1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_address.h>
32 #include <linux/skbuff.h>
33 #include <linux/spinlock.h>
34 #include <linux/phy.h>
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 
38 #include "xilinx_axienet.h"
39 
40 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
41 #define TX_BD_NUM		64
42 #define RX_BD_NUM		128
43 
44 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
45 #define DRIVER_NAME		"xaxienet"
46 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
47 #define DRIVER_VERSION		"1.00a"
48 
49 #define AXIENET_REGS_N		32
50 
51 /* Match table for of_platform binding */
52 static const struct of_device_id axienet_of_match[] = {
53 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
54 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
55 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
56 	{},
57 };
58 
59 MODULE_DEVICE_TABLE(of, axienet_of_match);
60 
61 /* Option table for setting up Axi Ethernet hardware options */
62 static struct axienet_option axienet_options[] = {
63 	/* Turn on jumbo packet support for both Rx and Tx */
64 	{
65 		.opt = XAE_OPTION_JUMBO,
66 		.reg = XAE_TC_OFFSET,
67 		.m_or = XAE_TC_JUM_MASK,
68 	}, {
69 		.opt = XAE_OPTION_JUMBO,
70 		.reg = XAE_RCW1_OFFSET,
71 		.m_or = XAE_RCW1_JUM_MASK,
72 	}, { /* Turn on VLAN packet support for both Rx and Tx */
73 		.opt = XAE_OPTION_VLAN,
74 		.reg = XAE_TC_OFFSET,
75 		.m_or = XAE_TC_VLAN_MASK,
76 	}, {
77 		.opt = XAE_OPTION_VLAN,
78 		.reg = XAE_RCW1_OFFSET,
79 		.m_or = XAE_RCW1_VLAN_MASK,
80 	}, { /* Turn on FCS stripping on receive packets */
81 		.opt = XAE_OPTION_FCS_STRIP,
82 		.reg = XAE_RCW1_OFFSET,
83 		.m_or = XAE_RCW1_FCS_MASK,
84 	}, { /* Turn on FCS insertion on transmit packets */
85 		.opt = XAE_OPTION_FCS_INSERT,
86 		.reg = XAE_TC_OFFSET,
87 		.m_or = XAE_TC_FCS_MASK,
88 	}, { /* Turn off length/type field checking on receive packets */
89 		.opt = XAE_OPTION_LENTYPE_ERR,
90 		.reg = XAE_RCW1_OFFSET,
91 		.m_or = XAE_RCW1_LT_DIS_MASK,
92 	}, { /* Turn on Rx flow control */
93 		.opt = XAE_OPTION_FLOW_CONTROL,
94 		.reg = XAE_FCC_OFFSET,
95 		.m_or = XAE_FCC_FCRX_MASK,
96 	}, { /* Turn on Tx flow control */
97 		.opt = XAE_OPTION_FLOW_CONTROL,
98 		.reg = XAE_FCC_OFFSET,
99 		.m_or = XAE_FCC_FCTX_MASK,
100 	}, { /* Turn on promiscuous frame filtering */
101 		.opt = XAE_OPTION_PROMISC,
102 		.reg = XAE_FMI_OFFSET,
103 		.m_or = XAE_FMI_PM_MASK,
104 	}, { /* Enable transmitter */
105 		.opt = XAE_OPTION_TXEN,
106 		.reg = XAE_TC_OFFSET,
107 		.m_or = XAE_TC_TX_MASK,
108 	}, { /* Enable receiver */
109 		.opt = XAE_OPTION_RXEN,
110 		.reg = XAE_RCW1_OFFSET,
111 		.m_or = XAE_RCW1_RX_MASK,
112 	},
113 	{}
114 };
115 
116 /**
117  * axienet_dma_in32 - Memory mapped Axi DMA register read
118  * @lp:		Pointer to axienet local structure
119  * @reg:	Address offset from the base address of the Axi DMA core
120  *
121  * Return: The contents of the Axi DMA register
122  *
123  * This function returns the contents of the corresponding Axi DMA register.
124  */
125 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
126 {
127 	return in_be32(lp->dma_regs + reg);
128 }
129 
130 /**
131  * axienet_dma_out32 - Memory mapped Axi DMA register write.
132  * @lp:		Pointer to axienet local structure
133  * @reg:	Address offset from the base address of the Axi DMA core
134  * @value:	Value to be written into the Axi DMA register
135  *
136  * This function writes the desired value into the corresponding Axi DMA
137  * register.
138  */
139 static inline void axienet_dma_out32(struct axienet_local *lp,
140 				     off_t reg, u32 value)
141 {
142 	out_be32((lp->dma_regs + reg), value);
143 }
144 
145 /**
146  * axienet_dma_bd_release - Release buffer descriptor rings
147  * @ndev:	Pointer to the net_device structure
148  *
149  * This function is used to release the descriptors allocated in
150  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
151  * driver stop api is called.
152  */
153 static void axienet_dma_bd_release(struct net_device *ndev)
154 {
155 	int i;
156 	struct axienet_local *lp = netdev_priv(ndev);
157 
158 	for (i = 0; i < RX_BD_NUM; i++) {
159 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
160 				 lp->max_frm_size, DMA_FROM_DEVICE);
161 		dev_kfree_skb((struct sk_buff *)
162 			      (lp->rx_bd_v[i].sw_id_offset));
163 	}
164 
165 	if (lp->rx_bd_v) {
166 		dma_free_coherent(ndev->dev.parent,
167 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
168 				  lp->rx_bd_v,
169 				  lp->rx_bd_p);
170 	}
171 	if (lp->tx_bd_v) {
172 		dma_free_coherent(ndev->dev.parent,
173 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
174 				  lp->tx_bd_v,
175 				  lp->tx_bd_p);
176 	}
177 }
178 
179 /**
180  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
181  * @ndev:	Pointer to the net_device structure
182  *
183  * Return: 0, on success -ENOMEM, on failure
184  *
185  * This function is called to initialize the Rx and Tx DMA descriptor
186  * rings. This initializes the descriptors with required default values
187  * and is called when Axi Ethernet driver reset is called.
188  */
189 static int axienet_dma_bd_init(struct net_device *ndev)
190 {
191 	u32 cr;
192 	int i;
193 	struct sk_buff *skb;
194 	struct axienet_local *lp = netdev_priv(ndev);
195 
196 	/* Reset the indexes which are used for accessing the BDs */
197 	lp->tx_bd_ci = 0;
198 	lp->tx_bd_tail = 0;
199 	lp->rx_bd_ci = 0;
200 
201 	/* Allocate the Tx and Rx buffer descriptors. */
202 	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
203 					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
204 					  &lp->tx_bd_p, GFP_KERNEL);
205 	if (!lp->tx_bd_v)
206 		goto out;
207 
208 	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
209 					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
210 					  &lp->rx_bd_p, GFP_KERNEL);
211 	if (!lp->rx_bd_v)
212 		goto out;
213 
214 	for (i = 0; i < TX_BD_NUM; i++) {
215 		lp->tx_bd_v[i].next = lp->tx_bd_p +
216 				      sizeof(*lp->tx_bd_v) *
217 				      ((i + 1) % TX_BD_NUM);
218 	}
219 
220 	for (i = 0; i < RX_BD_NUM; i++) {
221 		lp->rx_bd_v[i].next = lp->rx_bd_p +
222 				      sizeof(*lp->rx_bd_v) *
223 				      ((i + 1) % RX_BD_NUM);
224 
225 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
226 		if (!skb)
227 			goto out;
228 
229 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
230 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
231 						     skb->data,
232 						     lp->max_frm_size,
233 						     DMA_FROM_DEVICE);
234 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
235 	}
236 
237 	/* Start updating the Rx channel control register */
238 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
239 	/* Update the interrupt coalesce count */
240 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
241 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
242 	/* Update the delay timer count */
243 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
244 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
245 	/* Enable coalesce, delay timer and error interrupts */
246 	cr |= XAXIDMA_IRQ_ALL_MASK;
247 	/* Write to the Rx channel control register */
248 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
249 
250 	/* Start updating the Tx channel control register */
251 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
252 	/* Update the interrupt coalesce count */
253 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
254 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
255 	/* Update the delay timer count */
256 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
257 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
258 	/* Enable coalesce, delay timer and error interrupts */
259 	cr |= XAXIDMA_IRQ_ALL_MASK;
260 	/* Write to the Tx channel control register */
261 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
262 
263 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
264 	 * halted state. This will make the Rx side ready for reception.
265 	 */
266 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
270 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
272 
273 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
274 	 * Tx channel is now ready to run. But only after we write to the
275 	 * tail pointer register that the Tx channel will start transmitting.
276 	 */
277 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
281 
282 	return 0;
283 out:
284 	axienet_dma_bd_release(ndev);
285 	return -ENOMEM;
286 }
287 
288 /**
289  * axienet_set_mac_address - Write the MAC address
290  * @ndev:	Pointer to the net_device structure
291  * @address:	6 byte Address to be written as MAC address
292  *
293  * This function is called to initialize the MAC address of the Axi Ethernet
294  * core. It writes to the UAW0 and UAW1 registers of the core.
295  */
296 static void axienet_set_mac_address(struct net_device *ndev,
297 				    const void *address)
298 {
299 	struct axienet_local *lp = netdev_priv(ndev);
300 
301 	if (address)
302 		memcpy(ndev->dev_addr, address, ETH_ALEN);
303 	if (!is_valid_ether_addr(ndev->dev_addr))
304 		eth_hw_addr_random(ndev);
305 
306 	/* Set up unicast MAC address filter set its mac address */
307 	axienet_iow(lp, XAE_UAW0_OFFSET,
308 		    (ndev->dev_addr[0]) |
309 		    (ndev->dev_addr[1] << 8) |
310 		    (ndev->dev_addr[2] << 16) |
311 		    (ndev->dev_addr[3] << 24));
312 	axienet_iow(lp, XAE_UAW1_OFFSET,
313 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
314 		      ~XAE_UAW1_UNICASTADDR_MASK) |
315 		     (ndev->dev_addr[4] |
316 		     (ndev->dev_addr[5] << 8))));
317 }
318 
319 /**
320  * netdev_set_mac_address - Write the MAC address (from outside the driver)
321  * @ndev:	Pointer to the net_device structure
322  * @p:		6 byte Address to be written as MAC address
323  *
324  * Return: 0 for all conditions. Presently, there is no failure case.
325  *
326  * This function is called to initialize the MAC address of the Axi Ethernet
327  * core. It calls the core specific axienet_set_mac_address. This is the
328  * function that goes into net_device_ops structure entry ndo_set_mac_address.
329  */
330 static int netdev_set_mac_address(struct net_device *ndev, void *p)
331 {
332 	struct sockaddr *addr = p;
333 	axienet_set_mac_address(ndev, addr->sa_data);
334 	return 0;
335 }
336 
337 /**
338  * axienet_set_multicast_list - Prepare the multicast table
339  * @ndev:	Pointer to the net_device structure
340  *
341  * This function is called to initialize the multicast table during
342  * initialization. The Axi Ethernet basic multicast support has a four-entry
343  * multicast table which is initialized here. Additionally this function
344  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
345  * means whenever the multicast table entries need to be updated this
346  * function gets called.
347  */
348 static void axienet_set_multicast_list(struct net_device *ndev)
349 {
350 	int i;
351 	u32 reg, af0reg, af1reg;
352 	struct axienet_local *lp = netdev_priv(ndev);
353 
354 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
355 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
356 		/* We must make the kernel realize we had to move into
357 		 * promiscuous mode. If it was a promiscuous mode request
358 		 * the flag is already set. If not we set it.
359 		 */
360 		ndev->flags |= IFF_PROMISC;
361 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
362 		reg |= XAE_FMI_PM_MASK;
363 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
364 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
365 	} else if (!netdev_mc_empty(ndev)) {
366 		struct netdev_hw_addr *ha;
367 
368 		i = 0;
369 		netdev_for_each_mc_addr(ha, ndev) {
370 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
371 				break;
372 
373 			af0reg = (ha->addr[0]);
374 			af0reg |= (ha->addr[1] << 8);
375 			af0reg |= (ha->addr[2] << 16);
376 			af0reg |= (ha->addr[3] << 24);
377 
378 			af1reg = (ha->addr[4]);
379 			af1reg |= (ha->addr[5] << 8);
380 
381 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
382 			reg |= i;
383 
384 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
385 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
386 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
387 			i++;
388 		}
389 	} else {
390 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
391 		reg &= ~XAE_FMI_PM_MASK;
392 
393 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
394 
395 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
396 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
397 			reg |= i;
398 
399 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
400 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
401 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
402 		}
403 
404 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
405 	}
406 }
407 
408 /**
409  * axienet_setoptions - Set an Axi Ethernet option
410  * @ndev:	Pointer to the net_device structure
411  * @options:	Option to be enabled/disabled
412  *
413  * The Axi Ethernet core has multiple features which can be selectively turned
414  * on or off. The typical options could be jumbo frame option, basic VLAN
415  * option, promiscuous mode option etc. This function is used to set or clear
416  * these options in the Axi Ethernet hardware. This is done through
417  * axienet_option structure .
418  */
419 static void axienet_setoptions(struct net_device *ndev, u32 options)
420 {
421 	int reg;
422 	struct axienet_local *lp = netdev_priv(ndev);
423 	struct axienet_option *tp = &axienet_options[0];
424 
425 	while (tp->opt) {
426 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
427 		if (options & tp->opt)
428 			reg |= tp->m_or;
429 		axienet_iow(lp, tp->reg, reg);
430 		tp++;
431 	}
432 
433 	lp->options |= options;
434 }
435 
436 static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
437 {
438 	u32 timeout;
439 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
440 	 * process of Axi DMA takes a while to complete as all pending
441 	 * commands/transfers will be flushed or completed during this
442 	 * reset process.
443 	 */
444 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 	timeout = DELAY_OF_ONE_MILLISEC;
446 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 		udelay(1);
448 		if (--timeout == 0) {
449 			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
450 				   __func__);
451 			break;
452 		}
453 	}
454 }
455 
456 /**
457  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458  * @ndev:	Pointer to the net_device structure
459  *
460  * This function is called to reset and initialize the Axi Ethernet core. This
461  * is typically called during initialization. It does a reset of the Axi DMA
462  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465  * core.
466  */
467 static void axienet_device_reset(struct net_device *ndev)
468 {
469 	u32 axienet_status;
470 	struct axienet_local *lp = netdev_priv(ndev);
471 
472 	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
473 	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
474 
475 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
476 	lp->options |= XAE_OPTION_VLAN;
477 	lp->options &= (~XAE_OPTION_JUMBO);
478 
479 	if ((ndev->mtu > XAE_MTU) &&
480 		(ndev->mtu <= XAE_JUMBO_MTU)) {
481 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
482 					XAE_TRL_SIZE;
483 
484 		if (lp->max_frm_size <= lp->rxmem)
485 			lp->options |= XAE_OPTION_JUMBO;
486 	}
487 
488 	if (axienet_dma_bd_init(ndev)) {
489 		netdev_err(ndev, "%s: descriptor allocation failed\n",
490 			   __func__);
491 	}
492 
493 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
494 	axienet_status &= ~XAE_RCW1_RX_MASK;
495 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
496 
497 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
498 	if (axienet_status & XAE_INT_RXRJECT_MASK)
499 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
500 
501 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
502 
503 	/* Sync default options with HW but leave receiver and
504 	 * transmitter disabled.
505 	 */
506 	axienet_setoptions(ndev, lp->options &
507 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
508 	axienet_set_mac_address(ndev, NULL);
509 	axienet_set_multicast_list(ndev);
510 	axienet_setoptions(ndev, lp->options);
511 
512 	netif_trans_update(ndev);
513 }
514 
515 /**
516  * axienet_adjust_link - Adjust the PHY link speed/duplex.
517  * @ndev:	Pointer to the net_device structure
518  *
519  * This function is called to change the speed and duplex setting after
520  * auto negotiation is done by the PHY. This is the function that gets
521  * registered with the PHY interface through the "of_phy_connect" call.
522  */
523 static void axienet_adjust_link(struct net_device *ndev)
524 {
525 	u32 emmc_reg;
526 	u32 link_state;
527 	u32 setspeed = 1;
528 	struct axienet_local *lp = netdev_priv(ndev);
529 	struct phy_device *phy = ndev->phydev;
530 
531 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
532 	if (lp->last_link != link_state) {
533 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
534 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
535 				setspeed = 0;
536 		} else {
537 			if ((phy->speed == SPEED_1000) &&
538 			    (lp->phy_type == XAE_PHY_TYPE_MII))
539 				setspeed = 0;
540 		}
541 
542 		if (setspeed == 1) {
543 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
544 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
545 
546 			switch (phy->speed) {
547 			case SPEED_1000:
548 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
549 				break;
550 			case SPEED_100:
551 				emmc_reg |= XAE_EMMC_LINKSPD_100;
552 				break;
553 			case SPEED_10:
554 				emmc_reg |= XAE_EMMC_LINKSPD_10;
555 				break;
556 			default:
557 				dev_err(&ndev->dev, "Speed other than 10, 100 "
558 					"or 1Gbps is not supported\n");
559 				break;
560 			}
561 
562 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
563 			lp->last_link = link_state;
564 			phy_print_status(phy);
565 		} else {
566 			netdev_err(ndev,
567 				   "Error setting Axi Ethernet mac speed\n");
568 		}
569 	}
570 }
571 
572 /**
573  * axienet_start_xmit_done - Invoked once a transmit is completed by the
574  * Axi DMA Tx channel.
575  * @ndev:	Pointer to the net_device structure
576  *
577  * This function is invoked from the Axi DMA Tx isr to notify the completion
578  * of transmit operation. It clears fields in the corresponding Tx BDs and
579  * unmaps the corresponding buffer so that CPU can regain ownership of the
580  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
581  * required.
582  */
583 static void axienet_start_xmit_done(struct net_device *ndev)
584 {
585 	u32 size = 0;
586 	u32 packets = 0;
587 	struct axienet_local *lp = netdev_priv(ndev);
588 	struct axidma_bd *cur_p;
589 	unsigned int status = 0;
590 
591 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
592 	status = cur_p->status;
593 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
594 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
595 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
596 				DMA_TO_DEVICE);
597 		if (cur_p->app4)
598 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
599 		/*cur_p->phys = 0;*/
600 		cur_p->app0 = 0;
601 		cur_p->app1 = 0;
602 		cur_p->app2 = 0;
603 		cur_p->app4 = 0;
604 		cur_p->status = 0;
605 
606 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
607 		packets++;
608 
609 		++lp->tx_bd_ci;
610 		lp->tx_bd_ci %= TX_BD_NUM;
611 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
612 		status = cur_p->status;
613 	}
614 
615 	ndev->stats.tx_packets += packets;
616 	ndev->stats.tx_bytes += size;
617 	netif_wake_queue(ndev);
618 }
619 
620 /**
621  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
622  * @lp:		Pointer to the axienet_local structure
623  * @num_frag:	The number of BDs to check for
624  *
625  * Return: 0, on success
626  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
627  *
628  * This function is invoked before BDs are allocated and transmission starts.
629  * This function returns 0 if a BD or group of BDs can be allocated for
630  * transmission. If the BD or any of the BDs are not free the function
631  * returns a busy status. This is invoked from axienet_start_xmit.
632  */
633 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
634 					    int num_frag)
635 {
636 	struct axidma_bd *cur_p;
637 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
638 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
639 		return NETDEV_TX_BUSY;
640 	return 0;
641 }
642 
643 /**
644  * axienet_start_xmit - Starts the transmission.
645  * @skb:	sk_buff pointer that contains data to be Txed.
646  * @ndev:	Pointer to net_device structure.
647  *
648  * Return: NETDEV_TX_OK, on success
649  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
650  *
651  * This function is invoked from upper layers to initiate transmission. The
652  * function uses the next available free BDs and populates their fields to
653  * start the transmission. Additionally if checksum offloading is supported,
654  * it populates AXI Stream Control fields with appropriate values.
655  */
656 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
657 {
658 	u32 ii;
659 	u32 num_frag;
660 	u32 csum_start_off;
661 	u32 csum_index_off;
662 	skb_frag_t *frag;
663 	dma_addr_t tail_p;
664 	struct axienet_local *lp = netdev_priv(ndev);
665 	struct axidma_bd *cur_p;
666 
667 	num_frag = skb_shinfo(skb)->nr_frags;
668 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
669 
670 	if (axienet_check_tx_bd_space(lp, num_frag)) {
671 		if (!netif_queue_stopped(ndev))
672 			netif_stop_queue(ndev);
673 		return NETDEV_TX_BUSY;
674 	}
675 
676 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
678 			/* Tx Full Checksum Offload Enabled */
679 			cur_p->app0 |= 2;
680 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
681 			csum_start_off = skb_transport_offset(skb);
682 			csum_index_off = csum_start_off + skb->csum_offset;
683 			/* Tx Partial Checksum Offload Enabled */
684 			cur_p->app0 |= 1;
685 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
686 		}
687 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
688 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
689 	}
690 
691 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
692 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
693 				     skb_headlen(skb), DMA_TO_DEVICE);
694 
695 	for (ii = 0; ii < num_frag; ii++) {
696 		++lp->tx_bd_tail;
697 		lp->tx_bd_tail %= TX_BD_NUM;
698 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
699 		frag = &skb_shinfo(skb)->frags[ii];
700 		cur_p->phys = dma_map_single(ndev->dev.parent,
701 					     skb_frag_address(frag),
702 					     skb_frag_size(frag),
703 					     DMA_TO_DEVICE);
704 		cur_p->cntrl = skb_frag_size(frag);
705 	}
706 
707 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
708 	cur_p->app4 = (unsigned long)skb;
709 
710 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
711 	/* Start the transfer */
712 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
713 	++lp->tx_bd_tail;
714 	lp->tx_bd_tail %= TX_BD_NUM;
715 
716 	return NETDEV_TX_OK;
717 }
718 
719 /**
720  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
721  *		  BD processing.
722  * @ndev:	Pointer to net_device structure.
723  *
724  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
725  * does minimal processing and invokes "netif_rx" to complete further
726  * processing.
727  */
728 static void axienet_recv(struct net_device *ndev)
729 {
730 	u32 length;
731 	u32 csumstatus;
732 	u32 size = 0;
733 	u32 packets = 0;
734 	dma_addr_t tail_p = 0;
735 	struct axienet_local *lp = netdev_priv(ndev);
736 	struct sk_buff *skb, *new_skb;
737 	struct axidma_bd *cur_p;
738 
739 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
740 
741 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
742 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
743 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
744 		length = cur_p->app4 & 0x0000FFFF;
745 
746 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
747 				 lp->max_frm_size,
748 				 DMA_FROM_DEVICE);
749 
750 		skb_put(skb, length);
751 		skb->protocol = eth_type_trans(skb, ndev);
752 		/*skb_checksum_none_assert(skb);*/
753 		skb->ip_summed = CHECKSUM_NONE;
754 
755 		/* if we're doing Rx csum offload, set it up */
756 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
757 			csumstatus = (cur_p->app2 &
758 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
759 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
760 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
761 				skb->ip_summed = CHECKSUM_UNNECESSARY;
762 			}
763 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
764 			   skb->protocol == htons(ETH_P_IP) &&
765 			   skb->len > 64) {
766 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
767 			skb->ip_summed = CHECKSUM_COMPLETE;
768 		}
769 
770 		netif_rx(skb);
771 
772 		size += length;
773 		packets++;
774 
775 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
776 		if (!new_skb)
777 			return;
778 
779 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
780 					     lp->max_frm_size,
781 					     DMA_FROM_DEVICE);
782 		cur_p->cntrl = lp->max_frm_size;
783 		cur_p->status = 0;
784 		cur_p->sw_id_offset = (u32) new_skb;
785 
786 		++lp->rx_bd_ci;
787 		lp->rx_bd_ci %= RX_BD_NUM;
788 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
789 	}
790 
791 	ndev->stats.rx_packets += packets;
792 	ndev->stats.rx_bytes += size;
793 
794 	if (tail_p)
795 		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
796 }
797 
798 /**
799  * axienet_tx_irq - Tx Done Isr.
800  * @irq:	irq number
801  * @_ndev:	net_device pointer
802  *
803  * Return: IRQ_HANDLED for all cases.
804  *
805  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
806  * to complete the BD processing.
807  */
808 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
809 {
810 	u32 cr;
811 	unsigned int status;
812 	struct net_device *ndev = _ndev;
813 	struct axienet_local *lp = netdev_priv(ndev);
814 
815 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
816 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
817 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
818 		axienet_start_xmit_done(lp->ndev);
819 		goto out;
820 	}
821 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
822 		dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
823 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
824 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
825 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
826 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
827 
828 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
829 		/* Disable coalesce, delay timer and error interrupts */
830 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
831 		/* Write to the Tx channel control register */
832 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
833 
834 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
835 		/* Disable coalesce, delay timer and error interrupts */
836 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
837 		/* Write to the Rx channel control register */
838 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
839 
840 		tasklet_schedule(&lp->dma_err_tasklet);
841 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
842 	}
843 out:
844 	return IRQ_HANDLED;
845 }
846 
847 /**
848  * axienet_rx_irq - Rx Isr.
849  * @irq:	irq number
850  * @_ndev:	net_device pointer
851  *
852  * Return: IRQ_HANDLED for all cases.
853  *
854  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
855  * processing.
856  */
857 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
858 {
859 	u32 cr;
860 	unsigned int status;
861 	struct net_device *ndev = _ndev;
862 	struct axienet_local *lp = netdev_priv(ndev);
863 
864 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
865 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
866 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
867 		axienet_recv(lp->ndev);
868 		goto out;
869 	}
870 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
871 		dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
872 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
873 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
874 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
875 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
876 
877 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
878 		/* Disable coalesce, delay timer and error interrupts */
879 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
880 		/* Finally write to the Tx channel control register */
881 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
882 
883 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
884 		/* Disable coalesce, delay timer and error interrupts */
885 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
886 		/* write to the Rx channel control register */
887 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
888 
889 		tasklet_schedule(&lp->dma_err_tasklet);
890 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
891 	}
892 out:
893 	return IRQ_HANDLED;
894 }
895 
896 static void axienet_dma_err_handler(unsigned long data);
897 
898 /**
899  * axienet_open - Driver open routine.
900  * @ndev:	Pointer to net_device structure
901  *
902  * Return: 0, on success.
903  *	    -ENODEV, if PHY cannot be connected to
904  *	    non-zero error value on failure
905  *
906  * This is the driver open routine. It calls phy_start to start the PHY device.
907  * It also allocates interrupt service routines, enables the interrupt lines
908  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
909  * descriptors are initialized.
910  */
911 static int axienet_open(struct net_device *ndev)
912 {
913 	int ret, mdio_mcreg;
914 	struct axienet_local *lp = netdev_priv(ndev);
915 	struct phy_device *phydev = NULL;
916 
917 	dev_dbg(&ndev->dev, "axienet_open()\n");
918 
919 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
920 	ret = axienet_mdio_wait_until_ready(lp);
921 	if (ret < 0)
922 		return ret;
923 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
924 	 * When we do an Axi Ethernet reset, it resets the complete core
925 	 * including the MDIO. If MDIO is not disabled when the reset
926 	 * process is started, MDIO will be broken afterwards.
927 	 */
928 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
929 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
930 	axienet_device_reset(ndev);
931 	/* Enable the MDIO */
932 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
933 	ret = axienet_mdio_wait_until_ready(lp);
934 	if (ret < 0)
935 		return ret;
936 
937 	if (lp->phy_node) {
938 		if (lp->phy_type == XAE_PHY_TYPE_GMII) {
939 			phydev = of_phy_connect(lp->ndev, lp->phy_node,
940 						axienet_adjust_link, 0,
941 						PHY_INTERFACE_MODE_GMII);
942 		} else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
943 			phydev = of_phy_connect(lp->ndev, lp->phy_node,
944 						axienet_adjust_link, 0,
945 						PHY_INTERFACE_MODE_RGMII_ID);
946 		}
947 
948 		if (!phydev)
949 			dev_err(lp->dev, "of_phy_connect() failed\n");
950 		else
951 			phy_start(phydev);
952 	}
953 
954 	/* Enable tasklets for Axi DMA error handling */
955 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
956 		     (unsigned long) lp);
957 
958 	/* Enable interrupts for Axi DMA Tx */
959 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
960 	if (ret)
961 		goto err_tx_irq;
962 	/* Enable interrupts for Axi DMA Rx */
963 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
964 	if (ret)
965 		goto err_rx_irq;
966 
967 	return 0;
968 
969 err_rx_irq:
970 	free_irq(lp->tx_irq, ndev);
971 err_tx_irq:
972 	if (phydev)
973 		phy_disconnect(phydev);
974 	tasklet_kill(&lp->dma_err_tasklet);
975 	dev_err(lp->dev, "request_irq() failed\n");
976 	return ret;
977 }
978 
979 /**
980  * axienet_stop - Driver stop routine.
981  * @ndev:	Pointer to net_device structure
982  *
983  * Return: 0, on success.
984  *
985  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
986  * device. It also removes the interrupt handlers and disables the interrupts.
987  * The Axi DMA Tx/Rx BDs are released.
988  */
989 static int axienet_stop(struct net_device *ndev)
990 {
991 	u32 cr;
992 	struct axienet_local *lp = netdev_priv(ndev);
993 
994 	dev_dbg(&ndev->dev, "axienet_close()\n");
995 
996 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
997 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
998 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
999 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1000 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1001 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1002 	axienet_setoptions(ndev, lp->options &
1003 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1004 
1005 	tasklet_kill(&lp->dma_err_tasklet);
1006 
1007 	free_irq(lp->tx_irq, ndev);
1008 	free_irq(lp->rx_irq, ndev);
1009 
1010 	if (ndev->phydev)
1011 		phy_disconnect(ndev->phydev);
1012 
1013 	axienet_dma_bd_release(ndev);
1014 	return 0;
1015 }
1016 
1017 /**
1018  * axienet_change_mtu - Driver change mtu routine.
1019  * @ndev:	Pointer to net_device structure
1020  * @new_mtu:	New mtu value to be applied
1021  *
1022  * Return: Always returns 0 (success).
1023  *
1024  * This is the change mtu driver routine. It checks if the Axi Ethernet
1025  * hardware supports jumbo frames before changing the mtu. This can be
1026  * called only when the device is not up.
1027  */
1028 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029 {
1030 	struct axienet_local *lp = netdev_priv(ndev);
1031 
1032 	if (netif_running(ndev))
1033 		return -EBUSY;
1034 
1035 	if ((new_mtu + VLAN_ETH_HLEN +
1036 		XAE_TRL_SIZE) > lp->rxmem)
1037 		return -EINVAL;
1038 
1039 	ndev->mtu = new_mtu;
1040 
1041 	return 0;
1042 }
1043 
1044 #ifdef CONFIG_NET_POLL_CONTROLLER
1045 /**
1046  * axienet_poll_controller - Axi Ethernet poll mechanism.
1047  * @ndev:	Pointer to net_device structure
1048  *
1049  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1050  * to polling the ISRs and are enabled back after the polling is done.
1051  */
1052 static void axienet_poll_controller(struct net_device *ndev)
1053 {
1054 	struct axienet_local *lp = netdev_priv(ndev);
1055 	disable_irq(lp->tx_irq);
1056 	disable_irq(lp->rx_irq);
1057 	axienet_rx_irq(lp->tx_irq, ndev);
1058 	axienet_tx_irq(lp->rx_irq, ndev);
1059 	enable_irq(lp->tx_irq);
1060 	enable_irq(lp->rx_irq);
1061 }
1062 #endif
1063 
1064 static const struct net_device_ops axienet_netdev_ops = {
1065 	.ndo_open = axienet_open,
1066 	.ndo_stop = axienet_stop,
1067 	.ndo_start_xmit = axienet_start_xmit,
1068 	.ndo_change_mtu	= axienet_change_mtu,
1069 	.ndo_set_mac_address = netdev_set_mac_address,
1070 	.ndo_validate_addr = eth_validate_addr,
1071 	.ndo_set_rx_mode = axienet_set_multicast_list,
1072 #ifdef CONFIG_NET_POLL_CONTROLLER
1073 	.ndo_poll_controller = axienet_poll_controller,
1074 #endif
1075 };
1076 
1077 /**
1078  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1079  * @ndev:	Pointer to net_device structure
1080  * @ed:		Pointer to ethtool_drvinfo structure
1081  *
1082  * This implements ethtool command for getting the driver information.
1083  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1084  */
1085 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1086 					 struct ethtool_drvinfo *ed)
1087 {
1088 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1089 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1090 }
1091 
1092 /**
1093  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1094  *				   AxiEthernet core.
1095  * @ndev:	Pointer to net_device structure
1096  *
1097  * This implements ethtool command for getting the total register length
1098  * information.
1099  *
1100  * Return: the total regs length
1101  */
1102 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1103 {
1104 	return sizeof(u32) * AXIENET_REGS_N;
1105 }
1106 
1107 /**
1108  * axienet_ethtools_get_regs - Dump the contents of all registers present
1109  *			       in AxiEthernet core.
1110  * @ndev:	Pointer to net_device structure
1111  * @regs:	Pointer to ethtool_regs structure
1112  * @ret:	Void pointer used to return the contents of the registers.
1113  *
1114  * This implements ethtool command for getting the Axi Ethernet register dump.
1115  * Issue "ethtool -d ethX" to execute this function.
1116  */
1117 static void axienet_ethtools_get_regs(struct net_device *ndev,
1118 				      struct ethtool_regs *regs, void *ret)
1119 {
1120 	u32 *data = (u32 *) ret;
1121 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1122 	struct axienet_local *lp = netdev_priv(ndev);
1123 
1124 	regs->version = 0;
1125 	regs->len = len;
1126 
1127 	memset(data, 0, len);
1128 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1129 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1130 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1131 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1132 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1133 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1134 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1135 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1136 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1137 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1138 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1139 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1140 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1141 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1142 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1143 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1144 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1145 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1146 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1147 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1148 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1149 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1150 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1151 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1152 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1153 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1154 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1155 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1156 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1157 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1158 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1159 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1160 }
1161 
1162 /**
1163  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1164  *				     Tx and Rx paths.
1165  * @ndev:	Pointer to net_device structure
1166  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1167  *
1168  * This implements ethtool command for getting axi ethernet pause frame
1169  * setting. Issue "ethtool -a ethX" to execute this function.
1170  */
1171 static void
1172 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1173 				struct ethtool_pauseparam *epauseparm)
1174 {
1175 	u32 regval;
1176 	struct axienet_local *lp = netdev_priv(ndev);
1177 	epauseparm->autoneg  = 0;
1178 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1179 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1180 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1181 }
1182 
1183 /**
1184  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1185  *				     settings.
1186  * @ndev:	Pointer to net_device structure
1187  * @epauseparm:Pointer to ethtool_pauseparam structure
1188  *
1189  * This implements ethtool command for enabling flow control on Rx and Tx
1190  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1191  * function.
1192  *
1193  * Return: 0 on success, -EFAULT if device is running
1194  */
1195 static int
1196 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1197 				struct ethtool_pauseparam *epauseparm)
1198 {
1199 	u32 regval = 0;
1200 	struct axienet_local *lp = netdev_priv(ndev);
1201 
1202 	if (netif_running(ndev)) {
1203 		netdev_err(ndev,
1204 			   "Please stop netif before applying configuration\n");
1205 		return -EFAULT;
1206 	}
1207 
1208 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1209 	if (epauseparm->tx_pause)
1210 		regval |= XAE_FCC_FCTX_MASK;
1211 	else
1212 		regval &= ~XAE_FCC_FCTX_MASK;
1213 	if (epauseparm->rx_pause)
1214 		regval |= XAE_FCC_FCRX_MASK;
1215 	else
1216 		regval &= ~XAE_FCC_FCRX_MASK;
1217 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1224  * @ndev:	Pointer to net_device structure
1225  * @ecoalesce:	Pointer to ethtool_coalesce structure
1226  *
1227  * This implements ethtool command for getting the DMA interrupt coalescing
1228  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1229  * execute this function.
1230  *
1231  * Return: 0 always
1232  */
1233 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1234 					 struct ethtool_coalesce *ecoalesce)
1235 {
1236 	u32 regval = 0;
1237 	struct axienet_local *lp = netdev_priv(ndev);
1238 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1239 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1240 					     >> XAXIDMA_COALESCE_SHIFT;
1241 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1242 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1243 					     >> XAXIDMA_COALESCE_SHIFT;
1244 	return 0;
1245 }
1246 
1247 /**
1248  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1249  * @ndev:	Pointer to net_device structure
1250  * @ecoalesce:	Pointer to ethtool_coalesce structure
1251  *
1252  * This implements ethtool command for setting the DMA interrupt coalescing
1253  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1254  * prompt to execute this function.
1255  *
1256  * Return: 0, on success, Non-zero error value on failure.
1257  */
1258 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1259 					 struct ethtool_coalesce *ecoalesce)
1260 {
1261 	struct axienet_local *lp = netdev_priv(ndev);
1262 
1263 	if (netif_running(ndev)) {
1264 		netdev_err(ndev,
1265 			   "Please stop netif before applying configuration\n");
1266 		return -EFAULT;
1267 	}
1268 
1269 	if ((ecoalesce->rx_coalesce_usecs) ||
1270 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1271 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1272 	    (ecoalesce->tx_coalesce_usecs) ||
1273 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1274 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1275 	    (ecoalesce->stats_block_coalesce_usecs) ||
1276 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1277 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1278 	    (ecoalesce->pkt_rate_low) ||
1279 	    (ecoalesce->rx_coalesce_usecs_low) ||
1280 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1281 	    (ecoalesce->tx_coalesce_usecs_low) ||
1282 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1283 	    (ecoalesce->pkt_rate_high) ||
1284 	    (ecoalesce->rx_coalesce_usecs_high) ||
1285 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1286 	    (ecoalesce->tx_coalesce_usecs_high) ||
1287 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1288 	    (ecoalesce->rate_sample_interval))
1289 		return -EOPNOTSUPP;
1290 	if (ecoalesce->rx_max_coalesced_frames)
1291 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1292 	if (ecoalesce->tx_max_coalesced_frames)
1293 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1294 
1295 	return 0;
1296 }
1297 
1298 static const struct ethtool_ops axienet_ethtool_ops = {
1299 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1300 	.get_regs_len   = axienet_ethtools_get_regs_len,
1301 	.get_regs       = axienet_ethtools_get_regs,
1302 	.get_link       = ethtool_op_get_link,
1303 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1304 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1305 	.get_coalesce   = axienet_ethtools_get_coalesce,
1306 	.set_coalesce   = axienet_ethtools_set_coalesce,
1307 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1308 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1309 };
1310 
1311 /**
1312  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1313  * @data:	Data passed
1314  *
1315  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1316  * Tx/Rx BDs.
1317  */
1318 static void axienet_dma_err_handler(unsigned long data)
1319 {
1320 	u32 axienet_status;
1321 	u32 cr, i;
1322 	int mdio_mcreg;
1323 	struct axienet_local *lp = (struct axienet_local *) data;
1324 	struct net_device *ndev = lp->ndev;
1325 	struct axidma_bd *cur_p;
1326 
1327 	axienet_setoptions(ndev, lp->options &
1328 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1329 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1330 	axienet_mdio_wait_until_ready(lp);
1331 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1332 	 * When we do an Axi Ethernet reset, it resets the complete core
1333 	 * including the MDIO. So if MDIO is not disabled when the reset
1334 	 * process is started, MDIO will be broken afterwards.
1335 	 */
1336 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1337 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1338 
1339 	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1340 	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1341 
1342 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1343 	axienet_mdio_wait_until_ready(lp);
1344 
1345 	for (i = 0; i < TX_BD_NUM; i++) {
1346 		cur_p = &lp->tx_bd_v[i];
1347 		if (cur_p->phys)
1348 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1349 					 (cur_p->cntrl &
1350 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1351 					 DMA_TO_DEVICE);
1352 		if (cur_p->app4)
1353 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1354 		cur_p->phys = 0;
1355 		cur_p->cntrl = 0;
1356 		cur_p->status = 0;
1357 		cur_p->app0 = 0;
1358 		cur_p->app1 = 0;
1359 		cur_p->app2 = 0;
1360 		cur_p->app3 = 0;
1361 		cur_p->app4 = 0;
1362 		cur_p->sw_id_offset = 0;
1363 	}
1364 
1365 	for (i = 0; i < RX_BD_NUM; i++) {
1366 		cur_p = &lp->rx_bd_v[i];
1367 		cur_p->status = 0;
1368 		cur_p->app0 = 0;
1369 		cur_p->app1 = 0;
1370 		cur_p->app2 = 0;
1371 		cur_p->app3 = 0;
1372 		cur_p->app4 = 0;
1373 	}
1374 
1375 	lp->tx_bd_ci = 0;
1376 	lp->tx_bd_tail = 0;
1377 	lp->rx_bd_ci = 0;
1378 
1379 	/* Start updating the Rx channel control register */
1380 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1381 	/* Update the interrupt coalesce count */
1382 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1383 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1384 	/* Update the delay timer count */
1385 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1386 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1387 	/* Enable coalesce, delay timer and error interrupts */
1388 	cr |= XAXIDMA_IRQ_ALL_MASK;
1389 	/* Finally write to the Rx channel control register */
1390 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1391 
1392 	/* Start updating the Tx channel control register */
1393 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1394 	/* Update the interrupt coalesce count */
1395 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1396 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1397 	/* Update the delay timer count */
1398 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1399 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1400 	/* Enable coalesce, delay timer and error interrupts */
1401 	cr |= XAXIDMA_IRQ_ALL_MASK;
1402 	/* Finally write to the Tx channel control register */
1403 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1404 
1405 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1406 	 * halted state. This will make the Rx side ready for reception.
1407 	 */
1408 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1409 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1410 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1411 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1412 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1413 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1414 
1415 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1416 	 * Tx channel is now ready to run. But only after we write to the
1417 	 * tail pointer register that the Tx channel will start transmitting
1418 	 */
1419 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1420 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1421 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1422 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1423 
1424 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1425 	axienet_status &= ~XAE_RCW1_RX_MASK;
1426 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1427 
1428 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1429 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1430 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1431 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1432 
1433 	/* Sync default options with HW but leave receiver and
1434 	 * transmitter disabled.
1435 	 */
1436 	axienet_setoptions(ndev, lp->options &
1437 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1438 	axienet_set_mac_address(ndev, NULL);
1439 	axienet_set_multicast_list(ndev);
1440 	axienet_setoptions(ndev, lp->options);
1441 }
1442 
1443 /**
1444  * axienet_probe - Axi Ethernet probe function.
1445  * @pdev:	Pointer to platform device structure.
1446  *
1447  * Return: 0, on success
1448  *	    Non-zero error value on failure.
1449  *
1450  * This is the probe routine for Axi Ethernet driver. This is called before
1451  * any other driver routines are invoked. It allocates and sets up the Ethernet
1452  * device. Parses through device tree and populates fields of
1453  * axienet_local. It registers the Ethernet device.
1454  */
1455 static int axienet_probe(struct platform_device *pdev)
1456 {
1457 	int ret;
1458 	struct device_node *np;
1459 	struct axienet_local *lp;
1460 	struct net_device *ndev;
1461 	const void *mac_addr;
1462 	struct resource *ethres, dmares;
1463 	u32 value;
1464 
1465 	ndev = alloc_etherdev(sizeof(*lp));
1466 	if (!ndev)
1467 		return -ENOMEM;
1468 
1469 	platform_set_drvdata(pdev, ndev);
1470 
1471 	SET_NETDEV_DEV(ndev, &pdev->dev);
1472 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1473 	ndev->features = NETIF_F_SG;
1474 	ndev->netdev_ops = &axienet_netdev_ops;
1475 	ndev->ethtool_ops = &axienet_ethtool_ops;
1476 
1477 	/* MTU range: 64 - 9000 */
1478 	ndev->min_mtu = 64;
1479 	ndev->max_mtu = XAE_JUMBO_MTU;
1480 
1481 	lp = netdev_priv(ndev);
1482 	lp->ndev = ndev;
1483 	lp->dev = &pdev->dev;
1484 	lp->options = XAE_OPTION_DEFAULTS;
1485 	/* Map device registers */
1486 	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1487 	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1488 	if (IS_ERR(lp->regs)) {
1489 		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1490 		ret = PTR_ERR(lp->regs);
1491 		goto free_netdev;
1492 	}
1493 
1494 	/* Setup checksum offload, but default to off if not specified */
1495 	lp->features = 0;
1496 
1497 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1498 	if (!ret) {
1499 		switch (value) {
1500 		case 1:
1501 			lp->csum_offload_on_tx_path =
1502 				XAE_FEATURE_PARTIAL_TX_CSUM;
1503 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1504 			/* Can checksum TCP/UDP over IPv4. */
1505 			ndev->features |= NETIF_F_IP_CSUM;
1506 			break;
1507 		case 2:
1508 			lp->csum_offload_on_tx_path =
1509 				XAE_FEATURE_FULL_TX_CSUM;
1510 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1511 			/* Can checksum TCP/UDP over IPv4. */
1512 			ndev->features |= NETIF_F_IP_CSUM;
1513 			break;
1514 		default:
1515 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1516 		}
1517 	}
1518 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1519 	if (!ret) {
1520 		switch (value) {
1521 		case 1:
1522 			lp->csum_offload_on_rx_path =
1523 				XAE_FEATURE_PARTIAL_RX_CSUM;
1524 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1525 			break;
1526 		case 2:
1527 			lp->csum_offload_on_rx_path =
1528 				XAE_FEATURE_FULL_RX_CSUM;
1529 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1530 			break;
1531 		default:
1532 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1533 		}
1534 	}
1535 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1536 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1537 	 * we can enable jumbo option and start supporting jumbo frames.
1538 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1539 	 * the device-tree and accordingly set flags.
1540 	 */
1541 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1542 	of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1543 
1544 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1545 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1546 	if (!np) {
1547 		dev_err(&pdev->dev, "could not find DMA node\n");
1548 		ret = -ENODEV;
1549 		goto free_netdev;
1550 	}
1551 	ret = of_address_to_resource(np, 0, &dmares);
1552 	if (ret) {
1553 		dev_err(&pdev->dev, "unable to get DMA resource\n");
1554 		goto free_netdev;
1555 	}
1556 	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1557 	if (IS_ERR(lp->dma_regs)) {
1558 		dev_err(&pdev->dev, "could not map DMA regs\n");
1559 		ret = PTR_ERR(lp->dma_regs);
1560 		goto free_netdev;
1561 	}
1562 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1563 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1564 	of_node_put(np);
1565 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1566 		dev_err(&pdev->dev, "could not determine irqs\n");
1567 		ret = -ENOMEM;
1568 		goto free_netdev;
1569 	}
1570 
1571 	/* Retrieve the MAC address */
1572 	mac_addr = of_get_mac_address(pdev->dev.of_node);
1573 	if (!mac_addr) {
1574 		dev_err(&pdev->dev, "could not find MAC address\n");
1575 		goto free_netdev;
1576 	}
1577 	axienet_set_mac_address(ndev, mac_addr);
1578 
1579 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1580 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1581 
1582 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1583 	if (lp->phy_node) {
1584 		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1585 		if (ret)
1586 			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1587 	}
1588 
1589 	ret = register_netdev(lp->ndev);
1590 	if (ret) {
1591 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1592 		goto free_netdev;
1593 	}
1594 
1595 	return 0;
1596 
1597 free_netdev:
1598 	free_netdev(ndev);
1599 
1600 	return ret;
1601 }
1602 
1603 static int axienet_remove(struct platform_device *pdev)
1604 {
1605 	struct net_device *ndev = platform_get_drvdata(pdev);
1606 	struct axienet_local *lp = netdev_priv(ndev);
1607 
1608 	axienet_mdio_teardown(lp);
1609 	unregister_netdev(ndev);
1610 
1611 	of_node_put(lp->phy_node);
1612 	lp->phy_node = NULL;
1613 
1614 	free_netdev(ndev);
1615 
1616 	return 0;
1617 }
1618 
1619 static struct platform_driver axienet_driver = {
1620 	.probe = axienet_probe,
1621 	.remove = axienet_remove,
1622 	.driver = {
1623 		 .name = "xilinx_axienet",
1624 		 .of_match_table = axienet_of_match,
1625 	},
1626 };
1627 
1628 module_platform_driver(axienet_driver);
1629 
1630 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1631 MODULE_AUTHOR("Xilinx");
1632 MODULE_LICENSE("GPL");
1633