1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 
37 #include "xilinx_axienet.h"
38 
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM		64
41 #define RX_BD_NUM		128
42 
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME		"xaxienet"
45 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION		"1.00a"
47 
48 #define AXIENET_REGS_N		32
49 
50 /* Match table for of_platform binding */
51 static struct of_device_id axienet_of_match[] = {
52 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55 	{},
56 };
57 
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 	/* Turn on jumbo packet support for both Rx and Tx */
63 	{
64 		.opt = XAE_OPTION_JUMBO,
65 		.reg = XAE_TC_OFFSET,
66 		.m_or = XAE_TC_JUM_MASK,
67 	}, {
68 		.opt = XAE_OPTION_JUMBO,
69 		.reg = XAE_RCW1_OFFSET,
70 		.m_or = XAE_RCW1_JUM_MASK,
71 	}, { /* Turn on VLAN packet support for both Rx and Tx */
72 		.opt = XAE_OPTION_VLAN,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_VLAN_MASK,
75 	}, {
76 		.opt = XAE_OPTION_VLAN,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_VLAN_MASK,
79 	}, { /* Turn on FCS stripping on receive packets */
80 		.opt = XAE_OPTION_FCS_STRIP,
81 		.reg = XAE_RCW1_OFFSET,
82 		.m_or = XAE_RCW1_FCS_MASK,
83 	}, { /* Turn on FCS insertion on transmit packets */
84 		.opt = XAE_OPTION_FCS_INSERT,
85 		.reg = XAE_TC_OFFSET,
86 		.m_or = XAE_TC_FCS_MASK,
87 	}, { /* Turn off length/type field checking on receive packets */
88 		.opt = XAE_OPTION_LENTYPE_ERR,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_LT_DIS_MASK,
91 	}, { /* Turn on Rx flow control */
92 		.opt = XAE_OPTION_FLOW_CONTROL,
93 		.reg = XAE_FCC_OFFSET,
94 		.m_or = XAE_FCC_FCRX_MASK,
95 	}, { /* Turn on Tx flow control */
96 		.opt = XAE_OPTION_FLOW_CONTROL,
97 		.reg = XAE_FCC_OFFSET,
98 		.m_or = XAE_FCC_FCTX_MASK,
99 	}, { /* Turn on promiscuous frame filtering */
100 		.opt = XAE_OPTION_PROMISC,
101 		.reg = XAE_FMI_OFFSET,
102 		.m_or = XAE_FMI_PM_MASK,
103 	}, { /* Enable transmitter */
104 		.opt = XAE_OPTION_TXEN,
105 		.reg = XAE_TC_OFFSET,
106 		.m_or = XAE_TC_TX_MASK,
107 	}, { /* Enable receiver */
108 		.opt = XAE_OPTION_RXEN,
109 		.reg = XAE_RCW1_OFFSET,
110 		.m_or = XAE_RCW1_RX_MASK,
111 	},
112 	{}
113 };
114 
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:		Pointer to axienet local structure
118  * @reg:	Address offset from the base address of the Axi DMA core
119  *
120  * returns: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 	return in_be32(lp->dma_regs + reg);
127 }
128 
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:		Pointer to axienet local structure
132  * @reg:	Address offset from the base address of the Axi DMA core
133  * @value:	Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 				     off_t reg, u32 value)
140 {
141 	out_be32((lp->dma_regs + reg), value);
142 }
143 
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:	Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 	int i;
155 	struct axienet_local *lp = netdev_priv(ndev);
156 
157 	for (i = 0; i < RX_BD_NUM; i++) {
158 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 				 lp->max_frm_size, DMA_FROM_DEVICE);
160 		dev_kfree_skb((struct sk_buff *)
161 			      (lp->rx_bd_v[i].sw_id_offset));
162 	}
163 
164 	if (lp->rx_bd_v) {
165 		dma_free_coherent(ndev->dev.parent,
166 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 				  lp->rx_bd_v,
168 				  lp->rx_bd_p);
169 	}
170 	if (lp->tx_bd_v) {
171 		dma_free_coherent(ndev->dev.parent,
172 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 				  lp->tx_bd_v,
174 				  lp->tx_bd_p);
175 	}
176 }
177 
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:	Pointer to the net_device structure
181  *
182  * returns: 0, on success
183  *	    -ENOMEM, on failure
184  *
185  * This function is called to initialize the Rx and Tx DMA descriptor
186  * rings. This initializes the descriptors with required default values
187  * and is called when Axi Ethernet driver reset is called.
188  */
189 static int axienet_dma_bd_init(struct net_device *ndev)
190 {
191 	u32 cr;
192 	int i;
193 	struct sk_buff *skb;
194 	struct axienet_local *lp = netdev_priv(ndev);
195 
196 	/* Reset the indexes which are used for accessing the BDs */
197 	lp->tx_bd_ci = 0;
198 	lp->tx_bd_tail = 0;
199 	lp->rx_bd_ci = 0;
200 
201 	/*
202 	 * Allocate the Tx and Rx buffer descriptors.
203 	 */
204 	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
205 					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 					  &lp->tx_bd_p, GFP_KERNEL);
207 	if (!lp->tx_bd_v)
208 		goto out;
209 
210 	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
211 					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
212 					  &lp->rx_bd_p, GFP_KERNEL);
213 	if (!lp->rx_bd_v)
214 		goto out;
215 
216 	for (i = 0; i < TX_BD_NUM; i++) {
217 		lp->tx_bd_v[i].next = lp->tx_bd_p +
218 				      sizeof(*lp->tx_bd_v) *
219 				      ((i + 1) % TX_BD_NUM);
220 	}
221 
222 	for (i = 0; i < RX_BD_NUM; i++) {
223 		lp->rx_bd_v[i].next = lp->rx_bd_p +
224 				      sizeof(*lp->rx_bd_v) *
225 				      ((i + 1) % RX_BD_NUM);
226 
227 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
228 		if (!skb)
229 			goto out;
230 
231 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
232 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
233 						     skb->data,
234 						     lp->max_frm_size,
235 						     DMA_FROM_DEVICE);
236 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
237 	}
238 
239 	/* Start updating the Rx channel control register */
240 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
241 	/* Update the interrupt coalesce count */
242 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
243 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
244 	/* Update the delay timer count */
245 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
246 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
247 	/* Enable coalesce, delay timer and error interrupts */
248 	cr |= XAXIDMA_IRQ_ALL_MASK;
249 	/* Write to the Rx channel control register */
250 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
251 
252 	/* Start updating the Tx channel control register */
253 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
254 	/* Update the interrupt coalesce count */
255 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
256 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
257 	/* Update the delay timer count */
258 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
259 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
260 	/* Enable coalesce, delay timer and error interrupts */
261 	cr |= XAXIDMA_IRQ_ALL_MASK;
262 	/* Write to the Tx channel control register */
263 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
264 
265 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
266 	 * halted state. This will make the Rx side ready for reception.*/
267 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
268 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
269 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
270 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
271 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
272 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
273 
274 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
275 	 * Tx channel is now ready to run. But only after we write to the
276 	 * tail pointer register that the Tx channel will start transmitting */
277 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
281 
282 	return 0;
283 out:
284 	axienet_dma_bd_release(ndev);
285 	return -ENOMEM;
286 }
287 
288 /**
289  * axienet_set_mac_address - Write the MAC address
290  * @ndev:	Pointer to the net_device structure
291  * @address:	6 byte Address to be written as MAC address
292  *
293  * This function is called to initialize the MAC address of the Axi Ethernet
294  * core. It writes to the UAW0 and UAW1 registers of the core.
295  */
296 static void axienet_set_mac_address(struct net_device *ndev, void *address)
297 {
298 	struct axienet_local *lp = netdev_priv(ndev);
299 
300 	if (address)
301 		memcpy(ndev->dev_addr, address, ETH_ALEN);
302 	if (!is_valid_ether_addr(ndev->dev_addr))
303 		eth_random_addr(ndev->dev_addr);
304 
305 	/* Set up unicast MAC address filter set its mac address */
306 	axienet_iow(lp, XAE_UAW0_OFFSET,
307 		    (ndev->dev_addr[0]) |
308 		    (ndev->dev_addr[1] << 8) |
309 		    (ndev->dev_addr[2] << 16) |
310 		    (ndev->dev_addr[3] << 24));
311 	axienet_iow(lp, XAE_UAW1_OFFSET,
312 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
313 		      ~XAE_UAW1_UNICASTADDR_MASK) |
314 		     (ndev->dev_addr[4] |
315 		     (ndev->dev_addr[5] << 8))));
316 }
317 
318 /**
319  * netdev_set_mac_address - Write the MAC address (from outside the driver)
320  * @ndev:	Pointer to the net_device structure
321  * @p:		6 byte Address to be written as MAC address
322  *
323  * returns: 0 for all conditions. Presently, there is no failure case.
324  *
325  * This function is called to initialize the MAC address of the Axi Ethernet
326  * core. It calls the core specific axienet_set_mac_address. This is the
327  * function that goes into net_device_ops structure entry ndo_set_mac_address.
328  */
329 static int netdev_set_mac_address(struct net_device *ndev, void *p)
330 {
331 	struct sockaddr *addr = p;
332 	axienet_set_mac_address(ndev, addr->sa_data);
333 	return 0;
334 }
335 
336 /**
337  * axienet_set_multicast_list - Prepare the multicast table
338  * @ndev:	Pointer to the net_device structure
339  *
340  * This function is called to initialize the multicast table during
341  * initialization. The Axi Ethernet basic multicast support has a four-entry
342  * multicast table which is initialized here. Additionally this function
343  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
344  * means whenever the multicast table entries need to be updated this
345  * function gets called.
346  */
347 static void axienet_set_multicast_list(struct net_device *ndev)
348 {
349 	int i;
350 	u32 reg, af0reg, af1reg;
351 	struct axienet_local *lp = netdev_priv(ndev);
352 
353 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
354 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
355 		/* We must make the kernel realize we had to move into
356 		 * promiscuous mode. If it was a promiscuous mode request
357 		 * the flag is already set. If not we set it. */
358 		ndev->flags |= IFF_PROMISC;
359 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 		reg |= XAE_FMI_PM_MASK;
361 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 	} else if (!netdev_mc_empty(ndev)) {
364 		struct netdev_hw_addr *ha;
365 
366 		i = 0;
367 		netdev_for_each_mc_addr(ha, ndev) {
368 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 				break;
370 
371 			af0reg = (ha->addr[0]);
372 			af0reg |= (ha->addr[1] << 8);
373 			af0reg |= (ha->addr[2] << 16);
374 			af0reg |= (ha->addr[3] << 24);
375 
376 			af1reg = (ha->addr[4]);
377 			af1reg |= (ha->addr[5] << 8);
378 
379 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 			reg |= i;
381 
382 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 			i++;
386 		}
387 	} else {
388 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 		reg &= ~XAE_FMI_PM_MASK;
390 
391 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
392 
393 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 			reg |= i;
396 
397 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
400 		}
401 
402 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403 	}
404 }
405 
406 /**
407  * axienet_setoptions - Set an Axi Ethernet option
408  * @ndev:	Pointer to the net_device structure
409  * @options:	Option to be enabled/disabled
410  *
411  * The Axi Ethernet core has multiple features which can be selectively turned
412  * on or off. The typical options could be jumbo frame option, basic VLAN
413  * option, promiscuous mode option etc. This function is used to set or clear
414  * these options in the Axi Ethernet hardware. This is done through
415  * axienet_option structure .
416  */
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 {
419 	int reg;
420 	struct axienet_local *lp = netdev_priv(ndev);
421 	struct axienet_option *tp = &axienet_options[0];
422 
423 	while (tp->opt) {
424 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 		if (options & tp->opt)
426 			reg |= tp->m_or;
427 		axienet_iow(lp, tp->reg, reg);
428 		tp++;
429 	}
430 
431 	lp->options |= options;
432 }
433 
434 static void __axienet_device_reset(struct axienet_local *lp,
435 				   struct device *dev, off_t offset)
436 {
437 	u32 timeout;
438 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439 	 * process of Axi DMA takes a while to complete as all pending
440 	 * commands/transfers will be flushed or completed during this
441 	 * reset process. */
442 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
443 	timeout = DELAY_OF_ONE_MILLISEC;
444 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
445 		udelay(1);
446 		if (--timeout == 0) {
447 			dev_err(dev, "axienet_device_reset DMA "
448 				"reset timeout!\n");
449 			break;
450 		}
451 	}
452 }
453 
454 /**
455  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
456  * @ndev:	Pointer to the net_device structure
457  *
458  * This function is called to reset and initialize the Axi Ethernet core. This
459  * is typically called during initialization. It does a reset of the Axi DMA
460  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
461  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
462  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
463  * core.
464  */
465 static void axienet_device_reset(struct net_device *ndev)
466 {
467 	u32 axienet_status;
468 	struct axienet_local *lp = netdev_priv(ndev);
469 
470 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
471 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
472 
473 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
474 	lp->options &= (~XAE_OPTION_JUMBO);
475 
476 	if ((ndev->mtu > XAE_MTU) &&
477 	    (ndev->mtu <= XAE_JUMBO_MTU) &&
478 	    (lp->jumbo_support)) {
479 		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
480 				   XAE_TRL_SIZE;
481 		lp->options |= XAE_OPTION_JUMBO;
482 	}
483 
484 	if (axienet_dma_bd_init(ndev)) {
485 		dev_err(&ndev->dev, "axienet_device_reset descriptor "
486 			"allocation failed\n");
487 	}
488 
489 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
490 	axienet_status &= ~XAE_RCW1_RX_MASK;
491 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
492 
493 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
494 	if (axienet_status & XAE_INT_RXRJECT_MASK)
495 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
496 
497 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
498 
499 	/* Sync default options with HW but leave receiver and
500 	 * transmitter disabled.*/
501 	axienet_setoptions(ndev, lp->options &
502 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
503 	axienet_set_mac_address(ndev, NULL);
504 	axienet_set_multicast_list(ndev);
505 	axienet_setoptions(ndev, lp->options);
506 
507 	ndev->trans_start = jiffies;
508 }
509 
510 /**
511  * axienet_adjust_link - Adjust the PHY link speed/duplex.
512  * @ndev:	Pointer to the net_device structure
513  *
514  * This function is called to change the speed and duplex setting after
515  * auto negotiation is done by the PHY. This is the function that gets
516  * registered with the PHY interface through the "of_phy_connect" call.
517  */
518 static void axienet_adjust_link(struct net_device *ndev)
519 {
520 	u32 emmc_reg;
521 	u32 link_state;
522 	u32 setspeed = 1;
523 	struct axienet_local *lp = netdev_priv(ndev);
524 	struct phy_device *phy = lp->phy_dev;
525 
526 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
527 	if (lp->last_link != link_state) {
528 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
529 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
530 				setspeed = 0;
531 		} else {
532 			if ((phy->speed == SPEED_1000) &&
533 			    (lp->phy_type == XAE_PHY_TYPE_MII))
534 				setspeed = 0;
535 		}
536 
537 		if (setspeed == 1) {
538 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
539 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
540 
541 			switch (phy->speed) {
542 			case SPEED_1000:
543 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
544 				break;
545 			case SPEED_100:
546 				emmc_reg |= XAE_EMMC_LINKSPD_100;
547 				break;
548 			case SPEED_10:
549 				emmc_reg |= XAE_EMMC_LINKSPD_10;
550 				break;
551 			default:
552 				dev_err(&ndev->dev, "Speed other than 10, 100 "
553 					"or 1Gbps is not supported\n");
554 				break;
555 			}
556 
557 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
558 			lp->last_link = link_state;
559 			phy_print_status(phy);
560 		} else {
561 			dev_err(&ndev->dev, "Error setting Axi Ethernet "
562 				"mac speed\n");
563 		}
564 	}
565 }
566 
567 /**
568  * axienet_start_xmit_done - Invoked once a transmit is completed by the
569  * Axi DMA Tx channel.
570  * @ndev:	Pointer to the net_device structure
571  *
572  * This function is invoked from the Axi DMA Tx isr to notify the completion
573  * of transmit operation. It clears fields in the corresponding Tx BDs and
574  * unmaps the corresponding buffer so that CPU can regain ownership of the
575  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
576  * required.
577  */
578 static void axienet_start_xmit_done(struct net_device *ndev)
579 {
580 	u32 size = 0;
581 	u32 packets = 0;
582 	struct axienet_local *lp = netdev_priv(ndev);
583 	struct axidma_bd *cur_p;
584 	unsigned int status = 0;
585 
586 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
587 	status = cur_p->status;
588 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
589 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
590 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
591 				DMA_TO_DEVICE);
592 		if (cur_p->app4)
593 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
594 		/*cur_p->phys = 0;*/
595 		cur_p->app0 = 0;
596 		cur_p->app1 = 0;
597 		cur_p->app2 = 0;
598 		cur_p->app4 = 0;
599 		cur_p->status = 0;
600 
601 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
602 		packets++;
603 
604 		++lp->tx_bd_ci;
605 		lp->tx_bd_ci %= TX_BD_NUM;
606 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
607 		status = cur_p->status;
608 	}
609 
610 	ndev->stats.tx_packets += packets;
611 	ndev->stats.tx_bytes += size;
612 	netif_wake_queue(ndev);
613 }
614 
615 /**
616  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
617  * @lp:		Pointer to the axienet_local structure
618  * @num_frag:	The number of BDs to check for
619  *
620  * returns: 0, on success
621  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
622  *
623  * This function is invoked before BDs are allocated and transmission starts.
624  * This function returns 0 if a BD or group of BDs can be allocated for
625  * transmission. If the BD or any of the BDs are not free the function
626  * returns a busy status. This is invoked from axienet_start_xmit.
627  */
628 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
629 					    int num_frag)
630 {
631 	struct axidma_bd *cur_p;
632 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
633 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
634 		return NETDEV_TX_BUSY;
635 	return 0;
636 }
637 
638 /**
639  * axienet_start_xmit - Starts the transmission.
640  * @skb:	sk_buff pointer that contains data to be Txed.
641  * @ndev:	Pointer to net_device structure.
642  *
643  * returns: NETDEV_TX_OK, on success
644  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
645  *
646  * This function is invoked from upper layers to initiate transmission. The
647  * function uses the next available free BDs and populates their fields to
648  * start the transmission. Additionally if checksum offloading is supported,
649  * it populates AXI Stream Control fields with appropriate values.
650  */
651 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
652 {
653 	u32 ii;
654 	u32 num_frag;
655 	u32 csum_start_off;
656 	u32 csum_index_off;
657 	skb_frag_t *frag;
658 	dma_addr_t tail_p;
659 	struct axienet_local *lp = netdev_priv(ndev);
660 	struct axidma_bd *cur_p;
661 
662 	num_frag = skb_shinfo(skb)->nr_frags;
663 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
664 
665 	if (axienet_check_tx_bd_space(lp, num_frag)) {
666 		if (!netif_queue_stopped(ndev))
667 			netif_stop_queue(ndev);
668 		return NETDEV_TX_BUSY;
669 	}
670 
671 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
672 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
673 			/* Tx Full Checksum Offload Enabled */
674 			cur_p->app0 |= 2;
675 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
676 			csum_start_off = skb_transport_offset(skb);
677 			csum_index_off = csum_start_off + skb->csum_offset;
678 			/* Tx Partial Checksum Offload Enabled */
679 			cur_p->app0 |= 1;
680 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
681 		}
682 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
683 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
684 	}
685 
686 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
687 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
688 				     skb_headlen(skb), DMA_TO_DEVICE);
689 
690 	for (ii = 0; ii < num_frag; ii++) {
691 		++lp->tx_bd_tail;
692 		lp->tx_bd_tail %= TX_BD_NUM;
693 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
694 		frag = &skb_shinfo(skb)->frags[ii];
695 		cur_p->phys = dma_map_single(ndev->dev.parent,
696 					     skb_frag_address(frag),
697 					     skb_frag_size(frag),
698 					     DMA_TO_DEVICE);
699 		cur_p->cntrl = skb_frag_size(frag);
700 	}
701 
702 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
703 	cur_p->app4 = (unsigned long)skb;
704 
705 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
706 	/* Start the transfer */
707 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
708 	++lp->tx_bd_tail;
709 	lp->tx_bd_tail %= TX_BD_NUM;
710 
711 	return NETDEV_TX_OK;
712 }
713 
714 /**
715  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
716  *		  BD processing.
717  * @ndev:	Pointer to net_device structure.
718  *
719  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
720  * does minimal processing and invokes "netif_rx" to complete further
721  * processing.
722  */
723 static void axienet_recv(struct net_device *ndev)
724 {
725 	u32 length;
726 	u32 csumstatus;
727 	u32 size = 0;
728 	u32 packets = 0;
729 	dma_addr_t tail_p;
730 	struct axienet_local *lp = netdev_priv(ndev);
731 	struct sk_buff *skb, *new_skb;
732 	struct axidma_bd *cur_p;
733 
734 	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
735 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
736 
737 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
738 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
739 		length = cur_p->app4 & 0x0000FFFF;
740 
741 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
742 				 lp->max_frm_size,
743 				 DMA_FROM_DEVICE);
744 
745 		skb_put(skb, length);
746 		skb->protocol = eth_type_trans(skb, ndev);
747 		/*skb_checksum_none_assert(skb);*/
748 		skb->ip_summed = CHECKSUM_NONE;
749 
750 		/* if we're doing Rx csum offload, set it up */
751 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
752 			csumstatus = (cur_p->app2 &
753 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
754 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
755 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
756 				skb->ip_summed = CHECKSUM_UNNECESSARY;
757 			}
758 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
759 			   skb->protocol == htons(ETH_P_IP) &&
760 			   skb->len > 64) {
761 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
762 			skb->ip_summed = CHECKSUM_COMPLETE;
763 		}
764 
765 		netif_rx(skb);
766 
767 		size += length;
768 		packets++;
769 
770 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
771 		if (!new_skb)
772 			return;
773 
774 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
775 					     lp->max_frm_size,
776 					     DMA_FROM_DEVICE);
777 		cur_p->cntrl = lp->max_frm_size;
778 		cur_p->status = 0;
779 		cur_p->sw_id_offset = (u32) new_skb;
780 
781 		++lp->rx_bd_ci;
782 		lp->rx_bd_ci %= RX_BD_NUM;
783 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
784 	}
785 
786 	ndev->stats.rx_packets += packets;
787 	ndev->stats.rx_bytes += size;
788 
789 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
790 }
791 
792 /**
793  * axienet_tx_irq - Tx Done Isr.
794  * @irq:	irq number
795  * @_ndev:	net_device pointer
796  *
797  * returns: IRQ_HANDLED for all cases.
798  *
799  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
800  * to complete the BD processing.
801  */
802 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
803 {
804 	u32 cr;
805 	unsigned int status;
806 	struct net_device *ndev = _ndev;
807 	struct axienet_local *lp = netdev_priv(ndev);
808 
809 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
810 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
811 		axienet_start_xmit_done(lp->ndev);
812 		goto out;
813 	}
814 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
815 		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
816 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
817 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
818 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
819 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
820 
821 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
822 		/* Disable coalesce, delay timer and error interrupts */
823 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
824 		/* Write to the Tx channel control register */
825 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
826 
827 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
828 		/* Disable coalesce, delay timer and error interrupts */
829 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
830 		/* Write to the Rx channel control register */
831 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
832 
833 		tasklet_schedule(&lp->dma_err_tasklet);
834 	}
835 out:
836 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
837 	return IRQ_HANDLED;
838 }
839 
840 /**
841  * axienet_rx_irq - Rx Isr.
842  * @irq:	irq number
843  * @_ndev:	net_device pointer
844  *
845  * returns: IRQ_HANDLED for all cases.
846  *
847  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
848  * processing.
849  */
850 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
851 {
852 	u32 cr;
853 	unsigned int status;
854 	struct net_device *ndev = _ndev;
855 	struct axienet_local *lp = netdev_priv(ndev);
856 
857 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
858 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
859 		axienet_recv(lp->ndev);
860 		goto out;
861 	}
862 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
863 		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
864 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
865 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
866 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
867 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
868 
869 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
870 		/* Disable coalesce, delay timer and error interrupts */
871 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
872 		/* Finally write to the Tx channel control register */
873 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
874 
875 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
876 		/* Disable coalesce, delay timer and error interrupts */
877 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
878 		/* write to the Rx channel control register */
879 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
880 
881 		tasklet_schedule(&lp->dma_err_tasklet);
882 	}
883 out:
884 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
885 	return IRQ_HANDLED;
886 }
887 
888 static void axienet_dma_err_handler(unsigned long data);
889 
890 /**
891  * axienet_open - Driver open routine.
892  * @ndev:	Pointer to net_device structure
893  *
894  * returns: 0, on success.
895  *	    -ENODEV, if PHY cannot be connected to
896  *	    non-zero error value on failure
897  *
898  * This is the driver open routine. It calls phy_start to start the PHY device.
899  * It also allocates interrupt service routines, enables the interrupt lines
900  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
901  * descriptors are initialized.
902  */
903 static int axienet_open(struct net_device *ndev)
904 {
905 	int ret, mdio_mcreg;
906 	struct axienet_local *lp = netdev_priv(ndev);
907 
908 	dev_dbg(&ndev->dev, "axienet_open()\n");
909 
910 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
911 	ret = axienet_mdio_wait_until_ready(lp);
912 	if (ret < 0)
913 		return ret;
914 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
915 	 * When we do an Axi Ethernet reset, it resets the complete core
916 	 * including the MDIO. If MDIO is not disabled when the reset
917 	 * process is started, MDIO will be broken afterwards. */
918 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
919 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
920 	axienet_device_reset(ndev);
921 	/* Enable the MDIO */
922 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
923 	ret = axienet_mdio_wait_until_ready(lp);
924 	if (ret < 0)
925 		return ret;
926 
927 	if (lp->phy_node) {
928 		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
929 					     axienet_adjust_link, 0,
930 					     PHY_INTERFACE_MODE_GMII);
931 		if (!lp->phy_dev) {
932 			dev_err(lp->dev, "of_phy_connect() failed\n");
933 			return -ENODEV;
934 		}
935 		phy_start(lp->phy_dev);
936 	}
937 
938 	/* Enable tasklets for Axi DMA error handling */
939 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940 		     (unsigned long) lp);
941 
942 	/* Enable interrupts for Axi DMA Tx */
943 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
944 	if (ret)
945 		goto err_tx_irq;
946 	/* Enable interrupts for Axi DMA Rx */
947 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
948 	if (ret)
949 		goto err_rx_irq;
950 
951 	return 0;
952 
953 err_rx_irq:
954 	free_irq(lp->tx_irq, ndev);
955 err_tx_irq:
956 	if (lp->phy_dev)
957 		phy_disconnect(lp->phy_dev);
958 	lp->phy_dev = NULL;
959 	tasklet_kill(&lp->dma_err_tasklet);
960 	dev_err(lp->dev, "request_irq() failed\n");
961 	return ret;
962 }
963 
964 /**
965  * axienet_stop - Driver stop routine.
966  * @ndev:	Pointer to net_device structure
967  *
968  * returns: 0, on success.
969  *
970  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
971  * device. It also removes the interrupt handlers and disables the interrupts.
972  * The Axi DMA Tx/Rx BDs are released.
973  */
974 static int axienet_stop(struct net_device *ndev)
975 {
976 	u32 cr;
977 	struct axienet_local *lp = netdev_priv(ndev);
978 
979 	dev_dbg(&ndev->dev, "axienet_close()\n");
980 
981 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
982 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
983 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
984 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
985 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
986 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 	axienet_setoptions(ndev, lp->options &
988 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
989 
990 	tasklet_kill(&lp->dma_err_tasklet);
991 
992 	free_irq(lp->tx_irq, ndev);
993 	free_irq(lp->rx_irq, ndev);
994 
995 	if (lp->phy_dev)
996 		phy_disconnect(lp->phy_dev);
997 	lp->phy_dev = NULL;
998 
999 	axienet_dma_bd_release(ndev);
1000 	return 0;
1001 }
1002 
1003 /**
1004  * axienet_change_mtu - Driver change mtu routine.
1005  * @ndev:	Pointer to net_device structure
1006  * @new_mtu:	New mtu value to be applied
1007  *
1008  * returns: Always returns 0 (success).
1009  *
1010  * This is the change mtu driver routine. It checks if the Axi Ethernet
1011  * hardware supports jumbo frames before changing the mtu. This can be
1012  * called only when the device is not up.
1013  */
1014 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1015 {
1016 	struct axienet_local *lp = netdev_priv(ndev);
1017 
1018 	if (netif_running(ndev))
1019 		return -EBUSY;
1020 	if (lp->jumbo_support) {
1021 		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1022 			return -EINVAL;
1023 		ndev->mtu = new_mtu;
1024 	} else {
1025 		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1026 			return -EINVAL;
1027 		ndev->mtu = new_mtu;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 #ifdef CONFIG_NET_POLL_CONTROLLER
1034 /**
1035  * axienet_poll_controller - Axi Ethernet poll mechanism.
1036  * @ndev:	Pointer to net_device structure
1037  *
1038  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1039  * to polling the ISRs and are enabled back after the polling is done.
1040  */
1041 static void axienet_poll_controller(struct net_device *ndev)
1042 {
1043 	struct axienet_local *lp = netdev_priv(ndev);
1044 	disable_irq(lp->tx_irq);
1045 	disable_irq(lp->rx_irq);
1046 	axienet_rx_irq(lp->tx_irq, ndev);
1047 	axienet_tx_irq(lp->rx_irq, ndev);
1048 	enable_irq(lp->tx_irq);
1049 	enable_irq(lp->rx_irq);
1050 }
1051 #endif
1052 
1053 static const struct net_device_ops axienet_netdev_ops = {
1054 	.ndo_open = axienet_open,
1055 	.ndo_stop = axienet_stop,
1056 	.ndo_start_xmit = axienet_start_xmit,
1057 	.ndo_change_mtu	= axienet_change_mtu,
1058 	.ndo_set_mac_address = netdev_set_mac_address,
1059 	.ndo_validate_addr = eth_validate_addr,
1060 	.ndo_set_rx_mode = axienet_set_multicast_list,
1061 #ifdef CONFIG_NET_POLL_CONTROLLER
1062 	.ndo_poll_controller = axienet_poll_controller,
1063 #endif
1064 };
1065 
1066 /**
1067  * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1068  * @ndev:	Pointer to net_device structure
1069  * @ecmd:	Pointer to ethtool_cmd structure
1070  *
1071  * This implements ethtool command for getting PHY settings. If PHY could
1072  * not be found, the function returns -ENODEV. This function calls the
1073  * relevant PHY ethtool API to get the PHY settings.
1074  * Issue "ethtool ethX" under linux prompt to execute this function.
1075  */
1076 static int axienet_ethtools_get_settings(struct net_device *ndev,
1077 					 struct ethtool_cmd *ecmd)
1078 {
1079 	struct axienet_local *lp = netdev_priv(ndev);
1080 	struct phy_device *phydev = lp->phy_dev;
1081 	if (!phydev)
1082 		return -ENODEV;
1083 	return phy_ethtool_gset(phydev, ecmd);
1084 }
1085 
1086 /**
1087  * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1088  * @ndev:	Pointer to net_device structure
1089  * @ecmd:	Pointer to ethtool_cmd structure
1090  *
1091  * This implements ethtool command for setting various PHY settings. If PHY
1092  * could not be found, the function returns -ENODEV. This function calls the
1093  * relevant PHY ethtool API to set the PHY.
1094  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1095  * function.
1096  */
1097 static int axienet_ethtools_set_settings(struct net_device *ndev,
1098 					 struct ethtool_cmd *ecmd)
1099 {
1100 	struct axienet_local *lp = netdev_priv(ndev);
1101 	struct phy_device *phydev = lp->phy_dev;
1102 	if (!phydev)
1103 		return -ENODEV;
1104 	return phy_ethtool_sset(phydev, ecmd);
1105 }
1106 
1107 /**
1108  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1109  * @ndev:	Pointer to net_device structure
1110  * @ed:		Pointer to ethtool_drvinfo structure
1111  *
1112  * This implements ethtool command for getting the driver information.
1113  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1114  */
1115 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1116 					 struct ethtool_drvinfo *ed)
1117 {
1118 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1119 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1120 	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1121 }
1122 
1123 /**
1124  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1125  *				   AxiEthernet core.
1126  * @ndev:	Pointer to net_device structure
1127  *
1128  * This implements ethtool command for getting the total register length
1129  * information.
1130  */
1131 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1132 {
1133 	return sizeof(u32) * AXIENET_REGS_N;
1134 }
1135 
1136 /**
1137  * axienet_ethtools_get_regs - Dump the contents of all registers present
1138  *			       in AxiEthernet core.
1139  * @ndev:	Pointer to net_device structure
1140  * @regs:	Pointer to ethtool_regs structure
1141  * @ret:	Void pointer used to return the contents of the registers.
1142  *
1143  * This implements ethtool command for getting the Axi Ethernet register dump.
1144  * Issue "ethtool -d ethX" to execute this function.
1145  */
1146 static void axienet_ethtools_get_regs(struct net_device *ndev,
1147 				      struct ethtool_regs *regs, void *ret)
1148 {
1149 	u32 *data = (u32 *) ret;
1150 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1151 	struct axienet_local *lp = netdev_priv(ndev);
1152 
1153 	regs->version = 0;
1154 	regs->len = len;
1155 
1156 	memset(data, 0, len);
1157 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1158 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1159 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1160 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1161 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1162 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1163 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1164 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1165 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1166 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1167 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1168 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1169 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1170 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1171 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1172 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1173 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1174 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1175 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1176 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1177 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1178 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1179 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1180 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1181 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1182 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1183 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1184 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1185 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1186 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1187 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1188 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1189 }
1190 
1191 /**
1192  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1193  *				     Tx and Rx paths.
1194  * @ndev:	Pointer to net_device structure
1195  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1196  *
1197  * This implements ethtool command for getting axi ethernet pause frame
1198  * setting. Issue "ethtool -a ethX" to execute this function.
1199  */
1200 static void
1201 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1202 				struct ethtool_pauseparam *epauseparm)
1203 {
1204 	u32 regval;
1205 	struct axienet_local *lp = netdev_priv(ndev);
1206 	epauseparm->autoneg  = 0;
1207 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1208 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1209 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1210 }
1211 
1212 /**
1213  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1214  *				     settings.
1215  * @ndev:	Pointer to net_device structure
1216  * @epauseparam:Pointer to ethtool_pauseparam structure
1217  *
1218  * This implements ethtool command for enabling flow control on Rx and Tx
1219  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1220  * function.
1221  */
1222 static int
1223 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1224 				struct ethtool_pauseparam *epauseparm)
1225 {
1226 	u32 regval = 0;
1227 	struct axienet_local *lp = netdev_priv(ndev);
1228 
1229 	if (netif_running(ndev)) {
1230 		printk(KERN_ERR	"%s: Please stop netif before applying "
1231 		       "configruation\n", ndev->name);
1232 		return -EFAULT;
1233 	}
1234 
1235 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1236 	if (epauseparm->tx_pause)
1237 		regval |= XAE_FCC_FCTX_MASK;
1238 	else
1239 		regval &= ~XAE_FCC_FCTX_MASK;
1240 	if (epauseparm->rx_pause)
1241 		regval |= XAE_FCC_FCRX_MASK;
1242 	else
1243 		regval &= ~XAE_FCC_FCRX_MASK;
1244 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1245 
1246 	return 0;
1247 }
1248 
1249 /**
1250  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1251  * @ndev:	Pointer to net_device structure
1252  * @ecoalesce:	Pointer to ethtool_coalesce structure
1253  *
1254  * This implements ethtool command for getting the DMA interrupt coalescing
1255  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1256  * execute this function.
1257  */
1258 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1259 					 struct ethtool_coalesce *ecoalesce)
1260 {
1261 	u32 regval = 0;
1262 	struct axienet_local *lp = netdev_priv(ndev);
1263 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1264 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1265 					     >> XAXIDMA_COALESCE_SHIFT;
1266 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1267 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1268 					     >> XAXIDMA_COALESCE_SHIFT;
1269 	return 0;
1270 }
1271 
1272 /**
1273  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1274  * @ndev:	Pointer to net_device structure
1275  * @ecoalesce:	Pointer to ethtool_coalesce structure
1276  *
1277  * This implements ethtool command for setting the DMA interrupt coalescing
1278  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1279  * prompt to execute this function.
1280  */
1281 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1282 					 struct ethtool_coalesce *ecoalesce)
1283 {
1284 	struct axienet_local *lp = netdev_priv(ndev);
1285 
1286 	if (netif_running(ndev)) {
1287 		printk(KERN_ERR	"%s: Please stop netif before applying "
1288 		       "configruation\n", ndev->name);
1289 		return -EFAULT;
1290 	}
1291 
1292 	if ((ecoalesce->rx_coalesce_usecs) ||
1293 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1294 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1295 	    (ecoalesce->tx_coalesce_usecs) ||
1296 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1297 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1298 	    (ecoalesce->stats_block_coalesce_usecs) ||
1299 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1300 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1301 	    (ecoalesce->pkt_rate_low) ||
1302 	    (ecoalesce->rx_coalesce_usecs_low) ||
1303 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1304 	    (ecoalesce->tx_coalesce_usecs_low) ||
1305 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1306 	    (ecoalesce->pkt_rate_high) ||
1307 	    (ecoalesce->rx_coalesce_usecs_high) ||
1308 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1309 	    (ecoalesce->tx_coalesce_usecs_high) ||
1310 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1311 	    (ecoalesce->rate_sample_interval))
1312 		return -EOPNOTSUPP;
1313 	if (ecoalesce->rx_max_coalesced_frames)
1314 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1315 	if (ecoalesce->tx_max_coalesced_frames)
1316 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1317 
1318 	return 0;
1319 }
1320 
1321 static struct ethtool_ops axienet_ethtool_ops = {
1322 	.get_settings   = axienet_ethtools_get_settings,
1323 	.set_settings   = axienet_ethtools_set_settings,
1324 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1325 	.get_regs_len   = axienet_ethtools_get_regs_len,
1326 	.get_regs       = axienet_ethtools_get_regs,
1327 	.get_link       = ethtool_op_get_link,
1328 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1329 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1330 	.get_coalesce   = axienet_ethtools_get_coalesce,
1331 	.set_coalesce   = axienet_ethtools_set_coalesce,
1332 };
1333 
1334 /**
1335  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1336  * @data:	Data passed
1337  *
1338  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1339  * Tx/Rx BDs.
1340  */
1341 static void axienet_dma_err_handler(unsigned long data)
1342 {
1343 	u32 axienet_status;
1344 	u32 cr, i;
1345 	int mdio_mcreg;
1346 	struct axienet_local *lp = (struct axienet_local *) data;
1347 	struct net_device *ndev = lp->ndev;
1348 	struct axidma_bd *cur_p;
1349 
1350 	axienet_setoptions(ndev, lp->options &
1351 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1352 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1353 	axienet_mdio_wait_until_ready(lp);
1354 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1355 	 * When we do an Axi Ethernet reset, it resets the complete core
1356 	 * including the MDIO. So if MDIO is not disabled when the reset
1357 	 * process is started, MDIO will be broken afterwards. */
1358 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1359 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1360 
1361 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1362 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1363 
1364 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1365 	axienet_mdio_wait_until_ready(lp);
1366 
1367 	for (i = 0; i < TX_BD_NUM; i++) {
1368 		cur_p = &lp->tx_bd_v[i];
1369 		if (cur_p->phys)
1370 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1371 					 (cur_p->cntrl &
1372 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1373 					 DMA_TO_DEVICE);
1374 		if (cur_p->app4)
1375 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1376 		cur_p->phys = 0;
1377 		cur_p->cntrl = 0;
1378 		cur_p->status = 0;
1379 		cur_p->app0 = 0;
1380 		cur_p->app1 = 0;
1381 		cur_p->app2 = 0;
1382 		cur_p->app3 = 0;
1383 		cur_p->app4 = 0;
1384 		cur_p->sw_id_offset = 0;
1385 	}
1386 
1387 	for (i = 0; i < RX_BD_NUM; i++) {
1388 		cur_p = &lp->rx_bd_v[i];
1389 		cur_p->status = 0;
1390 		cur_p->app0 = 0;
1391 		cur_p->app1 = 0;
1392 		cur_p->app2 = 0;
1393 		cur_p->app3 = 0;
1394 		cur_p->app4 = 0;
1395 	}
1396 
1397 	lp->tx_bd_ci = 0;
1398 	lp->tx_bd_tail = 0;
1399 	lp->rx_bd_ci = 0;
1400 
1401 	/* Start updating the Rx channel control register */
1402 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403 	/* Update the interrupt coalesce count */
1404 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1405 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1406 	/* Update the delay timer count */
1407 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1408 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1409 	/* Enable coalesce, delay timer and error interrupts */
1410 	cr |= XAXIDMA_IRQ_ALL_MASK;
1411 	/* Finally write to the Rx channel control register */
1412 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1413 
1414 	/* Start updating the Tx channel control register */
1415 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416 	/* Update the interrupt coalesce count */
1417 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1418 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1419 	/* Update the delay timer count */
1420 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1421 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1422 	/* Enable coalesce, delay timer and error interrupts */
1423 	cr |= XAXIDMA_IRQ_ALL_MASK;
1424 	/* Finally write to the Tx channel control register */
1425 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1426 
1427 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1428 	 * halted state. This will make the Rx side ready for reception.*/
1429 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1430 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1431 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1432 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1433 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1434 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1435 
1436 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1437 	 * Tx channel is now ready to run. But only after we write to the
1438 	 * tail pointer register that the Tx channel will start transmitting */
1439 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1440 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1441 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1442 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1443 
1444 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1445 	axienet_status &= ~XAE_RCW1_RX_MASK;
1446 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1447 
1448 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1449 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1450 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1451 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1452 
1453 	/* Sync default options with HW but leave receiver and
1454 	 * transmitter disabled.*/
1455 	axienet_setoptions(ndev, lp->options &
1456 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1457 	axienet_set_mac_address(ndev, NULL);
1458 	axienet_set_multicast_list(ndev);
1459 	axienet_setoptions(ndev, lp->options);
1460 }
1461 
1462 /**
1463  * axienet_of_probe - Axi Ethernet probe function.
1464  * @op:		Pointer to platform device structure.
1465  * @match:	Pointer to device id structure
1466  *
1467  * returns: 0, on success
1468  *	    Non-zero error value on failure.
1469  *
1470  * This is the probe routine for Axi Ethernet driver. This is called before
1471  * any other driver routines are invoked. It allocates and sets up the Ethernet
1472  * device. Parses through device tree and populates fields of
1473  * axienet_local. It registers the Ethernet device.
1474  */
1475 static int axienet_of_probe(struct platform_device *op)
1476 {
1477 	__be32 *p;
1478 	int size, ret = 0;
1479 	struct device_node *np;
1480 	struct axienet_local *lp;
1481 	struct net_device *ndev;
1482 	const void *addr;
1483 
1484 	ndev = alloc_etherdev(sizeof(*lp));
1485 	if (!ndev)
1486 		return -ENOMEM;
1487 
1488 	ether_setup(ndev);
1489 	platform_set_drvdata(op, ndev);
1490 
1491 	SET_NETDEV_DEV(ndev, &op->dev);
1492 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1493 	ndev->features = NETIF_F_SG;
1494 	ndev->netdev_ops = &axienet_netdev_ops;
1495 	ndev->ethtool_ops = &axienet_ethtool_ops;
1496 
1497 	lp = netdev_priv(ndev);
1498 	lp->ndev = ndev;
1499 	lp->dev = &op->dev;
1500 	lp->options = XAE_OPTION_DEFAULTS;
1501 	/* Map device registers */
1502 	lp->regs = of_iomap(op->dev.of_node, 0);
1503 	if (!lp->regs) {
1504 		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1505 		goto nodev;
1506 	}
1507 	/* Setup checksum offload, but default to off if not specified */
1508 	lp->features = 0;
1509 
1510 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1511 	if (p) {
1512 		switch (be32_to_cpup(p)) {
1513 		case 1:
1514 			lp->csum_offload_on_tx_path =
1515 				XAE_FEATURE_PARTIAL_TX_CSUM;
1516 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1517 			/* Can checksum TCP/UDP over IPv4. */
1518 			ndev->features |= NETIF_F_IP_CSUM;
1519 			break;
1520 		case 2:
1521 			lp->csum_offload_on_tx_path =
1522 				XAE_FEATURE_FULL_TX_CSUM;
1523 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1524 			/* Can checksum TCP/UDP over IPv4. */
1525 			ndev->features |= NETIF_F_IP_CSUM;
1526 			break;
1527 		default:
1528 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1529 		}
1530 	}
1531 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1532 	if (p) {
1533 		switch (be32_to_cpup(p)) {
1534 		case 1:
1535 			lp->csum_offload_on_rx_path =
1536 				XAE_FEATURE_PARTIAL_RX_CSUM;
1537 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1538 			break;
1539 		case 2:
1540 			lp->csum_offload_on_rx_path =
1541 				XAE_FEATURE_FULL_RX_CSUM;
1542 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1543 			break;
1544 		default:
1545 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1546 		}
1547 	}
1548 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1549 	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1550 	 * equal to 16384 bytes, so that we can enable jumbo option and start
1551 	 * supporting jumbo frames. Here we check for memory allocated for
1552 	 * Rx/Tx in the hardware from the device-tree and accordingly set
1553 	 * flags. */
1554 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1555 	if (p) {
1556 		if ((be32_to_cpup(p)) >= 0x4000)
1557 			lp->jumbo_support = 1;
1558 	}
1559 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1560 				       NULL);
1561 	if (p)
1562 		lp->temac_type = be32_to_cpup(p);
1563 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1564 	if (p)
1565 		lp->phy_type = be32_to_cpup(p);
1566 
1567 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1568 	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1569 	if (!np) {
1570 		dev_err(&op->dev, "could not find DMA node\n");
1571 		goto err_iounmap;
1572 	}
1573 	lp->dma_regs = of_iomap(np, 0);
1574 	if (lp->dma_regs) {
1575 		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1576 	} else {
1577 		dev_err(&op->dev, "unable to map DMA registers\n");
1578 		of_node_put(np);
1579 	}
1580 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1581 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1582 	of_node_put(np);
1583 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1584 		dev_err(&op->dev, "could not determine irqs\n");
1585 		ret = -ENOMEM;
1586 		goto err_iounmap_2;
1587 	}
1588 
1589 	/* Retrieve the MAC address */
1590 	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1591 	if ((!addr) || (size != 6)) {
1592 		dev_err(&op->dev, "could not find MAC address\n");
1593 		ret = -ENODEV;
1594 		goto err_iounmap_2;
1595 	}
1596 	axienet_set_mac_address(ndev, (void *) addr);
1597 
1598 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1599 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1600 
1601 	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1602 	ret = axienet_mdio_setup(lp, op->dev.of_node);
1603 	if (ret)
1604 		dev_warn(&op->dev, "error registering MDIO bus\n");
1605 
1606 	ret = register_netdev(lp->ndev);
1607 	if (ret) {
1608 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1609 		goto err_iounmap_2;
1610 	}
1611 
1612 	return 0;
1613 
1614 err_iounmap_2:
1615 	if (lp->dma_regs)
1616 		iounmap(lp->dma_regs);
1617 err_iounmap:
1618 	iounmap(lp->regs);
1619 nodev:
1620 	free_netdev(ndev);
1621 	ndev = NULL;
1622 	return ret;
1623 }
1624 
1625 static int axienet_of_remove(struct platform_device *op)
1626 {
1627 	struct net_device *ndev = platform_get_drvdata(op);
1628 	struct axienet_local *lp = netdev_priv(ndev);
1629 
1630 	axienet_mdio_teardown(lp);
1631 	unregister_netdev(ndev);
1632 
1633 	if (lp->phy_node)
1634 		of_node_put(lp->phy_node);
1635 	lp->phy_node = NULL;
1636 
1637 	iounmap(lp->regs);
1638 	if (lp->dma_regs)
1639 		iounmap(lp->dma_regs);
1640 	free_netdev(ndev);
1641 
1642 	return 0;
1643 }
1644 
1645 static struct platform_driver axienet_of_driver = {
1646 	.probe = axienet_of_probe,
1647 	.remove = axienet_of_remove,
1648 	.driver = {
1649 		 .owner = THIS_MODULE,
1650 		 .name = "xilinx_axienet",
1651 		 .of_match_table = axienet_of_match,
1652 	},
1653 };
1654 
1655 module_platform_driver(axienet_of_driver);
1656 
1657 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1658 MODULE_AUTHOR("Xilinx");
1659 MODULE_LICENSE("GPL");
1660