1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx Axi Ethernet device driver 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> 9 * Copyright (c) 2010 - 2011 PetaLogix 10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies 11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. 12 * 13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 14 * and Spartan6. 15 * 16 * TODO: 17 * - Add Axi Fifo support. 18 * - Factor out Axi DMA code into separate driver. 19 * - Test and fix basic multicast filtering. 20 * - Add support for extended multicast filtering. 21 * - Test basic VLAN support. 22 * - Add support for extended VLAN support. 23 */ 24 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/module.h> 29 #include <linux/netdevice.h> 30 #include <linux/of.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/of_irq.h> 34 #include <linux/of_address.h> 35 #include <linux/platform_device.h> 36 #include <linux/skbuff.h> 37 #include <linux/math64.h> 38 #include <linux/phy.h> 39 #include <linux/mii.h> 40 #include <linux/ethtool.h> 41 42 #include "xilinx_axienet.h" 43 44 /* Descriptors defines for Tx and Rx DMA */ 45 #define TX_BD_NUM_DEFAULT 128 46 #define RX_BD_NUM_DEFAULT 1024 47 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) 48 #define TX_BD_NUM_MAX 4096 49 #define RX_BD_NUM_MAX 4096 50 51 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ 52 #define DRIVER_NAME "xaxienet" 53 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" 54 #define DRIVER_VERSION "1.00a" 55 56 #define AXIENET_REGS_N 40 57 58 /* Match table for of_platform binding */ 59 static const struct of_device_id axienet_of_match[] = { 60 { .compatible = "xlnx,axi-ethernet-1.00.a", }, 61 { .compatible = "xlnx,axi-ethernet-1.01.a", }, 62 { .compatible = "xlnx,axi-ethernet-2.01.a", }, 63 {}, 64 }; 65 66 MODULE_DEVICE_TABLE(of, axienet_of_match); 67 68 /* Option table for setting up Axi Ethernet hardware options */ 69 static struct axienet_option axienet_options[] = { 70 /* Turn on jumbo packet support for both Rx and Tx */ 71 { 72 .opt = XAE_OPTION_JUMBO, 73 .reg = XAE_TC_OFFSET, 74 .m_or = XAE_TC_JUM_MASK, 75 }, { 76 .opt = XAE_OPTION_JUMBO, 77 .reg = XAE_RCW1_OFFSET, 78 .m_or = XAE_RCW1_JUM_MASK, 79 }, { /* Turn on VLAN packet support for both Rx and Tx */ 80 .opt = XAE_OPTION_VLAN, 81 .reg = XAE_TC_OFFSET, 82 .m_or = XAE_TC_VLAN_MASK, 83 }, { 84 .opt = XAE_OPTION_VLAN, 85 .reg = XAE_RCW1_OFFSET, 86 .m_or = XAE_RCW1_VLAN_MASK, 87 }, { /* Turn on FCS stripping on receive packets */ 88 .opt = XAE_OPTION_FCS_STRIP, 89 .reg = XAE_RCW1_OFFSET, 90 .m_or = XAE_RCW1_FCS_MASK, 91 }, { /* Turn on FCS insertion on transmit packets */ 92 .opt = XAE_OPTION_FCS_INSERT, 93 .reg = XAE_TC_OFFSET, 94 .m_or = XAE_TC_FCS_MASK, 95 }, { /* Turn off length/type field checking on receive packets */ 96 .opt = XAE_OPTION_LENTYPE_ERR, 97 .reg = XAE_RCW1_OFFSET, 98 .m_or = XAE_RCW1_LT_DIS_MASK, 99 }, { /* Turn on Rx flow control */ 100 .opt = XAE_OPTION_FLOW_CONTROL, 101 .reg = XAE_FCC_OFFSET, 102 .m_or = XAE_FCC_FCRX_MASK, 103 }, { /* Turn on Tx flow control */ 104 .opt = XAE_OPTION_FLOW_CONTROL, 105 .reg = XAE_FCC_OFFSET, 106 .m_or = XAE_FCC_FCTX_MASK, 107 }, { /* Turn on promiscuous frame filtering */ 108 .opt = XAE_OPTION_PROMISC, 109 .reg = XAE_FMI_OFFSET, 110 .m_or = XAE_FMI_PM_MASK, 111 }, { /* Enable transmitter */ 112 .opt = XAE_OPTION_TXEN, 113 .reg = XAE_TC_OFFSET, 114 .m_or = XAE_TC_TX_MASK, 115 }, { /* Enable receiver */ 116 .opt = XAE_OPTION_RXEN, 117 .reg = XAE_RCW1_OFFSET, 118 .m_or = XAE_RCW1_RX_MASK, 119 }, 120 {} 121 }; 122 123 /** 124 * axienet_dma_in32 - Memory mapped Axi DMA register read 125 * @lp: Pointer to axienet local structure 126 * @reg: Address offset from the base address of the Axi DMA core 127 * 128 * Return: The contents of the Axi DMA register 129 * 130 * This function returns the contents of the corresponding Axi DMA register. 131 */ 132 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) 133 { 134 return ioread32(lp->dma_regs + reg); 135 } 136 137 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, 138 struct axidma_bd *desc) 139 { 140 desc->phys = lower_32_bits(addr); 141 if (lp->features & XAE_FEATURE_DMA_64BIT) 142 desc->phys_msb = upper_32_bits(addr); 143 } 144 145 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, 146 struct axidma_bd *desc) 147 { 148 dma_addr_t ret = desc->phys; 149 150 if (lp->features & XAE_FEATURE_DMA_64BIT) 151 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; 152 153 return ret; 154 } 155 156 /** 157 * axienet_dma_bd_release - Release buffer descriptor rings 158 * @ndev: Pointer to the net_device structure 159 * 160 * This function is used to release the descriptors allocated in 161 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet 162 * driver stop api is called. 163 */ 164 static void axienet_dma_bd_release(struct net_device *ndev) 165 { 166 int i; 167 struct axienet_local *lp = netdev_priv(ndev); 168 169 /* If we end up here, tx_bd_v must have been DMA allocated. */ 170 dma_free_coherent(lp->dev, 171 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 172 lp->tx_bd_v, 173 lp->tx_bd_p); 174 175 if (!lp->rx_bd_v) 176 return; 177 178 for (i = 0; i < lp->rx_bd_num; i++) { 179 dma_addr_t phys; 180 181 /* A NULL skb means this descriptor has not been initialised 182 * at all. 183 */ 184 if (!lp->rx_bd_v[i].skb) 185 break; 186 187 dev_kfree_skb(lp->rx_bd_v[i].skb); 188 189 /* For each descriptor, we programmed cntrl with the (non-zero) 190 * descriptor size, after it had been successfully allocated. 191 * So a non-zero value in there means we need to unmap it. 192 */ 193 if (lp->rx_bd_v[i].cntrl) { 194 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); 195 dma_unmap_single(lp->dev, phys, 196 lp->max_frm_size, DMA_FROM_DEVICE); 197 } 198 } 199 200 dma_free_coherent(lp->dev, 201 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 202 lp->rx_bd_v, 203 lp->rx_bd_p); 204 } 205 206 /** 207 * axienet_usec_to_timer - Calculate IRQ delay timer value 208 * @lp: Pointer to the axienet_local structure 209 * @coalesce_usec: Microseconds to convert into timer value 210 */ 211 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) 212 { 213 u32 result; 214 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ 215 216 if (lp->axi_clk) 217 clk_rate = clk_get_rate(lp->axi_clk); 218 219 /* 1 Timeout Interval = 125 * (clock period of SG clock) */ 220 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, 221 (u64)125000000); 222 if (result > 255) 223 result = 255; 224 225 return result; 226 } 227 228 /** 229 * axienet_dma_start - Set up DMA registers and start DMA operation 230 * @lp: Pointer to the axienet_local structure 231 */ 232 static void axienet_dma_start(struct axienet_local *lp) 233 { 234 /* Start updating the Rx channel control register */ 235 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | 236 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 237 /* Only set interrupt delay timer if not generating an interrupt on 238 * the first RX packet. Otherwise leave at 0 to disable delay interrupt. 239 */ 240 if (lp->coalesce_count_rx > 1) 241 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) 242 << XAXIDMA_DELAY_SHIFT) | 243 XAXIDMA_IRQ_DELAY_MASK; 244 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 245 246 /* Start updating the Tx channel control register */ 247 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | 248 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; 249 /* Only set interrupt delay timer if not generating an interrupt on 250 * the first TX packet. Otherwise leave at 0 to disable delay interrupt. 251 */ 252 if (lp->coalesce_count_tx > 1) 253 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) 254 << XAXIDMA_DELAY_SHIFT) | 255 XAXIDMA_IRQ_DELAY_MASK; 256 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 257 258 /* Populate the tail pointer and bring the Rx Axi DMA engine out of 259 * halted state. This will make the Rx side ready for reception. 260 */ 261 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); 262 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 263 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 264 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + 265 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); 266 267 /* Write to the RS (Run-stop) bit in the Tx channel control register. 268 * Tx channel is now ready to run. But only after we write to the 269 * tail pointer register that the Tx channel will start transmitting. 270 */ 271 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); 272 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; 273 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 274 } 275 276 /** 277 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA 278 * @ndev: Pointer to the net_device structure 279 * 280 * Return: 0, on success -ENOMEM, on failure 281 * 282 * This function is called to initialize the Rx and Tx DMA descriptor 283 * rings. This initializes the descriptors with required default values 284 * and is called when Axi Ethernet driver reset is called. 285 */ 286 static int axienet_dma_bd_init(struct net_device *ndev) 287 { 288 int i; 289 struct sk_buff *skb; 290 struct axienet_local *lp = netdev_priv(ndev); 291 292 /* Reset the indexes which are used for accessing the BDs */ 293 lp->tx_bd_ci = 0; 294 lp->tx_bd_tail = 0; 295 lp->rx_bd_ci = 0; 296 297 /* Allocate the Tx and Rx buffer descriptors. */ 298 lp->tx_bd_v = dma_alloc_coherent(lp->dev, 299 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 300 &lp->tx_bd_p, GFP_KERNEL); 301 if (!lp->tx_bd_v) 302 return -ENOMEM; 303 304 lp->rx_bd_v = dma_alloc_coherent(lp->dev, 305 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 306 &lp->rx_bd_p, GFP_KERNEL); 307 if (!lp->rx_bd_v) 308 goto out; 309 310 for (i = 0; i < lp->tx_bd_num; i++) { 311 dma_addr_t addr = lp->tx_bd_p + 312 sizeof(*lp->tx_bd_v) * 313 ((i + 1) % lp->tx_bd_num); 314 315 lp->tx_bd_v[i].next = lower_32_bits(addr); 316 if (lp->features & XAE_FEATURE_DMA_64BIT) 317 lp->tx_bd_v[i].next_msb = upper_32_bits(addr); 318 } 319 320 for (i = 0; i < lp->rx_bd_num; i++) { 321 dma_addr_t addr; 322 323 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * 324 ((i + 1) % lp->rx_bd_num); 325 lp->rx_bd_v[i].next = lower_32_bits(addr); 326 if (lp->features & XAE_FEATURE_DMA_64BIT) 327 lp->rx_bd_v[i].next_msb = upper_32_bits(addr); 328 329 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); 330 if (!skb) 331 goto out; 332 333 lp->rx_bd_v[i].skb = skb; 334 addr = dma_map_single(lp->dev, skb->data, 335 lp->max_frm_size, DMA_FROM_DEVICE); 336 if (dma_mapping_error(lp->dev, addr)) { 337 netdev_err(ndev, "DMA mapping error\n"); 338 goto out; 339 } 340 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); 341 342 lp->rx_bd_v[i].cntrl = lp->max_frm_size; 343 } 344 345 axienet_dma_start(lp); 346 347 return 0; 348 out: 349 axienet_dma_bd_release(ndev); 350 return -ENOMEM; 351 } 352 353 /** 354 * axienet_set_mac_address - Write the MAC address 355 * @ndev: Pointer to the net_device structure 356 * @address: 6 byte Address to be written as MAC address 357 * 358 * This function is called to initialize the MAC address of the Axi Ethernet 359 * core. It writes to the UAW0 and UAW1 registers of the core. 360 */ 361 static void axienet_set_mac_address(struct net_device *ndev, 362 const void *address) 363 { 364 struct axienet_local *lp = netdev_priv(ndev); 365 366 if (address) 367 eth_hw_addr_set(ndev, address); 368 if (!is_valid_ether_addr(ndev->dev_addr)) 369 eth_hw_addr_random(ndev); 370 371 /* Set up unicast MAC address filter set its mac address */ 372 axienet_iow(lp, XAE_UAW0_OFFSET, 373 (ndev->dev_addr[0]) | 374 (ndev->dev_addr[1] << 8) | 375 (ndev->dev_addr[2] << 16) | 376 (ndev->dev_addr[3] << 24)); 377 axienet_iow(lp, XAE_UAW1_OFFSET, 378 (((axienet_ior(lp, XAE_UAW1_OFFSET)) & 379 ~XAE_UAW1_UNICASTADDR_MASK) | 380 (ndev->dev_addr[4] | 381 (ndev->dev_addr[5] << 8)))); 382 } 383 384 /** 385 * netdev_set_mac_address - Write the MAC address (from outside the driver) 386 * @ndev: Pointer to the net_device structure 387 * @p: 6 byte Address to be written as MAC address 388 * 389 * Return: 0 for all conditions. Presently, there is no failure case. 390 * 391 * This function is called to initialize the MAC address of the Axi Ethernet 392 * core. It calls the core specific axienet_set_mac_address. This is the 393 * function that goes into net_device_ops structure entry ndo_set_mac_address. 394 */ 395 static int netdev_set_mac_address(struct net_device *ndev, void *p) 396 { 397 struct sockaddr *addr = p; 398 axienet_set_mac_address(ndev, addr->sa_data); 399 return 0; 400 } 401 402 /** 403 * axienet_set_multicast_list - Prepare the multicast table 404 * @ndev: Pointer to the net_device structure 405 * 406 * This function is called to initialize the multicast table during 407 * initialization. The Axi Ethernet basic multicast support has a four-entry 408 * multicast table which is initialized here. Additionally this function 409 * goes into the net_device_ops structure entry ndo_set_multicast_list. This 410 * means whenever the multicast table entries need to be updated this 411 * function gets called. 412 */ 413 static void axienet_set_multicast_list(struct net_device *ndev) 414 { 415 int i; 416 u32 reg, af0reg, af1reg; 417 struct axienet_local *lp = netdev_priv(ndev); 418 419 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || 420 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { 421 /* We must make the kernel realize we had to move into 422 * promiscuous mode. If it was a promiscuous mode request 423 * the flag is already set. If not we set it. 424 */ 425 ndev->flags |= IFF_PROMISC; 426 reg = axienet_ior(lp, XAE_FMI_OFFSET); 427 reg |= XAE_FMI_PM_MASK; 428 axienet_iow(lp, XAE_FMI_OFFSET, reg); 429 dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); 430 } else if (!netdev_mc_empty(ndev)) { 431 struct netdev_hw_addr *ha; 432 433 i = 0; 434 netdev_for_each_mc_addr(ha, ndev) { 435 if (i >= XAE_MULTICAST_CAM_TABLE_NUM) 436 break; 437 438 af0reg = (ha->addr[0]); 439 af0reg |= (ha->addr[1] << 8); 440 af0reg |= (ha->addr[2] << 16); 441 af0reg |= (ha->addr[3] << 24); 442 443 af1reg = (ha->addr[4]); 444 af1reg |= (ha->addr[5] << 8); 445 446 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; 447 reg |= i; 448 449 axienet_iow(lp, XAE_FMI_OFFSET, reg); 450 axienet_iow(lp, XAE_AF0_OFFSET, af0reg); 451 axienet_iow(lp, XAE_AF1_OFFSET, af1reg); 452 i++; 453 } 454 } else { 455 reg = axienet_ior(lp, XAE_FMI_OFFSET); 456 reg &= ~XAE_FMI_PM_MASK; 457 458 axienet_iow(lp, XAE_FMI_OFFSET, reg); 459 460 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { 461 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; 462 reg |= i; 463 464 axienet_iow(lp, XAE_FMI_OFFSET, reg); 465 axienet_iow(lp, XAE_AF0_OFFSET, 0); 466 axienet_iow(lp, XAE_AF1_OFFSET, 0); 467 } 468 469 dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); 470 } 471 } 472 473 /** 474 * axienet_setoptions - Set an Axi Ethernet option 475 * @ndev: Pointer to the net_device structure 476 * @options: Option to be enabled/disabled 477 * 478 * The Axi Ethernet core has multiple features which can be selectively turned 479 * on or off. The typical options could be jumbo frame option, basic VLAN 480 * option, promiscuous mode option etc. This function is used to set or clear 481 * these options in the Axi Ethernet hardware. This is done through 482 * axienet_option structure . 483 */ 484 static void axienet_setoptions(struct net_device *ndev, u32 options) 485 { 486 int reg; 487 struct axienet_local *lp = netdev_priv(ndev); 488 struct axienet_option *tp = &axienet_options[0]; 489 490 while (tp->opt) { 491 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); 492 if (options & tp->opt) 493 reg |= tp->m_or; 494 axienet_iow(lp, tp->reg, reg); 495 tp++; 496 } 497 498 lp->options |= options; 499 } 500 501 static int __axienet_device_reset(struct axienet_local *lp) 502 { 503 u32 value; 504 int ret; 505 506 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset 507 * process of Axi DMA takes a while to complete as all pending 508 * commands/transfers will be flushed or completed during this 509 * reset process. 510 * Note that even though both TX and RX have their own reset register, 511 * they both reset the entire DMA core, so only one needs to be used. 512 */ 513 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); 514 ret = read_poll_timeout(axienet_dma_in32, value, 515 !(value & XAXIDMA_CR_RESET_MASK), 516 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 517 XAXIDMA_TX_CR_OFFSET); 518 if (ret) { 519 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); 520 return ret; 521 } 522 523 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ 524 ret = read_poll_timeout(axienet_ior, value, 525 value & XAE_INT_PHYRSTCMPLT_MASK, 526 DELAY_OF_ONE_MILLISEC, 50000, false, lp, 527 XAE_IS_OFFSET); 528 if (ret) { 529 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); 530 return ret; 531 } 532 533 return 0; 534 } 535 536 /** 537 * axienet_dma_stop - Stop DMA operation 538 * @lp: Pointer to the axienet_local structure 539 */ 540 static void axienet_dma_stop(struct axienet_local *lp) 541 { 542 int count; 543 u32 cr, sr; 544 545 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 546 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 547 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 548 synchronize_irq(lp->rx_irq); 549 550 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 551 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); 552 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 553 synchronize_irq(lp->tx_irq); 554 555 /* Give DMAs a chance to halt gracefully */ 556 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 557 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 558 msleep(20); 559 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 560 } 561 562 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 563 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { 564 msleep(20); 565 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 566 } 567 568 /* Do a reset to ensure DMA is really stopped */ 569 axienet_lock_mii(lp); 570 __axienet_device_reset(lp); 571 axienet_unlock_mii(lp); 572 } 573 574 /** 575 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. 576 * @ndev: Pointer to the net_device structure 577 * 578 * This function is called to reset and initialize the Axi Ethernet core. This 579 * is typically called during initialization. It does a reset of the Axi DMA 580 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines 581 * are connected to Axi Ethernet reset lines, this in turn resets the Axi 582 * Ethernet core. No separate hardware reset is done for the Axi Ethernet 583 * core. 584 * Returns 0 on success or a negative error number otherwise. 585 */ 586 static int axienet_device_reset(struct net_device *ndev) 587 { 588 u32 axienet_status; 589 struct axienet_local *lp = netdev_priv(ndev); 590 int ret; 591 592 ret = __axienet_device_reset(lp); 593 if (ret) 594 return ret; 595 596 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; 597 lp->options |= XAE_OPTION_VLAN; 598 lp->options &= (~XAE_OPTION_JUMBO); 599 600 if ((ndev->mtu > XAE_MTU) && 601 (ndev->mtu <= XAE_JUMBO_MTU)) { 602 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + 603 XAE_TRL_SIZE; 604 605 if (lp->max_frm_size <= lp->rxmem) 606 lp->options |= XAE_OPTION_JUMBO; 607 } 608 609 ret = axienet_dma_bd_init(ndev); 610 if (ret) { 611 netdev_err(ndev, "%s: descriptor allocation failed\n", 612 __func__); 613 return ret; 614 } 615 616 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 617 axienet_status &= ~XAE_RCW1_RX_MASK; 618 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 619 620 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 621 if (axienet_status & XAE_INT_RXRJECT_MASK) 622 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 623 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 624 XAE_INT_RECV_ERROR_MASK : 0); 625 626 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 627 628 /* Sync default options with HW but leave receiver and 629 * transmitter disabled. 630 */ 631 axienet_setoptions(ndev, lp->options & 632 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 633 axienet_set_mac_address(ndev, NULL); 634 axienet_set_multicast_list(ndev); 635 axienet_setoptions(ndev, lp->options); 636 637 netif_trans_update(ndev); 638 639 return 0; 640 } 641 642 /** 643 * axienet_free_tx_chain - Clean up a series of linked TX descriptors. 644 * @lp: Pointer to the axienet_local structure 645 * @first_bd: Index of first descriptor to clean up 646 * @nr_bds: Max number of descriptors to clean up 647 * @force: Whether to clean descriptors even if not complete 648 * @sizep: Pointer to a u32 filled with the total sum of all bytes 649 * in all cleaned-up descriptors. Ignored if NULL. 650 * @budget: NAPI budget (use 0 when not called from NAPI poll) 651 * 652 * Would either be called after a successful transmit operation, or after 653 * there was an error when setting up the chain. 654 * Returns the number of descriptors handled. 655 */ 656 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, 657 int nr_bds, bool force, u32 *sizep, int budget) 658 { 659 struct axidma_bd *cur_p; 660 unsigned int status; 661 dma_addr_t phys; 662 int i; 663 664 for (i = 0; i < nr_bds; i++) { 665 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; 666 status = cur_p->status; 667 668 /* If force is not specified, clean up only descriptors 669 * that have been completed by the MAC. 670 */ 671 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) 672 break; 673 674 /* Ensure we see complete descriptor update */ 675 dma_rmb(); 676 phys = desc_get_phys_addr(lp, cur_p); 677 dma_unmap_single(lp->dev, phys, 678 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), 679 DMA_TO_DEVICE); 680 681 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) 682 napi_consume_skb(cur_p->skb, budget); 683 684 cur_p->app0 = 0; 685 cur_p->app1 = 0; 686 cur_p->app2 = 0; 687 cur_p->app4 = 0; 688 cur_p->skb = NULL; 689 /* ensure our transmit path and device don't prematurely see status cleared */ 690 wmb(); 691 cur_p->cntrl = 0; 692 cur_p->status = 0; 693 694 if (sizep) 695 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 696 } 697 698 return i; 699 } 700 701 /** 702 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy 703 * @lp: Pointer to the axienet_local structure 704 * @num_frag: The number of BDs to check for 705 * 706 * Return: 0, on success 707 * NETDEV_TX_BUSY, if any of the descriptors are not free 708 * 709 * This function is invoked before BDs are allocated and transmission starts. 710 * This function returns 0 if a BD or group of BDs can be allocated for 711 * transmission. If the BD or any of the BDs are not free the function 712 * returns a busy status. 713 */ 714 static inline int axienet_check_tx_bd_space(struct axienet_local *lp, 715 int num_frag) 716 { 717 struct axidma_bd *cur_p; 718 719 /* Ensure we see all descriptor updates from device or TX polling */ 720 rmb(); 721 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % 722 lp->tx_bd_num]; 723 if (cur_p->cntrl) 724 return NETDEV_TX_BUSY; 725 return 0; 726 } 727 728 /** 729 * axienet_tx_poll - Invoked once a transmit is completed by the 730 * Axi DMA Tx channel. 731 * @napi: Pointer to NAPI structure. 732 * @budget: Max number of TX packets to process. 733 * 734 * Return: Number of TX packets processed. 735 * 736 * This function is invoked from the NAPI processing to notify the completion 737 * of transmit operation. It clears fields in the corresponding Tx BDs and 738 * unmaps the corresponding buffer so that CPU can regain ownership of the 739 * buffer. It finally invokes "netif_wake_queue" to restart transmission if 740 * required. 741 */ 742 static int axienet_tx_poll(struct napi_struct *napi, int budget) 743 { 744 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); 745 struct net_device *ndev = lp->ndev; 746 u32 size = 0; 747 int packets; 748 749 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget); 750 751 if (packets) { 752 lp->tx_bd_ci += packets; 753 if (lp->tx_bd_ci >= lp->tx_bd_num) 754 lp->tx_bd_ci %= lp->tx_bd_num; 755 756 u64_stats_update_begin(&lp->tx_stat_sync); 757 u64_stats_add(&lp->tx_packets, packets); 758 u64_stats_add(&lp->tx_bytes, size); 759 u64_stats_update_end(&lp->tx_stat_sync); 760 761 /* Matches barrier in axienet_start_xmit */ 762 smp_mb(); 763 764 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 765 netif_wake_queue(ndev); 766 } 767 768 if (packets < budget && napi_complete_done(napi, packets)) { 769 /* Re-enable TX completion interrupts. This should 770 * cause an immediate interrupt if any TX packets are 771 * already pending. 772 */ 773 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); 774 } 775 return packets; 776 } 777 778 /** 779 * axienet_start_xmit - Starts the transmission. 780 * @skb: sk_buff pointer that contains data to be Txed. 781 * @ndev: Pointer to net_device structure. 782 * 783 * Return: NETDEV_TX_OK, on success 784 * NETDEV_TX_BUSY, if any of the descriptors are not free 785 * 786 * This function is invoked from upper layers to initiate transmission. The 787 * function uses the next available free BDs and populates their fields to 788 * start the transmission. Additionally if checksum offloading is supported, 789 * it populates AXI Stream Control fields with appropriate values. 790 */ 791 static netdev_tx_t 792 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 793 { 794 u32 ii; 795 u32 num_frag; 796 u32 csum_start_off; 797 u32 csum_index_off; 798 skb_frag_t *frag; 799 dma_addr_t tail_p, phys; 800 u32 orig_tail_ptr, new_tail_ptr; 801 struct axienet_local *lp = netdev_priv(ndev); 802 struct axidma_bd *cur_p; 803 804 orig_tail_ptr = lp->tx_bd_tail; 805 new_tail_ptr = orig_tail_ptr; 806 807 num_frag = skb_shinfo(skb)->nr_frags; 808 cur_p = &lp->tx_bd_v[orig_tail_ptr]; 809 810 if (axienet_check_tx_bd_space(lp, num_frag + 1)) { 811 /* Should not happen as last start_xmit call should have 812 * checked for sufficient space and queue should only be 813 * woken when sufficient space is available. 814 */ 815 netif_stop_queue(ndev); 816 if (net_ratelimit()) 817 netdev_warn(ndev, "TX ring unexpectedly full\n"); 818 return NETDEV_TX_BUSY; 819 } 820 821 if (skb->ip_summed == CHECKSUM_PARTIAL) { 822 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { 823 /* Tx Full Checksum Offload Enabled */ 824 cur_p->app0 |= 2; 825 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { 826 csum_start_off = skb_transport_offset(skb); 827 csum_index_off = csum_start_off + skb->csum_offset; 828 /* Tx Partial Checksum Offload Enabled */ 829 cur_p->app0 |= 1; 830 cur_p->app1 = (csum_start_off << 16) | csum_index_off; 831 } 832 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 833 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ 834 } 835 836 phys = dma_map_single(lp->dev, skb->data, 837 skb_headlen(skb), DMA_TO_DEVICE); 838 if (unlikely(dma_mapping_error(lp->dev, phys))) { 839 if (net_ratelimit()) 840 netdev_err(ndev, "TX DMA mapping error\n"); 841 ndev->stats.tx_dropped++; 842 return NETDEV_TX_OK; 843 } 844 desc_set_phys_addr(lp, phys, cur_p); 845 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; 846 847 for (ii = 0; ii < num_frag; ii++) { 848 if (++new_tail_ptr >= lp->tx_bd_num) 849 new_tail_ptr = 0; 850 cur_p = &lp->tx_bd_v[new_tail_ptr]; 851 frag = &skb_shinfo(skb)->frags[ii]; 852 phys = dma_map_single(lp->dev, 853 skb_frag_address(frag), 854 skb_frag_size(frag), 855 DMA_TO_DEVICE); 856 if (unlikely(dma_mapping_error(lp->dev, phys))) { 857 if (net_ratelimit()) 858 netdev_err(ndev, "TX DMA mapping error\n"); 859 ndev->stats.tx_dropped++; 860 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, 861 true, NULL, 0); 862 return NETDEV_TX_OK; 863 } 864 desc_set_phys_addr(lp, phys, cur_p); 865 cur_p->cntrl = skb_frag_size(frag); 866 } 867 868 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; 869 cur_p->skb = skb; 870 871 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; 872 if (++new_tail_ptr >= lp->tx_bd_num) 873 new_tail_ptr = 0; 874 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); 875 876 /* Start the transfer */ 877 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); 878 879 /* Stop queue if next transmit may not have space */ 880 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { 881 netif_stop_queue(ndev); 882 883 /* Matches barrier in axienet_tx_poll */ 884 smp_mb(); 885 886 /* Space might have just been freed - check again */ 887 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 888 netif_wake_queue(ndev); 889 } 890 891 return NETDEV_TX_OK; 892 } 893 894 /** 895 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. 896 * @napi: Pointer to NAPI structure. 897 * @budget: Max number of RX packets to process. 898 * 899 * Return: Number of RX packets processed. 900 */ 901 static int axienet_rx_poll(struct napi_struct *napi, int budget) 902 { 903 u32 length; 904 u32 csumstatus; 905 u32 size = 0; 906 int packets = 0; 907 dma_addr_t tail_p = 0; 908 struct axidma_bd *cur_p; 909 struct sk_buff *skb, *new_skb; 910 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); 911 912 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 913 914 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { 915 dma_addr_t phys; 916 917 /* Ensure we see complete descriptor update */ 918 dma_rmb(); 919 920 skb = cur_p->skb; 921 cur_p->skb = NULL; 922 923 /* skb could be NULL if a previous pass already received the 924 * packet for this slot in the ring, but failed to refill it 925 * with a newly allocated buffer. In this case, don't try to 926 * receive it again. 927 */ 928 if (likely(skb)) { 929 length = cur_p->app4 & 0x0000FFFF; 930 931 phys = desc_get_phys_addr(lp, cur_p); 932 dma_unmap_single(lp->dev, phys, lp->max_frm_size, 933 DMA_FROM_DEVICE); 934 935 skb_put(skb, length); 936 skb->protocol = eth_type_trans(skb, lp->ndev); 937 /*skb_checksum_none_assert(skb);*/ 938 skb->ip_summed = CHECKSUM_NONE; 939 940 /* if we're doing Rx csum offload, set it up */ 941 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { 942 csumstatus = (cur_p->app2 & 943 XAE_FULL_CSUM_STATUS_MASK) >> 3; 944 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || 945 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { 946 skb->ip_summed = CHECKSUM_UNNECESSARY; 947 } 948 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && 949 skb->protocol == htons(ETH_P_IP) && 950 skb->len > 64) { 951 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); 952 skb->ip_summed = CHECKSUM_COMPLETE; 953 } 954 955 napi_gro_receive(napi, skb); 956 957 size += length; 958 packets++; 959 } 960 961 new_skb = napi_alloc_skb(napi, lp->max_frm_size); 962 if (!new_skb) 963 break; 964 965 phys = dma_map_single(lp->dev, new_skb->data, 966 lp->max_frm_size, 967 DMA_FROM_DEVICE); 968 if (unlikely(dma_mapping_error(lp->dev, phys))) { 969 if (net_ratelimit()) 970 netdev_err(lp->ndev, "RX DMA mapping error\n"); 971 dev_kfree_skb(new_skb); 972 break; 973 } 974 desc_set_phys_addr(lp, phys, cur_p); 975 976 cur_p->cntrl = lp->max_frm_size; 977 cur_p->status = 0; 978 cur_p->skb = new_skb; 979 980 /* Only update tail_p to mark this slot as usable after it has 981 * been successfully refilled. 982 */ 983 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 984 985 if (++lp->rx_bd_ci >= lp->rx_bd_num) 986 lp->rx_bd_ci = 0; 987 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 988 } 989 990 u64_stats_update_begin(&lp->rx_stat_sync); 991 u64_stats_add(&lp->rx_packets, packets); 992 u64_stats_add(&lp->rx_bytes, size); 993 u64_stats_update_end(&lp->rx_stat_sync); 994 995 if (tail_p) 996 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); 997 998 if (packets < budget && napi_complete_done(napi, packets)) { 999 /* Re-enable RX completion interrupts. This should 1000 * cause an immediate interrupt if any RX packets are 1001 * already pending. 1002 */ 1003 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); 1004 } 1005 return packets; 1006 } 1007 1008 /** 1009 * axienet_tx_irq - Tx Done Isr. 1010 * @irq: irq number 1011 * @_ndev: net_device pointer 1012 * 1013 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. 1014 * 1015 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the 1016 * TX BD processing. 1017 */ 1018 static irqreturn_t axienet_tx_irq(int irq, void *_ndev) 1019 { 1020 unsigned int status; 1021 struct net_device *ndev = _ndev; 1022 struct axienet_local *lp = netdev_priv(ndev); 1023 1024 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1025 1026 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1027 return IRQ_NONE; 1028 1029 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); 1030 1031 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1032 netdev_err(ndev, "DMA Tx error 0x%x\n", status); 1033 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1034 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, 1035 (lp->tx_bd_v[lp->tx_bd_ci]).phys); 1036 schedule_work(&lp->dma_err_task); 1037 } else { 1038 /* Disable further TX completion interrupts and schedule 1039 * NAPI to handle the completions. 1040 */ 1041 u32 cr = lp->tx_dma_cr; 1042 1043 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1044 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); 1045 1046 napi_schedule(&lp->napi_tx); 1047 } 1048 1049 return IRQ_HANDLED; 1050 } 1051 1052 /** 1053 * axienet_rx_irq - Rx Isr. 1054 * @irq: irq number 1055 * @_ndev: net_device pointer 1056 * 1057 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. 1058 * 1059 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD 1060 * processing. 1061 */ 1062 static irqreturn_t axienet_rx_irq(int irq, void *_ndev) 1063 { 1064 unsigned int status; 1065 struct net_device *ndev = _ndev; 1066 struct axienet_local *lp = netdev_priv(ndev); 1067 1068 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1069 1070 if (!(status & XAXIDMA_IRQ_ALL_MASK)) 1071 return IRQ_NONE; 1072 1073 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); 1074 1075 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { 1076 netdev_err(ndev, "DMA Rx error 0x%x\n", status); 1077 netdev_err(ndev, "Current BD is at: 0x%x%08x\n", 1078 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, 1079 (lp->rx_bd_v[lp->rx_bd_ci]).phys); 1080 schedule_work(&lp->dma_err_task); 1081 } else { 1082 /* Disable further RX completion interrupts and schedule 1083 * NAPI receive. 1084 */ 1085 u32 cr = lp->rx_dma_cr; 1086 1087 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); 1088 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); 1089 1090 napi_schedule(&lp->napi_rx); 1091 } 1092 1093 return IRQ_HANDLED; 1094 } 1095 1096 /** 1097 * axienet_eth_irq - Ethernet core Isr. 1098 * @irq: irq number 1099 * @_ndev: net_device pointer 1100 * 1101 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. 1102 * 1103 * Handle miscellaneous conditions indicated by Ethernet core IRQ. 1104 */ 1105 static irqreturn_t axienet_eth_irq(int irq, void *_ndev) 1106 { 1107 struct net_device *ndev = _ndev; 1108 struct axienet_local *lp = netdev_priv(ndev); 1109 unsigned int pending; 1110 1111 pending = axienet_ior(lp, XAE_IP_OFFSET); 1112 if (!pending) 1113 return IRQ_NONE; 1114 1115 if (pending & XAE_INT_RXFIFOOVR_MASK) 1116 ndev->stats.rx_missed_errors++; 1117 1118 if (pending & XAE_INT_RXRJECT_MASK) 1119 ndev->stats.rx_frame_errors++; 1120 1121 axienet_iow(lp, XAE_IS_OFFSET, pending); 1122 return IRQ_HANDLED; 1123 } 1124 1125 static void axienet_dma_err_handler(struct work_struct *work); 1126 1127 /** 1128 * axienet_open - Driver open routine. 1129 * @ndev: Pointer to net_device structure 1130 * 1131 * Return: 0, on success. 1132 * non-zero error value on failure 1133 * 1134 * This is the driver open routine. It calls phylink_start to start the 1135 * PHY device. 1136 * It also allocates interrupt service routines, enables the interrupt lines 1137 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer 1138 * descriptors are initialized. 1139 */ 1140 static int axienet_open(struct net_device *ndev) 1141 { 1142 int ret; 1143 struct axienet_local *lp = netdev_priv(ndev); 1144 1145 dev_dbg(&ndev->dev, "axienet_open()\n"); 1146 1147 /* When we do an Axi Ethernet reset, it resets the complete core 1148 * including the MDIO. MDIO must be disabled before resetting. 1149 * Hold MDIO bus lock to avoid MDIO accesses during the reset. 1150 */ 1151 axienet_lock_mii(lp); 1152 ret = axienet_device_reset(ndev); 1153 axienet_unlock_mii(lp); 1154 1155 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); 1156 if (ret) { 1157 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); 1158 return ret; 1159 } 1160 1161 phylink_start(lp->phylink); 1162 1163 /* Enable worker thread for Axi DMA error handling */ 1164 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); 1165 1166 napi_enable(&lp->napi_rx); 1167 napi_enable(&lp->napi_tx); 1168 1169 /* Enable interrupts for Axi DMA Tx */ 1170 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, 1171 ndev->name, ndev); 1172 if (ret) 1173 goto err_tx_irq; 1174 /* Enable interrupts for Axi DMA Rx */ 1175 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, 1176 ndev->name, ndev); 1177 if (ret) 1178 goto err_rx_irq; 1179 /* Enable interrupts for Axi Ethernet core (if defined) */ 1180 if (lp->eth_irq > 0) { 1181 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, 1182 ndev->name, ndev); 1183 if (ret) 1184 goto err_eth_irq; 1185 } 1186 1187 return 0; 1188 1189 err_eth_irq: 1190 free_irq(lp->rx_irq, ndev); 1191 err_rx_irq: 1192 free_irq(lp->tx_irq, ndev); 1193 err_tx_irq: 1194 napi_disable(&lp->napi_tx); 1195 napi_disable(&lp->napi_rx); 1196 phylink_stop(lp->phylink); 1197 phylink_disconnect_phy(lp->phylink); 1198 cancel_work_sync(&lp->dma_err_task); 1199 dev_err(lp->dev, "request_irq() failed\n"); 1200 return ret; 1201 } 1202 1203 /** 1204 * axienet_stop - Driver stop routine. 1205 * @ndev: Pointer to net_device structure 1206 * 1207 * Return: 0, on success. 1208 * 1209 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY 1210 * device. It also removes the interrupt handlers and disables the interrupts. 1211 * The Axi DMA Tx/Rx BDs are released. 1212 */ 1213 static int axienet_stop(struct net_device *ndev) 1214 { 1215 struct axienet_local *lp = netdev_priv(ndev); 1216 1217 dev_dbg(&ndev->dev, "axienet_close()\n"); 1218 1219 napi_disable(&lp->napi_tx); 1220 napi_disable(&lp->napi_rx); 1221 1222 phylink_stop(lp->phylink); 1223 phylink_disconnect_phy(lp->phylink); 1224 1225 axienet_setoptions(ndev, lp->options & 1226 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1227 1228 axienet_dma_stop(lp); 1229 1230 axienet_iow(lp, XAE_IE_OFFSET, 0); 1231 1232 cancel_work_sync(&lp->dma_err_task); 1233 1234 if (lp->eth_irq > 0) 1235 free_irq(lp->eth_irq, ndev); 1236 free_irq(lp->tx_irq, ndev); 1237 free_irq(lp->rx_irq, ndev); 1238 1239 axienet_dma_bd_release(ndev); 1240 return 0; 1241 } 1242 1243 /** 1244 * axienet_change_mtu - Driver change mtu routine. 1245 * @ndev: Pointer to net_device structure 1246 * @new_mtu: New mtu value to be applied 1247 * 1248 * Return: Always returns 0 (success). 1249 * 1250 * This is the change mtu driver routine. It checks if the Axi Ethernet 1251 * hardware supports jumbo frames before changing the mtu. This can be 1252 * called only when the device is not up. 1253 */ 1254 static int axienet_change_mtu(struct net_device *ndev, int new_mtu) 1255 { 1256 struct axienet_local *lp = netdev_priv(ndev); 1257 1258 if (netif_running(ndev)) 1259 return -EBUSY; 1260 1261 if ((new_mtu + VLAN_ETH_HLEN + 1262 XAE_TRL_SIZE) > lp->rxmem) 1263 return -EINVAL; 1264 1265 ndev->mtu = new_mtu; 1266 1267 return 0; 1268 } 1269 1270 #ifdef CONFIG_NET_POLL_CONTROLLER 1271 /** 1272 * axienet_poll_controller - Axi Ethernet poll mechanism. 1273 * @ndev: Pointer to net_device structure 1274 * 1275 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior 1276 * to polling the ISRs and are enabled back after the polling is done. 1277 */ 1278 static void axienet_poll_controller(struct net_device *ndev) 1279 { 1280 struct axienet_local *lp = netdev_priv(ndev); 1281 disable_irq(lp->tx_irq); 1282 disable_irq(lp->rx_irq); 1283 axienet_rx_irq(lp->tx_irq, ndev); 1284 axienet_tx_irq(lp->rx_irq, ndev); 1285 enable_irq(lp->tx_irq); 1286 enable_irq(lp->rx_irq); 1287 } 1288 #endif 1289 1290 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1291 { 1292 struct axienet_local *lp = netdev_priv(dev); 1293 1294 if (!netif_running(dev)) 1295 return -EINVAL; 1296 1297 return phylink_mii_ioctl(lp->phylink, rq, cmd); 1298 } 1299 1300 static void 1301 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 1302 { 1303 struct axienet_local *lp = netdev_priv(dev); 1304 unsigned int start; 1305 1306 netdev_stats_to_stats64(stats, &dev->stats); 1307 1308 do { 1309 start = u64_stats_fetch_begin(&lp->rx_stat_sync); 1310 stats->rx_packets = u64_stats_read(&lp->rx_packets); 1311 stats->rx_bytes = u64_stats_read(&lp->rx_bytes); 1312 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); 1313 1314 do { 1315 start = u64_stats_fetch_begin(&lp->tx_stat_sync); 1316 stats->tx_packets = u64_stats_read(&lp->tx_packets); 1317 stats->tx_bytes = u64_stats_read(&lp->tx_bytes); 1318 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); 1319 } 1320 1321 static const struct net_device_ops axienet_netdev_ops = { 1322 .ndo_open = axienet_open, 1323 .ndo_stop = axienet_stop, 1324 .ndo_start_xmit = axienet_start_xmit, 1325 .ndo_get_stats64 = axienet_get_stats64, 1326 .ndo_change_mtu = axienet_change_mtu, 1327 .ndo_set_mac_address = netdev_set_mac_address, 1328 .ndo_validate_addr = eth_validate_addr, 1329 .ndo_eth_ioctl = axienet_ioctl, 1330 .ndo_set_rx_mode = axienet_set_multicast_list, 1331 #ifdef CONFIG_NET_POLL_CONTROLLER 1332 .ndo_poll_controller = axienet_poll_controller, 1333 #endif 1334 }; 1335 1336 /** 1337 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. 1338 * @ndev: Pointer to net_device structure 1339 * @ed: Pointer to ethtool_drvinfo structure 1340 * 1341 * This implements ethtool command for getting the driver information. 1342 * Issue "ethtool -i ethX" under linux prompt to execute this function. 1343 */ 1344 static void axienet_ethtools_get_drvinfo(struct net_device *ndev, 1345 struct ethtool_drvinfo *ed) 1346 { 1347 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); 1348 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); 1349 } 1350 1351 /** 1352 * axienet_ethtools_get_regs_len - Get the total regs length present in the 1353 * AxiEthernet core. 1354 * @ndev: Pointer to net_device structure 1355 * 1356 * This implements ethtool command for getting the total register length 1357 * information. 1358 * 1359 * Return: the total regs length 1360 */ 1361 static int axienet_ethtools_get_regs_len(struct net_device *ndev) 1362 { 1363 return sizeof(u32) * AXIENET_REGS_N; 1364 } 1365 1366 /** 1367 * axienet_ethtools_get_regs - Dump the contents of all registers present 1368 * in AxiEthernet core. 1369 * @ndev: Pointer to net_device structure 1370 * @regs: Pointer to ethtool_regs structure 1371 * @ret: Void pointer used to return the contents of the registers. 1372 * 1373 * This implements ethtool command for getting the Axi Ethernet register dump. 1374 * Issue "ethtool -d ethX" to execute this function. 1375 */ 1376 static void axienet_ethtools_get_regs(struct net_device *ndev, 1377 struct ethtool_regs *regs, void *ret) 1378 { 1379 u32 *data = (u32 *)ret; 1380 size_t len = sizeof(u32) * AXIENET_REGS_N; 1381 struct axienet_local *lp = netdev_priv(ndev); 1382 1383 regs->version = 0; 1384 regs->len = len; 1385 1386 memset(data, 0, len); 1387 data[0] = axienet_ior(lp, XAE_RAF_OFFSET); 1388 data[1] = axienet_ior(lp, XAE_TPF_OFFSET); 1389 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); 1390 data[3] = axienet_ior(lp, XAE_IS_OFFSET); 1391 data[4] = axienet_ior(lp, XAE_IP_OFFSET); 1392 data[5] = axienet_ior(lp, XAE_IE_OFFSET); 1393 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); 1394 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); 1395 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); 1396 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); 1397 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); 1398 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); 1399 data[12] = axienet_ior(lp, XAE_PPST_OFFSET); 1400 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); 1401 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); 1402 data[15] = axienet_ior(lp, XAE_TC_OFFSET); 1403 data[16] = axienet_ior(lp, XAE_FCC_OFFSET); 1404 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); 1405 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); 1406 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); 1407 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); 1408 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); 1409 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); 1410 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); 1411 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); 1412 data[29] = axienet_ior(lp, XAE_FMI_OFFSET); 1413 data[30] = axienet_ior(lp, XAE_AF0_OFFSET); 1414 data[31] = axienet_ior(lp, XAE_AF1_OFFSET); 1415 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); 1416 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); 1417 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); 1418 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); 1419 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); 1420 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); 1421 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); 1422 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); 1423 } 1424 1425 static void 1426 axienet_ethtools_get_ringparam(struct net_device *ndev, 1427 struct ethtool_ringparam *ering, 1428 struct kernel_ethtool_ringparam *kernel_ering, 1429 struct netlink_ext_ack *extack) 1430 { 1431 struct axienet_local *lp = netdev_priv(ndev); 1432 1433 ering->rx_max_pending = RX_BD_NUM_MAX; 1434 ering->rx_mini_max_pending = 0; 1435 ering->rx_jumbo_max_pending = 0; 1436 ering->tx_max_pending = TX_BD_NUM_MAX; 1437 ering->rx_pending = lp->rx_bd_num; 1438 ering->rx_mini_pending = 0; 1439 ering->rx_jumbo_pending = 0; 1440 ering->tx_pending = lp->tx_bd_num; 1441 } 1442 1443 static int 1444 axienet_ethtools_set_ringparam(struct net_device *ndev, 1445 struct ethtool_ringparam *ering, 1446 struct kernel_ethtool_ringparam *kernel_ering, 1447 struct netlink_ext_ack *extack) 1448 { 1449 struct axienet_local *lp = netdev_priv(ndev); 1450 1451 if (ering->rx_pending > RX_BD_NUM_MAX || 1452 ering->rx_mini_pending || 1453 ering->rx_jumbo_pending || 1454 ering->tx_pending < TX_BD_NUM_MIN || 1455 ering->tx_pending > TX_BD_NUM_MAX) 1456 return -EINVAL; 1457 1458 if (netif_running(ndev)) 1459 return -EBUSY; 1460 1461 lp->rx_bd_num = ering->rx_pending; 1462 lp->tx_bd_num = ering->tx_pending; 1463 return 0; 1464 } 1465 1466 /** 1467 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for 1468 * Tx and Rx paths. 1469 * @ndev: Pointer to net_device structure 1470 * @epauseparm: Pointer to ethtool_pauseparam structure. 1471 * 1472 * This implements ethtool command for getting axi ethernet pause frame 1473 * setting. Issue "ethtool -a ethX" to execute this function. 1474 */ 1475 static void 1476 axienet_ethtools_get_pauseparam(struct net_device *ndev, 1477 struct ethtool_pauseparam *epauseparm) 1478 { 1479 struct axienet_local *lp = netdev_priv(ndev); 1480 1481 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); 1482 } 1483 1484 /** 1485 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) 1486 * settings. 1487 * @ndev: Pointer to net_device structure 1488 * @epauseparm:Pointer to ethtool_pauseparam structure 1489 * 1490 * This implements ethtool command for enabling flow control on Rx and Tx 1491 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this 1492 * function. 1493 * 1494 * Return: 0 on success, -EFAULT if device is running 1495 */ 1496 static int 1497 axienet_ethtools_set_pauseparam(struct net_device *ndev, 1498 struct ethtool_pauseparam *epauseparm) 1499 { 1500 struct axienet_local *lp = netdev_priv(ndev); 1501 1502 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); 1503 } 1504 1505 /** 1506 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. 1507 * @ndev: Pointer to net_device structure 1508 * @ecoalesce: Pointer to ethtool_coalesce structure 1509 * @kernel_coal: ethtool CQE mode setting structure 1510 * @extack: extack for reporting error messages 1511 * 1512 * This implements ethtool command for getting the DMA interrupt coalescing 1513 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to 1514 * execute this function. 1515 * 1516 * Return: 0 always 1517 */ 1518 static int 1519 axienet_ethtools_get_coalesce(struct net_device *ndev, 1520 struct ethtool_coalesce *ecoalesce, 1521 struct kernel_ethtool_coalesce *kernel_coal, 1522 struct netlink_ext_ack *extack) 1523 { 1524 struct axienet_local *lp = netdev_priv(ndev); 1525 1526 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; 1527 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; 1528 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; 1529 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; 1530 return 0; 1531 } 1532 1533 /** 1534 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. 1535 * @ndev: Pointer to net_device structure 1536 * @ecoalesce: Pointer to ethtool_coalesce structure 1537 * @kernel_coal: ethtool CQE mode setting structure 1538 * @extack: extack for reporting error messages 1539 * 1540 * This implements ethtool command for setting the DMA interrupt coalescing 1541 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux 1542 * prompt to execute this function. 1543 * 1544 * Return: 0, on success, Non-zero error value on failure. 1545 */ 1546 static int 1547 axienet_ethtools_set_coalesce(struct net_device *ndev, 1548 struct ethtool_coalesce *ecoalesce, 1549 struct kernel_ethtool_coalesce *kernel_coal, 1550 struct netlink_ext_ack *extack) 1551 { 1552 struct axienet_local *lp = netdev_priv(ndev); 1553 1554 if (netif_running(ndev)) { 1555 netdev_err(ndev, 1556 "Please stop netif before applying configuration\n"); 1557 return -EFAULT; 1558 } 1559 1560 if (ecoalesce->rx_max_coalesced_frames) 1561 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; 1562 if (ecoalesce->rx_coalesce_usecs) 1563 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; 1564 if (ecoalesce->tx_max_coalesced_frames) 1565 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; 1566 if (ecoalesce->tx_coalesce_usecs) 1567 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; 1568 1569 return 0; 1570 } 1571 1572 static int 1573 axienet_ethtools_get_link_ksettings(struct net_device *ndev, 1574 struct ethtool_link_ksettings *cmd) 1575 { 1576 struct axienet_local *lp = netdev_priv(ndev); 1577 1578 return phylink_ethtool_ksettings_get(lp->phylink, cmd); 1579 } 1580 1581 static int 1582 axienet_ethtools_set_link_ksettings(struct net_device *ndev, 1583 const struct ethtool_link_ksettings *cmd) 1584 { 1585 struct axienet_local *lp = netdev_priv(ndev); 1586 1587 return phylink_ethtool_ksettings_set(lp->phylink, cmd); 1588 } 1589 1590 static int axienet_ethtools_nway_reset(struct net_device *dev) 1591 { 1592 struct axienet_local *lp = netdev_priv(dev); 1593 1594 return phylink_ethtool_nway_reset(lp->phylink); 1595 } 1596 1597 static const struct ethtool_ops axienet_ethtool_ops = { 1598 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | 1599 ETHTOOL_COALESCE_USECS, 1600 .get_drvinfo = axienet_ethtools_get_drvinfo, 1601 .get_regs_len = axienet_ethtools_get_regs_len, 1602 .get_regs = axienet_ethtools_get_regs, 1603 .get_link = ethtool_op_get_link, 1604 .get_ringparam = axienet_ethtools_get_ringparam, 1605 .set_ringparam = axienet_ethtools_set_ringparam, 1606 .get_pauseparam = axienet_ethtools_get_pauseparam, 1607 .set_pauseparam = axienet_ethtools_set_pauseparam, 1608 .get_coalesce = axienet_ethtools_get_coalesce, 1609 .set_coalesce = axienet_ethtools_set_coalesce, 1610 .get_link_ksettings = axienet_ethtools_get_link_ksettings, 1611 .set_link_ksettings = axienet_ethtools_set_link_ksettings, 1612 .nway_reset = axienet_ethtools_nway_reset, 1613 }; 1614 1615 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) 1616 { 1617 return container_of(pcs, struct axienet_local, pcs); 1618 } 1619 1620 static void axienet_pcs_get_state(struct phylink_pcs *pcs, 1621 struct phylink_link_state *state) 1622 { 1623 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1624 1625 phylink_mii_c22_pcs_get_state(pcs_phy, state); 1626 } 1627 1628 static void axienet_pcs_an_restart(struct phylink_pcs *pcs) 1629 { 1630 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1631 1632 phylink_mii_c22_pcs_an_restart(pcs_phy); 1633 } 1634 1635 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 1636 phy_interface_t interface, 1637 const unsigned long *advertising, 1638 bool permit_pause_to_mac) 1639 { 1640 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; 1641 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; 1642 struct axienet_local *lp = netdev_priv(ndev); 1643 int ret; 1644 1645 if (lp->switch_x_sgmii) { 1646 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, 1647 interface == PHY_INTERFACE_MODE_SGMII ? 1648 XLNX_MII_STD_SELECT_SGMII : 0); 1649 if (ret < 0) { 1650 netdev_warn(ndev, 1651 "Failed to switch PHY interface: %d\n", 1652 ret); 1653 return ret; 1654 } 1655 } 1656 1657 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, 1658 neg_mode); 1659 if (ret < 0) 1660 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); 1661 1662 return ret; 1663 } 1664 1665 static const struct phylink_pcs_ops axienet_pcs_ops = { 1666 .pcs_get_state = axienet_pcs_get_state, 1667 .pcs_config = axienet_pcs_config, 1668 .pcs_an_restart = axienet_pcs_an_restart, 1669 }; 1670 1671 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, 1672 phy_interface_t interface) 1673 { 1674 struct net_device *ndev = to_net_dev(config->dev); 1675 struct axienet_local *lp = netdev_priv(ndev); 1676 1677 if (interface == PHY_INTERFACE_MODE_1000BASEX || 1678 interface == PHY_INTERFACE_MODE_SGMII) 1679 return &lp->pcs; 1680 1681 return NULL; 1682 } 1683 1684 static void axienet_mac_config(struct phylink_config *config, unsigned int mode, 1685 const struct phylink_link_state *state) 1686 { 1687 /* nothing meaningful to do */ 1688 } 1689 1690 static void axienet_mac_link_down(struct phylink_config *config, 1691 unsigned int mode, 1692 phy_interface_t interface) 1693 { 1694 /* nothing meaningful to do */ 1695 } 1696 1697 static void axienet_mac_link_up(struct phylink_config *config, 1698 struct phy_device *phy, 1699 unsigned int mode, phy_interface_t interface, 1700 int speed, int duplex, 1701 bool tx_pause, bool rx_pause) 1702 { 1703 struct net_device *ndev = to_net_dev(config->dev); 1704 struct axienet_local *lp = netdev_priv(ndev); 1705 u32 emmc_reg, fcc_reg; 1706 1707 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); 1708 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 1709 1710 switch (speed) { 1711 case SPEED_1000: 1712 emmc_reg |= XAE_EMMC_LINKSPD_1000; 1713 break; 1714 case SPEED_100: 1715 emmc_reg |= XAE_EMMC_LINKSPD_100; 1716 break; 1717 case SPEED_10: 1718 emmc_reg |= XAE_EMMC_LINKSPD_10; 1719 break; 1720 default: 1721 dev_err(&ndev->dev, 1722 "Speed other than 10, 100 or 1Gbps is not supported\n"); 1723 break; 1724 } 1725 1726 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); 1727 1728 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); 1729 if (tx_pause) 1730 fcc_reg |= XAE_FCC_FCTX_MASK; 1731 else 1732 fcc_reg &= ~XAE_FCC_FCTX_MASK; 1733 if (rx_pause) 1734 fcc_reg |= XAE_FCC_FCRX_MASK; 1735 else 1736 fcc_reg &= ~XAE_FCC_FCRX_MASK; 1737 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); 1738 } 1739 1740 static const struct phylink_mac_ops axienet_phylink_ops = { 1741 .mac_select_pcs = axienet_mac_select_pcs, 1742 .mac_config = axienet_mac_config, 1743 .mac_link_down = axienet_mac_link_down, 1744 .mac_link_up = axienet_mac_link_up, 1745 }; 1746 1747 /** 1748 * axienet_dma_err_handler - Work queue task for Axi DMA Error 1749 * @work: pointer to work_struct 1750 * 1751 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the 1752 * Tx/Rx BDs. 1753 */ 1754 static void axienet_dma_err_handler(struct work_struct *work) 1755 { 1756 u32 i; 1757 u32 axienet_status; 1758 struct axidma_bd *cur_p; 1759 struct axienet_local *lp = container_of(work, struct axienet_local, 1760 dma_err_task); 1761 struct net_device *ndev = lp->ndev; 1762 1763 napi_disable(&lp->napi_tx); 1764 napi_disable(&lp->napi_rx); 1765 1766 axienet_setoptions(ndev, lp->options & 1767 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1768 1769 axienet_dma_stop(lp); 1770 1771 for (i = 0; i < lp->tx_bd_num; i++) { 1772 cur_p = &lp->tx_bd_v[i]; 1773 if (cur_p->cntrl) { 1774 dma_addr_t addr = desc_get_phys_addr(lp, cur_p); 1775 1776 dma_unmap_single(lp->dev, addr, 1777 (cur_p->cntrl & 1778 XAXIDMA_BD_CTRL_LENGTH_MASK), 1779 DMA_TO_DEVICE); 1780 } 1781 if (cur_p->skb) 1782 dev_kfree_skb_irq(cur_p->skb); 1783 cur_p->phys = 0; 1784 cur_p->phys_msb = 0; 1785 cur_p->cntrl = 0; 1786 cur_p->status = 0; 1787 cur_p->app0 = 0; 1788 cur_p->app1 = 0; 1789 cur_p->app2 = 0; 1790 cur_p->app3 = 0; 1791 cur_p->app4 = 0; 1792 cur_p->skb = NULL; 1793 } 1794 1795 for (i = 0; i < lp->rx_bd_num; i++) { 1796 cur_p = &lp->rx_bd_v[i]; 1797 cur_p->status = 0; 1798 cur_p->app0 = 0; 1799 cur_p->app1 = 0; 1800 cur_p->app2 = 0; 1801 cur_p->app3 = 0; 1802 cur_p->app4 = 0; 1803 } 1804 1805 lp->tx_bd_ci = 0; 1806 lp->tx_bd_tail = 0; 1807 lp->rx_bd_ci = 0; 1808 1809 axienet_dma_start(lp); 1810 1811 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); 1812 axienet_status &= ~XAE_RCW1_RX_MASK; 1813 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); 1814 1815 axienet_status = axienet_ior(lp, XAE_IP_OFFSET); 1816 if (axienet_status & XAE_INT_RXRJECT_MASK) 1817 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); 1818 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? 1819 XAE_INT_RECV_ERROR_MASK : 0); 1820 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); 1821 1822 /* Sync default options with HW but leave receiver and 1823 * transmitter disabled. 1824 */ 1825 axienet_setoptions(ndev, lp->options & 1826 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); 1827 axienet_set_mac_address(ndev, NULL); 1828 axienet_set_multicast_list(ndev); 1829 axienet_setoptions(ndev, lp->options); 1830 napi_enable(&lp->napi_rx); 1831 napi_enable(&lp->napi_tx); 1832 } 1833 1834 /** 1835 * axienet_probe - Axi Ethernet probe function. 1836 * @pdev: Pointer to platform device structure. 1837 * 1838 * Return: 0, on success 1839 * Non-zero error value on failure. 1840 * 1841 * This is the probe routine for Axi Ethernet driver. This is called before 1842 * any other driver routines are invoked. It allocates and sets up the Ethernet 1843 * device. Parses through device tree and populates fields of 1844 * axienet_local. It registers the Ethernet device. 1845 */ 1846 static int axienet_probe(struct platform_device *pdev) 1847 { 1848 int ret; 1849 struct device_node *np; 1850 struct axienet_local *lp; 1851 struct net_device *ndev; 1852 struct resource *ethres; 1853 u8 mac_addr[ETH_ALEN]; 1854 int addr_width = 32; 1855 u32 value; 1856 1857 ndev = alloc_etherdev(sizeof(*lp)); 1858 if (!ndev) 1859 return -ENOMEM; 1860 1861 platform_set_drvdata(pdev, ndev); 1862 1863 SET_NETDEV_DEV(ndev, &pdev->dev); 1864 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ 1865 ndev->features = NETIF_F_SG; 1866 ndev->netdev_ops = &axienet_netdev_ops; 1867 ndev->ethtool_ops = &axienet_ethtool_ops; 1868 1869 /* MTU range: 64 - 9000 */ 1870 ndev->min_mtu = 64; 1871 ndev->max_mtu = XAE_JUMBO_MTU; 1872 1873 lp = netdev_priv(ndev); 1874 lp->ndev = ndev; 1875 lp->dev = &pdev->dev; 1876 lp->options = XAE_OPTION_DEFAULTS; 1877 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 1878 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 1879 1880 u64_stats_init(&lp->rx_stat_sync); 1881 u64_stats_init(&lp->tx_stat_sync); 1882 1883 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); 1884 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); 1885 1886 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); 1887 if (!lp->axi_clk) { 1888 /* For backward compatibility, if named AXI clock is not present, 1889 * treat the first clock specified as the AXI clock. 1890 */ 1891 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); 1892 } 1893 if (IS_ERR(lp->axi_clk)) { 1894 ret = PTR_ERR(lp->axi_clk); 1895 goto free_netdev; 1896 } 1897 ret = clk_prepare_enable(lp->axi_clk); 1898 if (ret) { 1899 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); 1900 goto free_netdev; 1901 } 1902 1903 lp->misc_clks[0].id = "axis_clk"; 1904 lp->misc_clks[1].id = "ref_clk"; 1905 lp->misc_clks[2].id = "mgt_clk"; 1906 1907 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); 1908 if (ret) 1909 goto cleanup_clk; 1910 1911 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 1912 if (ret) 1913 goto cleanup_clk; 1914 1915 /* Map device registers */ 1916 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); 1917 if (IS_ERR(lp->regs)) { 1918 ret = PTR_ERR(lp->regs); 1919 goto cleanup_clk; 1920 } 1921 lp->regs_start = ethres->start; 1922 1923 /* Setup checksum offload, but default to off if not specified */ 1924 lp->features = 0; 1925 1926 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); 1927 if (!ret) { 1928 switch (value) { 1929 case 1: 1930 lp->csum_offload_on_tx_path = 1931 XAE_FEATURE_PARTIAL_TX_CSUM; 1932 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; 1933 /* Can checksum TCP/UDP over IPv4. */ 1934 ndev->features |= NETIF_F_IP_CSUM; 1935 break; 1936 case 2: 1937 lp->csum_offload_on_tx_path = 1938 XAE_FEATURE_FULL_TX_CSUM; 1939 lp->features |= XAE_FEATURE_FULL_TX_CSUM; 1940 /* Can checksum TCP/UDP over IPv4. */ 1941 ndev->features |= NETIF_F_IP_CSUM; 1942 break; 1943 default: 1944 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; 1945 } 1946 } 1947 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); 1948 if (!ret) { 1949 switch (value) { 1950 case 1: 1951 lp->csum_offload_on_rx_path = 1952 XAE_FEATURE_PARTIAL_RX_CSUM; 1953 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; 1954 break; 1955 case 2: 1956 lp->csum_offload_on_rx_path = 1957 XAE_FEATURE_FULL_RX_CSUM; 1958 lp->features |= XAE_FEATURE_FULL_RX_CSUM; 1959 break; 1960 default: 1961 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; 1962 } 1963 } 1964 /* For supporting jumbo frames, the Axi Ethernet hardware must have 1965 * a larger Rx/Tx Memory. Typically, the size must be large so that 1966 * we can enable jumbo option and start supporting jumbo frames. 1967 * Here we check for memory allocated for Rx/Tx in the hardware from 1968 * the device-tree and accordingly set flags. 1969 */ 1970 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); 1971 1972 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, 1973 "xlnx,switch-x-sgmii"); 1974 1975 /* Start with the proprietary, and broken phy_type */ 1976 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); 1977 if (!ret) { 1978 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); 1979 switch (value) { 1980 case XAE_PHY_TYPE_MII: 1981 lp->phy_mode = PHY_INTERFACE_MODE_MII; 1982 break; 1983 case XAE_PHY_TYPE_GMII: 1984 lp->phy_mode = PHY_INTERFACE_MODE_GMII; 1985 break; 1986 case XAE_PHY_TYPE_RGMII_2_0: 1987 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; 1988 break; 1989 case XAE_PHY_TYPE_SGMII: 1990 lp->phy_mode = PHY_INTERFACE_MODE_SGMII; 1991 break; 1992 case XAE_PHY_TYPE_1000BASE_X: 1993 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; 1994 break; 1995 default: 1996 ret = -EINVAL; 1997 goto cleanup_clk; 1998 } 1999 } else { 2000 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); 2001 if (ret) 2002 goto cleanup_clk; 2003 } 2004 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && 2005 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { 2006 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); 2007 ret = -EINVAL; 2008 goto cleanup_clk; 2009 } 2010 2011 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ 2012 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); 2013 if (np) { 2014 struct resource dmares; 2015 2016 ret = of_address_to_resource(np, 0, &dmares); 2017 if (ret) { 2018 dev_err(&pdev->dev, 2019 "unable to get DMA resource\n"); 2020 of_node_put(np); 2021 goto cleanup_clk; 2022 } 2023 lp->dma_regs = devm_ioremap_resource(&pdev->dev, 2024 &dmares); 2025 lp->rx_irq = irq_of_parse_and_map(np, 1); 2026 lp->tx_irq = irq_of_parse_and_map(np, 0); 2027 of_node_put(np); 2028 lp->eth_irq = platform_get_irq_optional(pdev, 0); 2029 } else { 2030 /* Check for these resources directly on the Ethernet node. */ 2031 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); 2032 lp->rx_irq = platform_get_irq(pdev, 1); 2033 lp->tx_irq = platform_get_irq(pdev, 0); 2034 lp->eth_irq = platform_get_irq_optional(pdev, 2); 2035 } 2036 if (IS_ERR(lp->dma_regs)) { 2037 dev_err(&pdev->dev, "could not map DMA regs\n"); 2038 ret = PTR_ERR(lp->dma_regs); 2039 goto cleanup_clk; 2040 } 2041 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) { 2042 dev_err(&pdev->dev, "could not determine irqs\n"); 2043 ret = -ENOMEM; 2044 goto cleanup_clk; 2045 } 2046 2047 /* Reset core now that clocks are enabled, prior to accessing MDIO */ 2048 ret = __axienet_device_reset(lp); 2049 if (ret) 2050 goto cleanup_clk; 2051 2052 /* Autodetect the need for 64-bit DMA pointers. 2053 * When the IP is configured for a bus width bigger than 32 bits, 2054 * writing the MSB registers is mandatory, even if they are all 0. 2055 * We can detect this case by writing all 1's to one such register 2056 * and see if that sticks: when the IP is configured for 32 bits 2057 * only, those registers are RES0. 2058 * Those MSB registers were introduced in IP v7.1, which we check first. 2059 */ 2060 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { 2061 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; 2062 2063 iowrite32(0x0, desc); 2064 if (ioread32(desc) == 0) { /* sanity check */ 2065 iowrite32(0xffffffff, desc); 2066 if (ioread32(desc) > 0) { 2067 lp->features |= XAE_FEATURE_DMA_64BIT; 2068 addr_width = 64; 2069 dev_info(&pdev->dev, 2070 "autodetected 64-bit DMA range\n"); 2071 } 2072 iowrite32(0x0, desc); 2073 } 2074 } 2075 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { 2076 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); 2077 ret = -EINVAL; 2078 goto cleanup_clk; 2079 } 2080 2081 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); 2082 if (ret) { 2083 dev_err(&pdev->dev, "No suitable DMA available\n"); 2084 goto cleanup_clk; 2085 } 2086 2087 /* Check for Ethernet core IRQ (optional) */ 2088 if (lp->eth_irq <= 0) 2089 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); 2090 2091 /* Retrieve the MAC address */ 2092 ret = of_get_mac_address(pdev->dev.of_node, mac_addr); 2093 if (!ret) { 2094 axienet_set_mac_address(ndev, mac_addr); 2095 } else { 2096 dev_warn(&pdev->dev, "could not find MAC address property: %d\n", 2097 ret); 2098 axienet_set_mac_address(ndev, NULL); 2099 } 2100 2101 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; 2102 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; 2103 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; 2104 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; 2105 2106 ret = axienet_mdio_setup(lp); 2107 if (ret) 2108 dev_warn(&pdev->dev, 2109 "error registering MDIO bus: %d\n", ret); 2110 2111 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || 2112 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { 2113 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); 2114 if (!np) { 2115 /* Deprecated: Always use "pcs-handle" for pcs_phy. 2116 * Falling back to "phy-handle" here is only for 2117 * backward compatibility with old device trees. 2118 */ 2119 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 2120 } 2121 if (!np) { 2122 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); 2123 ret = -EINVAL; 2124 goto cleanup_mdio; 2125 } 2126 lp->pcs_phy = of_mdio_find_device(np); 2127 if (!lp->pcs_phy) { 2128 ret = -EPROBE_DEFER; 2129 of_node_put(np); 2130 goto cleanup_mdio; 2131 } 2132 of_node_put(np); 2133 lp->pcs.ops = &axienet_pcs_ops; 2134 lp->pcs.neg_mode = true; 2135 lp->pcs.poll = true; 2136 } 2137 2138 lp->phylink_config.dev = &ndev->dev; 2139 lp->phylink_config.type = PHYLINK_NETDEV; 2140 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | 2141 MAC_10FD | MAC_100FD | MAC_1000FD; 2142 2143 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); 2144 if (lp->switch_x_sgmii) { 2145 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 2146 lp->phylink_config.supported_interfaces); 2147 __set_bit(PHY_INTERFACE_MODE_SGMII, 2148 lp->phylink_config.supported_interfaces); 2149 } 2150 2151 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, 2152 lp->phy_mode, 2153 &axienet_phylink_ops); 2154 if (IS_ERR(lp->phylink)) { 2155 ret = PTR_ERR(lp->phylink); 2156 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); 2157 goto cleanup_mdio; 2158 } 2159 2160 ret = register_netdev(lp->ndev); 2161 if (ret) { 2162 dev_err(lp->dev, "register_netdev() error (%i)\n", ret); 2163 goto cleanup_phylink; 2164 } 2165 2166 return 0; 2167 2168 cleanup_phylink: 2169 phylink_destroy(lp->phylink); 2170 2171 cleanup_mdio: 2172 if (lp->pcs_phy) 2173 put_device(&lp->pcs_phy->dev); 2174 if (lp->mii_bus) 2175 axienet_mdio_teardown(lp); 2176 cleanup_clk: 2177 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2178 clk_disable_unprepare(lp->axi_clk); 2179 2180 free_netdev: 2181 free_netdev(ndev); 2182 2183 return ret; 2184 } 2185 2186 static int axienet_remove(struct platform_device *pdev) 2187 { 2188 struct net_device *ndev = platform_get_drvdata(pdev); 2189 struct axienet_local *lp = netdev_priv(ndev); 2190 2191 unregister_netdev(ndev); 2192 2193 if (lp->phylink) 2194 phylink_destroy(lp->phylink); 2195 2196 if (lp->pcs_phy) 2197 put_device(&lp->pcs_phy->dev); 2198 2199 axienet_mdio_teardown(lp); 2200 2201 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); 2202 clk_disable_unprepare(lp->axi_clk); 2203 2204 free_netdev(ndev); 2205 2206 return 0; 2207 } 2208 2209 static void axienet_shutdown(struct platform_device *pdev) 2210 { 2211 struct net_device *ndev = platform_get_drvdata(pdev); 2212 2213 rtnl_lock(); 2214 netif_device_detach(ndev); 2215 2216 if (netif_running(ndev)) 2217 dev_close(ndev); 2218 2219 rtnl_unlock(); 2220 } 2221 2222 static int axienet_suspend(struct device *dev) 2223 { 2224 struct net_device *ndev = dev_get_drvdata(dev); 2225 2226 if (!netif_running(ndev)) 2227 return 0; 2228 2229 netif_device_detach(ndev); 2230 2231 rtnl_lock(); 2232 axienet_stop(ndev); 2233 rtnl_unlock(); 2234 2235 return 0; 2236 } 2237 2238 static int axienet_resume(struct device *dev) 2239 { 2240 struct net_device *ndev = dev_get_drvdata(dev); 2241 2242 if (!netif_running(ndev)) 2243 return 0; 2244 2245 rtnl_lock(); 2246 axienet_open(ndev); 2247 rtnl_unlock(); 2248 2249 netif_device_attach(ndev); 2250 2251 return 0; 2252 } 2253 2254 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, 2255 axienet_suspend, axienet_resume); 2256 2257 static struct platform_driver axienet_driver = { 2258 .probe = axienet_probe, 2259 .remove = axienet_remove, 2260 .shutdown = axienet_shutdown, 2261 .driver = { 2262 .name = "xilinx_axienet", 2263 .pm = &axienet_pm_ops, 2264 .of_match_table = axienet_of_match, 2265 }, 2266 }; 2267 2268 module_platform_driver(axienet_driver); 2269 2270 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); 2271 MODULE_AUTHOR("Xilinx"); 2272 MODULE_LICENSE("GPL"); 2273