1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_platform.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 
37 #include "xilinx_axienet.h"
38 
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM		64
41 #define RX_BD_NUM		128
42 
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME		"xaxienet"
45 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION		"1.00a"
47 
48 #define AXIENET_REGS_N		32
49 
50 /* Match table for of_platform binding */
51 static struct of_device_id axienet_of_match[] = {
52 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55 	{},
56 };
57 
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 	/* Turn on jumbo packet support for both Rx and Tx */
63 	{
64 		.opt = XAE_OPTION_JUMBO,
65 		.reg = XAE_TC_OFFSET,
66 		.m_or = XAE_TC_JUM_MASK,
67 	}, {
68 		.opt = XAE_OPTION_JUMBO,
69 		.reg = XAE_RCW1_OFFSET,
70 		.m_or = XAE_RCW1_JUM_MASK,
71 	}, { /* Turn on VLAN packet support for both Rx and Tx */
72 		.opt = XAE_OPTION_VLAN,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_VLAN_MASK,
75 	}, {
76 		.opt = XAE_OPTION_VLAN,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_VLAN_MASK,
79 	}, { /* Turn on FCS stripping on receive packets */
80 		.opt = XAE_OPTION_FCS_STRIP,
81 		.reg = XAE_RCW1_OFFSET,
82 		.m_or = XAE_RCW1_FCS_MASK,
83 	}, { /* Turn on FCS insertion on transmit packets */
84 		.opt = XAE_OPTION_FCS_INSERT,
85 		.reg = XAE_TC_OFFSET,
86 		.m_or = XAE_TC_FCS_MASK,
87 	}, { /* Turn off length/type field checking on receive packets */
88 		.opt = XAE_OPTION_LENTYPE_ERR,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_LT_DIS_MASK,
91 	}, { /* Turn on Rx flow control */
92 		.opt = XAE_OPTION_FLOW_CONTROL,
93 		.reg = XAE_FCC_OFFSET,
94 		.m_or = XAE_FCC_FCRX_MASK,
95 	}, { /* Turn on Tx flow control */
96 		.opt = XAE_OPTION_FLOW_CONTROL,
97 		.reg = XAE_FCC_OFFSET,
98 		.m_or = XAE_FCC_FCTX_MASK,
99 	}, { /* Turn on promiscuous frame filtering */
100 		.opt = XAE_OPTION_PROMISC,
101 		.reg = XAE_FMI_OFFSET,
102 		.m_or = XAE_FMI_PM_MASK,
103 	}, { /* Enable transmitter */
104 		.opt = XAE_OPTION_TXEN,
105 		.reg = XAE_TC_OFFSET,
106 		.m_or = XAE_TC_TX_MASK,
107 	}, { /* Enable receiver */
108 		.opt = XAE_OPTION_RXEN,
109 		.reg = XAE_RCW1_OFFSET,
110 		.m_or = XAE_RCW1_RX_MASK,
111 	},
112 	{}
113 };
114 
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:		Pointer to axienet local structure
118  * @reg:	Address offset from the base address of the Axi DMA core
119  *
120  * returns: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 	return in_be32(lp->dma_regs + reg);
127 }
128 
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:		Pointer to axienet local structure
132  * @reg:	Address offset from the base address of the Axi DMA core
133  * @value:	Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 				     off_t reg, u32 value)
140 {
141 	out_be32((lp->dma_regs + reg), value);
142 }
143 
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:	Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 	int i;
155 	struct axienet_local *lp = netdev_priv(ndev);
156 
157 	for (i = 0; i < RX_BD_NUM; i++) {
158 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 				 lp->max_frm_size, DMA_FROM_DEVICE);
160 		dev_kfree_skb((struct sk_buff *)
161 			      (lp->rx_bd_v[i].sw_id_offset));
162 	}
163 
164 	if (lp->rx_bd_v) {
165 		dma_free_coherent(ndev->dev.parent,
166 				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 				  lp->rx_bd_v,
168 				  lp->rx_bd_p);
169 	}
170 	if (lp->tx_bd_v) {
171 		dma_free_coherent(ndev->dev.parent,
172 				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 				  lp->tx_bd_v,
174 				  lp->tx_bd_p);
175 	}
176 }
177 
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:	Pointer to the net_device structure
181  *
182  * returns: 0, on success
183  *	    -ENOMEM, on failure
184  *
185  * This function is called to initialize the Rx and Tx DMA descriptor
186  * rings. This initializes the descriptors with required default values
187  * and is called when Axi Ethernet driver reset is called.
188  */
189 static int axienet_dma_bd_init(struct net_device *ndev)
190 {
191 	u32 cr;
192 	int i;
193 	struct sk_buff *skb;
194 	struct axienet_local *lp = netdev_priv(ndev);
195 
196 	/* Reset the indexes which are used for accessing the BDs */
197 	lp->tx_bd_ci = 0;
198 	lp->tx_bd_tail = 0;
199 	lp->rx_bd_ci = 0;
200 
201 	/*
202 	 * Allocate the Tx and Rx buffer descriptors.
203 	 */
204 	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205 					 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 					 &lp->tx_bd_p,
207 					 GFP_KERNEL | __GFP_ZERO);
208 	if (!lp->tx_bd_v)
209 		goto out;
210 
211 	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
212 					 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
213 					 &lp->rx_bd_p,
214 					 GFP_KERNEL | __GFP_ZERO);
215 	if (!lp->rx_bd_v)
216 		goto out;
217 
218 	for (i = 0; i < TX_BD_NUM; i++) {
219 		lp->tx_bd_v[i].next = lp->tx_bd_p +
220 				      sizeof(*lp->tx_bd_v) *
221 				      ((i + 1) % TX_BD_NUM);
222 	}
223 
224 	for (i = 0; i < RX_BD_NUM; i++) {
225 		lp->rx_bd_v[i].next = lp->rx_bd_p +
226 				      sizeof(*lp->rx_bd_v) *
227 				      ((i + 1) % RX_BD_NUM);
228 
229 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
230 		if (!skb)
231 			goto out;
232 
233 		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
234 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
235 						     skb->data,
236 						     lp->max_frm_size,
237 						     DMA_FROM_DEVICE);
238 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
239 	}
240 
241 	/* Start updating the Rx channel control register */
242 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
243 	/* Update the interrupt coalesce count */
244 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
245 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
246 	/* Update the delay timer count */
247 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
248 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
249 	/* Enable coalesce, delay timer and error interrupts */
250 	cr |= XAXIDMA_IRQ_ALL_MASK;
251 	/* Write to the Rx channel control register */
252 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
253 
254 	/* Start updating the Tx channel control register */
255 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
256 	/* Update the interrupt coalesce count */
257 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
258 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
259 	/* Update the delay timer count */
260 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
261 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
262 	/* Enable coalesce, delay timer and error interrupts */
263 	cr |= XAXIDMA_IRQ_ALL_MASK;
264 	/* Write to the Tx channel control register */
265 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
266 
267 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
268 	 * halted state. This will make the Rx side ready for reception.*/
269 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
270 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
271 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
272 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
273 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
274 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
275 
276 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
277 	 * Tx channel is now ready to run. But only after we write to the
278 	 * tail pointer register that the Tx channel will start transmitting */
279 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
280 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
281 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
282 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
283 
284 	return 0;
285 out:
286 	axienet_dma_bd_release(ndev);
287 	return -ENOMEM;
288 }
289 
290 /**
291  * axienet_set_mac_address - Write the MAC address
292  * @ndev:	Pointer to the net_device structure
293  * @address:	6 byte Address to be written as MAC address
294  *
295  * This function is called to initialize the MAC address of the Axi Ethernet
296  * core. It writes to the UAW0 and UAW1 registers of the core.
297  */
298 static void axienet_set_mac_address(struct net_device *ndev, void *address)
299 {
300 	struct axienet_local *lp = netdev_priv(ndev);
301 
302 	if (address)
303 		memcpy(ndev->dev_addr, address, ETH_ALEN);
304 	if (!is_valid_ether_addr(ndev->dev_addr))
305 		eth_random_addr(ndev->dev_addr);
306 
307 	/* Set up unicast MAC address filter set its mac address */
308 	axienet_iow(lp, XAE_UAW0_OFFSET,
309 		    (ndev->dev_addr[0]) |
310 		    (ndev->dev_addr[1] << 8) |
311 		    (ndev->dev_addr[2] << 16) |
312 		    (ndev->dev_addr[3] << 24));
313 	axienet_iow(lp, XAE_UAW1_OFFSET,
314 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
315 		      ~XAE_UAW1_UNICASTADDR_MASK) |
316 		     (ndev->dev_addr[4] |
317 		     (ndev->dev_addr[5] << 8))));
318 }
319 
320 /**
321  * netdev_set_mac_address - Write the MAC address (from outside the driver)
322  * @ndev:	Pointer to the net_device structure
323  * @p:		6 byte Address to be written as MAC address
324  *
325  * returns: 0 for all conditions. Presently, there is no failure case.
326  *
327  * This function is called to initialize the MAC address of the Axi Ethernet
328  * core. It calls the core specific axienet_set_mac_address. This is the
329  * function that goes into net_device_ops structure entry ndo_set_mac_address.
330  */
331 static int netdev_set_mac_address(struct net_device *ndev, void *p)
332 {
333 	struct sockaddr *addr = p;
334 	axienet_set_mac_address(ndev, addr->sa_data);
335 	return 0;
336 }
337 
338 /**
339  * axienet_set_multicast_list - Prepare the multicast table
340  * @ndev:	Pointer to the net_device structure
341  *
342  * This function is called to initialize the multicast table during
343  * initialization. The Axi Ethernet basic multicast support has a four-entry
344  * multicast table which is initialized here. Additionally this function
345  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
346  * means whenever the multicast table entries need to be updated this
347  * function gets called.
348  */
349 static void axienet_set_multicast_list(struct net_device *ndev)
350 {
351 	int i;
352 	u32 reg, af0reg, af1reg;
353 	struct axienet_local *lp = netdev_priv(ndev);
354 
355 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
356 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
357 		/* We must make the kernel realize we had to move into
358 		 * promiscuous mode. If it was a promiscuous mode request
359 		 * the flag is already set. If not we set it. */
360 		ndev->flags |= IFF_PROMISC;
361 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
362 		reg |= XAE_FMI_PM_MASK;
363 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
364 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
365 	} else if (!netdev_mc_empty(ndev)) {
366 		struct netdev_hw_addr *ha;
367 
368 		i = 0;
369 		netdev_for_each_mc_addr(ha, ndev) {
370 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
371 				break;
372 
373 			af0reg = (ha->addr[0]);
374 			af0reg |= (ha->addr[1] << 8);
375 			af0reg |= (ha->addr[2] << 16);
376 			af0reg |= (ha->addr[3] << 24);
377 
378 			af1reg = (ha->addr[4]);
379 			af1reg |= (ha->addr[5] << 8);
380 
381 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
382 			reg |= i;
383 
384 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
385 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
386 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
387 			i++;
388 		}
389 	} else {
390 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
391 		reg &= ~XAE_FMI_PM_MASK;
392 
393 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
394 
395 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
396 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
397 			reg |= i;
398 
399 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
400 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
401 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
402 		}
403 
404 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
405 	}
406 }
407 
408 /**
409  * axienet_setoptions - Set an Axi Ethernet option
410  * @ndev:	Pointer to the net_device structure
411  * @options:	Option to be enabled/disabled
412  *
413  * The Axi Ethernet core has multiple features which can be selectively turned
414  * on or off. The typical options could be jumbo frame option, basic VLAN
415  * option, promiscuous mode option etc. This function is used to set or clear
416  * these options in the Axi Ethernet hardware. This is done through
417  * axienet_option structure .
418  */
419 static void axienet_setoptions(struct net_device *ndev, u32 options)
420 {
421 	int reg;
422 	struct axienet_local *lp = netdev_priv(ndev);
423 	struct axienet_option *tp = &axienet_options[0];
424 
425 	while (tp->opt) {
426 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
427 		if (options & tp->opt)
428 			reg |= tp->m_or;
429 		axienet_iow(lp, tp->reg, reg);
430 		tp++;
431 	}
432 
433 	lp->options |= options;
434 }
435 
436 static void __axienet_device_reset(struct axienet_local *lp,
437 				   struct device *dev, off_t offset)
438 {
439 	u32 timeout;
440 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
441 	 * process of Axi DMA takes a while to complete as all pending
442 	 * commands/transfers will be flushed or completed during this
443 	 * reset process. */
444 	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 	timeout = DELAY_OF_ONE_MILLISEC;
446 	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 		udelay(1);
448 		if (--timeout == 0) {
449 			dev_err(dev, "axienet_device_reset DMA "
450 				"reset timeout!\n");
451 			break;
452 		}
453 	}
454 }
455 
456 /**
457  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458  * @ndev:	Pointer to the net_device structure
459  *
460  * This function is called to reset and initialize the Axi Ethernet core. This
461  * is typically called during initialization. It does a reset of the Axi DMA
462  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465  * core.
466  */
467 static void axienet_device_reset(struct net_device *ndev)
468 {
469 	u32 axienet_status;
470 	struct axienet_local *lp = netdev_priv(ndev);
471 
472 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
473 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
474 
475 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
476 	lp->options &= (~XAE_OPTION_JUMBO);
477 
478 	if ((ndev->mtu > XAE_MTU) &&
479 	    (ndev->mtu <= XAE_JUMBO_MTU) &&
480 	    (lp->jumbo_support)) {
481 		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
482 				   XAE_TRL_SIZE;
483 		lp->options |= XAE_OPTION_JUMBO;
484 	}
485 
486 	if (axienet_dma_bd_init(ndev)) {
487 		dev_err(&ndev->dev, "axienet_device_reset descriptor "
488 			"allocation failed\n");
489 	}
490 
491 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
492 	axienet_status &= ~XAE_RCW1_RX_MASK;
493 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
494 
495 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
496 	if (axienet_status & XAE_INT_RXRJECT_MASK)
497 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
498 
499 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
500 
501 	/* Sync default options with HW but leave receiver and
502 	 * transmitter disabled.*/
503 	axienet_setoptions(ndev, lp->options &
504 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
505 	axienet_set_mac_address(ndev, NULL);
506 	axienet_set_multicast_list(ndev);
507 	axienet_setoptions(ndev, lp->options);
508 
509 	ndev->trans_start = jiffies;
510 }
511 
512 /**
513  * axienet_adjust_link - Adjust the PHY link speed/duplex.
514  * @ndev:	Pointer to the net_device structure
515  *
516  * This function is called to change the speed and duplex setting after
517  * auto negotiation is done by the PHY. This is the function that gets
518  * registered with the PHY interface through the "of_phy_connect" call.
519  */
520 static void axienet_adjust_link(struct net_device *ndev)
521 {
522 	u32 emmc_reg;
523 	u32 link_state;
524 	u32 setspeed = 1;
525 	struct axienet_local *lp = netdev_priv(ndev);
526 	struct phy_device *phy = lp->phy_dev;
527 
528 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
529 	if (lp->last_link != link_state) {
530 		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
531 			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
532 				setspeed = 0;
533 		} else {
534 			if ((phy->speed == SPEED_1000) &&
535 			    (lp->phy_type == XAE_PHY_TYPE_MII))
536 				setspeed = 0;
537 		}
538 
539 		if (setspeed == 1) {
540 			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
541 			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
542 
543 			switch (phy->speed) {
544 			case SPEED_1000:
545 				emmc_reg |= XAE_EMMC_LINKSPD_1000;
546 				break;
547 			case SPEED_100:
548 				emmc_reg |= XAE_EMMC_LINKSPD_100;
549 				break;
550 			case SPEED_10:
551 				emmc_reg |= XAE_EMMC_LINKSPD_10;
552 				break;
553 			default:
554 				dev_err(&ndev->dev, "Speed other than 10, 100 "
555 					"or 1Gbps is not supported\n");
556 				break;
557 			}
558 
559 			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
560 			lp->last_link = link_state;
561 			phy_print_status(phy);
562 		} else {
563 			dev_err(&ndev->dev, "Error setting Axi Ethernet "
564 				"mac speed\n");
565 		}
566 	}
567 }
568 
569 /**
570  * axienet_start_xmit_done - Invoked once a transmit is completed by the
571  * Axi DMA Tx channel.
572  * @ndev:	Pointer to the net_device structure
573  *
574  * This function is invoked from the Axi DMA Tx isr to notify the completion
575  * of transmit operation. It clears fields in the corresponding Tx BDs and
576  * unmaps the corresponding buffer so that CPU can regain ownership of the
577  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
578  * required.
579  */
580 static void axienet_start_xmit_done(struct net_device *ndev)
581 {
582 	u32 size = 0;
583 	u32 packets = 0;
584 	struct axienet_local *lp = netdev_priv(ndev);
585 	struct axidma_bd *cur_p;
586 	unsigned int status = 0;
587 
588 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
589 	status = cur_p->status;
590 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
591 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
592 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
593 				DMA_TO_DEVICE);
594 		if (cur_p->app4)
595 			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
596 		/*cur_p->phys = 0;*/
597 		cur_p->app0 = 0;
598 		cur_p->app1 = 0;
599 		cur_p->app2 = 0;
600 		cur_p->app4 = 0;
601 		cur_p->status = 0;
602 
603 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
604 		packets++;
605 
606 		lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
607 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
608 		status = cur_p->status;
609 	}
610 
611 	ndev->stats.tx_packets += packets;
612 	ndev->stats.tx_bytes += size;
613 	netif_wake_queue(ndev);
614 }
615 
616 /**
617  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
618  * @lp:		Pointer to the axienet_local structure
619  * @num_frag:	The number of BDs to check for
620  *
621  * returns: 0, on success
622  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
623  *
624  * This function is invoked before BDs are allocated and transmission starts.
625  * This function returns 0 if a BD or group of BDs can be allocated for
626  * transmission. If the BD or any of the BDs are not free the function
627  * returns a busy status. This is invoked from axienet_start_xmit.
628  */
629 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
630 					    int num_frag)
631 {
632 	struct axidma_bd *cur_p;
633 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
634 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
635 		return NETDEV_TX_BUSY;
636 	return 0;
637 }
638 
639 /**
640  * axienet_start_xmit - Starts the transmission.
641  * @skb:	sk_buff pointer that contains data to be Txed.
642  * @ndev:	Pointer to net_device structure.
643  *
644  * returns: NETDEV_TX_OK, on success
645  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
646  *
647  * This function is invoked from upper layers to initiate transmission. The
648  * function uses the next available free BDs and populates their fields to
649  * start the transmission. Additionally if checksum offloading is supported,
650  * it populates AXI Stream Control fields with appropriate values.
651  */
652 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
653 {
654 	u32 ii;
655 	u32 num_frag;
656 	u32 csum_start_off;
657 	u32 csum_index_off;
658 	skb_frag_t *frag;
659 	dma_addr_t tail_p;
660 	struct axienet_local *lp = netdev_priv(ndev);
661 	struct axidma_bd *cur_p;
662 
663 	num_frag = skb_shinfo(skb)->nr_frags;
664 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
665 
666 	if (axienet_check_tx_bd_space(lp, num_frag)) {
667 		if (!netif_queue_stopped(ndev))
668 			netif_stop_queue(ndev);
669 		return NETDEV_TX_BUSY;
670 	}
671 
672 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
673 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
674 			/* Tx Full Checksum Offload Enabled */
675 			cur_p->app0 |= 2;
676 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
677 			csum_start_off = skb_transport_offset(skb);
678 			csum_index_off = csum_start_off + skb->csum_offset;
679 			/* Tx Partial Checksum Offload Enabled */
680 			cur_p->app0 |= 1;
681 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
682 		}
683 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
684 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
685 	}
686 
687 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
688 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
689 				     skb_headlen(skb), DMA_TO_DEVICE);
690 
691 	for (ii = 0; ii < num_frag; ii++) {
692 		lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
693 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
694 		frag = &skb_shinfo(skb)->frags[ii];
695 		cur_p->phys = dma_map_single(ndev->dev.parent,
696 					     skb_frag_address(frag),
697 					     skb_frag_size(frag),
698 					     DMA_TO_DEVICE);
699 		cur_p->cntrl = skb_frag_size(frag);
700 	}
701 
702 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
703 	cur_p->app4 = (unsigned long)skb;
704 
705 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
706 	/* Start the transfer */
707 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
708 	lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
709 
710 	return NETDEV_TX_OK;
711 }
712 
713 /**
714  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
715  *		  BD processing.
716  * @ndev:	Pointer to net_device structure.
717  *
718  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
719  * does minimal processing and invokes "netif_rx" to complete further
720  * processing.
721  */
722 static void axienet_recv(struct net_device *ndev)
723 {
724 	u32 length;
725 	u32 csumstatus;
726 	u32 size = 0;
727 	u32 packets = 0;
728 	dma_addr_t tail_p;
729 	struct axienet_local *lp = netdev_priv(ndev);
730 	struct sk_buff *skb, *new_skb;
731 	struct axidma_bd *cur_p;
732 
733 	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
734 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
735 
736 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
737 		skb = (struct sk_buff *) (cur_p->sw_id_offset);
738 		length = cur_p->app4 & 0x0000FFFF;
739 
740 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
741 				 lp->max_frm_size,
742 				 DMA_FROM_DEVICE);
743 
744 		skb_put(skb, length);
745 		skb->protocol = eth_type_trans(skb, ndev);
746 		/*skb_checksum_none_assert(skb);*/
747 		skb->ip_summed = CHECKSUM_NONE;
748 
749 		/* if we're doing Rx csum offload, set it up */
750 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
751 			csumstatus = (cur_p->app2 &
752 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
753 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
754 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
755 				skb->ip_summed = CHECKSUM_UNNECESSARY;
756 			}
757 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
758 			   skb->protocol == __constant_htons(ETH_P_IP) &&
759 			   skb->len > 64) {
760 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
761 			skb->ip_summed = CHECKSUM_COMPLETE;
762 		}
763 
764 		netif_rx(skb);
765 
766 		size += length;
767 		packets++;
768 
769 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
770 		if (!new_skb)
771 			return;
772 
773 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
774 					     lp->max_frm_size,
775 					     DMA_FROM_DEVICE);
776 		cur_p->cntrl = lp->max_frm_size;
777 		cur_p->status = 0;
778 		cur_p->sw_id_offset = (u32) new_skb;
779 
780 		lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
781 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
782 	}
783 
784 	ndev->stats.rx_packets += packets;
785 	ndev->stats.rx_bytes += size;
786 
787 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
788 }
789 
790 /**
791  * axienet_tx_irq - Tx Done Isr.
792  * @irq:	irq number
793  * @_ndev:	net_device pointer
794  *
795  * returns: IRQ_HANDLED for all cases.
796  *
797  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
798  * to complete the BD processing.
799  */
800 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
801 {
802 	u32 cr;
803 	unsigned int status;
804 	struct net_device *ndev = _ndev;
805 	struct axienet_local *lp = netdev_priv(ndev);
806 
807 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
808 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
809 		axienet_start_xmit_done(lp->ndev);
810 		goto out;
811 	}
812 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
813 		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
814 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
815 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
816 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
817 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
818 
819 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
820 		/* Disable coalesce, delay timer and error interrupts */
821 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
822 		/* Write to the Tx channel control register */
823 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
824 
825 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
826 		/* Disable coalesce, delay timer and error interrupts */
827 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
828 		/* Write to the Rx channel control register */
829 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
830 
831 		tasklet_schedule(&lp->dma_err_tasklet);
832 	}
833 out:
834 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
835 	return IRQ_HANDLED;
836 }
837 
838 /**
839  * axienet_rx_irq - Rx Isr.
840  * @irq:	irq number
841  * @_ndev:	net_device pointer
842  *
843  * returns: IRQ_HANDLED for all cases.
844  *
845  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
846  * processing.
847  */
848 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
849 {
850 	u32 cr;
851 	unsigned int status;
852 	struct net_device *ndev = _ndev;
853 	struct axienet_local *lp = netdev_priv(ndev);
854 
855 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
856 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
857 		axienet_recv(lp->ndev);
858 		goto out;
859 	}
860 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
861 		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
862 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
863 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
864 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
865 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
866 
867 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
868 		/* Disable coalesce, delay timer and error interrupts */
869 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
870 		/* Finally write to the Tx channel control register */
871 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
872 
873 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
874 		/* Disable coalesce, delay timer and error interrupts */
875 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
876 		/* write to the Rx channel control register */
877 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
878 
879 		tasklet_schedule(&lp->dma_err_tasklet);
880 	}
881 out:
882 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
883 	return IRQ_HANDLED;
884 }
885 
886 static void axienet_dma_err_handler(unsigned long data);
887 
888 /**
889  * axienet_open - Driver open routine.
890  * @ndev:	Pointer to net_device structure
891  *
892  * returns: 0, on success.
893  *	    -ENODEV, if PHY cannot be connected to
894  *	    non-zero error value on failure
895  *
896  * This is the driver open routine. It calls phy_start to start the PHY device.
897  * It also allocates interrupt service routines, enables the interrupt lines
898  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
899  * descriptors are initialized.
900  */
901 static int axienet_open(struct net_device *ndev)
902 {
903 	int ret, mdio_mcreg;
904 	struct axienet_local *lp = netdev_priv(ndev);
905 
906 	dev_dbg(&ndev->dev, "axienet_open()\n");
907 
908 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
909 	ret = axienet_mdio_wait_until_ready(lp);
910 	if (ret < 0)
911 		return ret;
912 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
913 	 * When we do an Axi Ethernet reset, it resets the complete core
914 	 * including the MDIO. If MDIO is not disabled when the reset
915 	 * process is started, MDIO will be broken afterwards. */
916 	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
917 		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
918 	axienet_device_reset(ndev);
919 	/* Enable the MDIO */
920 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
921 	ret = axienet_mdio_wait_until_ready(lp);
922 	if (ret < 0)
923 		return ret;
924 
925 	if (lp->phy_node) {
926 		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
927 					     axienet_adjust_link, 0,
928 					     PHY_INTERFACE_MODE_GMII);
929 		if (!lp->phy_dev) {
930 			dev_err(lp->dev, "of_phy_connect() failed\n");
931 			return -ENODEV;
932 		}
933 		phy_start(lp->phy_dev);
934 	}
935 
936 	/* Enable tasklets for Axi DMA error handling */
937 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
938 		     (unsigned long) lp);
939 
940 	/* Enable interrupts for Axi DMA Tx */
941 	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
942 	if (ret)
943 		goto err_tx_irq;
944 	/* Enable interrupts for Axi DMA Rx */
945 	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
946 	if (ret)
947 		goto err_rx_irq;
948 
949 	return 0;
950 
951 err_rx_irq:
952 	free_irq(lp->tx_irq, ndev);
953 err_tx_irq:
954 	if (lp->phy_dev)
955 		phy_disconnect(lp->phy_dev);
956 	lp->phy_dev = NULL;
957 	tasklet_kill(&lp->dma_err_tasklet);
958 	dev_err(lp->dev, "request_irq() failed\n");
959 	return ret;
960 }
961 
962 /**
963  * axienet_stop - Driver stop routine.
964  * @ndev:	Pointer to net_device structure
965  *
966  * returns: 0, on success.
967  *
968  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
969  * device. It also removes the interrupt handlers and disables the interrupts.
970  * The Axi DMA Tx/Rx BDs are released.
971  */
972 static int axienet_stop(struct net_device *ndev)
973 {
974 	u32 cr;
975 	struct axienet_local *lp = netdev_priv(ndev);
976 
977 	dev_dbg(&ndev->dev, "axienet_close()\n");
978 
979 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
980 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
981 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
982 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
983 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
984 			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
985 	axienet_setoptions(ndev, lp->options &
986 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
987 
988 	tasklet_kill(&lp->dma_err_tasklet);
989 
990 	free_irq(lp->tx_irq, ndev);
991 	free_irq(lp->rx_irq, ndev);
992 
993 	if (lp->phy_dev)
994 		phy_disconnect(lp->phy_dev);
995 	lp->phy_dev = NULL;
996 
997 	axienet_dma_bd_release(ndev);
998 	return 0;
999 }
1000 
1001 /**
1002  * axienet_change_mtu - Driver change mtu routine.
1003  * @ndev:	Pointer to net_device structure
1004  * @new_mtu:	New mtu value to be applied
1005  *
1006  * returns: Always returns 0 (success).
1007  *
1008  * This is the change mtu driver routine. It checks if the Axi Ethernet
1009  * hardware supports jumbo frames before changing the mtu. This can be
1010  * called only when the device is not up.
1011  */
1012 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1013 {
1014 	struct axienet_local *lp = netdev_priv(ndev);
1015 
1016 	if (netif_running(ndev))
1017 		return -EBUSY;
1018 	if (lp->jumbo_support) {
1019 		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1020 			return -EINVAL;
1021 		ndev->mtu = new_mtu;
1022 	} else {
1023 		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1024 			return -EINVAL;
1025 		ndev->mtu = new_mtu;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 #ifdef CONFIG_NET_POLL_CONTROLLER
1032 /**
1033  * axienet_poll_controller - Axi Ethernet poll mechanism.
1034  * @ndev:	Pointer to net_device structure
1035  *
1036  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1037  * to polling the ISRs and are enabled back after the polling is done.
1038  */
1039 static void axienet_poll_controller(struct net_device *ndev)
1040 {
1041 	struct axienet_local *lp = netdev_priv(ndev);
1042 	disable_irq(lp->tx_irq);
1043 	disable_irq(lp->rx_irq);
1044 	axienet_rx_irq(lp->tx_irq, ndev);
1045 	axienet_tx_irq(lp->rx_irq, ndev);
1046 	enable_irq(lp->tx_irq);
1047 	enable_irq(lp->rx_irq);
1048 }
1049 #endif
1050 
1051 static const struct net_device_ops axienet_netdev_ops = {
1052 	.ndo_open = axienet_open,
1053 	.ndo_stop = axienet_stop,
1054 	.ndo_start_xmit = axienet_start_xmit,
1055 	.ndo_change_mtu	= axienet_change_mtu,
1056 	.ndo_set_mac_address = netdev_set_mac_address,
1057 	.ndo_validate_addr = eth_validate_addr,
1058 	.ndo_set_rx_mode = axienet_set_multicast_list,
1059 #ifdef CONFIG_NET_POLL_CONTROLLER
1060 	.ndo_poll_controller = axienet_poll_controller,
1061 #endif
1062 };
1063 
1064 /**
1065  * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1066  * @ndev:	Pointer to net_device structure
1067  * @ecmd:	Pointer to ethtool_cmd structure
1068  *
1069  * This implements ethtool command for getting PHY settings. If PHY could
1070  * not be found, the function returns -ENODEV. This function calls the
1071  * relevant PHY ethtool API to get the PHY settings.
1072  * Issue "ethtool ethX" under linux prompt to execute this function.
1073  */
1074 static int axienet_ethtools_get_settings(struct net_device *ndev,
1075 					 struct ethtool_cmd *ecmd)
1076 {
1077 	struct axienet_local *lp = netdev_priv(ndev);
1078 	struct phy_device *phydev = lp->phy_dev;
1079 	if (!phydev)
1080 		return -ENODEV;
1081 	return phy_ethtool_gset(phydev, ecmd);
1082 }
1083 
1084 /**
1085  * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1086  * @ndev:	Pointer to net_device structure
1087  * @ecmd:	Pointer to ethtool_cmd structure
1088  *
1089  * This implements ethtool command for setting various PHY settings. If PHY
1090  * could not be found, the function returns -ENODEV. This function calls the
1091  * relevant PHY ethtool API to set the PHY.
1092  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1093  * function.
1094  */
1095 static int axienet_ethtools_set_settings(struct net_device *ndev,
1096 					 struct ethtool_cmd *ecmd)
1097 {
1098 	struct axienet_local *lp = netdev_priv(ndev);
1099 	struct phy_device *phydev = lp->phy_dev;
1100 	if (!phydev)
1101 		return -ENODEV;
1102 	return phy_ethtool_sset(phydev, ecmd);
1103 }
1104 
1105 /**
1106  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1107  * @ndev:	Pointer to net_device structure
1108  * @ed:		Pointer to ethtool_drvinfo structure
1109  *
1110  * This implements ethtool command for getting the driver information.
1111  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1112  */
1113 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1114 					 struct ethtool_drvinfo *ed)
1115 {
1116 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1117 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1118 	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1119 }
1120 
1121 /**
1122  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1123  *				   AxiEthernet core.
1124  * @ndev:	Pointer to net_device structure
1125  *
1126  * This implements ethtool command for getting the total register length
1127  * information.
1128  */
1129 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1130 {
1131 	return sizeof(u32) * AXIENET_REGS_N;
1132 }
1133 
1134 /**
1135  * axienet_ethtools_get_regs - Dump the contents of all registers present
1136  *			       in AxiEthernet core.
1137  * @ndev:	Pointer to net_device structure
1138  * @regs:	Pointer to ethtool_regs structure
1139  * @ret:	Void pointer used to return the contents of the registers.
1140  *
1141  * This implements ethtool command for getting the Axi Ethernet register dump.
1142  * Issue "ethtool -d ethX" to execute this function.
1143  */
1144 static void axienet_ethtools_get_regs(struct net_device *ndev,
1145 				      struct ethtool_regs *regs, void *ret)
1146 {
1147 	u32 *data = (u32 *) ret;
1148 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1149 	struct axienet_local *lp = netdev_priv(ndev);
1150 
1151 	regs->version = 0;
1152 	regs->len = len;
1153 
1154 	memset(data, 0, len);
1155 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1156 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1157 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1158 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1159 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1160 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1161 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1162 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1163 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1164 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1165 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1166 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1167 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1168 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1169 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1170 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1171 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1172 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1173 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1174 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1175 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1176 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1177 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1178 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1179 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1180 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1181 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1182 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1183 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1184 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1185 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1186 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1187 }
1188 
1189 /**
1190  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1191  *				     Tx and Rx paths.
1192  * @ndev:	Pointer to net_device structure
1193  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1194  *
1195  * This implements ethtool command for getting axi ethernet pause frame
1196  * setting. Issue "ethtool -a ethX" to execute this function.
1197  */
1198 static void
1199 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1200 				struct ethtool_pauseparam *epauseparm)
1201 {
1202 	u32 regval;
1203 	struct axienet_local *lp = netdev_priv(ndev);
1204 	epauseparm->autoneg  = 0;
1205 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1206 	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1207 	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1208 }
1209 
1210 /**
1211  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1212  *				     settings.
1213  * @ndev:	Pointer to net_device structure
1214  * @epauseparam:Pointer to ethtool_pauseparam structure
1215  *
1216  * This implements ethtool command for enabling flow control on Rx and Tx
1217  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1218  * function.
1219  */
1220 static int
1221 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1222 				struct ethtool_pauseparam *epauseparm)
1223 {
1224 	u32 regval = 0;
1225 	struct axienet_local *lp = netdev_priv(ndev);
1226 
1227 	if (netif_running(ndev)) {
1228 		printk(KERN_ERR	"%s: Please stop netif before applying "
1229 		       "configruation\n", ndev->name);
1230 		return -EFAULT;
1231 	}
1232 
1233 	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1234 	if (epauseparm->tx_pause)
1235 		regval |= XAE_FCC_FCTX_MASK;
1236 	else
1237 		regval &= ~XAE_FCC_FCTX_MASK;
1238 	if (epauseparm->rx_pause)
1239 		regval |= XAE_FCC_FCRX_MASK;
1240 	else
1241 		regval &= ~XAE_FCC_FCRX_MASK;
1242 	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1249  * @ndev:	Pointer to net_device structure
1250  * @ecoalesce:	Pointer to ethtool_coalesce structure
1251  *
1252  * This implements ethtool command for getting the DMA interrupt coalescing
1253  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1254  * execute this function.
1255  */
1256 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1257 					 struct ethtool_coalesce *ecoalesce)
1258 {
1259 	u32 regval = 0;
1260 	struct axienet_local *lp = netdev_priv(ndev);
1261 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1262 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1263 					     >> XAXIDMA_COALESCE_SHIFT;
1264 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1265 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1266 					     >> XAXIDMA_COALESCE_SHIFT;
1267 	return 0;
1268 }
1269 
1270 /**
1271  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1272  * @ndev:	Pointer to net_device structure
1273  * @ecoalesce:	Pointer to ethtool_coalesce structure
1274  *
1275  * This implements ethtool command for setting the DMA interrupt coalescing
1276  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1277  * prompt to execute this function.
1278  */
1279 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1280 					 struct ethtool_coalesce *ecoalesce)
1281 {
1282 	struct axienet_local *lp = netdev_priv(ndev);
1283 
1284 	if (netif_running(ndev)) {
1285 		printk(KERN_ERR	"%s: Please stop netif before applying "
1286 		       "configruation\n", ndev->name);
1287 		return -EFAULT;
1288 	}
1289 
1290 	if ((ecoalesce->rx_coalesce_usecs) ||
1291 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1292 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1293 	    (ecoalesce->tx_coalesce_usecs) ||
1294 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1295 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1296 	    (ecoalesce->stats_block_coalesce_usecs) ||
1297 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1298 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1299 	    (ecoalesce->pkt_rate_low) ||
1300 	    (ecoalesce->rx_coalesce_usecs_low) ||
1301 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1302 	    (ecoalesce->tx_coalesce_usecs_low) ||
1303 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1304 	    (ecoalesce->pkt_rate_high) ||
1305 	    (ecoalesce->rx_coalesce_usecs_high) ||
1306 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1307 	    (ecoalesce->tx_coalesce_usecs_high) ||
1308 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1309 	    (ecoalesce->rate_sample_interval))
1310 		return -EOPNOTSUPP;
1311 	if (ecoalesce->rx_max_coalesced_frames)
1312 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1313 	if (ecoalesce->tx_max_coalesced_frames)
1314 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1315 
1316 	return 0;
1317 }
1318 
1319 static struct ethtool_ops axienet_ethtool_ops = {
1320 	.get_settings   = axienet_ethtools_get_settings,
1321 	.set_settings   = axienet_ethtools_set_settings,
1322 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1323 	.get_regs_len   = axienet_ethtools_get_regs_len,
1324 	.get_regs       = axienet_ethtools_get_regs,
1325 	.get_link       = ethtool_op_get_link,
1326 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1327 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1328 	.get_coalesce   = axienet_ethtools_get_coalesce,
1329 	.set_coalesce   = axienet_ethtools_set_coalesce,
1330 };
1331 
1332 /**
1333  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1334  * @data:	Data passed
1335  *
1336  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1337  * Tx/Rx BDs.
1338  */
1339 static void axienet_dma_err_handler(unsigned long data)
1340 {
1341 	u32 axienet_status;
1342 	u32 cr, i;
1343 	int mdio_mcreg;
1344 	struct axienet_local *lp = (struct axienet_local *) data;
1345 	struct net_device *ndev = lp->ndev;
1346 	struct axidma_bd *cur_p;
1347 
1348 	axienet_setoptions(ndev, lp->options &
1349 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1350 	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1351 	axienet_mdio_wait_until_ready(lp);
1352 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1353 	 * When we do an Axi Ethernet reset, it resets the complete core
1354 	 * including the MDIO. So if MDIO is not disabled when the reset
1355 	 * process is started, MDIO will be broken afterwards. */
1356 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1357 		    ~XAE_MDIO_MC_MDIOEN_MASK));
1358 
1359 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1360 	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1361 
1362 	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1363 	axienet_mdio_wait_until_ready(lp);
1364 
1365 	for (i = 0; i < TX_BD_NUM; i++) {
1366 		cur_p = &lp->tx_bd_v[i];
1367 		if (cur_p->phys)
1368 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1369 					 (cur_p->cntrl &
1370 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1371 					 DMA_TO_DEVICE);
1372 		if (cur_p->app4)
1373 			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1374 		cur_p->phys = 0;
1375 		cur_p->cntrl = 0;
1376 		cur_p->status = 0;
1377 		cur_p->app0 = 0;
1378 		cur_p->app1 = 0;
1379 		cur_p->app2 = 0;
1380 		cur_p->app3 = 0;
1381 		cur_p->app4 = 0;
1382 		cur_p->sw_id_offset = 0;
1383 	}
1384 
1385 	for (i = 0; i < RX_BD_NUM; i++) {
1386 		cur_p = &lp->rx_bd_v[i];
1387 		cur_p->status = 0;
1388 		cur_p->app0 = 0;
1389 		cur_p->app1 = 0;
1390 		cur_p->app2 = 0;
1391 		cur_p->app3 = 0;
1392 		cur_p->app4 = 0;
1393 	}
1394 
1395 	lp->tx_bd_ci = 0;
1396 	lp->tx_bd_tail = 0;
1397 	lp->rx_bd_ci = 0;
1398 
1399 	/* Start updating the Rx channel control register */
1400 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1401 	/* Update the interrupt coalesce count */
1402 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1403 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1404 	/* Update the delay timer count */
1405 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1406 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1407 	/* Enable coalesce, delay timer and error interrupts */
1408 	cr |= XAXIDMA_IRQ_ALL_MASK;
1409 	/* Finally write to the Rx channel control register */
1410 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1411 
1412 	/* Start updating the Tx channel control register */
1413 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1414 	/* Update the interrupt coalesce count */
1415 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1416 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1417 	/* Update the delay timer count */
1418 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1419 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1420 	/* Enable coalesce, delay timer and error interrupts */
1421 	cr |= XAXIDMA_IRQ_ALL_MASK;
1422 	/* Finally write to the Tx channel control register */
1423 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1424 
1425 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1426 	 * halted state. This will make the Rx side ready for reception.*/
1427 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1428 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1429 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1430 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1431 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1432 			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1433 
1434 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1435 	 * Tx channel is now ready to run. But only after we write to the
1436 	 * tail pointer register that the Tx channel will start transmitting */
1437 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1438 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1439 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1440 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1441 
1442 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1443 	axienet_status &= ~XAE_RCW1_RX_MASK;
1444 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1445 
1446 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1447 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1448 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1449 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1450 
1451 	/* Sync default options with HW but leave receiver and
1452 	 * transmitter disabled.*/
1453 	axienet_setoptions(ndev, lp->options &
1454 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1455 	axienet_set_mac_address(ndev, NULL);
1456 	axienet_set_multicast_list(ndev);
1457 	axienet_setoptions(ndev, lp->options);
1458 }
1459 
1460 /**
1461  * axienet_of_probe - Axi Ethernet probe function.
1462  * @op:		Pointer to platform device structure.
1463  * @match:	Pointer to device id structure
1464  *
1465  * returns: 0, on success
1466  *	    Non-zero error value on failure.
1467  *
1468  * This is the probe routine for Axi Ethernet driver. This is called before
1469  * any other driver routines are invoked. It allocates and sets up the Ethernet
1470  * device. Parses through device tree and populates fields of
1471  * axienet_local. It registers the Ethernet device.
1472  */
1473 static int axienet_of_probe(struct platform_device *op)
1474 {
1475 	__be32 *p;
1476 	int size, ret = 0;
1477 	struct device_node *np;
1478 	struct axienet_local *lp;
1479 	struct net_device *ndev;
1480 	const void *addr;
1481 
1482 	ndev = alloc_etherdev(sizeof(*lp));
1483 	if (!ndev)
1484 		return -ENOMEM;
1485 
1486 	ether_setup(ndev);
1487 	platform_set_drvdata(op, ndev);
1488 
1489 	SET_NETDEV_DEV(ndev, &op->dev);
1490 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1491 	ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1492 	ndev->netdev_ops = &axienet_netdev_ops;
1493 	ndev->ethtool_ops = &axienet_ethtool_ops;
1494 
1495 	lp = netdev_priv(ndev);
1496 	lp->ndev = ndev;
1497 	lp->dev = &op->dev;
1498 	lp->options = XAE_OPTION_DEFAULTS;
1499 	/* Map device registers */
1500 	lp->regs = of_iomap(op->dev.of_node, 0);
1501 	if (!lp->regs) {
1502 		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1503 		goto nodev;
1504 	}
1505 	/* Setup checksum offload, but default to off if not specified */
1506 	lp->features = 0;
1507 
1508 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1509 	if (p) {
1510 		switch (be32_to_cpup(p)) {
1511 		case 1:
1512 			lp->csum_offload_on_tx_path =
1513 				XAE_FEATURE_PARTIAL_TX_CSUM;
1514 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1515 			/* Can checksum TCP/UDP over IPv4. */
1516 			ndev->features |= NETIF_F_IP_CSUM;
1517 			break;
1518 		case 2:
1519 			lp->csum_offload_on_tx_path =
1520 				XAE_FEATURE_FULL_TX_CSUM;
1521 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1522 			/* Can checksum TCP/UDP over IPv4. */
1523 			ndev->features |= NETIF_F_IP_CSUM;
1524 			break;
1525 		default:
1526 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1527 		}
1528 	}
1529 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1530 	if (p) {
1531 		switch (be32_to_cpup(p)) {
1532 		case 1:
1533 			lp->csum_offload_on_rx_path =
1534 				XAE_FEATURE_PARTIAL_RX_CSUM;
1535 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1536 			break;
1537 		case 2:
1538 			lp->csum_offload_on_rx_path =
1539 				XAE_FEATURE_FULL_RX_CSUM;
1540 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1541 			break;
1542 		default:
1543 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1544 		}
1545 	}
1546 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1547 	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1548 	 * equal to 16384 bytes, so that we can enable jumbo option and start
1549 	 * supporting jumbo frames. Here we check for memory allocated for
1550 	 * Rx/Tx in the hardware from the device-tree and accordingly set
1551 	 * flags. */
1552 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1553 	if (p) {
1554 		if ((be32_to_cpup(p)) >= 0x4000)
1555 			lp->jumbo_support = 1;
1556 	}
1557 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1558 				       NULL);
1559 	if (p)
1560 		lp->temac_type = be32_to_cpup(p);
1561 	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1562 	if (p)
1563 		lp->phy_type = be32_to_cpup(p);
1564 
1565 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1566 	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1567 	if (!np) {
1568 		dev_err(&op->dev, "could not find DMA node\n");
1569 		goto err_iounmap;
1570 	}
1571 	lp->dma_regs = of_iomap(np, 0);
1572 	if (lp->dma_regs) {
1573 		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1574 	} else {
1575 		dev_err(&op->dev, "unable to map DMA registers\n");
1576 		of_node_put(np);
1577 	}
1578 	lp->rx_irq = irq_of_parse_and_map(np, 1);
1579 	lp->tx_irq = irq_of_parse_and_map(np, 0);
1580 	of_node_put(np);
1581 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1582 		dev_err(&op->dev, "could not determine irqs\n");
1583 		ret = -ENOMEM;
1584 		goto err_iounmap_2;
1585 	}
1586 
1587 	/* Retrieve the MAC address */
1588 	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1589 	if ((!addr) || (size != 6)) {
1590 		dev_err(&op->dev, "could not find MAC address\n");
1591 		ret = -ENODEV;
1592 		goto err_iounmap_2;
1593 	}
1594 	axienet_set_mac_address(ndev, (void *) addr);
1595 
1596 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1597 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1598 
1599 	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1600 	ret = axienet_mdio_setup(lp, op->dev.of_node);
1601 	if (ret)
1602 		dev_warn(&op->dev, "error registering MDIO bus\n");
1603 
1604 	ret = register_netdev(lp->ndev);
1605 	if (ret) {
1606 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1607 		goto err_iounmap_2;
1608 	}
1609 
1610 	return 0;
1611 
1612 err_iounmap_2:
1613 	if (lp->dma_regs)
1614 		iounmap(lp->dma_regs);
1615 err_iounmap:
1616 	iounmap(lp->regs);
1617 nodev:
1618 	free_netdev(ndev);
1619 	ndev = NULL;
1620 	return ret;
1621 }
1622 
1623 static int axienet_of_remove(struct platform_device *op)
1624 {
1625 	struct net_device *ndev = platform_get_drvdata(op);
1626 	struct axienet_local *lp = netdev_priv(ndev);
1627 
1628 	axienet_mdio_teardown(lp);
1629 	unregister_netdev(ndev);
1630 
1631 	if (lp->phy_node)
1632 		of_node_put(lp->phy_node);
1633 	lp->phy_node = NULL;
1634 
1635 	iounmap(lp->regs);
1636 	if (lp->dma_regs)
1637 		iounmap(lp->dma_regs);
1638 	free_netdev(ndev);
1639 
1640 	return 0;
1641 }
1642 
1643 static struct platform_driver axienet_of_driver = {
1644 	.probe = axienet_of_probe,
1645 	.remove = axienet_of_remove,
1646 	.driver = {
1647 		 .owner = THIS_MODULE,
1648 		 .name = "xilinx_axienet",
1649 		 .of_match_table = axienet_of_match,
1650 	},
1651 };
1652 
1653 module_platform_driver(axienet_of_driver);
1654 
1655 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1656 MODULE_AUTHOR("Xilinx");
1657 MODULE_LICENSE("GPL");
1658