	    (ecoalesce->pkt_rate_low) ||
1280 	    (ecoalesce->rx_coalesce_usecs_low) ||
1281 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1282 	    (ecoalesce->tx_coalesce_usecs_low) ||
1283 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1284 	    (ecoalesce->pkt_rate_high) ||
1285 	    (ecoalesce->rx_coalesce_usecs_high) ||
1286 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1287 	    (ecoalesce->tx_coalesce_usecs_high) ||
1288 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1289 	    (ecoalesce->rate_sample_interval))
1290 		return -EOPNOTSUPP;
1291 	if (ecoalesce->rx_max_coalesced_frames)
1292 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1293 	if (ecoalesce->tx_max_coalesced_frames)
1294 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1295 
1296 	return 0;
1297 }
1298 
1299 static const struct ethtool_ops axienet_ethtool_ops = {
1300 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1301 	.get_regs_len   = axienet_ethtools_get_regs_len,
1302 	.get_regs       = axienet_ethtools_get_regs,
1303 	.get_link       = ethtool_op_get_link,
1304 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1305 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1306 	.get_coalesce   = axienet_ethtools_get_coalesce,
1307 	.set_coalesce   = axienet_ethtools_set_coalesce,
1308 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1309 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1310 };
1311 
1312 /**
1313  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1314  * @data:	Data passed
1315  *
1316  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1317  * Tx/Rx BDs.
1318  */
1319 static void axienet_dma_err_handler(unsigned long data)
1320 {
1321 	u32 axienet_status;
1322 	u32 cr, i;
1323 	int mdio_mcreg;
1324 	struct axienet_local *lp = (struct axienet_local *) data;
1325 	struct net_device *ndev = lp->ndev;
1326 	struct axidma_bd *cur_p;
1327 
1328 	axienet_setoptions(ndev, lp->options &
1329 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1330 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1331 	axienet_mdio_wait_until_ready(lp);
1332 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1333 	 * When we do an Axi Ethernet reset, it resets the complete core
1334 	 * including the MDIO. So if MDIO is not disabled when the reset
1335 	 * process is started, MDIO will be broken afterwards.
1336 	 */
1337 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1338 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1339 
1340 	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1341 	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1342 
1343 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1344 	axienet_mdio_wait_until_ready(lp);
1345 
1346 	for (i = 0; i < TX_BD_NUM; i++) {
1347 		cur_p = &lp->tx_bd_v[i];
1348 		if (cur_p->phys)
1349 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1350 					 (cur_p->cntrl &
1351 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1352 					 DMA_TO_DEVICE);
1353 		if (cur_p->app4)
1354 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1355 		cur_p->phys = 0;
1356 		cur_p->cntrl = 0;
1357 		cur_p->status = 0;
1358 		cur_p->app0 = 0;
1359 		cur_p->app1 = 0;
1360 		cur_p->app2 = 0;
1361 		cur_p->app3 = 0;
1362 		cur_p->app4 = 0;
1363 		cur_p->sw_id_offset = 0;
1364 	}
1365 
1366 	for (i = 0; i < RX_BD_NUM; i++) {
1367 		cur_p = &lp->rx_bd_v[i];
1368 		cur_p->status = 0;
1369 		cur_p->app0 = 0;
1370 		cur_p->app1 = 0;
1371 		cur_p->app2 = 0;
1372 		cur_p->app3 = 0;
1373 		cur_p->app4 = 0;
1374 	}
1375 
1376 	lp->tx_bd_ci = 0;
1377 	lp->tx_bd_tail = 0;
1378 	lp->rx_bd_ci = 0;
1379 
1380 	/* Start updating the Rx channel control register */
1381 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1382 	/* Update the interrupt coalesce count */
1383 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1384 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1385 	/* Update the delay timer count */
1386 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1387 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1388 	/* Enable coalesce, delay timer and error interrupts */
1389 	cr |= XAXIDMA_IRQ_ALL_MASK;
1390 	/* Finally write to the Rx channel control register */
1391 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1392 
1393 	/* Start updating the Tx channel control register */
1394 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1395 	/* Update the interrupt coalesce count */
1396 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1397 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1398 	/* Update the delay timer count */
1399 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1400 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1401 	/* Enable coalesce, delay timer and error interrupts */
1402 	cr |= XAXIDMA_IRQ_ALL_MASK;
1403 	/* Finally write to the Tx channel control register */
1404 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1405 
1406 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1407 	 * halted state. This will make the Rx side ready for reception.
1408 	 */
1409 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1410 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1411 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1412 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1413 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1414 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1415 
1416 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1417 	 * Tx channel is now ready to run. But only after we write to the
1418 	 * tail pointer register that the Tx channel will start transmitting
1419 	 */
1420 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1421 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1422 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1423 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1424 
1425 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1426 	axienet_status &= ~XAE_RCW1_RX_MASK;
1427 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1428 
1429 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1430 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1431 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1432 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1433 
1434 	/* Sync default options with HW but leave receiver and
1435 	 * transmitter disabled.
1436 	 */
1437 	axienet_setoptions(ndev, lp->options &
1438 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1439 	axienet_set_mac_address(ndev, NULL);
1440 	axienet_set_multicast_list(ndev);
1441 	axienet_setoptions(ndev, lp->options);
1442 }
1443 
1444 /**
1445  * axienet_probe - Axi Ethernet probe function.
1446  * @pdev:	Pointer to platform device structure.
1447  *
1448  * Return: 0, on success
1449  *	    Non-zero error value on failure.
1450  *
1451  * This is the probe routine for Axi Ethernet driver. This is called before
1452  * any other driver routines are invoked. It allocates and sets up the Ethernet
1453  * device. Parses through device tree and populates fields of
1454  * axienet_local. It registers the Ethernet device.
1455  */
1456 static int axienet_probe(struct platform_device *pdev)
1457 {
1458 	int ret;
1459 	struct device_node *np;
1460 	struct axienet_local *lp;
1461 	struct net_device *ndev;
1462 	u8 mac_addr[6];
1463 	struct resource *ethres, dmares;
1464 	u32 value;
1465 
1466 	ndev = alloc_etherdev(sizeof(*lp));
1467 	if (!ndev)
1468 		return -ENOMEM;
1469 
1470 	platform_set_drvdata(pdev, ndev);
1471 
1472 	SET_NETDEV_DEV(ndev, &pdev->dev);
1473 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1474 	ndev->features = NETIF_F_SG;
1475 	ndev->netdev_ops = &axienet_netdev_ops;
1476 	ndev->ethtool_ops = &axienet_ethtool_ops;
1477 
1478 	lp = netdev_priv(ndev);
1479 	lp->ndev = ndev;
1480 	lp->dev = &pdev->dev;
1481 	lp->options = XAE_OPTION_DEFAULTS;
1482 	/* Map device registers */
1483 	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1484 	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1485 	if (IS_ERR(lp->regs)) {
1486 		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1487 		ret = PTR_ERR(lp->regs);
1488 		goto free_netdev;
1489 	}
1490 
1491 	/* Setup checksum offload, but default to off if not specified */
1492 	lp->features = 0;
1493 
1494 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1495 	if (!ret) {
1496 		switch (value) {
1497 		case 1:
1498 			lp->csum_offload_on_tx_path =
1499 				XAE_FEATURE_PARTIAL_TX_CSUM;
1500 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1501 			/* Can checksum TCP/UDP over IPv4. */
1502 			ndev->features |= NETIF_F_IP_CSUM;
1503 			break;
1504 		case 2:
1505 			lp->csum_offload_on_tx_path =
1506 				XAE_FEATURE_FULL_TX_CSUM;
1507 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1508 			/* Can checksum TCP/UDP over IPv4. */
1509 			ndev->features |= NETIF_F_IP_CSUM;
1510 			break;
1511 		default:
1512 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1513 		}
1514 	}
1515 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1516 	if (!ret) {
1517 		switch (value) {
1518 		case 1:
1519 			lp->csum_offload_on_rx_path =
1520 				XAE_FEATURE_PARTIAL_RX_CSUM;
1521 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1522 			break;
1523 		case 2:
1524 			lp->csum_offload_on_rx_path =
1525 				XAE_FEATURE_FULL_RX_CSUM;
1526 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1527 			break;
1528 		default:
1529 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1530 		}
1531 	}
1532 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1533 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1534 	 * we can enable jumbo option and start supporting jumbo frames.
1535 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1536 	 * the device-tree and accordingly set flags.
1537 	 */
1538 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1539 	of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1540 
1541 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1542 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1543 	if (!np) {
1544 		dev_err(&pdev->dev, "could not find DMA node\n");
1545 		ret = -ENODEV;
1546 		goto free_netdev;
1547 	}
1548 	ret = of_address_to_resource(np, 0, &dmares);
1549 	if (ret) {
1550 		dev_err(&pdev->dev, "unable to get DMA resource\n");
1551 		goto free_netdev;
1552 	}
1553 	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1554 	if (IS_ERR(lp->dma_regs)) {
1555 		dev_err(&pdev->dev, "could not map DMA regs\n");
1556 		ret = PTR_ERR(lp->dma_regs);
1557 		goto free_netdev;
1558 	}
1559 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1560 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1561 	of_node_put(np);
1562 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1563 		dev_err(&pdev->dev, "could not determine irqs\n");
1564 		ret = -ENOMEM;
1565 		goto free_netdev;
1566 	}
1567 
1568 	/* Retrieve the MAC address */
1569 	ret = of_property_read_u8_array(pdev->dev.of_node,
1570 					"local-mac-address", mac_addr, 6);
1571 	if (ret) {
1572 		dev_err(&pdev->dev, "could not find MAC address\n");
1573 		goto free_netdev;
1574 	}
1575 	axienet_set_mac_address(ndev, (void *)mac_addr);
1576 
1577 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1578 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1579 
1580 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1581 	if (lp->phy_node) {
1582 		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1583 		if (ret)
1584 			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1585 	}
1586 
1587 	ret = register_netdev(lp->ndev);
1588 	if (ret) {
1589 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1590 		goto free_netdev;
1591 	}
1592 
1593 	return 0;
1594 
1595 free_netdev:
1596 	free_netdev(ndev);
1597 
1598 	return ret;
1599 }
1600 
1601 static int axienet_remove(struct platform_device *pdev)
1602 {
1603 	struct net_device *ndev = platform_get_drvdata(pdev);
1604 	struct axienet_local *lp = netdev_priv(ndev);
1605 
1606 	axienet_mdio_teardown(lp);
1607 	unregister_netdev(ndev);
1608 
1609 	of_node_put(lp->phy_node);
1610 	lp->phy_node = NULL;
1611 
1612 	free_netdev(ndev);
1613 
1614 	return 0;
1615 }
1616 
1617 static struct platform_driver axienet_driver = {
1618 	.probe = axienet_probe,
1619 	.remove = axienet_remove,
1620 	.driver = {
1621 		 .name = "xilinx_axienet",
1622 		 .of_match_table = axienet_of_match,
1623 	},
1624 };
1625 
1626 module_platform_driver(axienet_driver);
1627 
1628 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1629 MODULE_AUTHOR("Xilinx");
1630 MODULE_LICENSE("GPL");
1631