1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Xilinx TEMAC Ethernet device 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * 9 * This is a driver for the Xilinx ll_temac ipcore which is often used 10 * in the Virtex and Spartan series of chips. 11 * 12 * Notes: 13 * - The ll_temac hardware uses indirect access for many of the TEMAC 14 * registers, include the MDIO bus. However, indirect access to MDIO 15 * registers take considerably more clock cycles than to TEMAC registers. 16 * MDIO accesses are long, so threads doing them should probably sleep 17 * rather than busywait. However, since only one indirect access can be 18 * in progress at any given time, that means that *all* indirect accesses 19 * could end up sleeping (to wait for an MDIO access to complete). 20 * Fortunately none of the indirect accesses are on the 'hot' path for tx 21 * or rx, so this should be okay. 22 * 23 * TODO: 24 * - Factor out locallink DMA code into separate driver 25 * - Fix support for hardware checksumming. 26 * - Testing. Lots and lots of testing. 27 * 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/etherdevice.h> 32 #include <linux/mii.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/netdevice.h> 36 #include <linux/if_ether.h> 37 #include <linux/of.h> 38 #include <linux/of_device.h> 39 #include <linux/of_irq.h> 40 #include <linux/of_mdio.h> 41 #include <linux/of_net.h> 42 #include <linux/of_platform.h> 43 #include <linux/of_address.h> 44 #include <linux/skbuff.h> 45 #include <linux/spinlock.h> 46 #include <linux/tcp.h> /* needed for sizeof(tcphdr) */ 47 #include <linux/udp.h> /* needed for sizeof(udphdr) */ 48 #include <linux/phy.h> 49 #include <linux/in.h> 50 #include <linux/io.h> 51 #include <linux/ip.h> 52 #include <linux/slab.h> 53 #include <linux/interrupt.h> 54 #include <linux/dma-mapping.h> 55 #include <linux/processor.h> 56 #include <linux/platform_data/xilinx-ll-temac.h> 57 58 #include "ll_temac.h" 59 60 #define TX_BD_NUM 64 61 #define RX_BD_NUM 128 62 63 /* --------------------------------------------------------------------- 64 * Low level register access functions 65 */ 66 67 static u32 _temac_ior_be(struct temac_local *lp, int offset) 68 { 69 return ioread32be(lp->regs + offset); 70 } 71 72 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value) 73 { 74 return iowrite32be(value, lp->regs + offset); 75 } 76 77 static u32 _temac_ior_le(struct temac_local *lp, int offset) 78 { 79 return ioread32(lp->regs + offset); 80 } 81 82 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value) 83 { 84 return iowrite32(value, lp->regs + offset); 85 } 86 87 static bool hard_acs_rdy(struct temac_local *lp) 88 { 89 return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK; 90 } 91 92 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout) 93 { 94 ktime_t cur = ktime_get(); 95 96 return hard_acs_rdy(lp) || ktime_after(cur, timeout); 97 } 98 99 /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz 100 * that was used before, and should cover MDIO bus speed down to 3200 101 * Hz. 102 */ 103 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC) 104 105 /** 106 * temac_indirect_busywait - Wait for current indirect register access 107 * to complete. 108 */ 109 int temac_indirect_busywait(struct temac_local *lp) 110 { 111 ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS); 112 113 spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout)); 114 if (WARN_ON(!hard_acs_rdy(lp))) 115 return -ETIMEDOUT; 116 else 117 return 0; 118 } 119 120 /** 121 * temac_indirect_in32 - Indirect register read access. This function 122 * must be called without lp->indirect_lock being held. 123 */ 124 u32 temac_indirect_in32(struct temac_local *lp, int reg) 125 { 126 unsigned long flags; 127 int val; 128 129 spin_lock_irqsave(lp->indirect_lock, flags); 130 val = temac_indirect_in32_locked(lp, reg); 131 spin_unlock_irqrestore(lp->indirect_lock, flags); 132 return val; 133 } 134 135 /** 136 * temac_indirect_in32_locked - Indirect register read access. This 137 * function must be called with lp->indirect_lock being held. Use 138 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 139 * repeated lock/unlock and to ensure uninterrupted access to indirect 140 * registers. 141 */ 142 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg) 143 { 144 /* This initial wait should normally not spin, as we always 145 * try to wait for indirect access to complete before 146 * releasing the indirect_lock. 147 */ 148 if (WARN_ON(temac_indirect_busywait(lp))) 149 return -ETIMEDOUT; 150 /* Initiate read from indirect register */ 151 temac_iow(lp, XTE_CTL0_OFFSET, reg); 152 /* Wait for indirect register access to complete. We really 153 * should not see timeouts, and could even end up causing 154 * problem for following indirect access, so let's make a bit 155 * of WARN noise. 156 */ 157 if (WARN_ON(temac_indirect_busywait(lp))) 158 return -ETIMEDOUT; 159 /* Value is ready now */ 160 return temac_ior(lp, XTE_LSW0_OFFSET); 161 } 162 163 /** 164 * temac_indirect_out32 - Indirect register write access. This function 165 * must be called without lp->indirect_lock being held. 166 */ 167 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value) 168 { 169 unsigned long flags; 170 171 spin_lock_irqsave(lp->indirect_lock, flags); 172 temac_indirect_out32_locked(lp, reg, value); 173 spin_unlock_irqrestore(lp->indirect_lock, flags); 174 } 175 176 /** 177 * temac_indirect_out32_locked - Indirect register write access. This 178 * function must be called with lp->indirect_lock being held. Use 179 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 180 * repeated lock/unlock and to ensure uninterrupted access to indirect 181 * registers. 182 */ 183 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value) 184 { 185 /* As in temac_indirect_in32_locked(), we should normally not 186 * spin here. And if it happens, we actually end up silently 187 * ignoring the write request. Ouch. 188 */ 189 if (WARN_ON(temac_indirect_busywait(lp))) 190 return; 191 /* Initiate write to indirect register */ 192 temac_iow(lp, XTE_LSW0_OFFSET, value); 193 temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg); 194 /* As in temac_indirect_in32_locked(), we should not see timeouts 195 * here. And if it happens, we continue before the write has 196 * completed. Not good. 197 */ 198 WARN_ON(temac_indirect_busywait(lp)); 199 } 200 201 /** 202 * temac_dma_in32_* - Memory mapped DMA read, these function expects a 203 * register input that is based on DCR word addresses which are then 204 * converted to memory mapped byte addresses. To be assigned to 205 * lp->dma_in32. 206 */ 207 static u32 temac_dma_in32_be(struct temac_local *lp, int reg) 208 { 209 return ioread32be(lp->sdma_regs + (reg << 2)); 210 } 211 212 static u32 temac_dma_in32_le(struct temac_local *lp, int reg) 213 { 214 return ioread32(lp->sdma_regs + (reg << 2)); 215 } 216 217 /** 218 * temac_dma_out32_* - Memory mapped DMA read, these function expects 219 * a register input that is based on DCR word addresses which are then 220 * converted to memory mapped byte addresses. To be assigned to 221 * lp->dma_out32. 222 */ 223 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value) 224 { 225 iowrite32be(value, lp->sdma_regs + (reg << 2)); 226 } 227 228 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value) 229 { 230 iowrite32(value, lp->sdma_regs + (reg << 2)); 231 } 232 233 /* DMA register access functions can be DCR based or memory mapped. 234 * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both 235 * memory mapped. 236 */ 237 #ifdef CONFIG_PPC_DCR 238 239 /** 240 * temac_dma_dcr_in32 - DCR based DMA read 241 */ 242 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg) 243 { 244 return dcr_read(lp->sdma_dcrs, reg); 245 } 246 247 /** 248 * temac_dma_dcr_out32 - DCR based DMA write 249 */ 250 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value) 251 { 252 dcr_write(lp->sdma_dcrs, reg, value); 253 } 254 255 /** 256 * temac_dcr_setup - If the DMA is DCR based, then setup the address and 257 * I/O functions 258 */ 259 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 260 struct device_node *np) 261 { 262 unsigned int dcrs; 263 264 /* setup the dcr address mapping if it's in the device tree */ 265 266 dcrs = dcr_resource_start(np, 0); 267 if (dcrs != 0) { 268 lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0)); 269 lp->dma_in = temac_dma_dcr_in; 270 lp->dma_out = temac_dma_dcr_out; 271 dev_dbg(&op->dev, "DCR base: %x\n", dcrs); 272 return 0; 273 } 274 /* no DCR in the device tree, indicate a failure */ 275 return -1; 276 } 277 278 #else 279 280 /* 281 * temac_dcr_setup - This is a stub for when DCR is not supported, 282 * such as with MicroBlaze and x86 283 */ 284 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 285 struct device_node *np) 286 { 287 return -1; 288 } 289 290 #endif 291 292 /** 293 * temac_dma_bd_release - Release buffer descriptor rings 294 */ 295 static void temac_dma_bd_release(struct net_device *ndev) 296 { 297 struct temac_local *lp = netdev_priv(ndev); 298 int i; 299 300 /* Reset Local Link (DMA) */ 301 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 302 303 for (i = 0; i < RX_BD_NUM; i++) { 304 if (!lp->rx_skb[i]) 305 break; 306 else { 307 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, 308 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 309 dev_kfree_skb(lp->rx_skb[i]); 310 } 311 } 312 if (lp->rx_bd_v) 313 dma_free_coherent(ndev->dev.parent, 314 sizeof(*lp->rx_bd_v) * RX_BD_NUM, 315 lp->rx_bd_v, lp->rx_bd_p); 316 if (lp->tx_bd_v) 317 dma_free_coherent(ndev->dev.parent, 318 sizeof(*lp->tx_bd_v) * TX_BD_NUM, 319 lp->tx_bd_v, lp->tx_bd_p); 320 } 321 322 /** 323 * temac_dma_bd_init - Setup buffer descriptor rings 324 */ 325 static int temac_dma_bd_init(struct net_device *ndev) 326 { 327 struct temac_local *lp = netdev_priv(ndev); 328 struct sk_buff *skb; 329 dma_addr_t skb_dma_addr; 330 int i; 331 332 lp->rx_skb = devm_kcalloc(&ndev->dev, RX_BD_NUM, sizeof(*lp->rx_skb), 333 GFP_KERNEL); 334 if (!lp->rx_skb) 335 goto out; 336 337 /* allocate the tx and rx ring buffer descriptors. */ 338 /* returns a virtual address and a physical address. */ 339 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, 340 sizeof(*lp->tx_bd_v) * TX_BD_NUM, 341 &lp->tx_bd_p, GFP_KERNEL); 342 if (!lp->tx_bd_v) 343 goto out; 344 345 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, 346 sizeof(*lp->rx_bd_v) * RX_BD_NUM, 347 &lp->rx_bd_p, GFP_KERNEL); 348 if (!lp->rx_bd_v) 349 goto out; 350 351 for (i = 0; i < TX_BD_NUM; i++) { 352 lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p 353 + sizeof(*lp->tx_bd_v) * ((i + 1) % TX_BD_NUM)); 354 } 355 356 for (i = 0; i < RX_BD_NUM; i++) { 357 lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p 358 + sizeof(*lp->rx_bd_v) * ((i + 1) % RX_BD_NUM)); 359 360 skb = netdev_alloc_skb_ip_align(ndev, 361 XTE_MAX_JUMBO_FRAME_SIZE); 362 if (!skb) 363 goto out; 364 365 lp->rx_skb[i] = skb; 366 /* returns physical address of skb->data */ 367 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 368 XTE_MAX_JUMBO_FRAME_SIZE, 369 DMA_FROM_DEVICE); 370 lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr); 371 lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 372 lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 373 } 374 375 /* Configure DMA channel (irq setup) */ 376 lp->dma_out(lp, TX_CHNL_CTRL, lp->tx_chnl_ctrl | 377 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used! 378 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 379 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 380 lp->dma_out(lp, RX_CHNL_CTRL, lp->rx_chnl_ctrl | 381 CHNL_CTRL_IRQ_IOE | 382 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 383 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 384 385 /* Init descriptor indexes */ 386 lp->tx_bd_ci = 0; 387 lp->tx_bd_next = 0; 388 lp->tx_bd_tail = 0; 389 lp->rx_bd_ci = 0; 390 391 /* Enable RX DMA transfers */ 392 wmb(); 393 lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p); 394 lp->dma_out(lp, RX_TAILDESC_PTR, 395 lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); 396 397 /* Prepare for TX DMA transfer */ 398 lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p); 399 400 return 0; 401 402 out: 403 temac_dma_bd_release(ndev); 404 return -ENOMEM; 405 } 406 407 /* --------------------------------------------------------------------- 408 * net_device_ops 409 */ 410 411 static void temac_do_set_mac_address(struct net_device *ndev) 412 { 413 struct temac_local *lp = netdev_priv(ndev); 414 unsigned long flags; 415 416 /* set up unicast MAC address filter set its mac address */ 417 spin_lock_irqsave(lp->indirect_lock, flags); 418 temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET, 419 (ndev->dev_addr[0]) | 420 (ndev->dev_addr[1] << 8) | 421 (ndev->dev_addr[2] << 16) | 422 (ndev->dev_addr[3] << 24)); 423 /* There are reserved bits in EUAW1 424 * so don't affect them Set MAC bits [47:32] in EUAW1 */ 425 temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET, 426 (ndev->dev_addr[4] & 0x000000ff) | 427 (ndev->dev_addr[5] << 8)); 428 spin_unlock_irqrestore(lp->indirect_lock, flags); 429 } 430 431 static int temac_init_mac_address(struct net_device *ndev, const void *address) 432 { 433 ether_addr_copy(ndev->dev_addr, address); 434 if (!is_valid_ether_addr(ndev->dev_addr)) 435 eth_hw_addr_random(ndev); 436 temac_do_set_mac_address(ndev); 437 return 0; 438 } 439 440 static int temac_set_mac_address(struct net_device *ndev, void *p) 441 { 442 struct sockaddr *addr = p; 443 444 if (!is_valid_ether_addr(addr->sa_data)) 445 return -EADDRNOTAVAIL; 446 memcpy(ndev->dev_addr, addr->sa_data, ETH_ALEN); 447 temac_do_set_mac_address(ndev); 448 return 0; 449 } 450 451 static void temac_set_multicast_list(struct net_device *ndev) 452 { 453 struct temac_local *lp = netdev_priv(ndev); 454 u32 multi_addr_msw, multi_addr_lsw; 455 int i = 0; 456 unsigned long flags; 457 bool promisc_mode_disabled = false; 458 459 if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) || 460 (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) { 461 temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK); 462 dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); 463 return; 464 } 465 466 spin_lock_irqsave(lp->indirect_lock, flags); 467 468 if (!netdev_mc_empty(ndev)) { 469 struct netdev_hw_addr *ha; 470 471 netdev_for_each_mc_addr(ha, ndev) { 472 if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM)) 473 break; 474 multi_addr_msw = ((ha->addr[3] << 24) | 475 (ha->addr[2] << 16) | 476 (ha->addr[1] << 8) | 477 (ha->addr[0])); 478 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 479 multi_addr_msw); 480 multi_addr_lsw = ((ha->addr[5] << 8) | 481 (ha->addr[4]) | (i << 16)); 482 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, 483 multi_addr_lsw); 484 i++; 485 } 486 } 487 488 /* Clear all or remaining/unused address table entries */ 489 while (i < MULTICAST_CAM_TABLE_NUM) { 490 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0); 491 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16); 492 i++; 493 } 494 495 /* Enable address filter block if currently disabled */ 496 if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET) 497 & XTE_AFM_EPPRM_MASK) { 498 temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0); 499 promisc_mode_disabled = true; 500 } 501 502 spin_unlock_irqrestore(lp->indirect_lock, flags); 503 504 if (promisc_mode_disabled) 505 dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); 506 } 507 508 static struct temac_option { 509 int flg; 510 u32 opt; 511 u32 reg; 512 u32 m_or; 513 u32 m_and; 514 } temac_options[] = { 515 /* Turn on jumbo packet support for both Rx and Tx */ 516 { 517 .opt = XTE_OPTION_JUMBO, 518 .reg = XTE_TXC_OFFSET, 519 .m_or = XTE_TXC_TXJMBO_MASK, 520 }, 521 { 522 .opt = XTE_OPTION_JUMBO, 523 .reg = XTE_RXC1_OFFSET, 524 .m_or =XTE_RXC1_RXJMBO_MASK, 525 }, 526 /* Turn on VLAN packet support for both Rx and Tx */ 527 { 528 .opt = XTE_OPTION_VLAN, 529 .reg = XTE_TXC_OFFSET, 530 .m_or =XTE_TXC_TXVLAN_MASK, 531 }, 532 { 533 .opt = XTE_OPTION_VLAN, 534 .reg = XTE_RXC1_OFFSET, 535 .m_or =XTE_RXC1_RXVLAN_MASK, 536 }, 537 /* Turn on FCS stripping on receive packets */ 538 { 539 .opt = XTE_OPTION_FCS_STRIP, 540 .reg = XTE_RXC1_OFFSET, 541 .m_or =XTE_RXC1_RXFCS_MASK, 542 }, 543 /* Turn on FCS insertion on transmit packets */ 544 { 545 .opt = XTE_OPTION_FCS_INSERT, 546 .reg = XTE_TXC_OFFSET, 547 .m_or =XTE_TXC_TXFCS_MASK, 548 }, 549 /* Turn on length/type field checking on receive packets */ 550 { 551 .opt = XTE_OPTION_LENTYPE_ERR, 552 .reg = XTE_RXC1_OFFSET, 553 .m_or =XTE_RXC1_RXLT_MASK, 554 }, 555 /* Turn on flow control */ 556 { 557 .opt = XTE_OPTION_FLOW_CONTROL, 558 .reg = XTE_FCC_OFFSET, 559 .m_or =XTE_FCC_RXFLO_MASK, 560 }, 561 /* Turn on flow control */ 562 { 563 .opt = XTE_OPTION_FLOW_CONTROL, 564 .reg = XTE_FCC_OFFSET, 565 .m_or =XTE_FCC_TXFLO_MASK, 566 }, 567 /* Turn on promiscuous frame filtering (all frames are received ) */ 568 { 569 .opt = XTE_OPTION_PROMISC, 570 .reg = XTE_AFM_OFFSET, 571 .m_or =XTE_AFM_EPPRM_MASK, 572 }, 573 /* Enable transmitter if not already enabled */ 574 { 575 .opt = XTE_OPTION_TXEN, 576 .reg = XTE_TXC_OFFSET, 577 .m_or =XTE_TXC_TXEN_MASK, 578 }, 579 /* Enable receiver? */ 580 { 581 .opt = XTE_OPTION_RXEN, 582 .reg = XTE_RXC1_OFFSET, 583 .m_or =XTE_RXC1_RXEN_MASK, 584 }, 585 {} 586 }; 587 588 /** 589 * temac_setoptions 590 */ 591 static u32 temac_setoptions(struct net_device *ndev, u32 options) 592 { 593 struct temac_local *lp = netdev_priv(ndev); 594 struct temac_option *tp = &temac_options[0]; 595 int reg; 596 unsigned long flags; 597 598 spin_lock_irqsave(lp->indirect_lock, flags); 599 while (tp->opt) { 600 reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or; 601 if (options & tp->opt) { 602 reg |= tp->m_or; 603 temac_indirect_out32_locked(lp, tp->reg, reg); 604 } 605 tp++; 606 } 607 spin_unlock_irqrestore(lp->indirect_lock, flags); 608 lp->options |= options; 609 610 return 0; 611 } 612 613 /* Initialize temac */ 614 static void temac_device_reset(struct net_device *ndev) 615 { 616 struct temac_local *lp = netdev_priv(ndev); 617 u32 timeout; 618 u32 val; 619 unsigned long flags; 620 621 /* Perform a software reset */ 622 623 /* 0x300 host enable bit ? */ 624 /* reset PHY through control register ?:1 */ 625 626 dev_dbg(&ndev->dev, "%s()\n", __func__); 627 628 /* Reset the receiver and wait for it to finish reset */ 629 temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK); 630 timeout = 1000; 631 while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) { 632 udelay(1); 633 if (--timeout == 0) { 634 dev_err(&ndev->dev, 635 "temac_device_reset RX reset timeout!!\n"); 636 break; 637 } 638 } 639 640 /* Reset the transmitter and wait for it to finish reset */ 641 temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK); 642 timeout = 1000; 643 while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) { 644 udelay(1); 645 if (--timeout == 0) { 646 dev_err(&ndev->dev, 647 "temac_device_reset TX reset timeout!!\n"); 648 break; 649 } 650 } 651 652 /* Disable the receiver */ 653 spin_lock_irqsave(lp->indirect_lock, flags); 654 val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET); 655 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 656 val & ~XTE_RXC1_RXEN_MASK); 657 spin_unlock_irqrestore(lp->indirect_lock, flags); 658 659 /* Reset Local Link (DMA) */ 660 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 661 timeout = 1000; 662 while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) { 663 udelay(1); 664 if (--timeout == 0) { 665 dev_err(&ndev->dev, 666 "temac_device_reset DMA reset timeout!!\n"); 667 break; 668 } 669 } 670 lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE); 671 672 if (temac_dma_bd_init(ndev)) { 673 dev_err(&ndev->dev, 674 "temac_device_reset descriptor allocation failed\n"); 675 } 676 677 spin_lock_irqsave(lp->indirect_lock, flags); 678 temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0); 679 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0); 680 temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0); 681 temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK); 682 spin_unlock_irqrestore(lp->indirect_lock, flags); 683 684 /* Sync default options with HW 685 * but leave receiver and transmitter disabled. */ 686 temac_setoptions(ndev, 687 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN)); 688 689 temac_do_set_mac_address(ndev); 690 691 /* Set address filter table */ 692 temac_set_multicast_list(ndev); 693 if (temac_setoptions(ndev, lp->options)) 694 dev_err(&ndev->dev, "Error setting TEMAC options\n"); 695 696 /* Init Driver variable */ 697 netif_trans_update(ndev); /* prevent tx timeout */ 698 } 699 700 static void temac_adjust_link(struct net_device *ndev) 701 { 702 struct temac_local *lp = netdev_priv(ndev); 703 struct phy_device *phy = ndev->phydev; 704 u32 mii_speed; 705 int link_state; 706 unsigned long flags; 707 708 /* hash together the state values to decide if something has changed */ 709 link_state = phy->speed | (phy->duplex << 1) | phy->link; 710 711 if (lp->last_link != link_state) { 712 spin_lock_irqsave(lp->indirect_lock, flags); 713 mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET); 714 mii_speed &= ~XTE_EMCFG_LINKSPD_MASK; 715 716 switch (phy->speed) { 717 case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break; 718 case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break; 719 case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break; 720 } 721 722 /* Write new speed setting out to TEMAC */ 723 temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed); 724 spin_unlock_irqrestore(lp->indirect_lock, flags); 725 726 lp->last_link = link_state; 727 phy_print_status(phy); 728 } 729 } 730 731 #ifdef CONFIG_64BIT 732 733 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 734 { 735 bd->app3 = (u32)(((u64)p) >> 32); 736 bd->app4 = (u32)((u64)p & 0xFFFFFFFF); 737 } 738 739 static void *ptr_from_txbd(struct cdmac_bd *bd) 740 { 741 return (void *)(((u64)(bd->app3) << 32) | bd->app4); 742 } 743 744 #else 745 746 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 747 { 748 bd->app4 = (u32)p; 749 } 750 751 static void *ptr_from_txbd(struct cdmac_bd *bd) 752 { 753 return (void *)(bd->app4); 754 } 755 756 #endif 757 758 static void temac_start_xmit_done(struct net_device *ndev) 759 { 760 struct temac_local *lp = netdev_priv(ndev); 761 struct cdmac_bd *cur_p; 762 unsigned int stat = 0; 763 struct sk_buff *skb; 764 765 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 766 stat = be32_to_cpu(cur_p->app0); 767 768 while (stat & STS_CTRL_APP0_CMPLT) { 769 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), 770 be32_to_cpu(cur_p->len), DMA_TO_DEVICE); 771 skb = (struct sk_buff *)ptr_from_txbd(cur_p); 772 if (skb) 773 dev_consume_skb_irq(skb); 774 cur_p->app0 = 0; 775 cur_p->app1 = 0; 776 cur_p->app2 = 0; 777 cur_p->app3 = 0; 778 cur_p->app4 = 0; 779 780 ndev->stats.tx_packets++; 781 ndev->stats.tx_bytes += be32_to_cpu(cur_p->len); 782 783 lp->tx_bd_ci++; 784 if (lp->tx_bd_ci >= TX_BD_NUM) 785 lp->tx_bd_ci = 0; 786 787 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 788 stat = be32_to_cpu(cur_p->app0); 789 } 790 791 netif_wake_queue(ndev); 792 } 793 794 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag) 795 { 796 struct cdmac_bd *cur_p; 797 int tail; 798 799 tail = lp->tx_bd_tail; 800 cur_p = &lp->tx_bd_v[tail]; 801 802 do { 803 if (cur_p->app0) 804 return NETDEV_TX_BUSY; 805 806 tail++; 807 if (tail >= TX_BD_NUM) 808 tail = 0; 809 810 cur_p = &lp->tx_bd_v[tail]; 811 num_frag--; 812 } while (num_frag >= 0); 813 814 return 0; 815 } 816 817 static netdev_tx_t 818 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev) 819 { 820 struct temac_local *lp = netdev_priv(ndev); 821 struct cdmac_bd *cur_p; 822 dma_addr_t start_p, tail_p, skb_dma_addr; 823 int ii; 824 unsigned long num_frag; 825 skb_frag_t *frag; 826 827 num_frag = skb_shinfo(skb)->nr_frags; 828 frag = &skb_shinfo(skb)->frags[0]; 829 start_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; 830 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 831 832 if (temac_check_tx_bd_space(lp, num_frag + 1)) { 833 if (!netif_queue_stopped(ndev)) 834 netif_stop_queue(ndev); 835 return NETDEV_TX_BUSY; 836 } 837 838 cur_p->app0 = 0; 839 if (skb->ip_summed == CHECKSUM_PARTIAL) { 840 unsigned int csum_start_off = skb_checksum_start_offset(skb); 841 unsigned int csum_index_off = csum_start_off + skb->csum_offset; 842 843 cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */ 844 cur_p->app1 = cpu_to_be32((csum_start_off << 16) 845 | csum_index_off); 846 cur_p->app2 = 0; /* initial checksum seed */ 847 } 848 849 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP); 850 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 851 skb_headlen(skb), DMA_TO_DEVICE); 852 cur_p->len = cpu_to_be32(skb_headlen(skb)); 853 cur_p->phys = cpu_to_be32(skb_dma_addr); 854 ptr_to_txbd((void *)skb, cur_p); 855 856 for (ii = 0; ii < num_frag; ii++) { 857 lp->tx_bd_tail++; 858 if (lp->tx_bd_tail >= TX_BD_NUM) 859 lp->tx_bd_tail = 0; 860 861 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 862 skb_dma_addr = dma_map_single(ndev->dev.parent, 863 skb_frag_address(frag), 864 skb_frag_size(frag), 865 DMA_TO_DEVICE); 866 cur_p->phys = cpu_to_be32(skb_dma_addr); 867 cur_p->len = cpu_to_be32(skb_frag_size(frag)); 868 cur_p->app0 = 0; 869 frag++; 870 } 871 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP); 872 873 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; 874 lp->tx_bd_tail++; 875 if (lp->tx_bd_tail >= TX_BD_NUM) 876 lp->tx_bd_tail = 0; 877 878 skb_tx_timestamp(skb); 879 880 /* Kick off the transfer */ 881 wmb(); 882 lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */ 883 884 return NETDEV_TX_OK; 885 } 886 887 888 static void ll_temac_recv(struct net_device *ndev) 889 { 890 struct temac_local *lp = netdev_priv(ndev); 891 struct sk_buff *skb, *new_skb; 892 unsigned int bdstat; 893 struct cdmac_bd *cur_p; 894 dma_addr_t tail_p, skb_dma_addr; 895 int length; 896 unsigned long flags; 897 898 spin_lock_irqsave(&lp->rx_lock, flags); 899 900 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; 901 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 902 903 bdstat = be32_to_cpu(cur_p->app0); 904 while ((bdstat & STS_CTRL_APP0_CMPLT)) { 905 906 skb = lp->rx_skb[lp->rx_bd_ci]; 907 length = be32_to_cpu(cur_p->app4) & 0x3FFF; 908 909 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), 910 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 911 912 skb_put(skb, length); 913 skb->protocol = eth_type_trans(skb, ndev); 914 skb_checksum_none_assert(skb); 915 916 /* if we're doing rx csum offload, set it up */ 917 if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) && 918 (skb->protocol == htons(ETH_P_IP)) && 919 (skb->len > 64)) { 920 921 /* Convert from device endianness (be32) to cpu 922 * endiannes, and if necessary swap the bytes 923 * (back) for proper IP checksum byte order 924 * (be16). 925 */ 926 skb->csum = htons(be32_to_cpu(cur_p->app3) & 0xFFFF); 927 skb->ip_summed = CHECKSUM_COMPLETE; 928 } 929 930 if (!skb_defer_rx_timestamp(skb)) 931 netif_rx(skb); 932 933 ndev->stats.rx_packets++; 934 ndev->stats.rx_bytes += length; 935 936 new_skb = netdev_alloc_skb_ip_align(ndev, 937 XTE_MAX_JUMBO_FRAME_SIZE); 938 if (!new_skb) { 939 spin_unlock_irqrestore(&lp->rx_lock, flags); 940 return; 941 } 942 943 cur_p->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 944 skb_dma_addr = dma_map_single(ndev->dev.parent, new_skb->data, 945 XTE_MAX_JUMBO_FRAME_SIZE, 946 DMA_FROM_DEVICE); 947 cur_p->phys = cpu_to_be32(skb_dma_addr); 948 cur_p->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 949 lp->rx_skb[lp->rx_bd_ci] = new_skb; 950 951 lp->rx_bd_ci++; 952 if (lp->rx_bd_ci >= RX_BD_NUM) 953 lp->rx_bd_ci = 0; 954 955 cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; 956 bdstat = be32_to_cpu(cur_p->app0); 957 } 958 lp->dma_out(lp, RX_TAILDESC_PTR, tail_p); 959 960 spin_unlock_irqrestore(&lp->rx_lock, flags); 961 } 962 963 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev) 964 { 965 struct net_device *ndev = _ndev; 966 struct temac_local *lp = netdev_priv(ndev); 967 unsigned int status; 968 969 status = lp->dma_in(lp, TX_IRQ_REG); 970 lp->dma_out(lp, TX_IRQ_REG, status); 971 972 if (status & (IRQ_COAL | IRQ_DLY)) 973 temac_start_xmit_done(lp->ndev); 974 if (status & (IRQ_ERR | IRQ_DMAERR)) 975 dev_err_ratelimited(&ndev->dev, 976 "TX error 0x%x TX_CHNL_STS=0x%08x\n", 977 status, lp->dma_in(lp, TX_CHNL_STS)); 978 979 return IRQ_HANDLED; 980 } 981 982 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev) 983 { 984 struct net_device *ndev = _ndev; 985 struct temac_local *lp = netdev_priv(ndev); 986 unsigned int status; 987 988 /* Read and clear the status registers */ 989 status = lp->dma_in(lp, RX_IRQ_REG); 990 lp->dma_out(lp, RX_IRQ_REG, status); 991 992 if (status & (IRQ_COAL | IRQ_DLY)) 993 ll_temac_recv(lp->ndev); 994 if (status & (IRQ_ERR | IRQ_DMAERR)) 995 dev_err_ratelimited(&ndev->dev, 996 "RX error 0x%x RX_CHNL_STS=0x%08x\n", 997 status, lp->dma_in(lp, RX_CHNL_STS)); 998 999 return IRQ_HANDLED; 1000 } 1001 1002 static int temac_open(struct net_device *ndev) 1003 { 1004 struct temac_local *lp = netdev_priv(ndev); 1005 struct phy_device *phydev = NULL; 1006 int rc; 1007 1008 dev_dbg(&ndev->dev, "temac_open()\n"); 1009 1010 if (lp->phy_node) { 1011 phydev = of_phy_connect(lp->ndev, lp->phy_node, 1012 temac_adjust_link, 0, 0); 1013 if (!phydev) { 1014 dev_err(lp->dev, "of_phy_connect() failed\n"); 1015 return -ENODEV; 1016 } 1017 phy_start(phydev); 1018 } else if (strlen(lp->phy_name) > 0) { 1019 phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link, 1020 lp->phy_interface); 1021 if (IS_ERR(phydev)) { 1022 dev_err(lp->dev, "phy_connect() failed\n"); 1023 return PTR_ERR(phydev); 1024 } 1025 phy_start(phydev); 1026 } 1027 1028 temac_device_reset(ndev); 1029 1030 rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev); 1031 if (rc) 1032 goto err_tx_irq; 1033 rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev); 1034 if (rc) 1035 goto err_rx_irq; 1036 1037 return 0; 1038 1039 err_rx_irq: 1040 free_irq(lp->tx_irq, ndev); 1041 err_tx_irq: 1042 if (phydev) 1043 phy_disconnect(phydev); 1044 dev_err(lp->dev, "request_irq() failed\n"); 1045 return rc; 1046 } 1047 1048 static int temac_stop(struct net_device *ndev) 1049 { 1050 struct temac_local *lp = netdev_priv(ndev); 1051 struct phy_device *phydev = ndev->phydev; 1052 1053 dev_dbg(&ndev->dev, "temac_close()\n"); 1054 1055 free_irq(lp->tx_irq, ndev); 1056 free_irq(lp->rx_irq, ndev); 1057 1058 if (phydev) 1059 phy_disconnect(phydev); 1060 1061 temac_dma_bd_release(ndev); 1062 1063 return 0; 1064 } 1065 1066 #ifdef CONFIG_NET_POLL_CONTROLLER 1067 static void 1068 temac_poll_controller(struct net_device *ndev) 1069 { 1070 struct temac_local *lp = netdev_priv(ndev); 1071 1072 disable_irq(lp->tx_irq); 1073 disable_irq(lp->rx_irq); 1074 1075 ll_temac_rx_irq(lp->tx_irq, ndev); 1076 ll_temac_tx_irq(lp->rx_irq, ndev); 1077 1078 enable_irq(lp->tx_irq); 1079 enable_irq(lp->rx_irq); 1080 } 1081 #endif 1082 1083 static const struct net_device_ops temac_netdev_ops = { 1084 .ndo_open = temac_open, 1085 .ndo_stop = temac_stop, 1086 .ndo_start_xmit = temac_start_xmit, 1087 .ndo_set_rx_mode = temac_set_multicast_list, 1088 .ndo_set_mac_address = temac_set_mac_address, 1089 .ndo_validate_addr = eth_validate_addr, 1090 .ndo_do_ioctl = phy_do_ioctl_running, 1091 #ifdef CONFIG_NET_POLL_CONTROLLER 1092 .ndo_poll_controller = temac_poll_controller, 1093 #endif 1094 }; 1095 1096 /* --------------------------------------------------------------------- 1097 * SYSFS device attributes 1098 */ 1099 static ssize_t temac_show_llink_regs(struct device *dev, 1100 struct device_attribute *attr, char *buf) 1101 { 1102 struct net_device *ndev = dev_get_drvdata(dev); 1103 struct temac_local *lp = netdev_priv(ndev); 1104 int i, len = 0; 1105 1106 for (i = 0; i < 0x11; i++) 1107 len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i), 1108 (i % 8) == 7 ? "\n" : " "); 1109 len += sprintf(buf + len, "\n"); 1110 1111 return len; 1112 } 1113 1114 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL); 1115 1116 static struct attribute *temac_device_attrs[] = { 1117 &dev_attr_llink_regs.attr, 1118 NULL, 1119 }; 1120 1121 static const struct attribute_group temac_attr_group = { 1122 .attrs = temac_device_attrs, 1123 }; 1124 1125 /* ethtool support */ 1126 static const struct ethtool_ops temac_ethtool_ops = { 1127 .nway_reset = phy_ethtool_nway_reset, 1128 .get_link = ethtool_op_get_link, 1129 .get_ts_info = ethtool_op_get_ts_info, 1130 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1131 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1132 }; 1133 1134 static int temac_probe(struct platform_device *pdev) 1135 { 1136 struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev); 1137 struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np; 1138 struct temac_local *lp; 1139 struct net_device *ndev; 1140 struct resource *res; 1141 const void *addr; 1142 __be32 *p; 1143 bool little_endian; 1144 int rc = 0; 1145 1146 /* Init network device structure */ 1147 ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp)); 1148 if (!ndev) 1149 return -ENOMEM; 1150 1151 platform_set_drvdata(pdev, ndev); 1152 SET_NETDEV_DEV(ndev, &pdev->dev); 1153 ndev->features = NETIF_F_SG; 1154 ndev->netdev_ops = &temac_netdev_ops; 1155 ndev->ethtool_ops = &temac_ethtool_ops; 1156 #if 0 1157 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */ 1158 ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */ 1159 ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */ 1160 ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */ 1161 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */ 1162 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */ 1163 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */ 1164 ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */ 1165 ndev->features |= NETIF_F_GSO; /* Enable software GSO. */ 1166 ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */ 1167 ndev->features |= NETIF_F_LRO; /* large receive offload */ 1168 #endif 1169 1170 /* setup temac private info structure */ 1171 lp = netdev_priv(ndev); 1172 lp->ndev = ndev; 1173 lp->dev = &pdev->dev; 1174 lp->options = XTE_OPTION_DEFAULTS; 1175 spin_lock_init(&lp->rx_lock); 1176 1177 /* Setup mutex for synchronization of indirect register access */ 1178 if (pdata) { 1179 if (!pdata->indirect_lock) { 1180 dev_err(&pdev->dev, 1181 "indirect_lock missing in platform_data\n"); 1182 return -EINVAL; 1183 } 1184 lp->indirect_lock = pdata->indirect_lock; 1185 } else { 1186 lp->indirect_lock = devm_kmalloc(&pdev->dev, 1187 sizeof(*lp->indirect_lock), 1188 GFP_KERNEL); 1189 spin_lock_init(lp->indirect_lock); 1190 } 1191 1192 /* map device registers */ 1193 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1194 lp->regs = devm_ioremap(&pdev->dev, res->start, 1195 resource_size(res)); 1196 if (IS_ERR(lp->regs)) { 1197 dev_err(&pdev->dev, "could not map TEMAC registers\n"); 1198 return PTR_ERR(lp->regs); 1199 } 1200 1201 /* Select register access functions with the specified 1202 * endianness mode. Default for OF devices is big-endian. 1203 */ 1204 little_endian = false; 1205 if (temac_np) { 1206 if (of_get_property(temac_np, "little-endian", NULL)) 1207 little_endian = true; 1208 } else if (pdata) { 1209 little_endian = pdata->reg_little_endian; 1210 } 1211 if (little_endian) { 1212 lp->temac_ior = _temac_ior_le; 1213 lp->temac_iow = _temac_iow_le; 1214 } else { 1215 lp->temac_ior = _temac_ior_be; 1216 lp->temac_iow = _temac_iow_be; 1217 } 1218 1219 /* Setup checksum offload, but default to off if not specified */ 1220 lp->temac_features = 0; 1221 if (temac_np) { 1222 p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL); 1223 if (p && be32_to_cpu(*p)) 1224 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1225 p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL); 1226 if (p && be32_to_cpu(*p)) 1227 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1228 } else if (pdata) { 1229 if (pdata->txcsum) 1230 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1231 if (pdata->rxcsum) 1232 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1233 } 1234 if (lp->temac_features & TEMAC_FEATURE_TX_CSUM) 1235 /* Can checksum TCP/UDP over IPv4. */ 1236 ndev->features |= NETIF_F_IP_CSUM; 1237 1238 /* Setup LocalLink DMA */ 1239 if (temac_np) { 1240 /* Find the DMA node, map the DMA registers, and 1241 * decode the DMA IRQs. 1242 */ 1243 dma_np = of_parse_phandle(temac_np, "llink-connected", 0); 1244 if (!dma_np) { 1245 dev_err(&pdev->dev, "could not find DMA node\n"); 1246 return -ENODEV; 1247 } 1248 1249 /* Setup the DMA register accesses, could be DCR or 1250 * memory mapped. 1251 */ 1252 if (temac_dcr_setup(lp, pdev, dma_np)) { 1253 /* no DCR in the device tree, try non-DCR */ 1254 lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0, 1255 NULL); 1256 if (IS_ERR(lp->sdma_regs)) { 1257 dev_err(&pdev->dev, 1258 "unable to map DMA registers\n"); 1259 of_node_put(dma_np); 1260 return PTR_ERR(lp->sdma_regs); 1261 } 1262 if (of_get_property(dma_np, "little-endian", NULL)) { 1263 lp->dma_in = temac_dma_in32_le; 1264 lp->dma_out = temac_dma_out32_le; 1265 } else { 1266 lp->dma_in = temac_dma_in32_be; 1267 lp->dma_out = temac_dma_out32_be; 1268 } 1269 dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs); 1270 } 1271 1272 /* Get DMA RX and TX interrupts */ 1273 lp->rx_irq = irq_of_parse_and_map(dma_np, 0); 1274 lp->tx_irq = irq_of_parse_and_map(dma_np, 1); 1275 1276 /* Use defaults for IRQ delay/coalescing setup. These 1277 * are configuration values, so does not belong in 1278 * device-tree. 1279 */ 1280 lp->tx_chnl_ctrl = 0x10220000; 1281 lp->rx_chnl_ctrl = 0xff070000; 1282 1283 /* Finished with the DMA node; drop the reference */ 1284 of_node_put(dma_np); 1285 } else if (pdata) { 1286 /* 2nd memory resource specifies DMA registers */ 1287 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1288 lp->sdma_regs = devm_ioremap(&pdev->dev, res->start, 1289 resource_size(res)); 1290 if (IS_ERR(lp->sdma_regs)) { 1291 dev_err(&pdev->dev, 1292 "could not map DMA registers\n"); 1293 return PTR_ERR(lp->sdma_regs); 1294 } 1295 if (pdata->dma_little_endian) { 1296 lp->dma_in = temac_dma_in32_le; 1297 lp->dma_out = temac_dma_out32_le; 1298 } else { 1299 lp->dma_in = temac_dma_in32_be; 1300 lp->dma_out = temac_dma_out32_be; 1301 } 1302 1303 /* Get DMA RX and TX interrupts */ 1304 lp->rx_irq = platform_get_irq(pdev, 0); 1305 lp->tx_irq = platform_get_irq(pdev, 1); 1306 1307 /* IRQ delay/coalescing setup */ 1308 if (pdata->tx_irq_timeout || pdata->tx_irq_count) 1309 lp->tx_chnl_ctrl = (pdata->tx_irq_timeout << 24) | 1310 (pdata->tx_irq_count << 16); 1311 else 1312 lp->tx_chnl_ctrl = 0x10220000; 1313 if (pdata->rx_irq_timeout || pdata->rx_irq_count) 1314 lp->rx_chnl_ctrl = (pdata->rx_irq_timeout << 24) | 1315 (pdata->rx_irq_count << 16); 1316 else 1317 lp->rx_chnl_ctrl = 0xff070000; 1318 } 1319 1320 /* Error handle returned DMA RX and TX interrupts */ 1321 if (lp->rx_irq < 0) { 1322 if (lp->rx_irq != -EPROBE_DEFER) 1323 dev_err(&pdev->dev, "could not get DMA RX irq\n"); 1324 return lp->rx_irq; 1325 } 1326 if (lp->tx_irq < 0) { 1327 if (lp->tx_irq != -EPROBE_DEFER) 1328 dev_err(&pdev->dev, "could not get DMA TX irq\n"); 1329 return lp->tx_irq; 1330 } 1331 1332 if (temac_np) { 1333 /* Retrieve the MAC address */ 1334 addr = of_get_mac_address(temac_np); 1335 if (IS_ERR(addr)) { 1336 dev_err(&pdev->dev, "could not find MAC address\n"); 1337 return -ENODEV; 1338 } 1339 temac_init_mac_address(ndev, addr); 1340 } else if (pdata) { 1341 temac_init_mac_address(ndev, pdata->mac_addr); 1342 } 1343 1344 rc = temac_mdio_setup(lp, pdev); 1345 if (rc) 1346 dev_warn(&pdev->dev, "error registering MDIO bus\n"); 1347 1348 if (temac_np) { 1349 lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0); 1350 if (lp->phy_node) 1351 dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np); 1352 } else if (pdata) { 1353 snprintf(lp->phy_name, sizeof(lp->phy_name), 1354 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr); 1355 lp->phy_interface = pdata->phy_interface; 1356 } 1357 1358 /* Add the device attributes */ 1359 rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group); 1360 if (rc) { 1361 dev_err(lp->dev, "Error creating sysfs files\n"); 1362 goto err_sysfs_create; 1363 } 1364 1365 rc = register_netdev(lp->ndev); 1366 if (rc) { 1367 dev_err(lp->dev, "register_netdev() error (%i)\n", rc); 1368 goto err_register_ndev; 1369 } 1370 1371 return 0; 1372 1373 err_register_ndev: 1374 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1375 err_sysfs_create: 1376 if (lp->phy_node) 1377 of_node_put(lp->phy_node); 1378 temac_mdio_teardown(lp); 1379 return rc; 1380 } 1381 1382 static int temac_remove(struct platform_device *pdev) 1383 { 1384 struct net_device *ndev = platform_get_drvdata(pdev); 1385 struct temac_local *lp = netdev_priv(ndev); 1386 1387 unregister_netdev(ndev); 1388 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1389 if (lp->phy_node) 1390 of_node_put(lp->phy_node); 1391 temac_mdio_teardown(lp); 1392 return 0; 1393 } 1394 1395 static const struct of_device_id temac_of_match[] = { 1396 { .compatible = "xlnx,xps-ll-temac-1.01.b", }, 1397 { .compatible = "xlnx,xps-ll-temac-2.00.a", }, 1398 { .compatible = "xlnx,xps-ll-temac-2.02.a", }, 1399 { .compatible = "xlnx,xps-ll-temac-2.03.a", }, 1400 {}, 1401 }; 1402 MODULE_DEVICE_TABLE(of, temac_of_match); 1403 1404 static struct platform_driver temac_driver = { 1405 .probe = temac_probe, 1406 .remove = temac_remove, 1407 .driver = { 1408 .name = "xilinx_temac", 1409 .of_match_table = temac_of_match, 1410 }, 1411 }; 1412 1413 module_platform_driver(temac_driver); 1414 1415 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver"); 1416 MODULE_AUTHOR("Yoshio Kashiwagi"); 1417 MODULE_LICENSE("GPL"); 1418