1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Xilinx TEMAC Ethernet device 4 * 5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi 6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> 7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. 8 * 9 * This is a driver for the Xilinx ll_temac ipcore which is often used 10 * in the Virtex and Spartan series of chips. 11 * 12 * Notes: 13 * - The ll_temac hardware uses indirect access for many of the TEMAC 14 * registers, include the MDIO bus. However, indirect access to MDIO 15 * registers take considerably more clock cycles than to TEMAC registers. 16 * MDIO accesses are long, so threads doing them should probably sleep 17 * rather than busywait. However, since only one indirect access can be 18 * in progress at any given time, that means that *all* indirect accesses 19 * could end up sleeping (to wait for an MDIO access to complete). 20 * Fortunately none of the indirect accesses are on the 'hot' path for tx 21 * or rx, so this should be okay. 22 * 23 * TODO: 24 * - Factor out locallink DMA code into separate driver 25 * - Fix support for hardware checksumming. 26 * - Testing. Lots and lots of testing. 27 * 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/etherdevice.h> 32 #include <linux/mii.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/netdevice.h> 36 #include <linux/if_ether.h> 37 #include <linux/of.h> 38 #include <linux/of_device.h> 39 #include <linux/of_irq.h> 40 #include <linux/of_mdio.h> 41 #include <linux/of_net.h> 42 #include <linux/of_platform.h> 43 #include <linux/of_address.h> 44 #include <linux/skbuff.h> 45 #include <linux/spinlock.h> 46 #include <linux/tcp.h> /* needed for sizeof(tcphdr) */ 47 #include <linux/udp.h> /* needed for sizeof(udphdr) */ 48 #include <linux/phy.h> 49 #include <linux/in.h> 50 #include <linux/io.h> 51 #include <linux/ip.h> 52 #include <linux/slab.h> 53 #include <linux/interrupt.h> 54 #include <linux/workqueue.h> 55 #include <linux/dma-mapping.h> 56 #include <linux/processor.h> 57 #include <linux/platform_data/xilinx-ll-temac.h> 58 59 #include "ll_temac.h" 60 61 /* Descriptors defines for Tx and Rx DMA */ 62 #define TX_BD_NUM_DEFAULT 64 63 #define RX_BD_NUM_DEFAULT 1024 64 #define TX_BD_NUM_MAX 4096 65 #define RX_BD_NUM_MAX 4096 66 67 /* --------------------------------------------------------------------- 68 * Low level register access functions 69 */ 70 71 static u32 _temac_ior_be(struct temac_local *lp, int offset) 72 { 73 return ioread32be(lp->regs + offset); 74 } 75 76 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value) 77 { 78 return iowrite32be(value, lp->regs + offset); 79 } 80 81 static u32 _temac_ior_le(struct temac_local *lp, int offset) 82 { 83 return ioread32(lp->regs + offset); 84 } 85 86 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value) 87 { 88 return iowrite32(value, lp->regs + offset); 89 } 90 91 static bool hard_acs_rdy(struct temac_local *lp) 92 { 93 return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK; 94 } 95 96 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout) 97 { 98 ktime_t cur = ktime_get(); 99 100 return hard_acs_rdy(lp) || ktime_after(cur, timeout); 101 } 102 103 /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz 104 * that was used before, and should cover MDIO bus speed down to 3200 105 * Hz. 106 */ 107 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC) 108 109 /* 110 * temac_indirect_busywait - Wait for current indirect register access 111 * to complete. 112 */ 113 int temac_indirect_busywait(struct temac_local *lp) 114 { 115 ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS); 116 117 spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout)); 118 if (WARN_ON(!hard_acs_rdy(lp))) 119 return -ETIMEDOUT; 120 else 121 return 0; 122 } 123 124 /* 125 * temac_indirect_in32 - Indirect register read access. This function 126 * must be called without lp->indirect_lock being held. 127 */ 128 u32 temac_indirect_in32(struct temac_local *lp, int reg) 129 { 130 unsigned long flags; 131 int val; 132 133 spin_lock_irqsave(lp->indirect_lock, flags); 134 val = temac_indirect_in32_locked(lp, reg); 135 spin_unlock_irqrestore(lp->indirect_lock, flags); 136 return val; 137 } 138 139 /* 140 * temac_indirect_in32_locked - Indirect register read access. This 141 * function must be called with lp->indirect_lock being held. Use 142 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 143 * repeated lock/unlock and to ensure uninterrupted access to indirect 144 * registers. 145 */ 146 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg) 147 { 148 /* This initial wait should normally not spin, as we always 149 * try to wait for indirect access to complete before 150 * releasing the indirect_lock. 151 */ 152 if (WARN_ON(temac_indirect_busywait(lp))) 153 return -ETIMEDOUT; 154 /* Initiate read from indirect register */ 155 temac_iow(lp, XTE_CTL0_OFFSET, reg); 156 /* Wait for indirect register access to complete. We really 157 * should not see timeouts, and could even end up causing 158 * problem for following indirect access, so let's make a bit 159 * of WARN noise. 160 */ 161 if (WARN_ON(temac_indirect_busywait(lp))) 162 return -ETIMEDOUT; 163 /* Value is ready now */ 164 return temac_ior(lp, XTE_LSW0_OFFSET); 165 } 166 167 /* 168 * temac_indirect_out32 - Indirect register write access. This function 169 * must be called without lp->indirect_lock being held. 170 */ 171 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value) 172 { 173 unsigned long flags; 174 175 spin_lock_irqsave(lp->indirect_lock, flags); 176 temac_indirect_out32_locked(lp, reg, value); 177 spin_unlock_irqrestore(lp->indirect_lock, flags); 178 } 179 180 /* 181 * temac_indirect_out32_locked - Indirect register write access. This 182 * function must be called with lp->indirect_lock being held. Use 183 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid 184 * repeated lock/unlock and to ensure uninterrupted access to indirect 185 * registers. 186 */ 187 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value) 188 { 189 /* As in temac_indirect_in32_locked(), we should normally not 190 * spin here. And if it happens, we actually end up silently 191 * ignoring the write request. Ouch. 192 */ 193 if (WARN_ON(temac_indirect_busywait(lp))) 194 return; 195 /* Initiate write to indirect register */ 196 temac_iow(lp, XTE_LSW0_OFFSET, value); 197 temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg); 198 /* As in temac_indirect_in32_locked(), we should not see timeouts 199 * here. And if it happens, we continue before the write has 200 * completed. Not good. 201 */ 202 WARN_ON(temac_indirect_busywait(lp)); 203 } 204 205 /* 206 * temac_dma_in32_* - Memory mapped DMA read, these function expects a 207 * register input that is based on DCR word addresses which are then 208 * converted to memory mapped byte addresses. To be assigned to 209 * lp->dma_in32. 210 */ 211 static u32 temac_dma_in32_be(struct temac_local *lp, int reg) 212 { 213 return ioread32be(lp->sdma_regs + (reg << 2)); 214 } 215 216 static u32 temac_dma_in32_le(struct temac_local *lp, int reg) 217 { 218 return ioread32(lp->sdma_regs + (reg << 2)); 219 } 220 221 /* 222 * temac_dma_out32_* - Memory mapped DMA read, these function expects 223 * a register input that is based on DCR word addresses which are then 224 * converted to memory mapped byte addresses. To be assigned to 225 * lp->dma_out32. 226 */ 227 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value) 228 { 229 iowrite32be(value, lp->sdma_regs + (reg << 2)); 230 } 231 232 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value) 233 { 234 iowrite32(value, lp->sdma_regs + (reg << 2)); 235 } 236 237 /* DMA register access functions can be DCR based or memory mapped. 238 * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both 239 * memory mapped. 240 */ 241 #ifdef CONFIG_PPC_DCR 242 243 /* 244 * temac_dma_dcr_in32 - DCR based DMA read 245 */ 246 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg) 247 { 248 return dcr_read(lp->sdma_dcrs, reg); 249 } 250 251 /* 252 * temac_dma_dcr_out32 - DCR based DMA write 253 */ 254 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value) 255 { 256 dcr_write(lp->sdma_dcrs, reg, value); 257 } 258 259 /* 260 * temac_dcr_setup - If the DMA is DCR based, then setup the address and 261 * I/O functions 262 */ 263 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 264 struct device_node *np) 265 { 266 unsigned int dcrs; 267 268 /* setup the dcr address mapping if it's in the device tree */ 269 270 dcrs = dcr_resource_start(np, 0); 271 if (dcrs != 0) { 272 lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0)); 273 lp->dma_in = temac_dma_dcr_in; 274 lp->dma_out = temac_dma_dcr_out; 275 dev_dbg(&op->dev, "DCR base: %x\n", dcrs); 276 return 0; 277 } 278 /* no DCR in the device tree, indicate a failure */ 279 return -1; 280 } 281 282 #else 283 284 /* 285 * temac_dcr_setup - This is a stub for when DCR is not supported, 286 * such as with MicroBlaze and x86 287 */ 288 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, 289 struct device_node *np) 290 { 291 return -1; 292 } 293 294 #endif 295 296 /* 297 * temac_dma_bd_release - Release buffer descriptor rings 298 */ 299 static void temac_dma_bd_release(struct net_device *ndev) 300 { 301 struct temac_local *lp = netdev_priv(ndev); 302 int i; 303 304 /* Reset Local Link (DMA) */ 305 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 306 307 for (i = 0; i < lp->rx_bd_num; i++) { 308 if (!lp->rx_skb[i]) 309 break; 310 else { 311 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, 312 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 313 dev_kfree_skb(lp->rx_skb[i]); 314 } 315 } 316 if (lp->rx_bd_v) 317 dma_free_coherent(ndev->dev.parent, 318 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 319 lp->rx_bd_v, lp->rx_bd_p); 320 if (lp->tx_bd_v) 321 dma_free_coherent(ndev->dev.parent, 322 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 323 lp->tx_bd_v, lp->tx_bd_p); 324 } 325 326 /* 327 * temac_dma_bd_init - Setup buffer descriptor rings 328 */ 329 static int temac_dma_bd_init(struct net_device *ndev) 330 { 331 struct temac_local *lp = netdev_priv(ndev); 332 struct sk_buff *skb; 333 dma_addr_t skb_dma_addr; 334 int i; 335 336 lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num, 337 sizeof(*lp->rx_skb), GFP_KERNEL); 338 if (!lp->rx_skb) 339 goto out; 340 341 /* allocate the tx and rx ring buffer descriptors. */ 342 /* returns a virtual address and a physical address. */ 343 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, 344 sizeof(*lp->tx_bd_v) * lp->tx_bd_num, 345 &lp->tx_bd_p, GFP_KERNEL); 346 if (!lp->tx_bd_v) 347 goto out; 348 349 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, 350 sizeof(*lp->rx_bd_v) * lp->rx_bd_num, 351 &lp->rx_bd_p, GFP_KERNEL); 352 if (!lp->rx_bd_v) 353 goto out; 354 355 for (i = 0; i < lp->tx_bd_num; i++) { 356 lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p 357 + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num)); 358 } 359 360 for (i = 0; i < lp->rx_bd_num; i++) { 361 lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p 362 + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num)); 363 364 skb = netdev_alloc_skb_ip_align(ndev, 365 XTE_MAX_JUMBO_FRAME_SIZE); 366 if (!skb) 367 goto out; 368 369 lp->rx_skb[i] = skb; 370 /* returns physical address of skb->data */ 371 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 372 XTE_MAX_JUMBO_FRAME_SIZE, 373 DMA_FROM_DEVICE); 374 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) 375 goto out; 376 lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr); 377 lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 378 lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 379 } 380 381 /* Configure DMA channel (irq setup) */ 382 lp->dma_out(lp, TX_CHNL_CTRL, 383 lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 | 384 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used! 385 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 386 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 387 lp->dma_out(lp, RX_CHNL_CTRL, 388 lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 | 389 CHNL_CTRL_IRQ_IOE | 390 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | 391 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); 392 393 /* Init descriptor indexes */ 394 lp->tx_bd_ci = 0; 395 lp->tx_bd_tail = 0; 396 lp->rx_bd_ci = 0; 397 lp->rx_bd_tail = lp->rx_bd_num - 1; 398 399 /* Enable RX DMA transfers */ 400 wmb(); 401 lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p); 402 lp->dma_out(lp, RX_TAILDESC_PTR, 403 lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail)); 404 405 /* Prepare for TX DMA transfer */ 406 lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p); 407 408 return 0; 409 410 out: 411 temac_dma_bd_release(ndev); 412 return -ENOMEM; 413 } 414 415 /* --------------------------------------------------------------------- 416 * net_device_ops 417 */ 418 419 static void temac_do_set_mac_address(struct net_device *ndev) 420 { 421 struct temac_local *lp = netdev_priv(ndev); 422 unsigned long flags; 423 424 /* set up unicast MAC address filter set its mac address */ 425 spin_lock_irqsave(lp->indirect_lock, flags); 426 temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET, 427 (ndev->dev_addr[0]) | 428 (ndev->dev_addr[1] << 8) | 429 (ndev->dev_addr[2] << 16) | 430 (ndev->dev_addr[3] << 24)); 431 /* There are reserved bits in EUAW1 432 * so don't affect them Set MAC bits [47:32] in EUAW1 */ 433 temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET, 434 (ndev->dev_addr[4] & 0x000000ff) | 435 (ndev->dev_addr[5] << 8)); 436 spin_unlock_irqrestore(lp->indirect_lock, flags); 437 } 438 439 static int temac_init_mac_address(struct net_device *ndev, const void *address) 440 { 441 memcpy(ndev->dev_addr, address, ETH_ALEN); 442 if (!is_valid_ether_addr(ndev->dev_addr)) 443 eth_hw_addr_random(ndev); 444 temac_do_set_mac_address(ndev); 445 return 0; 446 } 447 448 static int temac_set_mac_address(struct net_device *ndev, void *p) 449 { 450 struct sockaddr *addr = p; 451 452 if (!is_valid_ether_addr(addr->sa_data)) 453 return -EADDRNOTAVAIL; 454 memcpy(ndev->dev_addr, addr->sa_data, ETH_ALEN); 455 temac_do_set_mac_address(ndev); 456 return 0; 457 } 458 459 static void temac_set_multicast_list(struct net_device *ndev) 460 { 461 struct temac_local *lp = netdev_priv(ndev); 462 u32 multi_addr_msw, multi_addr_lsw; 463 int i = 0; 464 unsigned long flags; 465 bool promisc_mode_disabled = false; 466 467 if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) || 468 (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) { 469 temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK); 470 dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); 471 return; 472 } 473 474 spin_lock_irqsave(lp->indirect_lock, flags); 475 476 if (!netdev_mc_empty(ndev)) { 477 struct netdev_hw_addr *ha; 478 479 netdev_for_each_mc_addr(ha, ndev) { 480 if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM)) 481 break; 482 multi_addr_msw = ((ha->addr[3] << 24) | 483 (ha->addr[2] << 16) | 484 (ha->addr[1] << 8) | 485 (ha->addr[0])); 486 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 487 multi_addr_msw); 488 multi_addr_lsw = ((ha->addr[5] << 8) | 489 (ha->addr[4]) | (i << 16)); 490 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, 491 multi_addr_lsw); 492 i++; 493 } 494 } 495 496 /* Clear all or remaining/unused address table entries */ 497 while (i < MULTICAST_CAM_TABLE_NUM) { 498 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0); 499 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16); 500 i++; 501 } 502 503 /* Enable address filter block if currently disabled */ 504 if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET) 505 & XTE_AFM_EPPRM_MASK) { 506 temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0); 507 promisc_mode_disabled = true; 508 } 509 510 spin_unlock_irqrestore(lp->indirect_lock, flags); 511 512 if (promisc_mode_disabled) 513 dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); 514 } 515 516 static struct temac_option { 517 int flg; 518 u32 opt; 519 u32 reg; 520 u32 m_or; 521 u32 m_and; 522 } temac_options[] = { 523 /* Turn on jumbo packet support for both Rx and Tx */ 524 { 525 .opt = XTE_OPTION_JUMBO, 526 .reg = XTE_TXC_OFFSET, 527 .m_or = XTE_TXC_TXJMBO_MASK, 528 }, 529 { 530 .opt = XTE_OPTION_JUMBO, 531 .reg = XTE_RXC1_OFFSET, 532 .m_or =XTE_RXC1_RXJMBO_MASK, 533 }, 534 /* Turn on VLAN packet support for both Rx and Tx */ 535 { 536 .opt = XTE_OPTION_VLAN, 537 .reg = XTE_TXC_OFFSET, 538 .m_or =XTE_TXC_TXVLAN_MASK, 539 }, 540 { 541 .opt = XTE_OPTION_VLAN, 542 .reg = XTE_RXC1_OFFSET, 543 .m_or =XTE_RXC1_RXVLAN_MASK, 544 }, 545 /* Turn on FCS stripping on receive packets */ 546 { 547 .opt = XTE_OPTION_FCS_STRIP, 548 .reg = XTE_RXC1_OFFSET, 549 .m_or =XTE_RXC1_RXFCS_MASK, 550 }, 551 /* Turn on FCS insertion on transmit packets */ 552 { 553 .opt = XTE_OPTION_FCS_INSERT, 554 .reg = XTE_TXC_OFFSET, 555 .m_or =XTE_TXC_TXFCS_MASK, 556 }, 557 /* Turn on length/type field checking on receive packets */ 558 { 559 .opt = XTE_OPTION_LENTYPE_ERR, 560 .reg = XTE_RXC1_OFFSET, 561 .m_or =XTE_RXC1_RXLT_MASK, 562 }, 563 /* Turn on flow control */ 564 { 565 .opt = XTE_OPTION_FLOW_CONTROL, 566 .reg = XTE_FCC_OFFSET, 567 .m_or =XTE_FCC_RXFLO_MASK, 568 }, 569 /* Turn on flow control */ 570 { 571 .opt = XTE_OPTION_FLOW_CONTROL, 572 .reg = XTE_FCC_OFFSET, 573 .m_or =XTE_FCC_TXFLO_MASK, 574 }, 575 /* Turn on promiscuous frame filtering (all frames are received ) */ 576 { 577 .opt = XTE_OPTION_PROMISC, 578 .reg = XTE_AFM_OFFSET, 579 .m_or =XTE_AFM_EPPRM_MASK, 580 }, 581 /* Enable transmitter if not already enabled */ 582 { 583 .opt = XTE_OPTION_TXEN, 584 .reg = XTE_TXC_OFFSET, 585 .m_or =XTE_TXC_TXEN_MASK, 586 }, 587 /* Enable receiver? */ 588 { 589 .opt = XTE_OPTION_RXEN, 590 .reg = XTE_RXC1_OFFSET, 591 .m_or =XTE_RXC1_RXEN_MASK, 592 }, 593 {} 594 }; 595 596 /* 597 * temac_setoptions 598 */ 599 static u32 temac_setoptions(struct net_device *ndev, u32 options) 600 { 601 struct temac_local *lp = netdev_priv(ndev); 602 struct temac_option *tp = &temac_options[0]; 603 int reg; 604 unsigned long flags; 605 606 spin_lock_irqsave(lp->indirect_lock, flags); 607 while (tp->opt) { 608 reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or; 609 if (options & tp->opt) { 610 reg |= tp->m_or; 611 temac_indirect_out32_locked(lp, tp->reg, reg); 612 } 613 tp++; 614 } 615 spin_unlock_irqrestore(lp->indirect_lock, flags); 616 lp->options |= options; 617 618 return 0; 619 } 620 621 /* Initialize temac */ 622 static void temac_device_reset(struct net_device *ndev) 623 { 624 struct temac_local *lp = netdev_priv(ndev); 625 u32 timeout; 626 u32 val; 627 unsigned long flags; 628 629 /* Perform a software reset */ 630 631 /* 0x300 host enable bit ? */ 632 /* reset PHY through control register ?:1 */ 633 634 dev_dbg(&ndev->dev, "%s()\n", __func__); 635 636 /* Reset the receiver and wait for it to finish reset */ 637 temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK); 638 timeout = 1000; 639 while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) { 640 udelay(1); 641 if (--timeout == 0) { 642 dev_err(&ndev->dev, 643 "temac_device_reset RX reset timeout!!\n"); 644 break; 645 } 646 } 647 648 /* Reset the transmitter and wait for it to finish reset */ 649 temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK); 650 timeout = 1000; 651 while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) { 652 udelay(1); 653 if (--timeout == 0) { 654 dev_err(&ndev->dev, 655 "temac_device_reset TX reset timeout!!\n"); 656 break; 657 } 658 } 659 660 /* Disable the receiver */ 661 spin_lock_irqsave(lp->indirect_lock, flags); 662 val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET); 663 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 664 val & ~XTE_RXC1_RXEN_MASK); 665 spin_unlock_irqrestore(lp->indirect_lock, flags); 666 667 /* Reset Local Link (DMA) */ 668 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); 669 timeout = 1000; 670 while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) { 671 udelay(1); 672 if (--timeout == 0) { 673 dev_err(&ndev->dev, 674 "temac_device_reset DMA reset timeout!!\n"); 675 break; 676 } 677 } 678 lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE); 679 680 if (temac_dma_bd_init(ndev)) { 681 dev_err(&ndev->dev, 682 "temac_device_reset descriptor allocation failed\n"); 683 } 684 685 spin_lock_irqsave(lp->indirect_lock, flags); 686 temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0); 687 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0); 688 temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0); 689 temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK); 690 spin_unlock_irqrestore(lp->indirect_lock, flags); 691 692 /* Sync default options with HW 693 * but leave receiver and transmitter disabled. */ 694 temac_setoptions(ndev, 695 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN)); 696 697 temac_do_set_mac_address(ndev); 698 699 /* Set address filter table */ 700 temac_set_multicast_list(ndev); 701 if (temac_setoptions(ndev, lp->options)) 702 dev_err(&ndev->dev, "Error setting TEMAC options\n"); 703 704 /* Init Driver variable */ 705 netif_trans_update(ndev); /* prevent tx timeout */ 706 } 707 708 static void temac_adjust_link(struct net_device *ndev) 709 { 710 struct temac_local *lp = netdev_priv(ndev); 711 struct phy_device *phy = ndev->phydev; 712 u32 mii_speed; 713 int link_state; 714 unsigned long flags; 715 716 /* hash together the state values to decide if something has changed */ 717 link_state = phy->speed | (phy->duplex << 1) | phy->link; 718 719 if (lp->last_link != link_state) { 720 spin_lock_irqsave(lp->indirect_lock, flags); 721 mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET); 722 mii_speed &= ~XTE_EMCFG_LINKSPD_MASK; 723 724 switch (phy->speed) { 725 case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break; 726 case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break; 727 case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break; 728 } 729 730 /* Write new speed setting out to TEMAC */ 731 temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed); 732 spin_unlock_irqrestore(lp->indirect_lock, flags); 733 734 lp->last_link = link_state; 735 phy_print_status(phy); 736 } 737 } 738 739 #ifdef CONFIG_64BIT 740 741 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 742 { 743 bd->app3 = (u32)(((u64)p) >> 32); 744 bd->app4 = (u32)((u64)p & 0xFFFFFFFF); 745 } 746 747 static void *ptr_from_txbd(struct cdmac_bd *bd) 748 { 749 return (void *)(((u64)(bd->app3) << 32) | bd->app4); 750 } 751 752 #else 753 754 static void ptr_to_txbd(void *p, struct cdmac_bd *bd) 755 { 756 bd->app4 = (u32)p; 757 } 758 759 static void *ptr_from_txbd(struct cdmac_bd *bd) 760 { 761 return (void *)(bd->app4); 762 } 763 764 #endif 765 766 static void temac_start_xmit_done(struct net_device *ndev) 767 { 768 struct temac_local *lp = netdev_priv(ndev); 769 struct cdmac_bd *cur_p; 770 unsigned int stat = 0; 771 struct sk_buff *skb; 772 773 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 774 stat = be32_to_cpu(cur_p->app0); 775 776 while (stat & STS_CTRL_APP0_CMPLT) { 777 /* Make sure that the other fields are read after bd is 778 * released by dma 779 */ 780 rmb(); 781 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), 782 be32_to_cpu(cur_p->len), DMA_TO_DEVICE); 783 skb = (struct sk_buff *)ptr_from_txbd(cur_p); 784 if (skb) 785 dev_consume_skb_irq(skb); 786 cur_p->app1 = 0; 787 cur_p->app2 = 0; 788 cur_p->app3 = 0; 789 cur_p->app4 = 0; 790 791 ndev->stats.tx_packets++; 792 ndev->stats.tx_bytes += be32_to_cpu(cur_p->len); 793 794 /* app0 must be visible last, as it is used to flag 795 * availability of the bd 796 */ 797 smp_mb(); 798 cur_p->app0 = 0; 799 800 lp->tx_bd_ci++; 801 if (lp->tx_bd_ci >= lp->tx_bd_num) 802 lp->tx_bd_ci = 0; 803 804 cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; 805 stat = be32_to_cpu(cur_p->app0); 806 } 807 808 /* Matches barrier in temac_start_xmit */ 809 smp_mb(); 810 811 netif_wake_queue(ndev); 812 } 813 814 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag) 815 { 816 struct cdmac_bd *cur_p; 817 int tail; 818 819 tail = lp->tx_bd_tail; 820 cur_p = &lp->tx_bd_v[tail]; 821 822 do { 823 if (cur_p->app0) 824 return NETDEV_TX_BUSY; 825 826 /* Make sure to read next bd app0 after this one */ 827 rmb(); 828 829 tail++; 830 if (tail >= lp->tx_bd_num) 831 tail = 0; 832 833 cur_p = &lp->tx_bd_v[tail]; 834 num_frag--; 835 } while (num_frag >= 0); 836 837 return 0; 838 } 839 840 static netdev_tx_t 841 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev) 842 { 843 struct temac_local *lp = netdev_priv(ndev); 844 struct cdmac_bd *cur_p; 845 dma_addr_t tail_p, skb_dma_addr; 846 int ii; 847 unsigned long num_frag; 848 skb_frag_t *frag; 849 850 num_frag = skb_shinfo(skb)->nr_frags; 851 frag = &skb_shinfo(skb)->frags[0]; 852 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 853 854 if (temac_check_tx_bd_space(lp, num_frag + 1)) { 855 if (netif_queue_stopped(ndev)) 856 return NETDEV_TX_BUSY; 857 858 netif_stop_queue(ndev); 859 860 /* Matches barrier in temac_start_xmit_done */ 861 smp_mb(); 862 863 /* Space might have just been freed - check again */ 864 if (temac_check_tx_bd_space(lp, num_frag + 1)) 865 return NETDEV_TX_BUSY; 866 867 netif_wake_queue(ndev); 868 } 869 870 cur_p->app0 = 0; 871 if (skb->ip_summed == CHECKSUM_PARTIAL) { 872 unsigned int csum_start_off = skb_checksum_start_offset(skb); 873 unsigned int csum_index_off = csum_start_off + skb->csum_offset; 874 875 cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */ 876 cur_p->app1 = cpu_to_be32((csum_start_off << 16) 877 | csum_index_off); 878 cur_p->app2 = 0; /* initial checksum seed */ 879 } 880 881 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP); 882 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 883 skb_headlen(skb), DMA_TO_DEVICE); 884 cur_p->len = cpu_to_be32(skb_headlen(skb)); 885 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) { 886 dev_kfree_skb_any(skb); 887 ndev->stats.tx_dropped++; 888 return NETDEV_TX_OK; 889 } 890 cur_p->phys = cpu_to_be32(skb_dma_addr); 891 892 for (ii = 0; ii < num_frag; ii++) { 893 if (++lp->tx_bd_tail >= lp->tx_bd_num) 894 lp->tx_bd_tail = 0; 895 896 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 897 skb_dma_addr = dma_map_single(ndev->dev.parent, 898 skb_frag_address(frag), 899 skb_frag_size(frag), 900 DMA_TO_DEVICE); 901 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) { 902 if (--lp->tx_bd_tail < 0) 903 lp->tx_bd_tail = lp->tx_bd_num - 1; 904 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 905 while (--ii >= 0) { 906 --frag; 907 dma_unmap_single(ndev->dev.parent, 908 be32_to_cpu(cur_p->phys), 909 skb_frag_size(frag), 910 DMA_TO_DEVICE); 911 if (--lp->tx_bd_tail < 0) 912 lp->tx_bd_tail = lp->tx_bd_num - 1; 913 cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; 914 } 915 dma_unmap_single(ndev->dev.parent, 916 be32_to_cpu(cur_p->phys), 917 skb_headlen(skb), DMA_TO_DEVICE); 918 dev_kfree_skb_any(skb); 919 ndev->stats.tx_dropped++; 920 return NETDEV_TX_OK; 921 } 922 cur_p->phys = cpu_to_be32(skb_dma_addr); 923 cur_p->len = cpu_to_be32(skb_frag_size(frag)); 924 cur_p->app0 = 0; 925 frag++; 926 } 927 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP); 928 929 /* Mark last fragment with skb address, so it can be consumed 930 * in temac_start_xmit_done() 931 */ 932 ptr_to_txbd((void *)skb, cur_p); 933 934 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; 935 lp->tx_bd_tail++; 936 if (lp->tx_bd_tail >= lp->tx_bd_num) 937 lp->tx_bd_tail = 0; 938 939 skb_tx_timestamp(skb); 940 941 /* Kick off the transfer */ 942 wmb(); 943 lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */ 944 945 if (temac_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) 946 netif_stop_queue(ndev); 947 948 return NETDEV_TX_OK; 949 } 950 951 static int ll_temac_recv_buffers_available(struct temac_local *lp) 952 { 953 int available; 954 955 if (!lp->rx_skb[lp->rx_bd_ci]) 956 return 0; 957 available = 1 + lp->rx_bd_tail - lp->rx_bd_ci; 958 if (available <= 0) 959 available += lp->rx_bd_num; 960 return available; 961 } 962 963 static void ll_temac_recv(struct net_device *ndev) 964 { 965 struct temac_local *lp = netdev_priv(ndev); 966 unsigned long flags; 967 int rx_bd; 968 bool update_tail = false; 969 970 spin_lock_irqsave(&lp->rx_lock, flags); 971 972 /* Process all received buffers, passing them on network 973 * stack. After this, the buffer descriptors will be in an 974 * un-allocated stage, where no skb is allocated for it, and 975 * they are therefore not available for TEMAC/DMA. 976 */ 977 do { 978 struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci]; 979 struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci]; 980 unsigned int bdstat = be32_to_cpu(bd->app0); 981 int length; 982 983 /* While this should not normally happen, we can end 984 * here when GFP_ATOMIC allocations fail, and we 985 * therefore have un-allocated buffers. 986 */ 987 if (!skb) 988 break; 989 990 /* Loop over all completed buffer descriptors */ 991 if (!(bdstat & STS_CTRL_APP0_CMPLT)) 992 break; 993 994 dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys), 995 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); 996 /* The buffer is not valid for DMA anymore */ 997 bd->phys = 0; 998 bd->len = 0; 999 1000 length = be32_to_cpu(bd->app4) & 0x3FFF; 1001 skb_put(skb, length); 1002 skb->protocol = eth_type_trans(skb, ndev); 1003 skb_checksum_none_assert(skb); 1004 1005 /* if we're doing rx csum offload, set it up */ 1006 if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) && 1007 (skb->protocol == htons(ETH_P_IP)) && 1008 (skb->len > 64)) { 1009 1010 /* Convert from device endianness (be32) to cpu 1011 * endiannes, and if necessary swap the bytes 1012 * (back) for proper IP checksum byte order 1013 * (be16). 1014 */ 1015 skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF); 1016 skb->ip_summed = CHECKSUM_COMPLETE; 1017 } 1018 1019 if (!skb_defer_rx_timestamp(skb)) 1020 netif_rx(skb); 1021 /* The skb buffer is now owned by network stack above */ 1022 lp->rx_skb[lp->rx_bd_ci] = NULL; 1023 1024 ndev->stats.rx_packets++; 1025 ndev->stats.rx_bytes += length; 1026 1027 rx_bd = lp->rx_bd_ci; 1028 if (++lp->rx_bd_ci >= lp->rx_bd_num) 1029 lp->rx_bd_ci = 0; 1030 } while (rx_bd != lp->rx_bd_tail); 1031 1032 /* DMA operations will halt when the last buffer descriptor is 1033 * processed (ie. the one pointed to by RX_TAILDESC_PTR). 1034 * When that happens, no more interrupt events will be 1035 * generated. No IRQ_COAL or IRQ_DLY, and not even an 1036 * IRQ_ERR. To avoid stalling, we schedule a delayed work 1037 * when there is a potential risk of that happening. The work 1038 * will call this function, and thus re-schedule itself until 1039 * enough buffers are available again. 1040 */ 1041 if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx) 1042 schedule_delayed_work(&lp->restart_work, HZ / 1000); 1043 1044 /* Allocate new buffers for those buffer descriptors that were 1045 * passed to network stack. Note that GFP_ATOMIC allocations 1046 * can fail (e.g. when a larger burst of GFP_ATOMIC 1047 * allocations occurs), so while we try to allocate all 1048 * buffers in the same interrupt where they were processed, we 1049 * continue with what we could get in case of allocation 1050 * failure. Allocation of remaining buffers will be retried 1051 * in following calls. 1052 */ 1053 while (1) { 1054 struct sk_buff *skb; 1055 struct cdmac_bd *bd; 1056 dma_addr_t skb_dma_addr; 1057 1058 rx_bd = lp->rx_bd_tail + 1; 1059 if (rx_bd >= lp->rx_bd_num) 1060 rx_bd = 0; 1061 bd = &lp->rx_bd_v[rx_bd]; 1062 1063 if (bd->phys) 1064 break; /* All skb's allocated */ 1065 1066 skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); 1067 if (!skb) { 1068 dev_warn(&ndev->dev, "skb alloc failed\n"); 1069 break; 1070 } 1071 1072 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, 1073 XTE_MAX_JUMBO_FRAME_SIZE, 1074 DMA_FROM_DEVICE); 1075 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, 1076 skb_dma_addr))) { 1077 dev_kfree_skb_any(skb); 1078 break; 1079 } 1080 1081 bd->phys = cpu_to_be32(skb_dma_addr); 1082 bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); 1083 bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); 1084 lp->rx_skb[rx_bd] = skb; 1085 1086 lp->rx_bd_tail = rx_bd; 1087 update_tail = true; 1088 } 1089 1090 /* Move tail pointer when buffers have been allocated */ 1091 if (update_tail) { 1092 lp->dma_out(lp, RX_TAILDESC_PTR, 1093 lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail); 1094 } 1095 1096 spin_unlock_irqrestore(&lp->rx_lock, flags); 1097 } 1098 1099 /* Function scheduled to ensure a restart in case of DMA halt 1100 * condition caused by running out of buffer descriptors. 1101 */ 1102 static void ll_temac_restart_work_func(struct work_struct *work) 1103 { 1104 struct temac_local *lp = container_of(work, struct temac_local, 1105 restart_work.work); 1106 struct net_device *ndev = lp->ndev; 1107 1108 ll_temac_recv(ndev); 1109 } 1110 1111 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev) 1112 { 1113 struct net_device *ndev = _ndev; 1114 struct temac_local *lp = netdev_priv(ndev); 1115 unsigned int status; 1116 1117 status = lp->dma_in(lp, TX_IRQ_REG); 1118 lp->dma_out(lp, TX_IRQ_REG, status); 1119 1120 if (status & (IRQ_COAL | IRQ_DLY)) 1121 temac_start_xmit_done(lp->ndev); 1122 if (status & (IRQ_ERR | IRQ_DMAERR)) 1123 dev_err_ratelimited(&ndev->dev, 1124 "TX error 0x%x TX_CHNL_STS=0x%08x\n", 1125 status, lp->dma_in(lp, TX_CHNL_STS)); 1126 1127 return IRQ_HANDLED; 1128 } 1129 1130 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev) 1131 { 1132 struct net_device *ndev = _ndev; 1133 struct temac_local *lp = netdev_priv(ndev); 1134 unsigned int status; 1135 1136 /* Read and clear the status registers */ 1137 status = lp->dma_in(lp, RX_IRQ_REG); 1138 lp->dma_out(lp, RX_IRQ_REG, status); 1139 1140 if (status & (IRQ_COAL | IRQ_DLY)) 1141 ll_temac_recv(lp->ndev); 1142 if (status & (IRQ_ERR | IRQ_DMAERR)) 1143 dev_err_ratelimited(&ndev->dev, 1144 "RX error 0x%x RX_CHNL_STS=0x%08x\n", 1145 status, lp->dma_in(lp, RX_CHNL_STS)); 1146 1147 return IRQ_HANDLED; 1148 } 1149 1150 static int temac_open(struct net_device *ndev) 1151 { 1152 struct temac_local *lp = netdev_priv(ndev); 1153 struct phy_device *phydev = NULL; 1154 int rc; 1155 1156 dev_dbg(&ndev->dev, "temac_open()\n"); 1157 1158 if (lp->phy_node) { 1159 phydev = of_phy_connect(lp->ndev, lp->phy_node, 1160 temac_adjust_link, 0, 0); 1161 if (!phydev) { 1162 dev_err(lp->dev, "of_phy_connect() failed\n"); 1163 return -ENODEV; 1164 } 1165 phy_start(phydev); 1166 } else if (strlen(lp->phy_name) > 0) { 1167 phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link, 1168 lp->phy_interface); 1169 if (IS_ERR(phydev)) { 1170 dev_err(lp->dev, "phy_connect() failed\n"); 1171 return PTR_ERR(phydev); 1172 } 1173 phy_start(phydev); 1174 } 1175 1176 temac_device_reset(ndev); 1177 1178 rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev); 1179 if (rc) 1180 goto err_tx_irq; 1181 rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev); 1182 if (rc) 1183 goto err_rx_irq; 1184 1185 return 0; 1186 1187 err_rx_irq: 1188 free_irq(lp->tx_irq, ndev); 1189 err_tx_irq: 1190 if (phydev) 1191 phy_disconnect(phydev); 1192 dev_err(lp->dev, "request_irq() failed\n"); 1193 return rc; 1194 } 1195 1196 static int temac_stop(struct net_device *ndev) 1197 { 1198 struct temac_local *lp = netdev_priv(ndev); 1199 struct phy_device *phydev = ndev->phydev; 1200 1201 dev_dbg(&ndev->dev, "temac_close()\n"); 1202 1203 cancel_delayed_work_sync(&lp->restart_work); 1204 1205 free_irq(lp->tx_irq, ndev); 1206 free_irq(lp->rx_irq, ndev); 1207 1208 if (phydev) 1209 phy_disconnect(phydev); 1210 1211 temac_dma_bd_release(ndev); 1212 1213 return 0; 1214 } 1215 1216 #ifdef CONFIG_NET_POLL_CONTROLLER 1217 static void 1218 temac_poll_controller(struct net_device *ndev) 1219 { 1220 struct temac_local *lp = netdev_priv(ndev); 1221 1222 disable_irq(lp->tx_irq); 1223 disable_irq(lp->rx_irq); 1224 1225 ll_temac_rx_irq(lp->tx_irq, ndev); 1226 ll_temac_tx_irq(lp->rx_irq, ndev); 1227 1228 enable_irq(lp->tx_irq); 1229 enable_irq(lp->rx_irq); 1230 } 1231 #endif 1232 1233 static const struct net_device_ops temac_netdev_ops = { 1234 .ndo_open = temac_open, 1235 .ndo_stop = temac_stop, 1236 .ndo_start_xmit = temac_start_xmit, 1237 .ndo_set_rx_mode = temac_set_multicast_list, 1238 .ndo_set_mac_address = temac_set_mac_address, 1239 .ndo_validate_addr = eth_validate_addr, 1240 .ndo_eth_ioctl = phy_do_ioctl_running, 1241 #ifdef CONFIG_NET_POLL_CONTROLLER 1242 .ndo_poll_controller = temac_poll_controller, 1243 #endif 1244 }; 1245 1246 /* --------------------------------------------------------------------- 1247 * SYSFS device attributes 1248 */ 1249 static ssize_t temac_show_llink_regs(struct device *dev, 1250 struct device_attribute *attr, char *buf) 1251 { 1252 struct net_device *ndev = dev_get_drvdata(dev); 1253 struct temac_local *lp = netdev_priv(ndev); 1254 int i, len = 0; 1255 1256 for (i = 0; i < 0x11; i++) 1257 len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i), 1258 (i % 8) == 7 ? "\n" : " "); 1259 len += sprintf(buf + len, "\n"); 1260 1261 return len; 1262 } 1263 1264 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL); 1265 1266 static struct attribute *temac_device_attrs[] = { 1267 &dev_attr_llink_regs.attr, 1268 NULL, 1269 }; 1270 1271 static const struct attribute_group temac_attr_group = { 1272 .attrs = temac_device_attrs, 1273 }; 1274 1275 /* --------------------------------------------------------------------- 1276 * ethtool support 1277 */ 1278 1279 static void ll_temac_ethtools_get_ringparam(struct net_device *ndev, 1280 struct ethtool_ringparam *ering) 1281 { 1282 struct temac_local *lp = netdev_priv(ndev); 1283 1284 ering->rx_max_pending = RX_BD_NUM_MAX; 1285 ering->rx_mini_max_pending = 0; 1286 ering->rx_jumbo_max_pending = 0; 1287 ering->tx_max_pending = TX_BD_NUM_MAX; 1288 ering->rx_pending = lp->rx_bd_num; 1289 ering->rx_mini_pending = 0; 1290 ering->rx_jumbo_pending = 0; 1291 ering->tx_pending = lp->tx_bd_num; 1292 } 1293 1294 static int ll_temac_ethtools_set_ringparam(struct net_device *ndev, 1295 struct ethtool_ringparam *ering) 1296 { 1297 struct temac_local *lp = netdev_priv(ndev); 1298 1299 if (ering->rx_pending > RX_BD_NUM_MAX || 1300 ering->rx_mini_pending || 1301 ering->rx_jumbo_pending || 1302 ering->rx_pending > TX_BD_NUM_MAX) 1303 return -EINVAL; 1304 1305 if (netif_running(ndev)) 1306 return -EBUSY; 1307 1308 lp->rx_bd_num = ering->rx_pending; 1309 lp->tx_bd_num = ering->tx_pending; 1310 return 0; 1311 } 1312 1313 static int 1314 ll_temac_ethtools_get_coalesce(struct net_device *ndev, 1315 struct ethtool_coalesce *ec, 1316 struct kernel_ethtool_coalesce *kernel_coal, 1317 struct netlink_ext_ack *extack) 1318 { 1319 struct temac_local *lp = netdev_priv(ndev); 1320 1321 ec->rx_max_coalesced_frames = lp->coalesce_count_rx; 1322 ec->tx_max_coalesced_frames = lp->coalesce_count_tx; 1323 ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100; 1324 ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100; 1325 return 0; 1326 } 1327 1328 static int 1329 ll_temac_ethtools_set_coalesce(struct net_device *ndev, 1330 struct ethtool_coalesce *ec, 1331 struct kernel_ethtool_coalesce *kernel_coal, 1332 struct netlink_ext_ack *extack) 1333 { 1334 struct temac_local *lp = netdev_priv(ndev); 1335 1336 if (netif_running(ndev)) { 1337 netdev_err(ndev, 1338 "Please stop netif before applying configuration\n"); 1339 return -EFAULT; 1340 } 1341 1342 if (ec->rx_max_coalesced_frames) 1343 lp->coalesce_count_rx = ec->rx_max_coalesced_frames; 1344 if (ec->tx_max_coalesced_frames) 1345 lp->coalesce_count_tx = ec->tx_max_coalesced_frames; 1346 /* With typical LocalLink clock speed of 200 MHz and 1347 * C_PRESCALAR=1023, each delay count corresponds to 5.12 us. 1348 */ 1349 if (ec->rx_coalesce_usecs) 1350 lp->coalesce_delay_rx = 1351 min(255U, (ec->rx_coalesce_usecs * 100) / 512); 1352 if (ec->tx_coalesce_usecs) 1353 lp->coalesce_delay_tx = 1354 min(255U, (ec->tx_coalesce_usecs * 100) / 512); 1355 1356 return 0; 1357 } 1358 1359 static const struct ethtool_ops temac_ethtool_ops = { 1360 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 1361 ETHTOOL_COALESCE_MAX_FRAMES, 1362 .nway_reset = phy_ethtool_nway_reset, 1363 .get_link = ethtool_op_get_link, 1364 .get_ts_info = ethtool_op_get_ts_info, 1365 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1366 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1367 .get_ringparam = ll_temac_ethtools_get_ringparam, 1368 .set_ringparam = ll_temac_ethtools_set_ringparam, 1369 .get_coalesce = ll_temac_ethtools_get_coalesce, 1370 .set_coalesce = ll_temac_ethtools_set_coalesce, 1371 }; 1372 1373 static int temac_probe(struct platform_device *pdev) 1374 { 1375 struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev); 1376 struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np; 1377 struct temac_local *lp; 1378 struct net_device *ndev; 1379 u8 addr[ETH_ALEN]; 1380 __be32 *p; 1381 bool little_endian; 1382 int rc = 0; 1383 1384 /* Init network device structure */ 1385 ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp)); 1386 if (!ndev) 1387 return -ENOMEM; 1388 1389 platform_set_drvdata(pdev, ndev); 1390 SET_NETDEV_DEV(ndev, &pdev->dev); 1391 ndev->features = NETIF_F_SG; 1392 ndev->netdev_ops = &temac_netdev_ops; 1393 ndev->ethtool_ops = &temac_ethtool_ops; 1394 #if 0 1395 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */ 1396 ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */ 1397 ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */ 1398 ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */ 1399 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */ 1400 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */ 1401 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */ 1402 ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */ 1403 ndev->features |= NETIF_F_GSO; /* Enable software GSO. */ 1404 ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */ 1405 ndev->features |= NETIF_F_LRO; /* large receive offload */ 1406 #endif 1407 1408 /* setup temac private info structure */ 1409 lp = netdev_priv(ndev); 1410 lp->ndev = ndev; 1411 lp->dev = &pdev->dev; 1412 lp->options = XTE_OPTION_DEFAULTS; 1413 lp->rx_bd_num = RX_BD_NUM_DEFAULT; 1414 lp->tx_bd_num = TX_BD_NUM_DEFAULT; 1415 spin_lock_init(&lp->rx_lock); 1416 INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func); 1417 1418 /* Setup mutex for synchronization of indirect register access */ 1419 if (pdata) { 1420 if (!pdata->indirect_lock) { 1421 dev_err(&pdev->dev, 1422 "indirect_lock missing in platform_data\n"); 1423 return -EINVAL; 1424 } 1425 lp->indirect_lock = pdata->indirect_lock; 1426 } else { 1427 lp->indirect_lock = devm_kmalloc(&pdev->dev, 1428 sizeof(*lp->indirect_lock), 1429 GFP_KERNEL); 1430 spin_lock_init(lp->indirect_lock); 1431 } 1432 1433 /* map device registers */ 1434 lp->regs = devm_platform_ioremap_resource_byname(pdev, 0); 1435 if (IS_ERR(lp->regs)) { 1436 dev_err(&pdev->dev, "could not map TEMAC registers\n"); 1437 return -ENOMEM; 1438 } 1439 1440 /* Select register access functions with the specified 1441 * endianness mode. Default for OF devices is big-endian. 1442 */ 1443 little_endian = false; 1444 if (temac_np) { 1445 if (of_get_property(temac_np, "little-endian", NULL)) 1446 little_endian = true; 1447 } else if (pdata) { 1448 little_endian = pdata->reg_little_endian; 1449 } 1450 if (little_endian) { 1451 lp->temac_ior = _temac_ior_le; 1452 lp->temac_iow = _temac_iow_le; 1453 } else { 1454 lp->temac_ior = _temac_ior_be; 1455 lp->temac_iow = _temac_iow_be; 1456 } 1457 1458 /* Setup checksum offload, but default to off if not specified */ 1459 lp->temac_features = 0; 1460 if (temac_np) { 1461 p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL); 1462 if (p && be32_to_cpu(*p)) 1463 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1464 p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL); 1465 if (p && be32_to_cpu(*p)) 1466 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1467 } else if (pdata) { 1468 if (pdata->txcsum) 1469 lp->temac_features |= TEMAC_FEATURE_TX_CSUM; 1470 if (pdata->rxcsum) 1471 lp->temac_features |= TEMAC_FEATURE_RX_CSUM; 1472 } 1473 if (lp->temac_features & TEMAC_FEATURE_TX_CSUM) 1474 /* Can checksum TCP/UDP over IPv4. */ 1475 ndev->features |= NETIF_F_IP_CSUM; 1476 1477 /* Defaults for IRQ delay/coalescing setup. These are 1478 * configuration values, so does not belong in device-tree. 1479 */ 1480 lp->coalesce_delay_tx = 0x10; 1481 lp->coalesce_count_tx = 0x22; 1482 lp->coalesce_delay_rx = 0xff; 1483 lp->coalesce_count_rx = 0x07; 1484 1485 /* Setup LocalLink DMA */ 1486 if (temac_np) { 1487 /* Find the DMA node, map the DMA registers, and 1488 * decode the DMA IRQs. 1489 */ 1490 dma_np = of_parse_phandle(temac_np, "llink-connected", 0); 1491 if (!dma_np) { 1492 dev_err(&pdev->dev, "could not find DMA node\n"); 1493 return -ENODEV; 1494 } 1495 1496 /* Setup the DMA register accesses, could be DCR or 1497 * memory mapped. 1498 */ 1499 if (temac_dcr_setup(lp, pdev, dma_np)) { 1500 /* no DCR in the device tree, try non-DCR */ 1501 lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0, 1502 NULL); 1503 if (IS_ERR(lp->sdma_regs)) { 1504 dev_err(&pdev->dev, 1505 "unable to map DMA registers\n"); 1506 of_node_put(dma_np); 1507 return PTR_ERR(lp->sdma_regs); 1508 } 1509 if (of_get_property(dma_np, "little-endian", NULL)) { 1510 lp->dma_in = temac_dma_in32_le; 1511 lp->dma_out = temac_dma_out32_le; 1512 } else { 1513 lp->dma_in = temac_dma_in32_be; 1514 lp->dma_out = temac_dma_out32_be; 1515 } 1516 dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs); 1517 } 1518 1519 /* Get DMA RX and TX interrupts */ 1520 lp->rx_irq = irq_of_parse_and_map(dma_np, 0); 1521 lp->tx_irq = irq_of_parse_and_map(dma_np, 1); 1522 1523 /* Finished with the DMA node; drop the reference */ 1524 of_node_put(dma_np); 1525 } else if (pdata) { 1526 /* 2nd memory resource specifies DMA registers */ 1527 lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1); 1528 if (IS_ERR(lp->sdma_regs)) { 1529 dev_err(&pdev->dev, 1530 "could not map DMA registers\n"); 1531 return PTR_ERR(lp->sdma_regs); 1532 } 1533 if (pdata->dma_little_endian) { 1534 lp->dma_in = temac_dma_in32_le; 1535 lp->dma_out = temac_dma_out32_le; 1536 } else { 1537 lp->dma_in = temac_dma_in32_be; 1538 lp->dma_out = temac_dma_out32_be; 1539 } 1540 1541 /* Get DMA RX and TX interrupts */ 1542 lp->rx_irq = platform_get_irq(pdev, 0); 1543 lp->tx_irq = platform_get_irq(pdev, 1); 1544 1545 /* IRQ delay/coalescing setup */ 1546 if (pdata->tx_irq_timeout || pdata->tx_irq_count) { 1547 lp->coalesce_delay_tx = pdata->tx_irq_timeout; 1548 lp->coalesce_count_tx = pdata->tx_irq_count; 1549 } 1550 if (pdata->rx_irq_timeout || pdata->rx_irq_count) { 1551 lp->coalesce_delay_rx = pdata->rx_irq_timeout; 1552 lp->coalesce_count_rx = pdata->rx_irq_count; 1553 } 1554 } 1555 1556 /* Error handle returned DMA RX and TX interrupts */ 1557 if (lp->rx_irq < 0) { 1558 if (lp->rx_irq != -EPROBE_DEFER) 1559 dev_err(&pdev->dev, "could not get DMA RX irq\n"); 1560 return lp->rx_irq; 1561 } 1562 if (lp->tx_irq < 0) { 1563 if (lp->tx_irq != -EPROBE_DEFER) 1564 dev_err(&pdev->dev, "could not get DMA TX irq\n"); 1565 return lp->tx_irq; 1566 } 1567 1568 if (temac_np) { 1569 /* Retrieve the MAC address */ 1570 rc = of_get_mac_address(temac_np, addr); 1571 if (rc) { 1572 dev_err(&pdev->dev, "could not find MAC address\n"); 1573 return -ENODEV; 1574 } 1575 temac_init_mac_address(ndev, addr); 1576 } else if (pdata) { 1577 temac_init_mac_address(ndev, pdata->mac_addr); 1578 } 1579 1580 rc = temac_mdio_setup(lp, pdev); 1581 if (rc) 1582 dev_warn(&pdev->dev, "error registering MDIO bus\n"); 1583 1584 if (temac_np) { 1585 lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0); 1586 if (lp->phy_node) 1587 dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np); 1588 } else if (pdata) { 1589 snprintf(lp->phy_name, sizeof(lp->phy_name), 1590 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr); 1591 lp->phy_interface = pdata->phy_interface; 1592 } 1593 1594 /* Add the device attributes */ 1595 rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group); 1596 if (rc) { 1597 dev_err(lp->dev, "Error creating sysfs files\n"); 1598 goto err_sysfs_create; 1599 } 1600 1601 rc = register_netdev(lp->ndev); 1602 if (rc) { 1603 dev_err(lp->dev, "register_netdev() error (%i)\n", rc); 1604 goto err_register_ndev; 1605 } 1606 1607 return 0; 1608 1609 err_register_ndev: 1610 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1611 err_sysfs_create: 1612 if (lp->phy_node) 1613 of_node_put(lp->phy_node); 1614 temac_mdio_teardown(lp); 1615 return rc; 1616 } 1617 1618 static int temac_remove(struct platform_device *pdev) 1619 { 1620 struct net_device *ndev = platform_get_drvdata(pdev); 1621 struct temac_local *lp = netdev_priv(ndev); 1622 1623 unregister_netdev(ndev); 1624 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); 1625 if (lp->phy_node) 1626 of_node_put(lp->phy_node); 1627 temac_mdio_teardown(lp); 1628 return 0; 1629 } 1630 1631 static const struct of_device_id temac_of_match[] = { 1632 { .compatible = "xlnx,xps-ll-temac-1.01.b", }, 1633 { .compatible = "xlnx,xps-ll-temac-2.00.a", }, 1634 { .compatible = "xlnx,xps-ll-temac-2.02.a", }, 1635 { .compatible = "xlnx,xps-ll-temac-2.03.a", }, 1636 {}, 1637 }; 1638 MODULE_DEVICE_TABLE(of, temac_of_match); 1639 1640 static struct platform_driver temac_driver = { 1641 .probe = temac_probe, 1642 .remove = temac_remove, 1643 .driver = { 1644 .name = "xilinx_temac", 1645 .of_match_table = temac_of_match, 1646 }, 1647 }; 1648 1649 module_platform_driver(temac_driver); 1650 1651 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver"); 1652 MODULE_AUTHOR("Yoshio Kashiwagi"); 1653 MODULE_LICENSE("GPL"); 1654