1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_platform.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 
37 #include "xilinx_axienet.h"
38 
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM		64
41 #define RX_BD_NUM		128
42 
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME		"xaxienet"
45 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION		"1.00a"
47 
48 #define AXIENET_REGS_N		32
49 
50 /* Match table for of_platform binding */
51 static struct of_device_id axienet_of_match[] __devinitdata = {
52 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55 	{},
56 };
57 
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 	/* Turn on jumbo packet support for both Rx and Tx */
63 	{
64 		.opt = XAE_OPTION_JUMBO,
65 		.reg = XAE_TC_OFFSET,
66 		.m_or = XAE_TC_JUM_MASK,
67 	}, {
68 		.opt = XAE_OPTION_JUMBO,
69 		.reg = XAE_RCW1_OFFSET,
70 		.m_or = XAE_RCW1_JUM_MASK,
71 	}, { /* Turn on VLAN packet support for both Rx and Tx */
72 		.opt = XAE_OPTION_VLAN,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_VLAN_MASK,
75 	}, {
76 		.opt = XAE_OPTION_VLAN,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_VLAN_MASK,
79 	}, { /* Turn on FCS stripping on receive packets */
80 		.opt = XAE_OPTION_FCS_STRIP,
81 		.reg = XAE_RCW1_OFFSET,
82 		.m_or = XAE_RCW1_FCS_MASK,
83 	}, { /* Turn on FCS insertion on transmit packets */
84 		.opt = XAE_OPTION_FCS_INSERT,
85 		.reg = XAE_TC_OFFSET,
86 		.m_or = XAE_TC_FCS_MASK,
87 	}, { /* Turn off length/type field checking on receive packets */
88 		.opt = XAE_OPTION_LENTYPE_ERR,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_LT_DIS_MASK,
91 	}, { /* Turn on Rx flow control */
92 		.opt = XAE_OPTION_FLOW_CONTROL,
93 		.reg = XAE_FCC_OFFSET,
94 		.m_or = XAE_FCC_FCRX_MASK,
95 	}, { /* Turn on Tx flow control */
96 		.opt = XAE_OPTION_FLOW_CONTROL,
97 		.reg = XAE_FCC_OFFSET,
98 		.m_or = XAE_FCC_FCTX_MASK,
99 	}, { /* Turn on promiscuous frame filtering */
100 		.opt = XAE_OPTION_PROMISC,
101 		.reg = XAE_FMI_OFFSET,
102 		.m_or = XAE_FMI_PM_MASK,
103 	}, { /* Enable transmitter */
104 		.opt = XAE_OPTION_TXEN,
105 		.reg = XAE_TC_OFFSET,
106 		.m_or = XAE_TC_TX_MASK,
107 	}, { /* Enable receiver */
108 		.opt = XAE_OPTION_RXEN,
109 		.reg = XAE_RCW1_OFFSET,
110 		.m_or = XAE_RCW1_RX_MASK,
111 	},
112 	{}
113 };
114 
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:		Pointer to axienet local structure
118  * @reg:	Address offset from the base address of the Axi DMA core
119  *
120  * returns: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 	return in_be32(lp->dma_regs + reg);
127 }
128 
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:		Pointer to axienet local structure
132  * @reg:	Address offset from the base address of the Axi DMA core
133  * @value:	Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 				     off_t reg, u32 value)
140 {
141 	out_be32((lp->dma_regs + reg), value);
142 }
143 
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:	Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 	int i;
155 	struct axienet_local *lp = netdev_priv(ndev);
156 
157 	for (i = 0; i < RX_BD_NUM; i++) {
158 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 				 lp->max_frm_size, DMA_FROM_DEVICE);
160 		dev_kfree_skb((struct sk_buff *)
161 			      (lp->rx_bd_v[i].sw_id_offset));
162 	}
163 
164 	if (lp->rx_bd_v) {
165 		dma_free_coherent(ndev->dev.parent,
166 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 				  lp->rx_bd_v,
168 				  lp->rx_bd_p);
169 	}
170 	if (lp->tx_bd_v) {
171 		dma_free_coherent(ndev->dev.parent,
172 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 				  lp->tx_bd_v,
174 				  lp->tx_bd_p);
175 	}
176 }
177 
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:	Pointer to the net_device structure
181  *
182  * returns: 0, on success
183  *	    -ENOMEM, on failure
184  *
185  * This function is called to initialize the Rx and Tx DMA descriptor
186  * rings. This initializes the descriptors with required default values
187  * and is called when Axi Ethernet driver reset is called.
188  */
189 static int axienet_dma_bd_init(struct net_device *ndev)
190 {
191 	u32 cr;
192 	int i;
193 	struct sk_buff *skb;
194 	struct axienet_local *lp = netdev_priv(ndev);
195 
196 	/* Reset the indexes which are used for accessing the BDs */
197 	lp->tx_bd_ci = 0;
198 	lp->tx_bd_tail = 0;
199 	lp->rx_bd_ci = 0;
200 
201 	/*
202 	 * Allocate the Tx and Rx buffer descriptors.
203 	 */
204 	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205 					 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 					 &lp->tx_bd_p,
207 					 GFP_KERNEL);
208 	if (!lp->tx_bd_v) {
209 		dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
210 			"descriptors");
211 		goto out;
212 	}
213 
214 	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
215 					 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
216 					 &lp->rx_bd_p,
217 					 GFP_KERNEL);
218 	if (!lp->rx_bd_v) {
219 		dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
220 			"descriptors");
221 		goto out;
222 	}
223 
224 	memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
225 	for (i = 0; i < TX_BD_NUM; i++) {
226 		lp->tx_bd_v[i].next = lp->tx_bd_p +
227 				      sizeof(*lp->tx_bd_v) *
228 				      ((i + 1) % TX_BD_NUM);
229 	}
230 
231 	memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
232 	for (i = 0; i < RX_BD_NUM; i++) {
233 		lp->rx_bd_v[i].next = lp->rx_bd_p +
234 				      sizeof(*lp->rx_bd_v) *
235 				      ((i + 1) % RX_BD_NUM);
236 
237 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
238 		if (!skb) {
239 			dev_err(&ndev->dev, "alloc_skb error %d\n", i);
240 			goto out;
241 		}
242 
243 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
244 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
245 						     skb->data,
246 						     lp->max_frm_size,
247 						     DMA_FROM_DEVICE);
248 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
249 	}
250 
251 	/* Start updating the Rx channel control register */
252 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
253 	/* Update the interrupt coalesce count */
254 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
255 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
256 	/* Update the delay timer count */
257 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
258 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259 	/* Enable coalesce, delay timer and error interrupts */
260 	cr |= XAXIDMA_IRQ_ALL_MASK;
261 	/* Write to the Rx channel control register */
262 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
263 
264 	/* Start updating the Tx channel control register */
265 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
266 	/* Update the interrupt coalesce count */
267 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
268 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
269 	/* Update the delay timer count */
270 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
271 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
272 	/* Enable coalesce, delay timer and error interrupts */
273 	cr |= XAXIDMA_IRQ_ALL_MASK;
274 	/* Write to the Tx channel control register */
275 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
276 
277 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
278 	 * halted state. This will make the Rx side ready for reception.*/
279 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
280 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
281 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
282 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
283 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
284 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
285 
286 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
287 	 * Tx channel is now ready to run. But only after we write to the
288 	 * tail pointer register that the Tx channel will start transmitting */
289 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
290 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
291 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
292 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
293 
294 	return 0;
295 out:
296 	axienet_dma_bd_release(ndev);
297 	return -ENOMEM;
298 }
299 
300 /**
301  * axienet_set_mac_address - Write the MAC address
302  * @ndev:	Pointer to the net_device structure
303  * @address:	6 byte Address to be written as MAC address
304  *
305  * This function is called to initialize the MAC address of the Axi Ethernet
306  * core. It writes to the UAW0 and UAW1 registers of the core.
307  */
308 static void axienet_set_mac_address(struct net_device *ndev, void *address)
309 {
310 	struct axienet_local *lp = netdev_priv(ndev);
311 
312 	if (address)
313 		memcpy(ndev->dev_addr, address, ETH_ALEN);
314 	if (!is_valid_ether_addr(ndev->dev_addr))
315 		random_ether_addr(ndev->dev_addr);
316 
317 	/* Set up unicast MAC address filter set its mac address */
318 	axienet_iow(lp, XAE_UAW0_OFFSET,
319 		    (ndev->dev_addr[0]) |
320 		    (ndev->dev_addr[1] << 8) |
321 		    (ndev->dev_addr[2] << 16) |
322 		    (ndev->dev_addr[3] << 24));
323 	axienet_iow(lp, XAE_UAW1_OFFSET,
324 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
325 		      ~XAE_UAW1_UNICASTADDR_MASK) |
326 		     (ndev->dev_addr[4] |
327 		     (ndev->dev_addr[5] << 8))));
328 }
329 
330 /**
331  * netdev_set_mac_address - Write the MAC address (from outside the driver)
332  * @ndev:	Pointer to the net_device structure
333  * @p:		6 byte Address to be written as MAC address
334  *
335  * returns: 0 for all conditions. Presently, there is no failure case.
336  *
337  * This function is called to initialize the MAC address of the Axi Ethernet
338  * core. It calls the core specific axienet_set_mac_address. This is the
339  * function that goes into net_device_ops structure entry ndo_set_mac_address.
340  */
341 static int netdev_set_mac_address(struct net_device *ndev, void *p)
342 {
343 	struct sockaddr *addr = p;
344 	axienet_set_mac_address(ndev, addr->sa_data);
345 	return 0;
346 }
347 
348 /**
349  * axienet_set_multicast_list - Prepare the multicast table
350  * @ndev:	Pointer to the net_device structure
351  *
352  * This function is called to initialize the multicast table during
353  * initialization. The Axi Ethernet basic multicast support has a four-entry
354  * multicast table which is initialized here. Additionally this function
355  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
356  * means whenever the multicast table entries need to be updated this
357  * function gets called.
358  */
359 static void axienet_set_multicast_list(struct net_device *ndev)
360 {
361 	int i;
362 	u32 reg, af0reg, af1reg;
363 	struct axienet_local *lp = netdev_priv(ndev);
364 
365 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
366 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
367 		/* We must make the kernel realize we had to move into
368 		 * promiscuous mode. If it was a promiscuous mode request
369 		 * the flag is already set. If not we set it. */
370 		ndev->flags |= IFF_PROMISC;
371 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
372 		reg |= XAE_FMI_PM_MASK;
373 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
374 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
375 	} else if (!netdev_mc_empty(ndev)) {
376 		struct netdev_hw_addr *ha;
377 
378 		i = 0;
379 		netdev_for_each_mc_addr(ha, ndev) {
380 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
381 				break;
382 
383 			af0reg = (ha->addr[0]);
384 			af0reg |= (ha->addr[1] << 8);
385 			af0reg |= (ha->addr[2] << 16);
386 			af0reg |= (ha->addr[3] << 24);
387 
388 			af1reg = (ha->addr[4]);
389 			af1reg |= (ha->addr[5] << 8);
390 
391 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
392 			reg |= i;
393 
394 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
395 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
396 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
397 			i++;
398 		}
399 	} else {
400 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
401 		reg &= ~XAE_FMI_PM_MASK;
402 
403 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
404 
405 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
406 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
407 			reg |= i;
408 
409 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
410 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
411 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
412 		}
413 
414 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
415 	}
416 }
417 
418 /**
419  * axienet_setoptions - Set an Axi Ethernet option
420  * @ndev:	Pointer to the net_device structure
421  * @options:	Option to be enabled/disabled
422  *
423  * The Axi Ethernet core has multiple features which can be selectively turned
424  * on or off. The typical options could be jumbo frame option, basic VLAN
425  * option, promiscuous mode option etc. This function is used to set or clear
426  * these options in the Axi Ethernet hardware. This is done through
427  * axienet_option structure .
428  */
429 static void axienet_setoptions(struct net_device *ndev, u32 options)
430 {
431 	int reg;
432 	struct axienet_local *lp = netdev_priv(ndev);
433 	struct axienet_option *tp = &axienet_options[0];
434 
435 	while (tp->opt) {
436 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
437 		if (options & tp->opt)
438 			reg |= tp->m_or;
439 		axienet_iow(lp, tp->reg, reg);
440 		tp++;
441 	}
442 
443 	lp->options |= options;
444 }
445 
446 static void __axienet_device_reset(struct axienet_local *lp,
447 				   struct device *dev, off_t offset)
448 {
449 	u32 timeout;
450 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
451 	 * process of Axi DMA takes a while to complete as all pending
452 	 * commands/transfers will be flushed or completed during this
453 	 * reset process. */
454 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
455 	timeout = DELAY_OF_ONE_MILLISEC;
456 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
457 		udelay(1);
458 		if (--timeout == 0) {
459 			dev_err(dev, "axienet_device_reset DMA "
460 				"reset timeout!\n");
461 			break;
462 		}
463 	}
464 }
465 
466 /**
467  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
468  * @ndev:	Pointer to the net_device structure
469  *
470  * This function is called to reset and initialize the Axi Ethernet core. This
471  * is typically called during initialization. It does a reset of the Axi DMA
472  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
473  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
474  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
475  * core.
476  */
477 static void axienet_device_reset(struct net_device *ndev)
478 {
479 	u32 axienet_status;
480 	struct axienet_local *lp = netdev_priv(ndev);
481 
482 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
483 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
484 
485 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
486 	lp->options &= (~XAE_OPTION_JUMBO);
487 
488 	if ((ndev->mtu > XAE_MTU) &&
489 	    (ndev->mtu <= XAE_JUMBO_MTU) &&
490 	    (lp->jumbo_support)) {
491 		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
492 				   XAE_TRL_SIZE;
493 		lp->options |= XAE_OPTION_JUMBO;
494 	}
495 
496 	if (axienet_dma_bd_init(ndev)) {
497 		dev_err(&ndev->dev, "axienet_device_reset descriptor "
498 			"allocation failed\n");
499 	}
500 
501 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
502 	axienet_status &= ~XAE_RCW1_RX_MASK;
503 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
504 
505 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
506 	if (axienet_status & XAE_INT_RXRJECT_MASK)
507 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
508 
509 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510 
511 	/* Sync default options with HW but leave receiver and
512 	 * transmitter disabled.*/
513 	axienet_setoptions(ndev, lp->options &
514 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
515 	axienet_set_mac_address(ndev, NULL);
516 	axienet_set_multicast_list(ndev);
517 	axienet_setoptions(ndev, lp->options);
518 
519 	ndev->trans_start = jiffies;
520 }
521 
522 /**
523  * axienet_adjust_link - Adjust the PHY link speed/duplex.
524  * @ndev:	Pointer to the net_device structure
525  *
526  * This function is called to change the speed and duplex setting after
527  * auto negotiation is done by the PHY. This is the function that gets
528  * registered with the PHY interface through the "of_phy_connect" call.
529  */
530 static void axienet_adjust_link(struct net_device *ndev)
531 {
532 	u32 emmc_reg;
533 	u32 link_state;
534 	u32 setspeed = 1;
535 	struct axienet_local *lp = netdev_priv(ndev);
536 	struct phy_device *phy = lp->phy_dev;
537 
538 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
539 	if (lp->last_link != link_state) {
540 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
541 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
542 				setspeed = 0;
543 		} else {
544 			if ((phy->speed == SPEED_1000) &&
545 			    (lp->phy_type == XAE_PHY_TYPE_MII))
546 				setspeed = 0;
547 		}
548 
549 		if (setspeed == 1) {
550 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
551 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
552 
553 			switch (phy->speed) {
554 			case SPEED_1000:
555 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
556 				break;
557 			case SPEED_100:
558 				emmc_reg |= XAE_EMMC_LINKSPD_100;
559 				break;
560 			case SPEED_10:
561 				emmc_reg |= XAE_EMMC_LINKSPD_10;
562 				break;
563 			default:
564 				dev_err(&ndev->dev, "Speed other than 10, 100 "
565 					"or 1Gbps is not supported\n");
566 				break;
567 			}
568 
569 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
570 			lp->last_link = link_state;
571 			phy_print_status(phy);
572 		} else {
573 			dev_err(&ndev->dev, "Error setting Axi Ethernet "
574 				"mac speed\n");
575 		}
576 	}
577 }
578 
579 /**
580  * axienet_start_xmit_done - Invoked once a transmit is completed by the
581  * Axi DMA Tx channel.
582  * @ndev:	Pointer to the net_device structure
583  *
584  * This function is invoked from the Axi DMA Tx isr to notify the completion
585  * of transmit operation. It clears fields in the corresponding Tx BDs and
586  * unmaps the corresponding buffer so that CPU can regain ownership of the
587  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
588  * required.
589  */
590 static void axienet_start_xmit_done(struct net_device *ndev)
591 {
592 	u32 size = 0;
593 	u32 packets = 0;
594 	struct axienet_local *lp = netdev_priv(ndev);
595 	struct axidma_bd *cur_p;
596 	unsigned int status = 0;
597 
598 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
599 	status = cur_p->status;
600 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
601 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
602 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
603 				DMA_TO_DEVICE);
604 		if (cur_p->app4)
605 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
606 		/*cur_p->phys = 0;*/
607 		cur_p->app0 = 0;
608 		cur_p->app1 = 0;
609 		cur_p->app2 = 0;
610 		cur_p->app4 = 0;
611 		cur_p->status = 0;
612 
613 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614 		packets++;
615 
616 		lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
617 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
618 		status = cur_p->status;
619 	}
620 
621 	ndev->stats.tx_packets += packets;
622 	ndev->stats.tx_bytes += size;
623 	netif_wake_queue(ndev);
624 }
625 
626 /**
627  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
628  * @lp:		Pointer to the axienet_local structure
629  * @num_frag:	The number of BDs to check for
630  *
631  * returns: 0, on success
632  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
633  *
634  * This function is invoked before BDs are allocated and transmission starts.
635  * This function returns 0 if a BD or group of BDs can be allocated for
636  * transmission. If the BD or any of the BDs are not free the function
637  * returns a busy status. This is invoked from axienet_start_xmit.
638  */
639 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
640 					    int num_frag)
641 {
642 	struct axidma_bd *cur_p;
643 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
644 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
645 		return NETDEV_TX_BUSY;
646 	return 0;
647 }
648 
649 /**
650  * axienet_start_xmit - Starts the transmission.
651  * @skb:	sk_buff pointer that contains data to be Txed.
652  * @ndev:	Pointer to net_device structure.
653  *
654  * returns: NETDEV_TX_OK, on success
655  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
656  *
657  * This function is invoked from upper layers to initiate transmission. The
658  * function uses the next available free BDs and populates their fields to
659  * start the transmission. Additionally if checksum offloading is supported,
660  * it populates AXI Stream Control fields with appropriate values.
661  */
662 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
663 {
664 	u32 ii;
665 	u32 num_frag;
666 	u32 csum_start_off;
667 	u32 csum_index_off;
668 	skb_frag_t *frag;
669 	dma_addr_t tail_p;
670 	struct axienet_local *lp = netdev_priv(ndev);
671 	struct axidma_bd *cur_p;
672 
673 	num_frag = skb_shinfo(skb)->nr_frags;
674 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
675 
676 	if (axienet_check_tx_bd_space(lp, num_frag)) {
677 		if (!netif_queue_stopped(ndev))
678 			netif_stop_queue(ndev);
679 		return NETDEV_TX_BUSY;
680 	}
681 
682 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
683 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
684 			/* Tx Full Checksum Offload Enabled */
685 			cur_p->app0 |= 2;
686 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
687 			csum_start_off = skb_transport_offset(skb);
688 			csum_index_off = csum_start_off + skb->csum_offset;
689 			/* Tx Partial Checksum Offload Enabled */
690 			cur_p->app0 |= 1;
691 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
692 		}
693 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
694 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
695 	}
696 
697 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
698 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
699 				     skb_headlen(skb), DMA_TO_DEVICE);
700 
701 	for (ii = 0; ii < num_frag; ii++) {
702 		lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
703 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
704 		frag = &skb_shinfo(skb)->frags[ii];
705 		cur_p->phys = dma_map_single(ndev->dev.parent,
706 					     skb_frag_address(frag),
707 					     skb_frag_size(frag),
708 					     DMA_TO_DEVICE);
709 		cur_p->cntrl = skb_frag_size(frag);
710 	}
711 
712 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
713 	cur_p->app4 = (unsigned long)skb;
714 
715 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
716 	/* Start the transfer */
717 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
718 	lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
719 
720 	return NETDEV_TX_OK;
721 }
722 
723 /**
724  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
725  *		  BD processing.
726  * @ndev:	Pointer to net_device structure.
727  *
728  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
729  * does minimal processing and invokes "netif_rx" to complete further
730  * processing.
731  */
732 static void axienet_recv(struct net_device *ndev)
733 {
734 	u32 length;
735 	u32 csumstatus;
736 	u32 size = 0;
737 	u32 packets = 0;
738 	dma_addr_t tail_p;
739 	struct axienet_local *lp = netdev_priv(ndev);
740 	struct sk_buff *skb, *new_skb;
741 	struct axidma_bd *cur_p;
742 
743 	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
744 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
745 
746 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
747 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
748 		length = cur_p->app4 & 0x0000FFFF;
749 
750 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
751 				 lp->max_frm_size,
752 				 DMA_FROM_DEVICE);
753 
754 		skb_put(skb, length);
755 		skb->protocol = eth_type_trans(skb, ndev);
756 		/*skb_checksum_none_assert(skb);*/
757 		skb->ip_summed = CHECKSUM_NONE;
758 
759 		/* if we're doing Rx csum offload, set it up */
760 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
761 			csumstatus = (cur_p->app2 &
762 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
763 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
764 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
765 				skb->ip_summed = CHECKSUM_UNNECESSARY;
766 			}
767 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
768 			   skb->protocol == __constant_htons(ETH_P_IP) &&
769 			   skb->len > 64) {
770 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
771 			skb->ip_summed = CHECKSUM_COMPLETE;
772 		}
773 
774 		netif_rx(skb);
775 
776 		size += length;
777 		packets++;
778 
779 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
780 		if (!new_skb) {
781 			dev_err(&ndev->dev, "no memory for new sk_buff\n");
782 			return;
783 		}
784 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
785 					     lp->max_frm_size,
786 					     DMA_FROM_DEVICE);
787 		cur_p->cntrl = lp->max_frm_size;
788 		cur_p->status = 0;
789 		cur_p->sw_id_offset = (u32) new_skb;
790 
791 		lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
792 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
793 	}
794 
795 	ndev->stats.rx_packets += packets;
796 	ndev->stats.rx_bytes += size;
797 
798 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799 }
800 
801 /**
802  * axienet_tx_irq - Tx Done Isr.
803  * @irq:	irq number
804  * @_ndev:	net_device pointer
805  *
806  * returns: IRQ_HANDLED for all cases.
807  *
808  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
809  * to complete the BD processing.
810  */
811 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
812 {
813 	u32 cr;
814 	unsigned int status;
815 	struct net_device *ndev = _ndev;
816 	struct axienet_local *lp = netdev_priv(ndev);
817 
818 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
819 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
820 		axienet_start_xmit_done(lp->ndev);
821 		goto out;
822 	}
823 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
824 		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
825 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
826 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
827 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
828 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
829 
830 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
831 		/* Disable coalesce, delay timer and error interrupts */
832 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
833 		/* Write to the Tx channel control register */
834 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
835 
836 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
837 		/* Disable coalesce, delay timer and error interrupts */
838 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
839 		/* Write to the Rx channel control register */
840 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
841 
842 		tasklet_schedule(&lp->dma_err_tasklet);
843 	}
844 out:
845 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
846 	return IRQ_HANDLED;
847 }
848 
849 /**
850  * axienet_rx_irq - Rx Isr.
851  * @irq:	irq number
852  * @_ndev:	net_device pointer
853  *
854  * returns: IRQ_HANDLED for all cases.
855  *
856  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
857  * processing.
858  */
859 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
860 {
861 	u32 cr;
862 	unsigned int status;
863 	struct net_device *ndev = _ndev;
864 	struct axienet_local *lp = netdev_priv(ndev);
865 
866 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
867 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
868 		axienet_recv(lp->ndev);
869 		goto out;
870 	}
871 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
872 		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
873 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
874 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
877 
878 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879 		/* Disable coalesce, delay timer and error interrupts */
880 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
881 		/* Finally write to the Tx channel control register */
882 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883 
884 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885 		/* Disable coalesce, delay timer and error interrupts */
886 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
887 		/* write to the Rx channel control register */
888 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889 
890 		tasklet_schedule(&lp->dma_err_tasklet);
891 	}
892 out:
893 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
894 	return IRQ_HANDLED;
895 }
896 
897 /**
898  * axienet_open - Driver open routine.
899  * @ndev:	Pointer to net_device structure
900  *
901  * returns: 0, on success.
902  *	    -ENODEV, if PHY cannot be connected to
903  *	    non-zero error value on failure
904  *
905  * This is the driver open routine. It calls phy_start to start the PHY device.
906  * It also allocates interrupt service routines, enables the interrupt lines
907  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908  * descriptors are initialized.
909  */
910 static int axienet_open(struct net_device *ndev)
911 {
912 	int ret, mdio_mcreg;
913 	struct axienet_local *lp = netdev_priv(ndev);
914 
915 	dev_dbg(&ndev->dev, "axienet_open()\n");
916 
917 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 	ret = axienet_mdio_wait_until_ready(lp);
919 	if (ret < 0)
920 		return ret;
921 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 	 * When we do an Axi Ethernet reset, it resets the complete core
923 	 * including the MDIO. If MDIO is not disabled when the reset
924 	 * process is started, MDIO will be broken afterwards. */
925 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
926 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
927 	axienet_device_reset(ndev);
928 	/* Enable the MDIO */
929 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
930 	ret = axienet_mdio_wait_until_ready(lp);
931 	if (ret < 0)
932 		return ret;
933 
934 	if (lp->phy_node) {
935 		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
936 					     axienet_adjust_link, 0,
937 					     PHY_INTERFACE_MODE_GMII);
938 		if (!lp->phy_dev) {
939 			dev_err(lp->dev, "of_phy_connect() failed\n");
940 			return -ENODEV;
941 		}
942 		phy_start(lp->phy_dev);
943 	}
944 
945 	/* Enable interrupts for Axi DMA Tx */
946 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
947 	if (ret)
948 		goto err_tx_irq;
949 	/* Enable interrupts for Axi DMA Rx */
950 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
951 	if (ret)
952 		goto err_rx_irq;
953 	/* Enable tasklets for Axi DMA error handling */
954 	tasklet_enable(&lp->dma_err_tasklet);
955 	return 0;
956 
957 err_rx_irq:
958 	free_irq(lp->tx_irq, ndev);
959 err_tx_irq:
960 	if (lp->phy_dev)
961 		phy_disconnect(lp->phy_dev);
962 	lp->phy_dev = NULL;
963 	dev_err(lp->dev, "request_irq() failed\n");
964 	return ret;
965 }
966 
967 /**
968  * axienet_stop - Driver stop routine.
969  * @ndev:	Pointer to net_device structure
970  *
971  * returns: 0, on success.
972  *
973  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
974  * device. It also removes the interrupt handlers and disables the interrupts.
975  * The Axi DMA Tx/Rx BDs are released.
976  */
977 static int axienet_stop(struct net_device *ndev)
978 {
979 	u32 cr;
980 	struct axienet_local *lp = netdev_priv(ndev);
981 
982 	dev_dbg(&ndev->dev, "axienet_close()\n");
983 
984 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
985 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
986 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
988 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
989 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
990 	axienet_setoptions(ndev, lp->options &
991 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
992 
993 	tasklet_disable(&lp->dma_err_tasklet);
994 
995 	free_irq(lp->tx_irq, ndev);
996 	free_irq(lp->rx_irq, ndev);
997 
998 	if (lp->phy_dev)
999 		phy_disconnect(lp->phy_dev);
1000 	lp->phy_dev = NULL;
1001 
1002 	axienet_dma_bd_release(ndev);
1003 	return 0;
1004 }
1005 
1006 /**
1007  * axienet_change_mtu - Driver change mtu routine.
1008  * @ndev:	Pointer to net_device structure
1009  * @new_mtu:	New mtu value to be applied
1010  *
1011  * returns: Always returns 0 (success).
1012  *
1013  * This is the change mtu driver routine. It checks if the Axi Ethernet
1014  * hardware supports jumbo frames before changing the mtu. This can be
1015  * called only when the device is not up.
1016  */
1017 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018 {
1019 	struct axienet_local *lp = netdev_priv(ndev);
1020 
1021 	if (netif_running(ndev))
1022 		return -EBUSY;
1023 	if (lp->jumbo_support) {
1024 		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025 			return -EINVAL;
1026 		ndev->mtu = new_mtu;
1027 	} else {
1028 		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029 			return -EINVAL;
1030 		ndev->mtu = new_mtu;
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 #ifdef CONFIG_NET_POLL_CONTROLLER
1037 /**
1038  * axienet_poll_controller - Axi Ethernet poll mechanism.
1039  * @ndev:	Pointer to net_device structure
1040  *
1041  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042  * to polling the ISRs and are enabled back after the polling is done.
1043  */
1044 static void axienet_poll_controller(struct net_device *ndev)
1045 {
1046 	struct axienet_local *lp = netdev_priv(ndev);
1047 	disable_irq(lp->tx_irq);
1048 	disable_irq(lp->rx_irq);
1049 	axienet_rx_irq(lp->tx_irq, ndev);
1050 	axienet_tx_irq(lp->rx_irq, ndev);
1051 	enable_irq(lp->tx_irq);
1052 	enable_irq(lp->rx_irq);
1053 }
1054 #endif
1055 
1056 static const struct net_device_ops axienet_netdev_ops = {
1057 	.ndo_open = axienet_open,
1058 	.ndo_stop = axienet_stop,
1059 	.ndo_start_xmit = axienet_start_xmit,
1060 	.ndo_change_mtu	= axienet_change_mtu,
1061 	.ndo_set_mac_address = netdev_set_mac_address,
1062 	.ndo_validate_addr = eth_validate_addr,
1063 	.ndo_set_rx_mode = axienet_set_multicast_list,
1064 #ifdef CONFIG_NET_POLL_CONTROLLER
1065 	.ndo_poll_controller = axienet_poll_controller,
1066 #endif
1067 };
1068 
1069 /**
1070  * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071  * @ndev:	Pointer to net_device structure
1072  * @ecmd:	Pointer to ethtool_cmd structure
1073  *
1074  * This implements ethtool command for getting PHY settings. If PHY could
1075  * not be found, the function returns -ENODEV. This function calls the
1076  * relevant PHY ethtool API to get the PHY settings.
1077  * Issue "ethtool ethX" under linux prompt to execute this function.
1078  */
1079 static int axienet_ethtools_get_settings(struct net_device *ndev,
1080 					 struct ethtool_cmd *ecmd)
1081 {
1082 	struct axienet_local *lp = netdev_priv(ndev);
1083 	struct phy_device *phydev = lp->phy_dev;
1084 	if (!phydev)
1085 		return -ENODEV;
1086 	return phy_ethtool_gset(phydev, ecmd);
1087 }
1088 
1089 /**
1090  * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091  * @ndev:	Pointer to net_device structure
1092  * @ecmd:	Pointer to ethtool_cmd structure
1093  *
1094  * This implements ethtool command for setting various PHY settings. If PHY
1095  * could not be found, the function returns -ENODEV. This function calls the
1096  * relevant PHY ethtool API to set the PHY.
1097  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098  * function.
1099  */
1100 static int axienet_ethtools_set_settings(struct net_device *ndev,
1101 					 struct ethtool_cmd *ecmd)
1102 {
1103 	struct axienet_local *lp = netdev_priv(ndev);
1104 	struct phy_device *phydev = lp->phy_dev;
1105 	if (!phydev)
1106 		return -ENODEV;
1107 	return phy_ethtool_sset(phydev, ecmd);
1108 }
1109 
1110 /**
1111  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112  * @ndev:	Pointer to net_device structure
1113  * @ed:		Pointer to ethtool_drvinfo structure
1114  *
1115  * This implements ethtool command for getting the driver information.
1116  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117  */
1118 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119 					 struct ethtool_drvinfo *ed)
1120 {
1121 	memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122 	strcpy(ed->driver, DRIVER_NAME);
1123 	strcpy(ed->version, DRIVER_VERSION);
1124 	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125 }
1126 
1127 /**
1128  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129  *				   AxiEthernet core.
1130  * @ndev:	Pointer to net_device structure
1131  *
1132  * This implements ethtool command for getting the total register length
1133  * information.
1134  */
1135 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136 {
1137 	return sizeof(u32) * AXIENET_REGS_N;
1138 }
1139 
1140 /**
1141  * axienet_ethtools_get_regs - Dump the contents of all registers present
1142  *			       in AxiEthernet core.
1143  * @ndev:	Pointer to net_device structure
1144  * @regs:	Pointer to ethtool_regs structure
1145  * @ret:	Void pointer used to return the contents of the registers.
1146  *
1147  * This implements ethtool command for getting the Axi Ethernet register dump.
1148  * Issue "ethtool -d ethX" to execute this function.
1149  */
1150 static void axienet_ethtools_get_regs(struct net_device *ndev,
1151 				      struct ethtool_regs *regs, void *ret)
1152 {
1153 	u32 *data = (u32 *) ret;
1154 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1155 	struct axienet_local *lp = netdev_priv(ndev);
1156 
1157 	regs->version = 0;
1158 	regs->len = len;
1159 
1160 	memset(data, 0, len);
1161 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193 }
1194 
1195 /**
1196  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197  *				     Tx and Rx paths.
1198  * @ndev:	Pointer to net_device structure
1199  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1200  *
1201  * This implements ethtool command for getting axi ethernet pause frame
1202  * setting. Issue "ethtool -a ethX" to execute this function.
1203  */
1204 static void
1205 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206 				struct ethtool_pauseparam *epauseparm)
1207 {
1208 	u32 regval;
1209 	struct axienet_local *lp = netdev_priv(ndev);
1210 	epauseparm->autoneg  = 0;
1211 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214 }
1215 
1216 /**
1217  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218  *				     settings.
1219  * @ndev:	Pointer to net_device structure
1220  * @epauseparam:Pointer to ethtool_pauseparam structure
1221  *
1222  * This implements ethtool command for enabling flow control on Rx and Tx
1223  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224  * function.
1225  */
1226 static int
1227 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228 				struct ethtool_pauseparam *epauseparm)
1229 {
1230 	u32 regval = 0;
1231 	struct axienet_local *lp = netdev_priv(ndev);
1232 
1233 	if (netif_running(ndev)) {
1234 		printk(KERN_ERR	"%s: Please stop netif before applying "
1235 		       "configruation\n", ndev->name);
1236 		return -EFAULT;
1237 	}
1238 
1239 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240 	if (epauseparm->tx_pause)
1241 		regval |= XAE_FCC_FCTX_MASK;
1242 	else
1243 		regval &= ~XAE_FCC_FCTX_MASK;
1244 	if (epauseparm->rx_pause)
1245 		regval |= XAE_FCC_FCRX_MASK;
1246 	else
1247 		regval &= ~XAE_FCC_FCRX_MASK;
1248 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255  * @ndev:	Pointer to net_device structure
1256  * @ecoalesce:	Pointer to ethtool_coalesce structure
1257  *
1258  * This implements ethtool command for getting the DMA interrupt coalescing
1259  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260  * execute this function.
1261  */
1262 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263 					 struct ethtool_coalesce *ecoalesce)
1264 {
1265 	u32 regval = 0;
1266 	struct axienet_local *lp = netdev_priv(ndev);
1267 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269 					     >> XAXIDMA_COALESCE_SHIFT;
1270 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272 					     >> XAXIDMA_COALESCE_SHIFT;
1273 	return 0;
1274 }
1275 
1276 /**
1277  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278  * @ndev:	Pointer to net_device structure
1279  * @ecoalesce:	Pointer to ethtool_coalesce structure
1280  *
1281  * This implements ethtool command for setting the DMA interrupt coalescing
1282  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283  * prompt to execute this function.
1284  */
1285 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286 					 struct ethtool_coalesce *ecoalesce)
1287 {
1288 	struct axienet_local *lp = netdev_priv(ndev);
1289 
1290 	if (netif_running(ndev)) {
1291 		printk(KERN_ERR	"%s: Please stop netif before applying "
1292 		       "configruation\n", ndev->name);
1293 		return -EFAULT;
1294 	}
1295 
1296 	if ((ecoalesce->rx_coalesce_usecs) ||
1297 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1298 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1299 	    (ecoalesce->tx_coalesce_usecs) ||
1300 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1301 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1302 	    (ecoalesce->stats_block_coalesce_usecs) ||
1303 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1304 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1305 	    (ecoalesce->pkt_rate_low) ||
1306 	    (ecoalesce->rx_coalesce_usecs_low) ||
1307 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1308 	    (ecoalesce->tx_coalesce_usecs_low) ||
1309 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1310 	    (ecoalesce->pkt_rate_high) ||
1311 	    (ecoalesce->rx_coalesce_usecs_high) ||
1312 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1313 	    (ecoalesce->tx_coalesce_usecs_high) ||
1314 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1315 	    (ecoalesce->rate_sample_interval))
1316 		return -EOPNOTSUPP;
1317 	if (ecoalesce->rx_max_coalesced_frames)
1318 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319 	if (ecoalesce->tx_max_coalesced_frames)
1320 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321 
1322 	return 0;
1323 }
1324 
1325 static struct ethtool_ops axienet_ethtool_ops = {
1326 	.get_settings   = axienet_ethtools_get_settings,
1327 	.set_settings   = axienet_ethtools_set_settings,
1328 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1329 	.get_regs_len   = axienet_ethtools_get_regs_len,
1330 	.get_regs       = axienet_ethtools_get_regs,
1331 	.get_link       = ethtool_op_get_link,
1332 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1333 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1334 	.get_coalesce   = axienet_ethtools_get_coalesce,
1335 	.set_coalesce   = axienet_ethtools_set_coalesce,
1336 };
1337 
1338 /**
1339  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340  * @data:	Data passed
1341  *
1342  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343  * Tx/Rx BDs.
1344  */
1345 static void axienet_dma_err_handler(unsigned long data)
1346 {
1347 	u32 axienet_status;
1348 	u32 cr, i;
1349 	int mdio_mcreg;
1350 	struct axienet_local *lp = (struct axienet_local *) data;
1351 	struct net_device *ndev = lp->ndev;
1352 	struct axidma_bd *cur_p;
1353 
1354 	axienet_setoptions(ndev, lp->options &
1355 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357 	axienet_mdio_wait_until_ready(lp);
1358 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359 	 * When we do an Axi Ethernet reset, it resets the complete core
1360 	 * including the MDIO. So if MDIO is not disabled when the reset
1361 	 * process is started, MDIO will be broken afterwards. */
1362 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1364 
1365 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367 
1368 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369 	axienet_mdio_wait_until_ready(lp);
1370 
1371 	for (i = 0; i < TX_BD_NUM; i++) {
1372 		cur_p = &lp->tx_bd_v[i];
1373 		if (cur_p->phys)
1374 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375 					 (cur_p->cntrl &
1376 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1377 					 DMA_TO_DEVICE);
1378 		if (cur_p->app4)
1379 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380 		cur_p->phys = 0;
1381 		cur_p->cntrl = 0;
1382 		cur_p->status = 0;
1383 		cur_p->app0 = 0;
1384 		cur_p->app1 = 0;
1385 		cur_p->app2 = 0;
1386 		cur_p->app3 = 0;
1387 		cur_p->app4 = 0;
1388 		cur_p->sw_id_offset = 0;
1389 	}
1390 
1391 	for (i = 0; i < RX_BD_NUM; i++) {
1392 		cur_p = &lp->rx_bd_v[i];
1393 		cur_p->status = 0;
1394 		cur_p->app0 = 0;
1395 		cur_p->app1 = 0;
1396 		cur_p->app2 = 0;
1397 		cur_p->app3 = 0;
1398 		cur_p->app4 = 0;
1399 	}
1400 
1401 	lp->tx_bd_ci = 0;
1402 	lp->tx_bd_tail = 0;
1403 	lp->rx_bd_ci = 0;
1404 
1405 	/* Start updating the Rx channel control register */
1406 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407 	/* Update the interrupt coalesce count */
1408 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410 	/* Update the delay timer count */
1411 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413 	/* Enable coalesce, delay timer and error interrupts */
1414 	cr |= XAXIDMA_IRQ_ALL_MASK;
1415 	/* Finally write to the Rx channel control register */
1416 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417 
1418 	/* Start updating the Tx channel control register */
1419 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420 	/* Update the interrupt coalesce count */
1421 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423 	/* Update the delay timer count */
1424 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426 	/* Enable coalesce, delay timer and error interrupts */
1427 	cr |= XAXIDMA_IRQ_ALL_MASK;
1428 	/* Finally write to the Tx channel control register */
1429 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430 
1431 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432 	 * halted state. This will make the Rx side ready for reception.*/
1433 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1437 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439 
1440 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1441 	 * Tx channel is now ready to run. But only after we write to the
1442 	 * tail pointer register that the Tx channel will start transmitting */
1443 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1447 
1448 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449 	axienet_status &= ~XAE_RCW1_RX_MASK;
1450 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451 
1452 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1454 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456 
1457 	/* Sync default options with HW but leave receiver and
1458 	 * transmitter disabled.*/
1459 	axienet_setoptions(ndev, lp->options &
1460 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461 	axienet_set_mac_address(ndev, NULL);
1462 	axienet_set_multicast_list(ndev);
1463 	axienet_setoptions(ndev, lp->options);
1464 }
1465 
1466 /**
1467  * axienet_of_probe - Axi Ethernet probe function.
1468  * @op:		Pointer to platform device structure.
1469  * @match:	Pointer to device id structure
1470  *
1471  * returns: 0, on success
1472  *	    Non-zero error value on failure.
1473  *
1474  * This is the probe routine for Axi Ethernet driver. This is called before
1475  * any other driver routines are invoked. It allocates and sets up the Ethernet
1476  * device. Parses through device tree and populates fields of
1477  * axienet_local. It registers the Ethernet device.
1478  */
1479 static int __devinit axienet_of_probe(struct platform_device *op)
1480 {
1481 	__be32 *p;
1482 	int size, ret = 0;
1483 	struct device_node *np;
1484 	struct axienet_local *lp;
1485 	struct net_device *ndev;
1486 	const void *addr;
1487 
1488 	ndev = alloc_etherdev(sizeof(*lp));
1489 	if (!ndev)
1490 		return -ENOMEM;
1491 
1492 	ether_setup(ndev);
1493 	dev_set_drvdata(&op->dev, ndev);
1494 
1495 	SET_NETDEV_DEV(ndev, &op->dev);
1496 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1497 	ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1498 	ndev->netdev_ops = &axienet_netdev_ops;
1499 	ndev->ethtool_ops = &axienet_ethtool_ops;
1500 
1501 	lp = netdev_priv(ndev);
1502 	lp->ndev = ndev;
1503 	lp->dev = &op->dev;
1504 	lp->options = XAE_OPTION_DEFAULTS;
1505 	/* Map device registers */
1506 	lp->regs = of_iomap(op->dev.of_node, 0);
1507 	if (!lp->regs) {
1508 		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1509 		goto nodev;
1510 	}
1511 	/* Setup checksum offload, but default to off if not specified */
1512 	lp->features = 0;
1513 
1514 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1515 	if (p) {
1516 		switch (be32_to_cpup(p)) {
1517 		case 1:
1518 			lp->csum_offload_on_tx_path =
1519 				XAE_FEATURE_PARTIAL_TX_CSUM;
1520 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1521 			/* Can checksum TCP/UDP over IPv4. */
1522 			ndev->features |= NETIF_F_IP_CSUM;
1523 			break;
1524 		case 2:
1525 			lp->csum_offload_on_tx_path =
1526 				XAE_FEATURE_FULL_TX_CSUM;
1527 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1528 			/* Can checksum TCP/UDP over IPv4. */
1529 			ndev->features |= NETIF_F_IP_CSUM;
1530 			break;
1531 		default:
1532 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1533 		}
1534 	}
1535 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1536 	if (p) {
1537 		switch (be32_to_cpup(p)) {
1538 		case 1:
1539 			lp->csum_offload_on_rx_path =
1540 				XAE_FEATURE_PARTIAL_RX_CSUM;
1541 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1542 			break;
1543 		case 2:
1544 			lp->csum_offload_on_rx_path =
1545 				XAE_FEATURE_FULL_RX_CSUM;
1546 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1547 			break;
1548 		default:
1549 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1550 		}
1551 	}
1552 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1553 	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1554 	 * equal to 16384 bytes, so that we can enable jumbo option and start
1555 	 * supporting jumbo frames. Here we check for memory allocated for
1556 	 * Rx/Tx in the hardware from the device-tree and accordingly set
1557 	 * flags. */
1558 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1559 	if (p) {
1560 		if ((be32_to_cpup(p)) >= 0x4000)
1561 			lp->jumbo_support = 1;
1562 	}
1563 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1564 				       NULL);
1565 	if (p)
1566 		lp->temac_type = be32_to_cpup(p);
1567 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1568 	if (p)
1569 		lp->phy_type = be32_to_cpup(p);
1570 
1571 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1572 	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1573 	if (!np) {
1574 		dev_err(&op->dev, "could not find DMA node\n");
1575 		goto err_iounmap;
1576 	}
1577 	lp->dma_regs = of_iomap(np, 0);
1578 	if (lp->dma_regs) {
1579 		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1580 	} else {
1581 		dev_err(&op->dev, "unable to map DMA registers\n");
1582 		of_node_put(np);
1583 	}
1584 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1585 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1586 	of_node_put(np);
1587 	if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1588 		dev_err(&op->dev, "could not determine irqs\n");
1589 		ret = -ENOMEM;
1590 		goto err_iounmap_2;
1591 	}
1592 
1593 	/* Retrieve the MAC address */
1594 	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1595 	if ((!addr) || (size != 6)) {
1596 		dev_err(&op->dev, "could not find MAC address\n");
1597 		ret = -ENODEV;
1598 		goto err_iounmap_2;
1599 	}
1600 	axienet_set_mac_address(ndev, (void *) addr);
1601 
1602 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1603 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1604 
1605 	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1606 	ret = axienet_mdio_setup(lp, op->dev.of_node);
1607 	if (ret)
1608 		dev_warn(&op->dev, "error registering MDIO bus\n");
1609 
1610 	ret = register_netdev(lp->ndev);
1611 	if (ret) {
1612 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1613 		goto err_iounmap_2;
1614 	}
1615 
1616 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1617 		     (unsigned long) lp);
1618 	tasklet_disable(&lp->dma_err_tasklet);
1619 
1620 	return 0;
1621 
1622 err_iounmap_2:
1623 	if (lp->dma_regs)
1624 		iounmap(lp->dma_regs);
1625 err_iounmap:
1626 	iounmap(lp->regs);
1627 nodev:
1628 	free_netdev(ndev);
1629 	ndev = NULL;
1630 	return ret;
1631 }
1632 
1633 static int __devexit axienet_of_remove(struct platform_device *op)
1634 {
1635 	struct net_device *ndev = dev_get_drvdata(&op->dev);
1636 	struct axienet_local *lp = netdev_priv(ndev);
1637 
1638 	axienet_mdio_teardown(lp);
1639 	unregister_netdev(ndev);
1640 
1641 	if (lp->phy_node)
1642 		of_node_put(lp->phy_node);
1643 	lp->phy_node = NULL;
1644 
1645 	dev_set_drvdata(&op->dev, NULL);
1646 
1647 	iounmap(lp->regs);
1648 	if (lp->dma_regs)
1649 		iounmap(lp->dma_regs);
1650 	free_netdev(ndev);
1651 
1652 	return 0;
1653 }
1654 
1655 static struct platform_driver axienet_of_driver = {
1656 	.probe = axienet_of_probe,
1657 	.remove = __devexit_p(axienet_of_remove),
1658 	.driver = {
1659 		 .owner = THIS_MODULE,
1660 		 .name = "xilinx_axienet",
1661 		 .of_match_table = axienet_of_match,
1662 	},
1663 };
1664 
1665 module_platform_driver(axienet_of_driver);
1666 
1667 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1668 MODULE_AUTHOR("Xilinx");
1669 MODULE_LICENSE("GPL");
1670