1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/math64.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 
41 #include "xilinx_axienet.h"
42 
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT		128
45 #define RX_BD_NUM_DEFAULT		1024
46 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
47 #define TX_BD_NUM_MAX			4096
48 #define RX_BD_NUM_MAX			4096
49 
50 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51 #define DRIVER_NAME		"xaxienet"
52 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
53 #define DRIVER_VERSION		"1.00a"
54 
55 #define AXIENET_REGS_N		40
56 
57 /* Match table for of_platform binding */
58 static const struct of_device_id axienet_of_match[] = {
59 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
60 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
61 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
62 	{},
63 };
64 
65 MODULE_DEVICE_TABLE(of, axienet_of_match);
66 
67 /* Option table for setting up Axi Ethernet hardware options */
68 static struct axienet_option axienet_options[] = {
69 	/* Turn on jumbo packet support for both Rx and Tx */
70 	{
71 		.opt = XAE_OPTION_JUMBO,
72 		.reg = XAE_TC_OFFSET,
73 		.m_or = XAE_TC_JUM_MASK,
74 	}, {
75 		.opt = XAE_OPTION_JUMBO,
76 		.reg = XAE_RCW1_OFFSET,
77 		.m_or = XAE_RCW1_JUM_MASK,
78 	}, { /* Turn on VLAN packet support for both Rx and Tx */
79 		.opt = XAE_OPTION_VLAN,
80 		.reg = XAE_TC_OFFSET,
81 		.m_or = XAE_TC_VLAN_MASK,
82 	}, {
83 		.opt = XAE_OPTION_VLAN,
84 		.reg = XAE_RCW1_OFFSET,
85 		.m_or = XAE_RCW1_VLAN_MASK,
86 	}, { /* Turn on FCS stripping on receive packets */
87 		.opt = XAE_OPTION_FCS_STRIP,
88 		.reg = XAE_RCW1_OFFSET,
89 		.m_or = XAE_RCW1_FCS_MASK,
90 	}, { /* Turn on FCS insertion on transmit packets */
91 		.opt = XAE_OPTION_FCS_INSERT,
92 		.reg = XAE_TC_OFFSET,
93 		.m_or = XAE_TC_FCS_MASK,
94 	}, { /* Turn off length/type field checking on receive packets */
95 		.opt = XAE_OPTION_LENTYPE_ERR,
96 		.reg = XAE_RCW1_OFFSET,
97 		.m_or = XAE_RCW1_LT_DIS_MASK,
98 	}, { /* Turn on Rx flow control */
99 		.opt = XAE_OPTION_FLOW_CONTROL,
100 		.reg = XAE_FCC_OFFSET,
101 		.m_or = XAE_FCC_FCRX_MASK,
102 	}, { /* Turn on Tx flow control */
103 		.opt = XAE_OPTION_FLOW_CONTROL,
104 		.reg = XAE_FCC_OFFSET,
105 		.m_or = XAE_FCC_FCTX_MASK,
106 	}, { /* Turn on promiscuous frame filtering */
107 		.opt = XAE_OPTION_PROMISC,
108 		.reg = XAE_FMI_OFFSET,
109 		.m_or = XAE_FMI_PM_MASK,
110 	}, { /* Enable transmitter */
111 		.opt = XAE_OPTION_TXEN,
112 		.reg = XAE_TC_OFFSET,
113 		.m_or = XAE_TC_TX_MASK,
114 	}, { /* Enable receiver */
115 		.opt = XAE_OPTION_RXEN,
116 		.reg = XAE_RCW1_OFFSET,
117 		.m_or = XAE_RCW1_RX_MASK,
118 	},
119 	{}
120 };
121 
122 /**
123  * axienet_dma_in32 - Memory mapped Axi DMA register read
124  * @lp:		Pointer to axienet local structure
125  * @reg:	Address offset from the base address of the Axi DMA core
126  *
127  * Return: The contents of the Axi DMA register
128  *
129  * This function returns the contents of the corresponding Axi DMA register.
130  */
131 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132 {
133 	return ioread32(lp->dma_regs + reg);
134 }
135 
136 /**
137  * axienet_dma_out32 - Memory mapped Axi DMA register write.
138  * @lp:		Pointer to axienet local structure
139  * @reg:	Address offset from the base address of the Axi DMA core
140  * @value:	Value to be written into the Axi DMA register
141  *
142  * This function writes the desired value into the corresponding Axi DMA
143  * register.
144  */
145 static inline void axienet_dma_out32(struct axienet_local *lp,
146 				     off_t reg, u32 value)
147 {
148 	iowrite32(value, lp->dma_regs + reg);
149 }
150 
151 static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
152 				 dma_addr_t addr)
153 {
154 	axienet_dma_out32(lp, reg, lower_32_bits(addr));
155 
156 	if (lp->features & XAE_FEATURE_DMA_64BIT)
157 		axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
158 }
159 
160 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
161 			       struct axidma_bd *desc)
162 {
163 	desc->phys = lower_32_bits(addr);
164 	if (lp->features & XAE_FEATURE_DMA_64BIT)
165 		desc->phys_msb = upper_32_bits(addr);
166 }
167 
168 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
169 				     struct axidma_bd *desc)
170 {
171 	dma_addr_t ret = desc->phys;
172 
173 	if (lp->features & XAE_FEATURE_DMA_64BIT)
174 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
175 
176 	return ret;
177 }
178 
179 /**
180  * axienet_dma_bd_release - Release buffer descriptor rings
181  * @ndev:	Pointer to the net_device structure
182  *
183  * This function is used to release the descriptors allocated in
184  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
185  * driver stop api is called.
186  */
187 static void axienet_dma_bd_release(struct net_device *ndev)
188 {
189 	int i;
190 	struct axienet_local *lp = netdev_priv(ndev);
191 
192 	/* If we end up here, tx_bd_v must have been DMA allocated. */
193 	dma_free_coherent(lp->dev,
194 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
195 			  lp->tx_bd_v,
196 			  lp->tx_bd_p);
197 
198 	if (!lp->rx_bd_v)
199 		return;
200 
201 	for (i = 0; i < lp->rx_bd_num; i++) {
202 		dma_addr_t phys;
203 
204 		/* A NULL skb means this descriptor has not been initialised
205 		 * at all.
206 		 */
207 		if (!lp->rx_bd_v[i].skb)
208 			break;
209 
210 		dev_kfree_skb(lp->rx_bd_v[i].skb);
211 
212 		/* For each descriptor, we programmed cntrl with the (non-zero)
213 		 * descriptor size, after it had been successfully allocated.
214 		 * So a non-zero value in there means we need to unmap it.
215 		 */
216 		if (lp->rx_bd_v[i].cntrl) {
217 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
218 			dma_unmap_single(lp->dev, phys,
219 					 lp->max_frm_size, DMA_FROM_DEVICE);
220 		}
221 	}
222 
223 	dma_free_coherent(lp->dev,
224 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
225 			  lp->rx_bd_v,
226 			  lp->rx_bd_p);
227 }
228 
229 /**
230  * axienet_usec_to_timer - Calculate IRQ delay timer value
231  * @lp:		Pointer to the axienet_local structure
232  * @coalesce_usec: Microseconds to convert into timer value
233  */
234 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
235 {
236 	u32 result;
237 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
238 
239 	if (lp->axi_clk)
240 		clk_rate = clk_get_rate(lp->axi_clk);
241 
242 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
243 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
244 					 (u64)125000000);
245 	if (result > 255)
246 		result = 255;
247 
248 	return result;
249 }
250 
251 /**
252  * axienet_dma_start - Set up DMA registers and start DMA operation
253  * @lp:		Pointer to the axienet_local structure
254  */
255 static void axienet_dma_start(struct axienet_local *lp)
256 {
257 	/* Start updating the Rx channel control register */
258 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
259 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
260 	/* Only set interrupt delay timer if not generating an interrupt on
261 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
262 	 */
263 	if (lp->coalesce_count_rx > 1)
264 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
265 					<< XAXIDMA_DELAY_SHIFT) |
266 				 XAXIDMA_IRQ_DELAY_MASK;
267 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
268 
269 	/* Start updating the Tx channel control register */
270 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
271 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
272 	/* Only set interrupt delay timer if not generating an interrupt on
273 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
274 	 */
275 	if (lp->coalesce_count_tx > 1)
276 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
277 					<< XAXIDMA_DELAY_SHIFT) |
278 				 XAXIDMA_IRQ_DELAY_MASK;
279 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
280 
281 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
282 	 * halted state. This will make the Rx side ready for reception.
283 	 */
284 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
285 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
286 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
287 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
288 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
289 
290 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
291 	 * Tx channel is now ready to run. But only after we write to the
292 	 * tail pointer register that the Tx channel will start transmitting.
293 	 */
294 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
295 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
296 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
297 }
298 
299 /**
300  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
301  * @ndev:	Pointer to the net_device structure
302  *
303  * Return: 0, on success -ENOMEM, on failure
304  *
305  * This function is called to initialize the Rx and Tx DMA descriptor
306  * rings. This initializes the descriptors with required default values
307  * and is called when Axi Ethernet driver reset is called.
308  */
309 static int axienet_dma_bd_init(struct net_device *ndev)
310 {
311 	int i;
312 	struct sk_buff *skb;
313 	struct axienet_local *lp = netdev_priv(ndev);
314 
315 	/* Reset the indexes which are used for accessing the BDs */
316 	lp->tx_bd_ci = 0;
317 	lp->tx_bd_tail = 0;
318 	lp->rx_bd_ci = 0;
319 
320 	/* Allocate the Tx and Rx buffer descriptors. */
321 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
322 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
323 					 &lp->tx_bd_p, GFP_KERNEL);
324 	if (!lp->tx_bd_v)
325 		return -ENOMEM;
326 
327 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
328 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
329 					 &lp->rx_bd_p, GFP_KERNEL);
330 	if (!lp->rx_bd_v)
331 		goto out;
332 
333 	for (i = 0; i < lp->tx_bd_num; i++) {
334 		dma_addr_t addr = lp->tx_bd_p +
335 				  sizeof(*lp->tx_bd_v) *
336 				  ((i + 1) % lp->tx_bd_num);
337 
338 		lp->tx_bd_v[i].next = lower_32_bits(addr);
339 		if (lp->features & XAE_FEATURE_DMA_64BIT)
340 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
341 	}
342 
343 	for (i = 0; i < lp->rx_bd_num; i++) {
344 		dma_addr_t addr;
345 
346 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
347 			((i + 1) % lp->rx_bd_num);
348 		lp->rx_bd_v[i].next = lower_32_bits(addr);
349 		if (lp->features & XAE_FEATURE_DMA_64BIT)
350 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
351 
352 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
353 		if (!skb)
354 			goto out;
355 
356 		lp->rx_bd_v[i].skb = skb;
357 		addr = dma_map_single(lp->dev, skb->data,
358 				      lp->max_frm_size, DMA_FROM_DEVICE);
359 		if (dma_mapping_error(lp->dev, addr)) {
360 			netdev_err(ndev, "DMA mapping error\n");
361 			goto out;
362 		}
363 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
364 
365 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
366 	}
367 
368 	axienet_dma_start(lp);
369 
370 	return 0;
371 out:
372 	axienet_dma_bd_release(ndev);
373 	return -ENOMEM;
374 }
375 
376 /**
377  * axienet_set_mac_address - Write the MAC address
378  * @ndev:	Pointer to the net_device structure
379  * @address:	6 byte Address to be written as MAC address
380  *
381  * This function is called to initialize the MAC address of the Axi Ethernet
382  * core. It writes to the UAW0 and UAW1 registers of the core.
383  */
384 static void axienet_set_mac_address(struct net_device *ndev,
385 				    const void *address)
386 {
387 	struct axienet_local *lp = netdev_priv(ndev);
388 
389 	if (address)
390 		eth_hw_addr_set(ndev, address);
391 	if (!is_valid_ether_addr(ndev->dev_addr))
392 		eth_hw_addr_random(ndev);
393 
394 	/* Set up unicast MAC address filter set its mac address */
395 	axienet_iow(lp, XAE_UAW0_OFFSET,
396 		    (ndev->dev_addr[0]) |
397 		    (ndev->dev_addr[1] << 8) |
398 		    (ndev->dev_addr[2] << 16) |
399 		    (ndev->dev_addr[3] << 24));
400 	axienet_iow(lp, XAE_UAW1_OFFSET,
401 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
402 		      ~XAE_UAW1_UNICASTADDR_MASK) |
403 		     (ndev->dev_addr[4] |
404 		     (ndev->dev_addr[5] << 8))));
405 }
406 
407 /**
408  * netdev_set_mac_address - Write the MAC address (from outside the driver)
409  * @ndev:	Pointer to the net_device structure
410  * @p:		6 byte Address to be written as MAC address
411  *
412  * Return: 0 for all conditions. Presently, there is no failure case.
413  *
414  * This function is called to initialize the MAC address of the Axi Ethernet
415  * core. It calls the core specific axienet_set_mac_address. This is the
416  * function that goes into net_device_ops structure entry ndo_set_mac_address.
417  */
418 static int netdev_set_mac_address(struct net_device *ndev, void *p)
419 {
420 	struct sockaddr *addr = p;
421 	axienet_set_mac_address(ndev, addr->sa_data);
422 	return 0;
423 }
424 
425 /**
426  * axienet_set_multicast_list - Prepare the multicast table
427  * @ndev:	Pointer to the net_device structure
428  *
429  * This function is called to initialize the multicast table during
430  * initialization. The Axi Ethernet basic multicast support has a four-entry
431  * multicast table which is initialized here. Additionally this function
432  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
433  * means whenever the multicast table entries need to be updated this
434  * function gets called.
435  */
436 static void axienet_set_multicast_list(struct net_device *ndev)
437 {
438 	int i;
439 	u32 reg, af0reg, af1reg;
440 	struct axienet_local *lp = netdev_priv(ndev);
441 
442 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
443 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
444 		/* We must make the kernel realize we had to move into
445 		 * promiscuous mode. If it was a promiscuous mode request
446 		 * the flag is already set. If not we set it.
447 		 */
448 		ndev->flags |= IFF_PROMISC;
449 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
450 		reg |= XAE_FMI_PM_MASK;
451 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
452 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
453 	} else if (!netdev_mc_empty(ndev)) {
454 		struct netdev_hw_addr *ha;
455 
456 		i = 0;
457 		netdev_for_each_mc_addr(ha, ndev) {
458 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
459 				break;
460 
461 			af0reg = (ha->addr[0]);
462 			af0reg |= (ha->addr[1] << 8);
463 			af0reg |= (ha->addr[2] << 16);
464 			af0reg |= (ha->addr[3] << 24);
465 
466 			af1reg = (ha->addr[4]);
467 			af1reg |= (ha->addr[5] << 8);
468 
469 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
470 			reg |= i;
471 
472 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
473 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
474 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
475 			i++;
476 		}
477 	} else {
478 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
479 		reg &= ~XAE_FMI_PM_MASK;
480 
481 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
482 
483 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
484 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
485 			reg |= i;
486 
487 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
488 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
489 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
490 		}
491 
492 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
493 	}
494 }
495 
496 /**
497  * axienet_setoptions - Set an Axi Ethernet option
498  * @ndev:	Pointer to the net_device structure
499  * @options:	Option to be enabled/disabled
500  *
501  * The Axi Ethernet core has multiple features which can be selectively turned
502  * on or off. The typical options could be jumbo frame option, basic VLAN
503  * option, promiscuous mode option etc. This function is used to set or clear
504  * these options in the Axi Ethernet hardware. This is done through
505  * axienet_option structure .
506  */
507 static void axienet_setoptions(struct net_device *ndev, u32 options)
508 {
509 	int reg;
510 	struct axienet_local *lp = netdev_priv(ndev);
511 	struct axienet_option *tp = &axienet_options[0];
512 
513 	while (tp->opt) {
514 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
515 		if (options & tp->opt)
516 			reg |= tp->m_or;
517 		axienet_iow(lp, tp->reg, reg);
518 		tp++;
519 	}
520 
521 	lp->options |= options;
522 }
523 
524 static int __axienet_device_reset(struct axienet_local *lp)
525 {
526 	u32 value;
527 	int ret;
528 
529 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
530 	 * process of Axi DMA takes a while to complete as all pending
531 	 * commands/transfers will be flushed or completed during this
532 	 * reset process.
533 	 * Note that even though both TX and RX have their own reset register,
534 	 * they both reset the entire DMA core, so only one needs to be used.
535 	 */
536 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
537 	ret = read_poll_timeout(axienet_dma_in32, value,
538 				!(value & XAXIDMA_CR_RESET_MASK),
539 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
540 				XAXIDMA_TX_CR_OFFSET);
541 	if (ret) {
542 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
543 		return ret;
544 	}
545 
546 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
547 	ret = read_poll_timeout(axienet_ior, value,
548 				value & XAE_INT_PHYRSTCMPLT_MASK,
549 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
550 				XAE_IS_OFFSET);
551 	if (ret) {
552 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
553 		return ret;
554 	}
555 
556 	return 0;
557 }
558 
559 /**
560  * axienet_dma_stop - Stop DMA operation
561  * @lp:		Pointer to the axienet_local structure
562  */
563 static void axienet_dma_stop(struct axienet_local *lp)
564 {
565 	int count;
566 	u32 cr, sr;
567 
568 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
569 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
570 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
571 	synchronize_irq(lp->rx_irq);
572 
573 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
574 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
575 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
576 	synchronize_irq(lp->tx_irq);
577 
578 	/* Give DMAs a chance to halt gracefully */
579 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
580 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
581 		msleep(20);
582 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
583 	}
584 
585 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
586 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
587 		msleep(20);
588 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
589 	}
590 
591 	/* Do a reset to ensure DMA is really stopped */
592 	axienet_lock_mii(lp);
593 	__axienet_device_reset(lp);
594 	axienet_unlock_mii(lp);
595 }
596 
597 /**
598  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
599  * @ndev:	Pointer to the net_device structure
600  *
601  * This function is called to reset and initialize the Axi Ethernet core. This
602  * is typically called during initialization. It does a reset of the Axi DMA
603  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
604  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
605  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
606  * core.
607  * Returns 0 on success or a negative error number otherwise.
608  */
609 static int axienet_device_reset(struct net_device *ndev)
610 {
611 	u32 axienet_status;
612 	struct axienet_local *lp = netdev_priv(ndev);
613 	int ret;
614 
615 	ret = __axienet_device_reset(lp);
616 	if (ret)
617 		return ret;
618 
619 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
620 	lp->options |= XAE_OPTION_VLAN;
621 	lp->options &= (~XAE_OPTION_JUMBO);
622 
623 	if ((ndev->mtu > XAE_MTU) &&
624 		(ndev->mtu <= XAE_JUMBO_MTU)) {
625 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
626 					XAE_TRL_SIZE;
627 
628 		if (lp->max_frm_size <= lp->rxmem)
629 			lp->options |= XAE_OPTION_JUMBO;
630 	}
631 
632 	ret = axienet_dma_bd_init(ndev);
633 	if (ret) {
634 		netdev_err(ndev, "%s: descriptor allocation failed\n",
635 			   __func__);
636 		return ret;
637 	}
638 
639 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
640 	axienet_status &= ~XAE_RCW1_RX_MASK;
641 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
642 
643 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
644 	if (axienet_status & XAE_INT_RXRJECT_MASK)
645 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
646 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
647 		    XAE_INT_RECV_ERROR_MASK : 0);
648 
649 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
650 
651 	/* Sync default options with HW but leave receiver and
652 	 * transmitter disabled.
653 	 */
654 	axienet_setoptions(ndev, lp->options &
655 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
656 	axienet_set_mac_address(ndev, NULL);
657 	axienet_set_multicast_list(ndev);
658 	axienet_setoptions(ndev, lp->options);
659 
660 	netif_trans_update(ndev);
661 
662 	return 0;
663 }
664 
665 /**
666  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
667  * @lp:		Pointer to the axienet_local structure
668  * @first_bd:	Index of first descriptor to clean up
669  * @nr_bds:	Max number of descriptors to clean up
670  * @force:	Whether to clean descriptors even if not complete
671  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
672  * 		in all cleaned-up descriptors. Ignored if NULL.
673  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
674  *
675  * Would either be called after a successful transmit operation, or after
676  * there was an error when setting up the chain.
677  * Returns the number of descriptors handled.
678  */
679 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
680 				 int nr_bds, bool force, u32 *sizep, int budget)
681 {
682 	struct axidma_bd *cur_p;
683 	unsigned int status;
684 	dma_addr_t phys;
685 	int i;
686 
687 	for (i = 0; i < nr_bds; i++) {
688 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
689 		status = cur_p->status;
690 
691 		/* If force is not specified, clean up only descriptors
692 		 * that have been completed by the MAC.
693 		 */
694 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
695 			break;
696 
697 		/* Ensure we see complete descriptor update */
698 		dma_rmb();
699 		phys = desc_get_phys_addr(lp, cur_p);
700 		dma_unmap_single(lp->dev, phys,
701 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
702 				 DMA_TO_DEVICE);
703 
704 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
705 			napi_consume_skb(cur_p->skb, budget);
706 
707 		cur_p->app0 = 0;
708 		cur_p->app1 = 0;
709 		cur_p->app2 = 0;
710 		cur_p->app4 = 0;
711 		cur_p->skb = NULL;
712 		/* ensure our transmit path and device don't prematurely see status cleared */
713 		wmb();
714 		cur_p->cntrl = 0;
715 		cur_p->status = 0;
716 
717 		if (sizep)
718 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
719 	}
720 
721 	return i;
722 }
723 
724 /**
725  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
726  * @lp:		Pointer to the axienet_local structure
727  * @num_frag:	The number of BDs to check for
728  *
729  * Return: 0, on success
730  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
731  *
732  * This function is invoked before BDs are allocated and transmission starts.
733  * This function returns 0 if a BD or group of BDs can be allocated for
734  * transmission. If the BD or any of the BDs are not free the function
735  * returns a busy status.
736  */
737 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
738 					    int num_frag)
739 {
740 	struct axidma_bd *cur_p;
741 
742 	/* Ensure we see all descriptor updates from device or TX polling */
743 	rmb();
744 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
745 			     lp->tx_bd_num];
746 	if (cur_p->cntrl)
747 		return NETDEV_TX_BUSY;
748 	return 0;
749 }
750 
751 /**
752  * axienet_tx_poll - Invoked once a transmit is completed by the
753  * Axi DMA Tx channel.
754  * @napi:	Pointer to NAPI structure.
755  * @budget:	Max number of TX packets to process.
756  *
757  * Return: Number of TX packets processed.
758  *
759  * This function is invoked from the NAPI processing to notify the completion
760  * of transmit operation. It clears fields in the corresponding Tx BDs and
761  * unmaps the corresponding buffer so that CPU can regain ownership of the
762  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
763  * required.
764  */
765 static int axienet_tx_poll(struct napi_struct *napi, int budget)
766 {
767 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
768 	struct net_device *ndev = lp->ndev;
769 	u32 size = 0;
770 	int packets;
771 
772 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
773 
774 	if (packets) {
775 		lp->tx_bd_ci += packets;
776 		if (lp->tx_bd_ci >= lp->tx_bd_num)
777 			lp->tx_bd_ci %= lp->tx_bd_num;
778 
779 		ndev->stats.tx_packets += packets;
780 		ndev->stats.tx_bytes += size;
781 
782 		/* Matches barrier in axienet_start_xmit */
783 		smp_mb();
784 
785 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
786 			netif_wake_queue(ndev);
787 	}
788 
789 	if (packets < budget && napi_complete_done(napi, packets)) {
790 		/* Re-enable TX completion interrupts. This should
791 		 * cause an immediate interrupt if any TX packets are
792 		 * already pending.
793 		 */
794 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
795 	}
796 	return packets;
797 }
798 
799 /**
800  * axienet_start_xmit - Starts the transmission.
801  * @skb:	sk_buff pointer that contains data to be Txed.
802  * @ndev:	Pointer to net_device structure.
803  *
804  * Return: NETDEV_TX_OK, on success
805  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
806  *
807  * This function is invoked from upper layers to initiate transmission. The
808  * function uses the next available free BDs and populates their fields to
809  * start the transmission. Additionally if checksum offloading is supported,
810  * it populates AXI Stream Control fields with appropriate values.
811  */
812 static netdev_tx_t
813 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
814 {
815 	u32 ii;
816 	u32 num_frag;
817 	u32 csum_start_off;
818 	u32 csum_index_off;
819 	skb_frag_t *frag;
820 	dma_addr_t tail_p, phys;
821 	u32 orig_tail_ptr, new_tail_ptr;
822 	struct axienet_local *lp = netdev_priv(ndev);
823 	struct axidma_bd *cur_p;
824 
825 	orig_tail_ptr = lp->tx_bd_tail;
826 	new_tail_ptr = orig_tail_ptr;
827 
828 	num_frag = skb_shinfo(skb)->nr_frags;
829 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
830 
831 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
832 		/* Should not happen as last start_xmit call should have
833 		 * checked for sufficient space and queue should only be
834 		 * woken when sufficient space is available.
835 		 */
836 		netif_stop_queue(ndev);
837 		if (net_ratelimit())
838 			netdev_warn(ndev, "TX ring unexpectedly full\n");
839 		return NETDEV_TX_BUSY;
840 	}
841 
842 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
843 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
844 			/* Tx Full Checksum Offload Enabled */
845 			cur_p->app0 |= 2;
846 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
847 			csum_start_off = skb_transport_offset(skb);
848 			csum_index_off = csum_start_off + skb->csum_offset;
849 			/* Tx Partial Checksum Offload Enabled */
850 			cur_p->app0 |= 1;
851 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
852 		}
853 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
854 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
855 	}
856 
857 	phys = dma_map_single(lp->dev, skb->data,
858 			      skb_headlen(skb), DMA_TO_DEVICE);
859 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
860 		if (net_ratelimit())
861 			netdev_err(ndev, "TX DMA mapping error\n");
862 		ndev->stats.tx_dropped++;
863 		return NETDEV_TX_OK;
864 	}
865 	desc_set_phys_addr(lp, phys, cur_p);
866 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
867 
868 	for (ii = 0; ii < num_frag; ii++) {
869 		if (++new_tail_ptr >= lp->tx_bd_num)
870 			new_tail_ptr = 0;
871 		cur_p = &lp->tx_bd_v[new_tail_ptr];
872 		frag = &skb_shinfo(skb)->frags[ii];
873 		phys = dma_map_single(lp->dev,
874 				      skb_frag_address(frag),
875 				      skb_frag_size(frag),
876 				      DMA_TO_DEVICE);
877 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
878 			if (net_ratelimit())
879 				netdev_err(ndev, "TX DMA mapping error\n");
880 			ndev->stats.tx_dropped++;
881 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
882 					      true, NULL, 0);
883 			return NETDEV_TX_OK;
884 		}
885 		desc_set_phys_addr(lp, phys, cur_p);
886 		cur_p->cntrl = skb_frag_size(frag);
887 	}
888 
889 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
890 	cur_p->skb = skb;
891 
892 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
893 	if (++new_tail_ptr >= lp->tx_bd_num)
894 		new_tail_ptr = 0;
895 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
896 
897 	/* Start the transfer */
898 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
899 
900 	/* Stop queue if next transmit may not have space */
901 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
902 		netif_stop_queue(ndev);
903 
904 		/* Matches barrier in axienet_tx_poll */
905 		smp_mb();
906 
907 		/* Space might have just been freed - check again */
908 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
909 			netif_wake_queue(ndev);
910 	}
911 
912 	return NETDEV_TX_OK;
913 }
914 
915 /**
916  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
917  * @napi:	Pointer to NAPI structure.
918  * @budget:	Max number of RX packets to process.
919  *
920  * Return: Number of RX packets processed.
921  */
922 static int axienet_rx_poll(struct napi_struct *napi, int budget)
923 {
924 	u32 length;
925 	u32 csumstatus;
926 	u32 size = 0;
927 	int packets = 0;
928 	dma_addr_t tail_p = 0;
929 	struct axidma_bd *cur_p;
930 	struct sk_buff *skb, *new_skb;
931 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
932 
933 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
934 
935 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
936 		dma_addr_t phys;
937 
938 		/* Ensure we see complete descriptor update */
939 		dma_rmb();
940 
941 		skb = cur_p->skb;
942 		cur_p->skb = NULL;
943 
944 		/* skb could be NULL if a previous pass already received the
945 		 * packet for this slot in the ring, but failed to refill it
946 		 * with a newly allocated buffer. In this case, don't try to
947 		 * receive it again.
948 		 */
949 		if (likely(skb)) {
950 			length = cur_p->app4 & 0x0000FFFF;
951 
952 			phys = desc_get_phys_addr(lp, cur_p);
953 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
954 					 DMA_FROM_DEVICE);
955 
956 			skb_put(skb, length);
957 			skb->protocol = eth_type_trans(skb, lp->ndev);
958 			/*skb_checksum_none_assert(skb);*/
959 			skb->ip_summed = CHECKSUM_NONE;
960 
961 			/* if we're doing Rx csum offload, set it up */
962 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
963 				csumstatus = (cur_p->app2 &
964 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
965 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
966 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
967 					skb->ip_summed = CHECKSUM_UNNECESSARY;
968 				}
969 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
970 				   skb->protocol == htons(ETH_P_IP) &&
971 				   skb->len > 64) {
972 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
973 				skb->ip_summed = CHECKSUM_COMPLETE;
974 			}
975 
976 			napi_gro_receive(napi, skb);
977 
978 			size += length;
979 			packets++;
980 		}
981 
982 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
983 		if (!new_skb)
984 			break;
985 
986 		phys = dma_map_single(lp->dev, new_skb->data,
987 				      lp->max_frm_size,
988 				      DMA_FROM_DEVICE);
989 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
990 			if (net_ratelimit())
991 				netdev_err(lp->ndev, "RX DMA mapping error\n");
992 			dev_kfree_skb(new_skb);
993 			break;
994 		}
995 		desc_set_phys_addr(lp, phys, cur_p);
996 
997 		cur_p->cntrl = lp->max_frm_size;
998 		cur_p->status = 0;
999 		cur_p->skb = new_skb;
1000 
1001 		/* Only update tail_p to mark this slot as usable after it has
1002 		 * been successfully refilled.
1003 		 */
1004 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1005 
1006 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1007 			lp->rx_bd_ci = 0;
1008 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1009 	}
1010 
1011 	lp->ndev->stats.rx_packets += packets;
1012 	lp->ndev->stats.rx_bytes += size;
1013 
1014 	if (tail_p)
1015 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1016 
1017 	if (packets < budget && napi_complete_done(napi, packets)) {
1018 		/* Re-enable RX completion interrupts. This should
1019 		 * cause an immediate interrupt if any RX packets are
1020 		 * already pending.
1021 		 */
1022 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1023 	}
1024 	return packets;
1025 }
1026 
1027 /**
1028  * axienet_tx_irq - Tx Done Isr.
1029  * @irq:	irq number
1030  * @_ndev:	net_device pointer
1031  *
1032  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1033  *
1034  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1035  * TX BD processing.
1036  */
1037 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1038 {
1039 	unsigned int status;
1040 	struct net_device *ndev = _ndev;
1041 	struct axienet_local *lp = netdev_priv(ndev);
1042 
1043 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1044 
1045 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1046 		return IRQ_NONE;
1047 
1048 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1049 
1050 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1051 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1052 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1053 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1054 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1055 		schedule_work(&lp->dma_err_task);
1056 	} else {
1057 		/* Disable further TX completion interrupts and schedule
1058 		 * NAPI to handle the completions.
1059 		 */
1060 		u32 cr = lp->tx_dma_cr;
1061 
1062 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1063 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1064 
1065 		napi_schedule(&lp->napi_tx);
1066 	}
1067 
1068 	return IRQ_HANDLED;
1069 }
1070 
1071 /**
1072  * axienet_rx_irq - Rx Isr.
1073  * @irq:	irq number
1074  * @_ndev:	net_device pointer
1075  *
1076  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1077  *
1078  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1079  * processing.
1080  */
1081 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1082 {
1083 	unsigned int status;
1084 	struct net_device *ndev = _ndev;
1085 	struct axienet_local *lp = netdev_priv(ndev);
1086 
1087 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1088 
1089 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1090 		return IRQ_NONE;
1091 
1092 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1093 
1094 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1095 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1096 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1097 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1098 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1099 		schedule_work(&lp->dma_err_task);
1100 	} else {
1101 		/* Disable further RX completion interrupts and schedule
1102 		 * NAPI receive.
1103 		 */
1104 		u32 cr = lp->rx_dma_cr;
1105 
1106 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1107 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1108 
1109 		napi_schedule(&lp->napi_rx);
1110 	}
1111 
1112 	return IRQ_HANDLED;
1113 }
1114 
1115 /**
1116  * axienet_eth_irq - Ethernet core Isr.
1117  * @irq:	irq number
1118  * @_ndev:	net_device pointer
1119  *
1120  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1121  *
1122  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1123  */
1124 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1125 {
1126 	struct net_device *ndev = _ndev;
1127 	struct axienet_local *lp = netdev_priv(ndev);
1128 	unsigned int pending;
1129 
1130 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1131 	if (!pending)
1132 		return IRQ_NONE;
1133 
1134 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1135 		ndev->stats.rx_missed_errors++;
1136 
1137 	if (pending & XAE_INT_RXRJECT_MASK)
1138 		ndev->stats.rx_frame_errors++;
1139 
1140 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1141 	return IRQ_HANDLED;
1142 }
1143 
1144 static void axienet_dma_err_handler(struct work_struct *work);
1145 
1146 /**
1147  * axienet_open - Driver open routine.
1148  * @ndev:	Pointer to net_device structure
1149  *
1150  * Return: 0, on success.
1151  *	    non-zero error value on failure
1152  *
1153  * This is the driver open routine. It calls phylink_start to start the
1154  * PHY device.
1155  * It also allocates interrupt service routines, enables the interrupt lines
1156  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1157  * descriptors are initialized.
1158  */
1159 static int axienet_open(struct net_device *ndev)
1160 {
1161 	int ret;
1162 	struct axienet_local *lp = netdev_priv(ndev);
1163 
1164 	dev_dbg(&ndev->dev, "axienet_open()\n");
1165 
1166 	/* When we do an Axi Ethernet reset, it resets the complete core
1167 	 * including the MDIO. MDIO must be disabled before resetting.
1168 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1169 	 */
1170 	axienet_lock_mii(lp);
1171 	ret = axienet_device_reset(ndev);
1172 	axienet_unlock_mii(lp);
1173 
1174 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1175 	if (ret) {
1176 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1177 		return ret;
1178 	}
1179 
1180 	phylink_start(lp->phylink);
1181 
1182 	/* Enable worker thread for Axi DMA error handling */
1183 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1184 
1185 	napi_enable(&lp->napi_rx);
1186 	napi_enable(&lp->napi_tx);
1187 
1188 	/* Enable interrupts for Axi DMA Tx */
1189 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1190 			  ndev->name, ndev);
1191 	if (ret)
1192 		goto err_tx_irq;
1193 	/* Enable interrupts for Axi DMA Rx */
1194 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1195 			  ndev->name, ndev);
1196 	if (ret)
1197 		goto err_rx_irq;
1198 	/* Enable interrupts for Axi Ethernet core (if defined) */
1199 	if (lp->eth_irq > 0) {
1200 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1201 				  ndev->name, ndev);
1202 		if (ret)
1203 			goto err_eth_irq;
1204 	}
1205 
1206 	return 0;
1207 
1208 err_eth_irq:
1209 	free_irq(lp->rx_irq, ndev);
1210 err_rx_irq:
1211 	free_irq(lp->tx_irq, ndev);
1212 err_tx_irq:
1213 	napi_disable(&lp->napi_tx);
1214 	napi_disable(&lp->napi_rx);
1215 	phylink_stop(lp->phylink);
1216 	phylink_disconnect_phy(lp->phylink);
1217 	cancel_work_sync(&lp->dma_err_task);
1218 	dev_err(lp->dev, "request_irq() failed\n");
1219 	return ret;
1220 }
1221 
1222 /**
1223  * axienet_stop - Driver stop routine.
1224  * @ndev:	Pointer to net_device structure
1225  *
1226  * Return: 0, on success.
1227  *
1228  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1229  * device. It also removes the interrupt handlers and disables the interrupts.
1230  * The Axi DMA Tx/Rx BDs are released.
1231  */
1232 static int axienet_stop(struct net_device *ndev)
1233 {
1234 	struct axienet_local *lp = netdev_priv(ndev);
1235 
1236 	dev_dbg(&ndev->dev, "axienet_close()\n");
1237 
1238 	napi_disable(&lp->napi_tx);
1239 	napi_disable(&lp->napi_rx);
1240 
1241 	phylink_stop(lp->phylink);
1242 	phylink_disconnect_phy(lp->phylink);
1243 
1244 	axienet_setoptions(ndev, lp->options &
1245 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1246 
1247 	axienet_dma_stop(lp);
1248 
1249 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1250 
1251 	cancel_work_sync(&lp->dma_err_task);
1252 
1253 	if (lp->eth_irq > 0)
1254 		free_irq(lp->eth_irq, ndev);
1255 	free_irq(lp->tx_irq, ndev);
1256 	free_irq(lp->rx_irq, ndev);
1257 
1258 	axienet_dma_bd_release(ndev);
1259 	return 0;
1260 }
1261 
1262 /**
1263  * axienet_change_mtu - Driver change mtu routine.
1264  * @ndev:	Pointer to net_device structure
1265  * @new_mtu:	New mtu value to be applied
1266  *
1267  * Return: Always returns 0 (success).
1268  *
1269  * This is the change mtu driver routine. It checks if the Axi Ethernet
1270  * hardware supports jumbo frames before changing the mtu. This can be
1271  * called only when the device is not up.
1272  */
1273 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1274 {
1275 	struct axienet_local *lp = netdev_priv(ndev);
1276 
1277 	if (netif_running(ndev))
1278 		return -EBUSY;
1279 
1280 	if ((new_mtu + VLAN_ETH_HLEN +
1281 		XAE_TRL_SIZE) > lp->rxmem)
1282 		return -EINVAL;
1283 
1284 	ndev->mtu = new_mtu;
1285 
1286 	return 0;
1287 }
1288 
1289 #ifdef CONFIG_NET_POLL_CONTROLLER
1290 /**
1291  * axienet_poll_controller - Axi Ethernet poll mechanism.
1292  * @ndev:	Pointer to net_device structure
1293  *
1294  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1295  * to polling the ISRs and are enabled back after the polling is done.
1296  */
1297 static void axienet_poll_controller(struct net_device *ndev)
1298 {
1299 	struct axienet_local *lp = netdev_priv(ndev);
1300 	disable_irq(lp->tx_irq);
1301 	disable_irq(lp->rx_irq);
1302 	axienet_rx_irq(lp->tx_irq, ndev);
1303 	axienet_tx_irq(lp->rx_irq, ndev);
1304 	enable_irq(lp->tx_irq);
1305 	enable_irq(lp->rx_irq);
1306 }
1307 #endif
1308 
1309 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1310 {
1311 	struct axienet_local *lp = netdev_priv(dev);
1312 
1313 	if (!netif_running(dev))
1314 		return -EINVAL;
1315 
1316 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1317 }
1318 
1319 static const struct net_device_ops axienet_netdev_ops = {
1320 	.ndo_open = axienet_open,
1321 	.ndo_stop = axienet_stop,
1322 	.ndo_start_xmit = axienet_start_xmit,
1323 	.ndo_change_mtu	= axienet_change_mtu,
1324 	.ndo_set_mac_address = netdev_set_mac_address,
1325 	.ndo_validate_addr = eth_validate_addr,
1326 	.ndo_eth_ioctl = axienet_ioctl,
1327 	.ndo_set_rx_mode = axienet_set_multicast_list,
1328 #ifdef CONFIG_NET_POLL_CONTROLLER
1329 	.ndo_poll_controller = axienet_poll_controller,
1330 #endif
1331 };
1332 
1333 /**
1334  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1335  * @ndev:	Pointer to net_device structure
1336  * @ed:		Pointer to ethtool_drvinfo structure
1337  *
1338  * This implements ethtool command for getting the driver information.
1339  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1340  */
1341 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1342 					 struct ethtool_drvinfo *ed)
1343 {
1344 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1345 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1346 }
1347 
1348 /**
1349  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1350  *				   AxiEthernet core.
1351  * @ndev:	Pointer to net_device structure
1352  *
1353  * This implements ethtool command for getting the total register length
1354  * information.
1355  *
1356  * Return: the total regs length
1357  */
1358 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1359 {
1360 	return sizeof(u32) * AXIENET_REGS_N;
1361 }
1362 
1363 /**
1364  * axienet_ethtools_get_regs - Dump the contents of all registers present
1365  *			       in AxiEthernet core.
1366  * @ndev:	Pointer to net_device structure
1367  * @regs:	Pointer to ethtool_regs structure
1368  * @ret:	Void pointer used to return the contents of the registers.
1369  *
1370  * This implements ethtool command for getting the Axi Ethernet register dump.
1371  * Issue "ethtool -d ethX" to execute this function.
1372  */
1373 static void axienet_ethtools_get_regs(struct net_device *ndev,
1374 				      struct ethtool_regs *regs, void *ret)
1375 {
1376 	u32 *data = (u32 *) ret;
1377 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1378 	struct axienet_local *lp = netdev_priv(ndev);
1379 
1380 	regs->version = 0;
1381 	regs->len = len;
1382 
1383 	memset(data, 0, len);
1384 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1385 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1386 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1387 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1388 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1389 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1390 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1391 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1392 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1393 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1394 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1395 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1396 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1397 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1398 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1399 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1400 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1401 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1402 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1403 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1404 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1405 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1406 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1407 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1408 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1409 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1410 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1411 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1412 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1413 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1414 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1415 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1416 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1417 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1418 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1419 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1420 }
1421 
1422 static void
1423 axienet_ethtools_get_ringparam(struct net_device *ndev,
1424 			       struct ethtool_ringparam *ering,
1425 			       struct kernel_ethtool_ringparam *kernel_ering,
1426 			       struct netlink_ext_ack *extack)
1427 {
1428 	struct axienet_local *lp = netdev_priv(ndev);
1429 
1430 	ering->rx_max_pending = RX_BD_NUM_MAX;
1431 	ering->rx_mini_max_pending = 0;
1432 	ering->rx_jumbo_max_pending = 0;
1433 	ering->tx_max_pending = TX_BD_NUM_MAX;
1434 	ering->rx_pending = lp->rx_bd_num;
1435 	ering->rx_mini_pending = 0;
1436 	ering->rx_jumbo_pending = 0;
1437 	ering->tx_pending = lp->tx_bd_num;
1438 }
1439 
1440 static int
1441 axienet_ethtools_set_ringparam(struct net_device *ndev,
1442 			       struct ethtool_ringparam *ering,
1443 			       struct kernel_ethtool_ringparam *kernel_ering,
1444 			       struct netlink_ext_ack *extack)
1445 {
1446 	struct axienet_local *lp = netdev_priv(ndev);
1447 
1448 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1449 	    ering->rx_mini_pending ||
1450 	    ering->rx_jumbo_pending ||
1451 	    ering->tx_pending < TX_BD_NUM_MIN ||
1452 	    ering->tx_pending > TX_BD_NUM_MAX)
1453 		return -EINVAL;
1454 
1455 	if (netif_running(ndev))
1456 		return -EBUSY;
1457 
1458 	lp->rx_bd_num = ering->rx_pending;
1459 	lp->tx_bd_num = ering->tx_pending;
1460 	return 0;
1461 }
1462 
1463 /**
1464  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1465  *				     Tx and Rx paths.
1466  * @ndev:	Pointer to net_device structure
1467  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1468  *
1469  * This implements ethtool command for getting axi ethernet pause frame
1470  * setting. Issue "ethtool -a ethX" to execute this function.
1471  */
1472 static void
1473 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1474 				struct ethtool_pauseparam *epauseparm)
1475 {
1476 	struct axienet_local *lp = netdev_priv(ndev);
1477 
1478 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1479 }
1480 
1481 /**
1482  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1483  *				     settings.
1484  * @ndev:	Pointer to net_device structure
1485  * @epauseparm:Pointer to ethtool_pauseparam structure
1486  *
1487  * This implements ethtool command for enabling flow control on Rx and Tx
1488  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1489  * function.
1490  *
1491  * Return: 0 on success, -EFAULT if device is running
1492  */
1493 static int
1494 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1495 				struct ethtool_pauseparam *epauseparm)
1496 {
1497 	struct axienet_local *lp = netdev_priv(ndev);
1498 
1499 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1500 }
1501 
1502 /**
1503  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1504  * @ndev:	Pointer to net_device structure
1505  * @ecoalesce:	Pointer to ethtool_coalesce structure
1506  * @kernel_coal: ethtool CQE mode setting structure
1507  * @extack:	extack for reporting error messages
1508  *
1509  * This implements ethtool command for getting the DMA interrupt coalescing
1510  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1511  * execute this function.
1512  *
1513  * Return: 0 always
1514  */
1515 static int
1516 axienet_ethtools_get_coalesce(struct net_device *ndev,
1517 			      struct ethtool_coalesce *ecoalesce,
1518 			      struct kernel_ethtool_coalesce *kernel_coal,
1519 			      struct netlink_ext_ack *extack)
1520 {
1521 	struct axienet_local *lp = netdev_priv(ndev);
1522 
1523 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1524 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1525 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1526 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1527 	return 0;
1528 }
1529 
1530 /**
1531  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1532  * @ndev:	Pointer to net_device structure
1533  * @ecoalesce:	Pointer to ethtool_coalesce structure
1534  * @kernel_coal: ethtool CQE mode setting structure
1535  * @extack:	extack for reporting error messages
1536  *
1537  * This implements ethtool command for setting the DMA interrupt coalescing
1538  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1539  * prompt to execute this function.
1540  *
1541  * Return: 0, on success, Non-zero error value on failure.
1542  */
1543 static int
1544 axienet_ethtools_set_coalesce(struct net_device *ndev,
1545 			      struct ethtool_coalesce *ecoalesce,
1546 			      struct kernel_ethtool_coalesce *kernel_coal,
1547 			      struct netlink_ext_ack *extack)
1548 {
1549 	struct axienet_local *lp = netdev_priv(ndev);
1550 
1551 	if (netif_running(ndev)) {
1552 		netdev_err(ndev,
1553 			   "Please stop netif before applying configuration\n");
1554 		return -EFAULT;
1555 	}
1556 
1557 	if (ecoalesce->rx_max_coalesced_frames)
1558 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1559 	if (ecoalesce->rx_coalesce_usecs)
1560 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1561 	if (ecoalesce->tx_max_coalesced_frames)
1562 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1563 	if (ecoalesce->tx_coalesce_usecs)
1564 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1565 
1566 	return 0;
1567 }
1568 
1569 static int
1570 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1571 				    struct ethtool_link_ksettings *cmd)
1572 {
1573 	struct axienet_local *lp = netdev_priv(ndev);
1574 
1575 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1576 }
1577 
1578 static int
1579 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1580 				    const struct ethtool_link_ksettings *cmd)
1581 {
1582 	struct axienet_local *lp = netdev_priv(ndev);
1583 
1584 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1585 }
1586 
1587 static int axienet_ethtools_nway_reset(struct net_device *dev)
1588 {
1589 	struct axienet_local *lp = netdev_priv(dev);
1590 
1591 	return phylink_ethtool_nway_reset(lp->phylink);
1592 }
1593 
1594 static const struct ethtool_ops axienet_ethtool_ops = {
1595 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1596 				     ETHTOOL_COALESCE_USECS,
1597 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1598 	.get_regs_len   = axienet_ethtools_get_regs_len,
1599 	.get_regs       = axienet_ethtools_get_regs,
1600 	.get_link       = ethtool_op_get_link,
1601 	.get_ringparam	= axienet_ethtools_get_ringparam,
1602 	.set_ringparam	= axienet_ethtools_set_ringparam,
1603 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1604 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1605 	.get_coalesce   = axienet_ethtools_get_coalesce,
1606 	.set_coalesce   = axienet_ethtools_set_coalesce,
1607 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1608 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1609 	.nway_reset	= axienet_ethtools_nway_reset,
1610 };
1611 
1612 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1613 {
1614 	return container_of(pcs, struct axienet_local, pcs);
1615 }
1616 
1617 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1618 				  struct phylink_link_state *state)
1619 {
1620 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1621 
1622 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1623 }
1624 
1625 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1626 {
1627 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1628 
1629 	phylink_mii_c22_pcs_an_restart(pcs_phy);
1630 }
1631 
1632 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1633 			      phy_interface_t interface,
1634 			      const unsigned long *advertising,
1635 			      bool permit_pause_to_mac)
1636 {
1637 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1638 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1639 	struct axienet_local *lp = netdev_priv(ndev);
1640 	int ret;
1641 
1642 	if (lp->switch_x_sgmii) {
1643 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1644 				    interface == PHY_INTERFACE_MODE_SGMII ?
1645 					XLNX_MII_STD_SELECT_SGMII : 0);
1646 		if (ret < 0) {
1647 			netdev_warn(ndev,
1648 				    "Failed to switch PHY interface: %d\n",
1649 				    ret);
1650 			return ret;
1651 		}
1652 	}
1653 
1654 	ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
1655 	if (ret < 0)
1656 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1657 
1658 	return ret;
1659 }
1660 
1661 static const struct phylink_pcs_ops axienet_pcs_ops = {
1662 	.pcs_get_state = axienet_pcs_get_state,
1663 	.pcs_config = axienet_pcs_config,
1664 	.pcs_an_restart = axienet_pcs_an_restart,
1665 };
1666 
1667 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1668 						  phy_interface_t interface)
1669 {
1670 	struct net_device *ndev = to_net_dev(config->dev);
1671 	struct axienet_local *lp = netdev_priv(ndev);
1672 
1673 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1674 	    interface ==  PHY_INTERFACE_MODE_SGMII)
1675 		return &lp->pcs;
1676 
1677 	return NULL;
1678 }
1679 
1680 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1681 			       const struct phylink_link_state *state)
1682 {
1683 	/* nothing meaningful to do */
1684 }
1685 
1686 static void axienet_mac_link_down(struct phylink_config *config,
1687 				  unsigned int mode,
1688 				  phy_interface_t interface)
1689 {
1690 	/* nothing meaningful to do */
1691 }
1692 
1693 static void axienet_mac_link_up(struct phylink_config *config,
1694 				struct phy_device *phy,
1695 				unsigned int mode, phy_interface_t interface,
1696 				int speed, int duplex,
1697 				bool tx_pause, bool rx_pause)
1698 {
1699 	struct net_device *ndev = to_net_dev(config->dev);
1700 	struct axienet_local *lp = netdev_priv(ndev);
1701 	u32 emmc_reg, fcc_reg;
1702 
1703 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1704 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1705 
1706 	switch (speed) {
1707 	case SPEED_1000:
1708 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1709 		break;
1710 	case SPEED_100:
1711 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1712 		break;
1713 	case SPEED_10:
1714 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1715 		break;
1716 	default:
1717 		dev_err(&ndev->dev,
1718 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1719 		break;
1720 	}
1721 
1722 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1723 
1724 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1725 	if (tx_pause)
1726 		fcc_reg |= XAE_FCC_FCTX_MASK;
1727 	else
1728 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1729 	if (rx_pause)
1730 		fcc_reg |= XAE_FCC_FCRX_MASK;
1731 	else
1732 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1733 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1734 }
1735 
1736 static const struct phylink_mac_ops axienet_phylink_ops = {
1737 	.validate = phylink_generic_validate,
1738 	.mac_select_pcs = axienet_mac_select_pcs,
1739 	.mac_config = axienet_mac_config,
1740 	.mac_link_down = axienet_mac_link_down,
1741 	.mac_link_up = axienet_mac_link_up,
1742 };
1743 
1744 /**
1745  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1746  * @work:	pointer to work_struct
1747  *
1748  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1749  * Tx/Rx BDs.
1750  */
1751 static void axienet_dma_err_handler(struct work_struct *work)
1752 {
1753 	u32 i;
1754 	u32 axienet_status;
1755 	struct axidma_bd *cur_p;
1756 	struct axienet_local *lp = container_of(work, struct axienet_local,
1757 						dma_err_task);
1758 	struct net_device *ndev = lp->ndev;
1759 
1760 	napi_disable(&lp->napi_tx);
1761 	napi_disable(&lp->napi_rx);
1762 
1763 	axienet_setoptions(ndev, lp->options &
1764 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1765 
1766 	axienet_dma_stop(lp);
1767 
1768 	for (i = 0; i < lp->tx_bd_num; i++) {
1769 		cur_p = &lp->tx_bd_v[i];
1770 		if (cur_p->cntrl) {
1771 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1772 
1773 			dma_unmap_single(lp->dev, addr,
1774 					 (cur_p->cntrl &
1775 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1776 					 DMA_TO_DEVICE);
1777 		}
1778 		if (cur_p->skb)
1779 			dev_kfree_skb_irq(cur_p->skb);
1780 		cur_p->phys = 0;
1781 		cur_p->phys_msb = 0;
1782 		cur_p->cntrl = 0;
1783 		cur_p->status = 0;
1784 		cur_p->app0 = 0;
1785 		cur_p->app1 = 0;
1786 		cur_p->app2 = 0;
1787 		cur_p->app3 = 0;
1788 		cur_p->app4 = 0;
1789 		cur_p->skb = NULL;
1790 	}
1791 
1792 	for (i = 0; i < lp->rx_bd_num; i++) {
1793 		cur_p = &lp->rx_bd_v[i];
1794 		cur_p->status = 0;
1795 		cur_p->app0 = 0;
1796 		cur_p->app1 = 0;
1797 		cur_p->app2 = 0;
1798 		cur_p->app3 = 0;
1799 		cur_p->app4 = 0;
1800 	}
1801 
1802 	lp->tx_bd_ci = 0;
1803 	lp->tx_bd_tail = 0;
1804 	lp->rx_bd_ci = 0;
1805 
1806 	axienet_dma_start(lp);
1807 
1808 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1809 	axienet_status &= ~XAE_RCW1_RX_MASK;
1810 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1811 
1812 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1813 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1814 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1815 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1816 		    XAE_INT_RECV_ERROR_MASK : 0);
1817 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1818 
1819 	/* Sync default options with HW but leave receiver and
1820 	 * transmitter disabled.
1821 	 */
1822 	axienet_setoptions(ndev, lp->options &
1823 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1824 	axienet_set_mac_address(ndev, NULL);
1825 	axienet_set_multicast_list(ndev);
1826 	axienet_setoptions(ndev, lp->options);
1827 	napi_enable(&lp->napi_rx);
1828 	napi_enable(&lp->napi_tx);
1829 }
1830 
1831 /**
1832  * axienet_probe - Axi Ethernet probe function.
1833  * @pdev:	Pointer to platform device structure.
1834  *
1835  * Return: 0, on success
1836  *	    Non-zero error value on failure.
1837  *
1838  * This is the probe routine for Axi Ethernet driver. This is called before
1839  * any other driver routines are invoked. It allocates and sets up the Ethernet
1840  * device. Parses through device tree and populates fields of
1841  * axienet_local. It registers the Ethernet device.
1842  */
1843 static int axienet_probe(struct platform_device *pdev)
1844 {
1845 	int ret;
1846 	struct device_node *np;
1847 	struct axienet_local *lp;
1848 	struct net_device *ndev;
1849 	struct resource *ethres;
1850 	u8 mac_addr[ETH_ALEN];
1851 	int addr_width = 32;
1852 	u32 value;
1853 
1854 	ndev = alloc_etherdev(sizeof(*lp));
1855 	if (!ndev)
1856 		return -ENOMEM;
1857 
1858 	platform_set_drvdata(pdev, ndev);
1859 
1860 	SET_NETDEV_DEV(ndev, &pdev->dev);
1861 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1862 	ndev->features = NETIF_F_SG;
1863 	ndev->netdev_ops = &axienet_netdev_ops;
1864 	ndev->ethtool_ops = &axienet_ethtool_ops;
1865 
1866 	/* MTU range: 64 - 9000 */
1867 	ndev->min_mtu = 64;
1868 	ndev->max_mtu = XAE_JUMBO_MTU;
1869 
1870 	lp = netdev_priv(ndev);
1871 	lp->ndev = ndev;
1872 	lp->dev = &pdev->dev;
1873 	lp->options = XAE_OPTION_DEFAULTS;
1874 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1875 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1876 
1877 	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll, NAPI_POLL_WEIGHT);
1878 	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll, NAPI_POLL_WEIGHT);
1879 
1880 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1881 	if (!lp->axi_clk) {
1882 		/* For backward compatibility, if named AXI clock is not present,
1883 		 * treat the first clock specified as the AXI clock.
1884 		 */
1885 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1886 	}
1887 	if (IS_ERR(lp->axi_clk)) {
1888 		ret = PTR_ERR(lp->axi_clk);
1889 		goto free_netdev;
1890 	}
1891 	ret = clk_prepare_enable(lp->axi_clk);
1892 	if (ret) {
1893 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1894 		goto free_netdev;
1895 	}
1896 
1897 	lp->misc_clks[0].id = "axis_clk";
1898 	lp->misc_clks[1].id = "ref_clk";
1899 	lp->misc_clks[2].id = "mgt_clk";
1900 
1901 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1902 	if (ret)
1903 		goto cleanup_clk;
1904 
1905 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1906 	if (ret)
1907 		goto cleanup_clk;
1908 
1909 	/* Map device registers */
1910 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1911 	if (IS_ERR(lp->regs)) {
1912 		ret = PTR_ERR(lp->regs);
1913 		goto cleanup_clk;
1914 	}
1915 	lp->regs_start = ethres->start;
1916 
1917 	/* Setup checksum offload, but default to off if not specified */
1918 	lp->features = 0;
1919 
1920 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1921 	if (!ret) {
1922 		switch (value) {
1923 		case 1:
1924 			lp->csum_offload_on_tx_path =
1925 				XAE_FEATURE_PARTIAL_TX_CSUM;
1926 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1927 			/* Can checksum TCP/UDP over IPv4. */
1928 			ndev->features |= NETIF_F_IP_CSUM;
1929 			break;
1930 		case 2:
1931 			lp->csum_offload_on_tx_path =
1932 				XAE_FEATURE_FULL_TX_CSUM;
1933 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1934 			/* Can checksum TCP/UDP over IPv4. */
1935 			ndev->features |= NETIF_F_IP_CSUM;
1936 			break;
1937 		default:
1938 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1939 		}
1940 	}
1941 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1942 	if (!ret) {
1943 		switch (value) {
1944 		case 1:
1945 			lp->csum_offload_on_rx_path =
1946 				XAE_FEATURE_PARTIAL_RX_CSUM;
1947 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1948 			break;
1949 		case 2:
1950 			lp->csum_offload_on_rx_path =
1951 				XAE_FEATURE_FULL_RX_CSUM;
1952 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1953 			break;
1954 		default:
1955 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1956 		}
1957 	}
1958 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1959 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1960 	 * we can enable jumbo option and start supporting jumbo frames.
1961 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1962 	 * the device-tree and accordingly set flags.
1963 	 */
1964 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1965 
1966 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1967 						   "xlnx,switch-x-sgmii");
1968 
1969 	/* Start with the proprietary, and broken phy_type */
1970 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1971 	if (!ret) {
1972 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1973 		switch (value) {
1974 		case XAE_PHY_TYPE_MII:
1975 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1976 			break;
1977 		case XAE_PHY_TYPE_GMII:
1978 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1979 			break;
1980 		case XAE_PHY_TYPE_RGMII_2_0:
1981 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1982 			break;
1983 		case XAE_PHY_TYPE_SGMII:
1984 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1985 			break;
1986 		case XAE_PHY_TYPE_1000BASE_X:
1987 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1988 			break;
1989 		default:
1990 			ret = -EINVAL;
1991 			goto cleanup_clk;
1992 		}
1993 	} else {
1994 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1995 		if (ret)
1996 			goto cleanup_clk;
1997 	}
1998 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
1999 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2000 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2001 		ret = -EINVAL;
2002 		goto cleanup_clk;
2003 	}
2004 
2005 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2006 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2007 	if (np) {
2008 		struct resource dmares;
2009 
2010 		ret = of_address_to_resource(np, 0, &dmares);
2011 		if (ret) {
2012 			dev_err(&pdev->dev,
2013 				"unable to get DMA resource\n");
2014 			of_node_put(np);
2015 			goto cleanup_clk;
2016 		}
2017 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2018 						     &dmares);
2019 		lp->rx_irq = irq_of_parse_and_map(np, 1);
2020 		lp->tx_irq = irq_of_parse_and_map(np, 0);
2021 		of_node_put(np);
2022 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2023 	} else {
2024 		/* Check for these resources directly on the Ethernet node. */
2025 		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2026 		lp->rx_irq = platform_get_irq(pdev, 1);
2027 		lp->tx_irq = platform_get_irq(pdev, 0);
2028 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2029 	}
2030 	if (IS_ERR(lp->dma_regs)) {
2031 		dev_err(&pdev->dev, "could not map DMA regs\n");
2032 		ret = PTR_ERR(lp->dma_regs);
2033 		goto cleanup_clk;
2034 	}
2035 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2036 		dev_err(&pdev->dev, "could not determine irqs\n");
2037 		ret = -ENOMEM;
2038 		goto cleanup_clk;
2039 	}
2040 
2041 	/* Autodetect the need for 64-bit DMA pointers.
2042 	 * When the IP is configured for a bus width bigger than 32 bits,
2043 	 * writing the MSB registers is mandatory, even if they are all 0.
2044 	 * We can detect this case by writing all 1's to one such register
2045 	 * and see if that sticks: when the IP is configured for 32 bits
2046 	 * only, those registers are RES0.
2047 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2048 	 */
2049 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2050 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2051 
2052 		iowrite32(0x0, desc);
2053 		if (ioread32(desc) == 0) {	/* sanity check */
2054 			iowrite32(0xffffffff, desc);
2055 			if (ioread32(desc) > 0) {
2056 				lp->features |= XAE_FEATURE_DMA_64BIT;
2057 				addr_width = 64;
2058 				dev_info(&pdev->dev,
2059 					 "autodetected 64-bit DMA range\n");
2060 			}
2061 			iowrite32(0x0, desc);
2062 		}
2063 	}
2064 
2065 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2066 	if (ret) {
2067 		dev_err(&pdev->dev, "No suitable DMA available\n");
2068 		goto cleanup_clk;
2069 	}
2070 
2071 	/* Check for Ethernet core IRQ (optional) */
2072 	if (lp->eth_irq <= 0)
2073 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2074 
2075 	/* Retrieve the MAC address */
2076 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2077 	if (!ret) {
2078 		axienet_set_mac_address(ndev, mac_addr);
2079 	} else {
2080 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2081 			 ret);
2082 		axienet_set_mac_address(ndev, NULL);
2083 	}
2084 
2085 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2086 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2087 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2088 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2089 
2090 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2091 	ret = __axienet_device_reset(lp);
2092 	if (ret)
2093 		goto cleanup_clk;
2094 
2095 	ret = axienet_mdio_setup(lp);
2096 	if (ret)
2097 		dev_warn(&pdev->dev,
2098 			 "error registering MDIO bus: %d\n", ret);
2099 
2100 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2101 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2102 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2103 		if (!np) {
2104 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2105 			 * Falling back to "phy-handle" here is only for
2106 			 * backward compatibility with old device trees.
2107 			 */
2108 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2109 		}
2110 		if (!np) {
2111 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2112 			ret = -EINVAL;
2113 			goto cleanup_mdio;
2114 		}
2115 		lp->pcs_phy = of_mdio_find_device(np);
2116 		if (!lp->pcs_phy) {
2117 			ret = -EPROBE_DEFER;
2118 			of_node_put(np);
2119 			goto cleanup_mdio;
2120 		}
2121 		of_node_put(np);
2122 		lp->pcs.ops = &axienet_pcs_ops;
2123 		lp->pcs.poll = true;
2124 	}
2125 
2126 	lp->phylink_config.dev = &ndev->dev;
2127 	lp->phylink_config.type = PHYLINK_NETDEV;
2128 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2129 		MAC_10FD | MAC_100FD | MAC_1000FD;
2130 
2131 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2132 	if (lp->switch_x_sgmii) {
2133 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2134 			  lp->phylink_config.supported_interfaces);
2135 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2136 			  lp->phylink_config.supported_interfaces);
2137 	}
2138 
2139 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2140 				     lp->phy_mode,
2141 				     &axienet_phylink_ops);
2142 	if (IS_ERR(lp->phylink)) {
2143 		ret = PTR_ERR(lp->phylink);
2144 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2145 		goto cleanup_mdio;
2146 	}
2147 
2148 	ret = register_netdev(lp->ndev);
2149 	if (ret) {
2150 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2151 		goto cleanup_phylink;
2152 	}
2153 
2154 	return 0;
2155 
2156 cleanup_phylink:
2157 	phylink_destroy(lp->phylink);
2158 
2159 cleanup_mdio:
2160 	if (lp->pcs_phy)
2161 		put_device(&lp->pcs_phy->dev);
2162 	if (lp->mii_bus)
2163 		axienet_mdio_teardown(lp);
2164 cleanup_clk:
2165 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2166 	clk_disable_unprepare(lp->axi_clk);
2167 
2168 free_netdev:
2169 	free_netdev(ndev);
2170 
2171 	return ret;
2172 }
2173 
2174 static int axienet_remove(struct platform_device *pdev)
2175 {
2176 	struct net_device *ndev = platform_get_drvdata(pdev);
2177 	struct axienet_local *lp = netdev_priv(ndev);
2178 
2179 	unregister_netdev(ndev);
2180 
2181 	if (lp->phylink)
2182 		phylink_destroy(lp->phylink);
2183 
2184 	if (lp->pcs_phy)
2185 		put_device(&lp->pcs_phy->dev);
2186 
2187 	axienet_mdio_teardown(lp);
2188 
2189 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2190 	clk_disable_unprepare(lp->axi_clk);
2191 
2192 	free_netdev(ndev);
2193 
2194 	return 0;
2195 }
2196 
2197 static void axienet_shutdown(struct platform_device *pdev)
2198 {
2199 	struct net_device *ndev = platform_get_drvdata(pdev);
2200 
2201 	rtnl_lock();
2202 	netif_device_detach(ndev);
2203 
2204 	if (netif_running(ndev))
2205 		dev_close(ndev);
2206 
2207 	rtnl_unlock();
2208 }
2209 
2210 static struct platform_driver axienet_driver = {
2211 	.probe = axienet_probe,
2212 	.remove = axienet_remove,
2213 	.shutdown = axienet_shutdown,
2214 	.driver = {
2215 		 .name = "xilinx_axienet",
2216 		 .of_match_table = axienet_of_match,
2217 	},
2218 };
2219 
2220 module_platform_driver(axienet_driver);
2221 
2222 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2223 MODULE_AUTHOR("Xilinx");
2224 MODULE_LICENSE("GPL");
2225