1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <net/ip6_checksum.h> 6 #include <net/page_pool.h> 7 #include <net/inet_ecn.h> 8 #include <linux/iopoll.h> 9 #include <linux/sctp.h> 10 #include <linux/pci.h> 11 #include <net/tcp.h> 12 #include <net/ip.h> 13 14 #include "wx_type.h" 15 #include "wx_lib.h" 16 #include "wx_hw.h" 17 18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */ 19 static struct wx_dec_ptype wx_ptype_lookup[256] = { 20 /* L2: mac */ 21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), 23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 28 29 /* L2: ethertype filter */ 30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 31 32 /* L3: ip non-tunnel */ 33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), 34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), 35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), 36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), 37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), 38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), 39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), 40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), 41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), 42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), 43 44 /* L2: fcoe */ 45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 47 48 /* IPv4 --> IPv4/IPv6 */ 49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), 50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), 51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), 52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), 53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), 54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), 55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), 56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), 57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), 58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), 59 60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ 61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), 62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), 63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), 64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), 65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), 66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), 67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), 68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), 69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), 70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), 71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), 72 73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ 74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), 75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), 76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), 77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), 78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), 79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), 80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), 81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), 82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), 83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), 84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), 85 86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ 87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), 88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), 89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), 90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), 91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), 92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), 93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), 94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), 95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), 96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), 97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), 98 99 /* IPv6 --> IPv4/IPv6 */ 100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), 101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), 102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), 103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), 104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), 105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), 106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), 107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), 108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), 109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), 110 111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ 112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), 113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), 114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), 115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), 116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), 117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), 118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), 119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), 120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), 121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), 122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), 123 124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ 125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), 126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), 127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), 128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), 129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), 130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), 131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), 132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), 133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), 134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), 135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), 136 137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ 138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), 139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), 140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), 141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), 142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), 143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), 144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), 145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), 146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), 147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), 148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), 149 }; 150 151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) 152 { 153 return wx_ptype_lookup[ptype]; 154 } 155 156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ 157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, 158 const u32 stat_err_bits) 159 { 160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); 161 } 162 163 static bool wx_can_reuse_rx_page(struct wx_rx_buffer *rx_buffer, 164 int rx_buffer_pgcnt) 165 { 166 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 167 struct page *page = rx_buffer->page; 168 169 /* avoid re-using remote and pfmemalloc pages */ 170 if (!dev_page_is_reusable(page)) 171 return false; 172 173 #if (PAGE_SIZE < 8192) 174 /* if we are only owner of page we can reuse it */ 175 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 176 return false; 177 #endif 178 179 /* If we have drained the page fragment pool we need to update 180 * the pagecnt_bias and page count so that we fully restock the 181 * number of references the driver holds. 182 */ 183 if (unlikely(pagecnt_bias == 1)) { 184 page_ref_add(page, USHRT_MAX - 1); 185 rx_buffer->pagecnt_bias = USHRT_MAX; 186 } 187 188 return true; 189 } 190 191 /** 192 * wx_reuse_rx_page - page flip buffer and store it back on the ring 193 * @rx_ring: rx descriptor ring to store buffers on 194 * @old_buff: donor buffer to have page reused 195 * 196 * Synchronizes page for reuse by the adapter 197 **/ 198 static void wx_reuse_rx_page(struct wx_ring *rx_ring, 199 struct wx_rx_buffer *old_buff) 200 { 201 u16 nta = rx_ring->next_to_alloc; 202 struct wx_rx_buffer *new_buff; 203 204 new_buff = &rx_ring->rx_buffer_info[nta]; 205 206 /* update, and store next to alloc */ 207 nta++; 208 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 209 210 /* transfer page from old buffer to new buffer */ 211 new_buff->page = old_buff->page; 212 new_buff->page_dma = old_buff->page_dma; 213 new_buff->page_offset = old_buff->page_offset; 214 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 215 } 216 217 static void wx_dma_sync_frag(struct wx_ring *rx_ring, 218 struct wx_rx_buffer *rx_buffer) 219 { 220 struct sk_buff *skb = rx_buffer->skb; 221 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 222 223 dma_sync_single_range_for_cpu(rx_ring->dev, 224 WX_CB(skb)->dma, 225 skb_frag_off(frag), 226 skb_frag_size(frag), 227 DMA_FROM_DEVICE); 228 229 /* If the page was released, just unmap it. */ 230 if (unlikely(WX_CB(skb)->page_released)) 231 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 232 } 233 234 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, 235 union wx_rx_desc *rx_desc, 236 struct sk_buff **skb, 237 int *rx_buffer_pgcnt) 238 { 239 struct wx_rx_buffer *rx_buffer; 240 unsigned int size; 241 242 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 243 size = le16_to_cpu(rx_desc->wb.upper.length); 244 245 #if (PAGE_SIZE < 8192) 246 *rx_buffer_pgcnt = page_count(rx_buffer->page); 247 #else 248 *rx_buffer_pgcnt = 0; 249 #endif 250 251 prefetchw(rx_buffer->page); 252 *skb = rx_buffer->skb; 253 254 /* Delay unmapping of the first packet. It carries the header 255 * information, HW may still access the header after the writeback. 256 * Only unmap it when EOP is reached 257 */ 258 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { 259 if (!*skb) 260 goto skip_sync; 261 } else { 262 if (*skb) 263 wx_dma_sync_frag(rx_ring, rx_buffer); 264 } 265 266 /* we are reusing so sync this buffer for CPU use */ 267 dma_sync_single_range_for_cpu(rx_ring->dev, 268 rx_buffer->dma, 269 rx_buffer->page_offset, 270 size, 271 DMA_FROM_DEVICE); 272 skip_sync: 273 rx_buffer->pagecnt_bias--; 274 275 return rx_buffer; 276 } 277 278 static void wx_put_rx_buffer(struct wx_ring *rx_ring, 279 struct wx_rx_buffer *rx_buffer, 280 struct sk_buff *skb, 281 int rx_buffer_pgcnt) 282 { 283 if (wx_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 284 /* hand second half of page back to the ring */ 285 wx_reuse_rx_page(rx_ring, rx_buffer); 286 } else { 287 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) 288 /* the page has been released from the ring */ 289 WX_CB(skb)->page_released = true; 290 else 291 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 292 293 __page_frag_cache_drain(rx_buffer->page, 294 rx_buffer->pagecnt_bias); 295 } 296 297 /* clear contents of rx_buffer */ 298 rx_buffer->page = NULL; 299 rx_buffer->skb = NULL; 300 } 301 302 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, 303 struct wx_rx_buffer *rx_buffer, 304 union wx_rx_desc *rx_desc) 305 { 306 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 307 #if (PAGE_SIZE < 8192) 308 unsigned int truesize = WX_RX_BUFSZ; 309 #else 310 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 311 #endif 312 struct sk_buff *skb = rx_buffer->skb; 313 314 if (!skb) { 315 void *page_addr = page_address(rx_buffer->page) + 316 rx_buffer->page_offset; 317 318 /* prefetch first cache line of first page */ 319 prefetch(page_addr); 320 #if L1_CACHE_BYTES < 128 321 prefetch(page_addr + L1_CACHE_BYTES); 322 #endif 323 324 /* allocate a skb to store the frags */ 325 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); 326 if (unlikely(!skb)) 327 return NULL; 328 329 /* we will be copying header into skb->data in 330 * pskb_may_pull so it is in our interest to prefetch 331 * it now to avoid a possible cache miss 332 */ 333 prefetchw(skb->data); 334 335 if (size <= WX_RXBUFFER_256) { 336 memcpy(__skb_put(skb, size), page_addr, 337 ALIGN(size, sizeof(long))); 338 rx_buffer->pagecnt_bias++; 339 340 return skb; 341 } 342 343 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) 344 WX_CB(skb)->dma = rx_buffer->dma; 345 346 skb_add_rx_frag(skb, 0, rx_buffer->page, 347 rx_buffer->page_offset, 348 size, truesize); 349 goto out; 350 351 } else { 352 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 353 rx_buffer->page_offset, size, truesize); 354 } 355 356 out: 357 #if (PAGE_SIZE < 8192) 358 /* flip page offset to other buffer */ 359 rx_buffer->page_offset ^= truesize; 360 #else 361 /* move offset up to the next cache line */ 362 rx_buffer->page_offset += truesize; 363 #endif 364 365 return skb; 366 } 367 368 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, 369 struct wx_rx_buffer *bi) 370 { 371 struct page *page = bi->page; 372 dma_addr_t dma; 373 374 /* since we are recycling buffers we should seldom need to alloc */ 375 if (likely(page)) 376 return true; 377 378 page = page_pool_dev_alloc_pages(rx_ring->page_pool); 379 WARN_ON(!page); 380 dma = page_pool_get_dma_addr(page); 381 382 bi->page_dma = dma; 383 bi->page = page; 384 bi->page_offset = 0; 385 page_ref_add(page, USHRT_MAX - 1); 386 bi->pagecnt_bias = USHRT_MAX; 387 388 return true; 389 } 390 391 /** 392 * wx_alloc_rx_buffers - Replace used receive buffers 393 * @rx_ring: ring to place buffers on 394 * @cleaned_count: number of buffers to replace 395 **/ 396 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) 397 { 398 u16 i = rx_ring->next_to_use; 399 union wx_rx_desc *rx_desc; 400 struct wx_rx_buffer *bi; 401 402 /* nothing to do */ 403 if (!cleaned_count) 404 return; 405 406 rx_desc = WX_RX_DESC(rx_ring, i); 407 bi = &rx_ring->rx_buffer_info[i]; 408 i -= rx_ring->count; 409 410 do { 411 if (!wx_alloc_mapped_page(rx_ring, bi)) 412 break; 413 414 /* sync the buffer for use by the device */ 415 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 416 bi->page_offset, 417 WX_RX_BUFSZ, 418 DMA_FROM_DEVICE); 419 420 rx_desc->read.pkt_addr = 421 cpu_to_le64(bi->page_dma + bi->page_offset); 422 423 rx_desc++; 424 bi++; 425 i++; 426 if (unlikely(!i)) { 427 rx_desc = WX_RX_DESC(rx_ring, 0); 428 bi = rx_ring->rx_buffer_info; 429 i -= rx_ring->count; 430 } 431 432 /* clear the status bits for the next_to_use descriptor */ 433 rx_desc->wb.upper.status_error = 0; 434 435 cleaned_count--; 436 } while (cleaned_count); 437 438 i += rx_ring->count; 439 440 if (rx_ring->next_to_use != i) { 441 rx_ring->next_to_use = i; 442 /* update next to alloc since we have filled the ring */ 443 rx_ring->next_to_alloc = i; 444 445 /* Force memory writes to complete before letting h/w 446 * know there are new descriptors to fetch. (Only 447 * applicable for weak-ordered memory model archs, 448 * such as IA-64). 449 */ 450 wmb(); 451 writel(i, rx_ring->tail); 452 } 453 } 454 455 u16 wx_desc_unused(struct wx_ring *ring) 456 { 457 u16 ntc = ring->next_to_clean; 458 u16 ntu = ring->next_to_use; 459 460 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; 461 } 462 463 /** 464 * wx_is_non_eop - process handling of non-EOP buffers 465 * @rx_ring: Rx ring being processed 466 * @rx_desc: Rx descriptor for current buffer 467 * @skb: Current socket buffer containing buffer in progress 468 * 469 * This function updates next to clean. If the buffer is an EOP buffer 470 * this function exits returning false, otherwise it will place the 471 * sk_buff in the next buffer to be chained and return true indicating 472 * that this is in fact a non-EOP buffer. 473 **/ 474 static bool wx_is_non_eop(struct wx_ring *rx_ring, 475 union wx_rx_desc *rx_desc, 476 struct sk_buff *skb) 477 { 478 u32 ntc = rx_ring->next_to_clean + 1; 479 480 /* fetch, update, and store next to clean */ 481 ntc = (ntc < rx_ring->count) ? ntc : 0; 482 rx_ring->next_to_clean = ntc; 483 484 prefetch(WX_RX_DESC(rx_ring, ntc)); 485 486 /* if we are the last buffer then there is nothing else to do */ 487 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) 488 return false; 489 490 rx_ring->rx_buffer_info[ntc].skb = skb; 491 492 return true; 493 } 494 495 static void wx_pull_tail(struct sk_buff *skb) 496 { 497 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 498 unsigned int pull_len; 499 unsigned char *va; 500 501 /* it is valid to use page_address instead of kmap since we are 502 * working with pages allocated out of the lomem pool per 503 * alloc_page(GFP_ATOMIC) 504 */ 505 va = skb_frag_address(frag); 506 507 /* we need the header to contain the greater of either ETH_HLEN or 508 * 60 bytes if the skb->len is less than 60 for skb_pad. 509 */ 510 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); 511 512 /* align pull length to size of long to optimize memcpy performance */ 513 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 514 515 /* update all of the pointers */ 516 skb_frag_size_sub(frag, pull_len); 517 skb_frag_off_add(frag, pull_len); 518 skb->data_len -= pull_len; 519 skb->tail += pull_len; 520 } 521 522 /** 523 * wx_cleanup_headers - Correct corrupted or empty headers 524 * @rx_ring: rx descriptor ring packet is being transacted on 525 * @rx_desc: pointer to the EOP Rx descriptor 526 * @skb: pointer to current skb being fixed 527 * 528 * Check for corrupted packet headers caused by senders on the local L2 529 * embedded NIC switch not setting up their Tx Descriptors right. These 530 * should be very rare. 531 * 532 * Also address the case where we are pulling data in on pages only 533 * and as such no data is present in the skb header. 534 * 535 * In addition if skb is not at least 60 bytes we need to pad it so that 536 * it is large enough to qualify as a valid Ethernet frame. 537 * 538 * Returns true if an error was encountered and skb was freed. 539 **/ 540 static bool wx_cleanup_headers(struct wx_ring *rx_ring, 541 union wx_rx_desc *rx_desc, 542 struct sk_buff *skb) 543 { 544 struct net_device *netdev = rx_ring->netdev; 545 546 /* verify that the packet does not have any known errors */ 547 if (!netdev || 548 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && 549 !(netdev->features & NETIF_F_RXALL))) { 550 dev_kfree_skb_any(skb); 551 return true; 552 } 553 554 /* place header in linear portion of buffer */ 555 if (!skb_headlen(skb)) 556 wx_pull_tail(skb); 557 558 /* if eth_skb_pad returns an error the skb was freed */ 559 if (eth_skb_pad(skb)) 560 return true; 561 562 return false; 563 } 564 565 static void wx_rx_hash(struct wx_ring *ring, 566 union wx_rx_desc *rx_desc, 567 struct sk_buff *skb) 568 { 569 u16 rss_type; 570 571 if (!(ring->netdev->features & NETIF_F_RXHASH)) 572 return; 573 574 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 575 WX_RXD_RSSTYPE_MASK; 576 577 if (!rss_type) 578 return; 579 580 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 581 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 582 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 583 } 584 585 /** 586 * wx_rx_checksum - indicate in skb if hw indicated a good cksum 587 * @ring: structure containing ring specific data 588 * @rx_desc: current Rx descriptor being processed 589 * @skb: skb currently being received and modified 590 **/ 591 static void wx_rx_checksum(struct wx_ring *ring, 592 union wx_rx_desc *rx_desc, 593 struct sk_buff *skb) 594 { 595 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); 596 597 skb_checksum_none_assert(skb); 598 /* Rx csum disabled */ 599 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 600 return; 601 602 /* if IPv4 header checksum error */ 603 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && 604 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || 605 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && 606 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { 607 ring->rx_stats.csum_err++; 608 return; 609 } 610 611 /* L4 checksum offload flag must set for the below code to work */ 612 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) 613 return; 614 615 /* Hardware can't guarantee csum if IPv6 Dest Header found */ 616 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) 617 return; 618 619 /* if L4 checksum error */ 620 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { 621 ring->rx_stats.csum_err++; 622 return; 623 } 624 625 /* It must be a TCP or UDP or SCTP packet with a valid checksum */ 626 skb->ip_summed = CHECKSUM_UNNECESSARY; 627 628 /* If there is an outer header present that might contain a checksum 629 * we need to bump the checksum level by 1 to reflect the fact that 630 * we are indicating we validated the inner checksum. 631 */ 632 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) 633 __skb_incr_checksum_unnecessary(skb); 634 ring->rx_stats.csum_good_cnt++; 635 } 636 637 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, 638 struct sk_buff *skb) 639 { 640 u16 ethertype; 641 u8 idx = 0; 642 643 if ((ring->netdev->features & 644 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && 645 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { 646 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 647 0x1c0) >> 6; 648 ethertype = ring->q_vector->wx->tpid[idx]; 649 __vlan_hwaccel_put_tag(skb, htons(ethertype), 650 le16_to_cpu(rx_desc->wb.upper.vlan)); 651 } 652 } 653 654 /** 655 * wx_process_skb_fields - Populate skb header fields from Rx descriptor 656 * @rx_ring: rx descriptor ring packet is being transacted on 657 * @rx_desc: pointer to the EOP Rx descriptor 658 * @skb: pointer to current skb being populated 659 * 660 * This function checks the ring, descriptor, and packet information in 661 * order to populate the hash, checksum, protocol, and 662 * other fields within the skb. 663 **/ 664 static void wx_process_skb_fields(struct wx_ring *rx_ring, 665 union wx_rx_desc *rx_desc, 666 struct sk_buff *skb) 667 { 668 wx_rx_hash(rx_ring, rx_desc, skb); 669 wx_rx_checksum(rx_ring, rx_desc, skb); 670 wx_rx_vlan(rx_ring, rx_desc, skb); 671 skb_record_rx_queue(skb, rx_ring->queue_index); 672 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 673 } 674 675 /** 676 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 677 * @q_vector: structure containing interrupt and ring information 678 * @rx_ring: rx descriptor ring to transact packets on 679 * @budget: Total limit on number of packets to process 680 * 681 * This function provides a "bounce buffer" approach to Rx interrupt 682 * processing. The advantage to this is that on systems that have 683 * expensive overhead for IOMMU access this provides a means of avoiding 684 * it by maintaining the mapping of the page to the system. 685 * 686 * Returns amount of work completed. 687 **/ 688 static int wx_clean_rx_irq(struct wx_q_vector *q_vector, 689 struct wx_ring *rx_ring, 690 int budget) 691 { 692 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 693 u16 cleaned_count = wx_desc_unused(rx_ring); 694 695 do { 696 struct wx_rx_buffer *rx_buffer; 697 union wx_rx_desc *rx_desc; 698 struct sk_buff *skb; 699 int rx_buffer_pgcnt; 700 701 /* return some buffers to hardware, one at a time is too slow */ 702 if (cleaned_count >= WX_RX_BUFFER_WRITE) { 703 wx_alloc_rx_buffers(rx_ring, cleaned_count); 704 cleaned_count = 0; 705 } 706 707 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); 708 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) 709 break; 710 711 /* This memory barrier is needed to keep us from reading 712 * any other fields out of the rx_desc until we know the 713 * descriptor has been written back 714 */ 715 dma_rmb(); 716 717 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); 718 719 /* retrieve a buffer from the ring */ 720 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); 721 722 /* exit if we failed to retrieve a buffer */ 723 if (!skb) { 724 rx_buffer->pagecnt_bias++; 725 break; 726 } 727 728 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); 729 cleaned_count++; 730 731 /* place incomplete frames back on ring for completion */ 732 if (wx_is_non_eop(rx_ring, rx_desc, skb)) 733 continue; 734 735 /* verify the packet layout is correct */ 736 if (wx_cleanup_headers(rx_ring, rx_desc, skb)) 737 continue; 738 739 /* probably a little skewed due to removing CRC */ 740 total_rx_bytes += skb->len; 741 742 /* populate checksum, timestamp, VLAN, and protocol */ 743 wx_process_skb_fields(rx_ring, rx_desc, skb); 744 napi_gro_receive(&q_vector->napi, skb); 745 746 /* update budget accounting */ 747 total_rx_packets++; 748 } while (likely(total_rx_packets < budget)); 749 750 u64_stats_update_begin(&rx_ring->syncp); 751 rx_ring->stats.packets += total_rx_packets; 752 rx_ring->stats.bytes += total_rx_bytes; 753 u64_stats_update_end(&rx_ring->syncp); 754 q_vector->rx.total_packets += total_rx_packets; 755 q_vector->rx.total_bytes += total_rx_bytes; 756 757 return total_rx_packets; 758 } 759 760 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) 761 { 762 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 763 } 764 765 /** 766 * wx_clean_tx_irq - Reclaim resources after transmit completes 767 * @q_vector: structure containing interrupt and ring information 768 * @tx_ring: tx ring to clean 769 * @napi_budget: Used to determine if we are in netpoll 770 **/ 771 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, 772 struct wx_ring *tx_ring, int napi_budget) 773 { 774 unsigned int budget = q_vector->wx->tx_work_limit; 775 unsigned int total_bytes = 0, total_packets = 0; 776 unsigned int i = tx_ring->next_to_clean; 777 struct wx_tx_buffer *tx_buffer; 778 union wx_tx_desc *tx_desc; 779 780 if (!netif_carrier_ok(tx_ring->netdev)) 781 return true; 782 783 tx_buffer = &tx_ring->tx_buffer_info[i]; 784 tx_desc = WX_TX_DESC(tx_ring, i); 785 i -= tx_ring->count; 786 787 do { 788 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; 789 790 /* if next_to_watch is not set then there is no work pending */ 791 if (!eop_desc) 792 break; 793 794 /* prevent any other reads prior to eop_desc */ 795 smp_rmb(); 796 797 /* if DD is not set pending work has not been completed */ 798 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) 799 break; 800 801 /* clear next_to_watch to prevent false hangs */ 802 tx_buffer->next_to_watch = NULL; 803 804 /* update the statistics for this packet */ 805 total_bytes += tx_buffer->bytecount; 806 total_packets += tx_buffer->gso_segs; 807 808 /* free the skb */ 809 napi_consume_skb(tx_buffer->skb, napi_budget); 810 811 /* unmap skb header data */ 812 dma_unmap_single(tx_ring->dev, 813 dma_unmap_addr(tx_buffer, dma), 814 dma_unmap_len(tx_buffer, len), 815 DMA_TO_DEVICE); 816 817 /* clear tx_buffer data */ 818 dma_unmap_len_set(tx_buffer, len, 0); 819 820 /* unmap remaining buffers */ 821 while (tx_desc != eop_desc) { 822 tx_buffer++; 823 tx_desc++; 824 i++; 825 if (unlikely(!i)) { 826 i -= tx_ring->count; 827 tx_buffer = tx_ring->tx_buffer_info; 828 tx_desc = WX_TX_DESC(tx_ring, 0); 829 } 830 831 /* unmap any remaining paged data */ 832 if (dma_unmap_len(tx_buffer, len)) { 833 dma_unmap_page(tx_ring->dev, 834 dma_unmap_addr(tx_buffer, dma), 835 dma_unmap_len(tx_buffer, len), 836 DMA_TO_DEVICE); 837 dma_unmap_len_set(tx_buffer, len, 0); 838 } 839 } 840 841 /* move us one more past the eop_desc for start of next pkt */ 842 tx_buffer++; 843 tx_desc++; 844 i++; 845 if (unlikely(!i)) { 846 i -= tx_ring->count; 847 tx_buffer = tx_ring->tx_buffer_info; 848 tx_desc = WX_TX_DESC(tx_ring, 0); 849 } 850 851 /* issue prefetch for next Tx descriptor */ 852 prefetch(tx_desc); 853 854 /* update budget accounting */ 855 budget--; 856 } while (likely(budget)); 857 858 i += tx_ring->count; 859 tx_ring->next_to_clean = i; 860 u64_stats_update_begin(&tx_ring->syncp); 861 tx_ring->stats.bytes += total_bytes; 862 tx_ring->stats.packets += total_packets; 863 u64_stats_update_end(&tx_ring->syncp); 864 q_vector->tx.total_bytes += total_bytes; 865 q_vector->tx.total_packets += total_packets; 866 867 netdev_tx_completed_queue(wx_txring_txq(tx_ring), 868 total_packets, total_bytes); 869 870 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 871 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 872 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 873 /* Make sure that anybody stopping the queue after this 874 * sees the new next_to_clean. 875 */ 876 smp_mb(); 877 878 if (__netif_subqueue_stopped(tx_ring->netdev, 879 tx_ring->queue_index) && 880 netif_running(tx_ring->netdev)) 881 netif_wake_subqueue(tx_ring->netdev, 882 tx_ring->queue_index); 883 } 884 885 return !!budget; 886 } 887 888 /** 889 * wx_poll - NAPI polling RX/TX cleanup routine 890 * @napi: napi struct with our devices info in it 891 * @budget: amount of work driver is allowed to do this pass, in packets 892 * 893 * This function will clean all queues associated with a q_vector. 894 **/ 895 static int wx_poll(struct napi_struct *napi, int budget) 896 { 897 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); 898 int per_ring_budget, work_done = 0; 899 struct wx *wx = q_vector->wx; 900 bool clean_complete = true; 901 struct wx_ring *ring; 902 903 wx_for_each_ring(ring, q_vector->tx) { 904 if (!wx_clean_tx_irq(q_vector, ring, budget)) 905 clean_complete = false; 906 } 907 908 /* Exit if we are called by netpoll */ 909 if (budget <= 0) 910 return budget; 911 912 /* attempt to distribute budget to each queue fairly, but don't allow 913 * the budget to go below 1 because we'll exit polling 914 */ 915 if (q_vector->rx.count > 1) 916 per_ring_budget = max(budget / q_vector->rx.count, 1); 917 else 918 per_ring_budget = budget; 919 920 wx_for_each_ring(ring, q_vector->rx) { 921 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); 922 923 work_done += cleaned; 924 if (cleaned >= per_ring_budget) 925 clean_complete = false; 926 } 927 928 /* If all work not completed, return budget and keep polling */ 929 if (!clean_complete) 930 return budget; 931 932 /* all work done, exit the polling mode */ 933 if (likely(napi_complete_done(napi, work_done))) { 934 if (netif_running(wx->netdev)) 935 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); 936 } 937 938 return min(work_done, budget - 1); 939 } 940 941 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) 942 { 943 if (likely(wx_desc_unused(tx_ring) >= size)) 944 return 0; 945 946 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 947 948 /* For the next check */ 949 smp_mb(); 950 951 /* We need to check again in a case another CPU has just 952 * made room available. 953 */ 954 if (likely(wx_desc_unused(tx_ring) < size)) 955 return -EBUSY; 956 957 /* A reprieve! - use start_queue because it doesn't call schedule */ 958 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 959 960 return 0; 961 } 962 963 static u32 wx_tx_cmd_type(u32 tx_flags) 964 { 965 /* set type for advanced descriptor with frame checksum insertion */ 966 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; 967 968 /* set HW vlan bit if vlan is present */ 969 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); 970 /* set segmentation enable bits for TSO/FSO */ 971 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); 972 /* set timestamp bit if present */ 973 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); 974 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); 975 976 return cmd_type; 977 } 978 979 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, 980 u32 tx_flags, unsigned int paylen) 981 { 982 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; 983 984 /* enable L4 checksum for TSO and TX checksum offload */ 985 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); 986 /* enable IPv4 checksum for TSO */ 987 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); 988 /* enable outer IPv4 checksum for TSO */ 989 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, 990 WX_TXD_EIPCS); 991 /* Check Context must be set if Tx switch is enabled, which it 992 * always is for case where virtual functions are running 993 */ 994 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); 995 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, 996 WX_TXD_IPSEC); 997 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 998 } 999 1000 static void wx_tx_map(struct wx_ring *tx_ring, 1001 struct wx_tx_buffer *first, 1002 const u8 hdr_len) 1003 { 1004 struct sk_buff *skb = first->skb; 1005 struct wx_tx_buffer *tx_buffer; 1006 u32 tx_flags = first->tx_flags; 1007 u16 i = tx_ring->next_to_use; 1008 unsigned int data_len, size; 1009 union wx_tx_desc *tx_desc; 1010 skb_frag_t *frag; 1011 dma_addr_t dma; 1012 u32 cmd_type; 1013 1014 cmd_type = wx_tx_cmd_type(tx_flags); 1015 tx_desc = WX_TX_DESC(tx_ring, i); 1016 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 1017 1018 size = skb_headlen(skb); 1019 data_len = skb->data_len; 1020 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 1021 1022 tx_buffer = first; 1023 1024 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 1025 if (dma_mapping_error(tx_ring->dev, dma)) 1026 goto dma_error; 1027 1028 /* record length, and DMA address */ 1029 dma_unmap_len_set(tx_buffer, len, size); 1030 dma_unmap_addr_set(tx_buffer, dma, dma); 1031 1032 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1033 1034 while (unlikely(size > WX_MAX_DATA_PER_TXD)) { 1035 tx_desc->read.cmd_type_len = 1036 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); 1037 1038 i++; 1039 tx_desc++; 1040 if (i == tx_ring->count) { 1041 tx_desc = WX_TX_DESC(tx_ring, 0); 1042 i = 0; 1043 } 1044 tx_desc->read.olinfo_status = 0; 1045 1046 dma += WX_MAX_DATA_PER_TXD; 1047 size -= WX_MAX_DATA_PER_TXD; 1048 1049 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1050 } 1051 1052 if (likely(!data_len)) 1053 break; 1054 1055 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 1056 1057 i++; 1058 tx_desc++; 1059 if (i == tx_ring->count) { 1060 tx_desc = WX_TX_DESC(tx_ring, 0); 1061 i = 0; 1062 } 1063 tx_desc->read.olinfo_status = 0; 1064 1065 size = skb_frag_size(frag); 1066 1067 data_len -= size; 1068 1069 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1070 DMA_TO_DEVICE); 1071 1072 tx_buffer = &tx_ring->tx_buffer_info[i]; 1073 } 1074 1075 /* write last descriptor with RS and EOP bits */ 1076 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; 1077 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1078 1079 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); 1080 1081 skb_tx_timestamp(skb); 1082 1083 /* Force memory writes to complete before letting h/w know there 1084 * are new descriptors to fetch. (Only applicable for weak-ordered 1085 * memory model archs, such as IA-64). 1086 * 1087 * We also need this memory barrier to make certain all of the 1088 * status bits have been updated before next_to_watch is written. 1089 */ 1090 wmb(); 1091 1092 /* set next_to_watch value indicating a packet is present */ 1093 first->next_to_watch = tx_desc; 1094 1095 i++; 1096 if (i == tx_ring->count) 1097 i = 0; 1098 1099 tx_ring->next_to_use = i; 1100 1101 wx_maybe_stop_tx(tx_ring, DESC_NEEDED); 1102 1103 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) 1104 writel(i, tx_ring->tail); 1105 1106 return; 1107 dma_error: 1108 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1109 1110 /* clear dma mappings for failed tx_buffer_info map */ 1111 for (;;) { 1112 tx_buffer = &tx_ring->tx_buffer_info[i]; 1113 if (dma_unmap_len(tx_buffer, len)) 1114 dma_unmap_page(tx_ring->dev, 1115 dma_unmap_addr(tx_buffer, dma), 1116 dma_unmap_len(tx_buffer, len), 1117 DMA_TO_DEVICE); 1118 dma_unmap_len_set(tx_buffer, len, 0); 1119 if (tx_buffer == first) 1120 break; 1121 if (i == 0) 1122 i += tx_ring->count; 1123 i--; 1124 } 1125 1126 dev_kfree_skb_any(first->skb); 1127 first->skb = NULL; 1128 1129 tx_ring->next_to_use = i; 1130 } 1131 1132 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, 1133 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) 1134 { 1135 struct wx_tx_context_desc *context_desc; 1136 u16 i = tx_ring->next_to_use; 1137 1138 context_desc = WX_TX_CTXTDESC(tx_ring, i); 1139 i++; 1140 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1141 1142 /* set bits to identify this as an advanced context descriptor */ 1143 type_tucmd |= WX_TXD_DTYP_CTXT; 1144 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1145 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); 1146 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1147 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1148 } 1149 1150 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) 1151 { 1152 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); 1153 1154 *nexthdr = hdr->nexthdr; 1155 offset += sizeof(struct ipv6hdr); 1156 while (ipv6_ext_hdr(*nexthdr)) { 1157 struct ipv6_opt_hdr _hdr, *hp; 1158 1159 if (*nexthdr == NEXTHDR_NONE) 1160 return; 1161 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); 1162 if (!hp) 1163 return; 1164 if (*nexthdr == NEXTHDR_FRAGMENT) 1165 break; 1166 *nexthdr = hp->nexthdr; 1167 } 1168 } 1169 1170 union network_header { 1171 struct iphdr *ipv4; 1172 struct ipv6hdr *ipv6; 1173 void *raw; 1174 }; 1175 1176 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) 1177 { 1178 u8 tun_prot = 0, l4_prot = 0, ptype = 0; 1179 struct sk_buff *skb = first->skb; 1180 1181 if (skb->encapsulation) { 1182 union network_header hdr; 1183 1184 switch (first->protocol) { 1185 case htons(ETH_P_IP): 1186 tun_prot = ip_hdr(skb)->protocol; 1187 ptype = WX_PTYPE_TUN_IPV4; 1188 break; 1189 case htons(ETH_P_IPV6): 1190 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); 1191 ptype = WX_PTYPE_TUN_IPV6; 1192 break; 1193 default: 1194 return ptype; 1195 } 1196 1197 if (tun_prot == IPPROTO_IPIP) { 1198 hdr.raw = (void *)inner_ip_hdr(skb); 1199 ptype |= WX_PTYPE_PKT_IPIP; 1200 } else if (tun_prot == IPPROTO_UDP) { 1201 hdr.raw = (void *)inner_ip_hdr(skb); 1202 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1203 skb->inner_protocol != htons(ETH_P_TEB)) { 1204 ptype |= WX_PTYPE_PKT_IG; 1205 } else { 1206 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1207 == htons(ETH_P_8021Q)) 1208 ptype |= WX_PTYPE_PKT_IGMV; 1209 else 1210 ptype |= WX_PTYPE_PKT_IGM; 1211 } 1212 1213 } else if (tun_prot == IPPROTO_GRE) { 1214 hdr.raw = (void *)inner_ip_hdr(skb); 1215 if (skb->inner_protocol == htons(ETH_P_IP) || 1216 skb->inner_protocol == htons(ETH_P_IPV6)) { 1217 ptype |= WX_PTYPE_PKT_IG; 1218 } else { 1219 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1220 == htons(ETH_P_8021Q)) 1221 ptype |= WX_PTYPE_PKT_IGMV; 1222 else 1223 ptype |= WX_PTYPE_PKT_IGM; 1224 } 1225 } else { 1226 return ptype; 1227 } 1228 1229 switch (hdr.ipv4->version) { 1230 case IPVERSION: 1231 l4_prot = hdr.ipv4->protocol; 1232 break; 1233 case 6: 1234 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); 1235 ptype |= WX_PTYPE_PKT_IPV6; 1236 break; 1237 default: 1238 return ptype; 1239 } 1240 } else { 1241 switch (first->protocol) { 1242 case htons(ETH_P_IP): 1243 l4_prot = ip_hdr(skb)->protocol; 1244 ptype = WX_PTYPE_PKT_IP; 1245 break; 1246 case htons(ETH_P_IPV6): 1247 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); 1248 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; 1249 break; 1250 default: 1251 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; 1252 } 1253 } 1254 switch (l4_prot) { 1255 case IPPROTO_TCP: 1256 ptype |= WX_PTYPE_TYP_TCP; 1257 break; 1258 case IPPROTO_UDP: 1259 ptype |= WX_PTYPE_TYP_UDP; 1260 break; 1261 case IPPROTO_SCTP: 1262 ptype |= WX_PTYPE_TYP_SCTP; 1263 break; 1264 default: 1265 ptype |= WX_PTYPE_TYP_IP; 1266 break; 1267 } 1268 1269 return ptype; 1270 } 1271 1272 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1273 u8 *hdr_len, u8 ptype) 1274 { 1275 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1276 struct net_device *netdev = tx_ring->netdev; 1277 u32 l4len, tunhdr_eiplen_tunlen = 0; 1278 struct sk_buff *skb = first->skb; 1279 bool enc = skb->encapsulation; 1280 struct ipv6hdr *ipv6h; 1281 struct tcphdr *tcph; 1282 struct iphdr *iph; 1283 u8 tun_prot = 0; 1284 int err; 1285 1286 if (skb->ip_summed != CHECKSUM_PARTIAL) 1287 return 0; 1288 1289 if (!skb_is_gso(skb)) 1290 return 0; 1291 1292 err = skb_cow_head(skb, 0); 1293 if (err < 0) 1294 return err; 1295 1296 /* indicates the inner headers in the skbuff are valid. */ 1297 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); 1298 if (iph->version == 4) { 1299 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1300 iph->tot_len = 0; 1301 iph->check = 0; 1302 tcph->check = ~csum_tcpudp_magic(iph->saddr, 1303 iph->daddr, 0, 1304 IPPROTO_TCP, 0); 1305 first->tx_flags |= WX_TX_FLAGS_TSO | 1306 WX_TX_FLAGS_CSUM | 1307 WX_TX_FLAGS_IPV4 | 1308 WX_TX_FLAGS_CC; 1309 } else if (iph->version == 6 && skb_is_gso_v6(skb)) { 1310 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 1311 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1312 ipv6h->payload_len = 0; 1313 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, 1314 &ipv6h->daddr, 0, 1315 IPPROTO_TCP, 0); 1316 first->tx_flags |= WX_TX_FLAGS_TSO | 1317 WX_TX_FLAGS_CSUM | 1318 WX_TX_FLAGS_CC; 1319 } 1320 1321 /* compute header lengths */ 1322 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 1323 *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) : 1324 skb_transport_offset(skb); 1325 *hdr_len += l4len; 1326 1327 /* update gso size and bytecount with header size */ 1328 first->gso_segs = skb_shinfo(skb)->gso_segs; 1329 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1330 1331 /* mss_l4len_id: use 0 as index for TSO */ 1332 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; 1333 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; 1334 1335 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 1336 if (enc) { 1337 switch (first->protocol) { 1338 case htons(ETH_P_IP): 1339 tun_prot = ip_hdr(skb)->protocol; 1340 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; 1341 break; 1342 case htons(ETH_P_IPV6): 1343 tun_prot = ipv6_hdr(skb)->nexthdr; 1344 break; 1345 default: 1346 break; 1347 } 1348 switch (tun_prot) { 1349 case IPPROTO_UDP: 1350 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1351 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1352 WX_TXD_OUTER_IPLEN_SHIFT) | 1353 (((skb_inner_mac_header(skb) - 1354 skb_transport_header(skb)) >> 1) << 1355 WX_TXD_TUNNEL_LEN_SHIFT); 1356 break; 1357 case IPPROTO_GRE: 1358 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1359 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1360 WX_TXD_OUTER_IPLEN_SHIFT) | 1361 (((skb_inner_mac_header(skb) - 1362 skb_transport_header(skb)) >> 1) << 1363 WX_TXD_TUNNEL_LEN_SHIFT); 1364 break; 1365 case IPPROTO_IPIP: 1366 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1367 (char *)ip_hdr(skb)) >> 2) << 1368 WX_TXD_OUTER_IPLEN_SHIFT; 1369 break; 1370 default: 1371 break; 1372 } 1373 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; 1374 } else { 1375 vlan_macip_lens = skb_network_header_len(skb) >> 1; 1376 } 1377 1378 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; 1379 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1380 1381 type_tucmd = ptype << 24; 1382 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1383 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1384 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1385 WX_TX_FLAGS_HW_VLAN, 1386 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1387 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1388 type_tucmd, mss_l4len_idx); 1389 1390 return 1; 1391 } 1392 1393 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1394 u8 ptype) 1395 { 1396 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; 1397 struct net_device *netdev = tx_ring->netdev; 1398 u32 mss_l4len_idx = 0, type_tucmd; 1399 struct sk_buff *skb = first->skb; 1400 u8 tun_prot = 0; 1401 1402 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1403 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && 1404 !(first->tx_flags & WX_TX_FLAGS_CC)) 1405 return; 1406 vlan_macip_lens = skb_network_offset(skb) << 1407 WX_TXD_MACLEN_SHIFT; 1408 } else { 1409 u8 l4_prot = 0; 1410 union { 1411 struct iphdr *ipv4; 1412 struct ipv6hdr *ipv6; 1413 u8 *raw; 1414 } network_hdr; 1415 union { 1416 struct tcphdr *tcphdr; 1417 u8 *raw; 1418 } transport_hdr; 1419 1420 if (skb->encapsulation) { 1421 network_hdr.raw = skb_inner_network_header(skb); 1422 transport_hdr.raw = skb_inner_transport_header(skb); 1423 vlan_macip_lens = skb_network_offset(skb) << 1424 WX_TXD_MACLEN_SHIFT; 1425 switch (first->protocol) { 1426 case htons(ETH_P_IP): 1427 tun_prot = ip_hdr(skb)->protocol; 1428 break; 1429 case htons(ETH_P_IPV6): 1430 tun_prot = ipv6_hdr(skb)->nexthdr; 1431 break; 1432 default: 1433 return; 1434 } 1435 switch (tun_prot) { 1436 case IPPROTO_UDP: 1437 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1438 tunhdr_eiplen_tunlen |= 1439 ((skb_network_header_len(skb) >> 2) << 1440 WX_TXD_OUTER_IPLEN_SHIFT) | 1441 (((skb_inner_mac_header(skb) - 1442 skb_transport_header(skb)) >> 1) << 1443 WX_TXD_TUNNEL_LEN_SHIFT); 1444 break; 1445 case IPPROTO_GRE: 1446 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1447 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1448 WX_TXD_OUTER_IPLEN_SHIFT) | 1449 (((skb_inner_mac_header(skb) - 1450 skb_transport_header(skb)) >> 1) << 1451 WX_TXD_TUNNEL_LEN_SHIFT); 1452 break; 1453 case IPPROTO_IPIP: 1454 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1455 (char *)ip_hdr(skb)) >> 2) << 1456 WX_TXD_OUTER_IPLEN_SHIFT; 1457 break; 1458 default: 1459 break; 1460 } 1461 1462 } else { 1463 network_hdr.raw = skb_network_header(skb); 1464 transport_hdr.raw = skb_transport_header(skb); 1465 vlan_macip_lens = skb_network_offset(skb) << 1466 WX_TXD_MACLEN_SHIFT; 1467 } 1468 1469 switch (network_hdr.ipv4->version) { 1470 case IPVERSION: 1471 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1472 l4_prot = network_hdr.ipv4->protocol; 1473 break; 1474 case 6: 1475 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1476 l4_prot = network_hdr.ipv6->nexthdr; 1477 break; 1478 default: 1479 break; 1480 } 1481 1482 switch (l4_prot) { 1483 case IPPROTO_TCP: 1484 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << 1485 WX_TXD_L4LEN_SHIFT; 1486 break; 1487 case IPPROTO_SCTP: 1488 mss_l4len_idx = sizeof(struct sctphdr) << 1489 WX_TXD_L4LEN_SHIFT; 1490 break; 1491 case IPPROTO_UDP: 1492 mss_l4len_idx = sizeof(struct udphdr) << 1493 WX_TXD_L4LEN_SHIFT; 1494 break; 1495 default: 1496 break; 1497 } 1498 1499 /* update TX checksum flag */ 1500 first->tx_flags |= WX_TX_FLAGS_CSUM; 1501 } 1502 first->tx_flags |= WX_TX_FLAGS_CC; 1503 /* vlan_macip_lens: MACLEN, VLAN tag */ 1504 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1505 1506 type_tucmd = ptype << 24; 1507 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1508 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1509 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1510 WX_TX_FLAGS_HW_VLAN, 1511 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1512 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1513 type_tucmd, mss_l4len_idx); 1514 } 1515 1516 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, 1517 struct wx_ring *tx_ring) 1518 { 1519 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1520 struct wx_tx_buffer *first; 1521 u8 hdr_len = 0, ptype; 1522 unsigned short f; 1523 u32 tx_flags = 0; 1524 int tso; 1525 1526 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, 1527 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, 1528 * + 2 desc gap to keep tail from touching head, 1529 * + 1 desc for context descriptor, 1530 * otherwise try next time 1531 */ 1532 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1533 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> 1534 frags[f])); 1535 1536 if (wx_maybe_stop_tx(tx_ring, count + 3)) 1537 return NETDEV_TX_BUSY; 1538 1539 /* record the location of the first descriptor for this packet */ 1540 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1541 first->skb = skb; 1542 first->bytecount = skb->len; 1543 first->gso_segs = 1; 1544 1545 /* if we have a HW VLAN tag being added default to the HW one */ 1546 if (skb_vlan_tag_present(skb)) { 1547 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; 1548 tx_flags |= WX_TX_FLAGS_HW_VLAN; 1549 } 1550 1551 /* record initial flags and protocol */ 1552 first->tx_flags = tx_flags; 1553 first->protocol = vlan_get_protocol(skb); 1554 1555 ptype = wx_encode_tx_desc_ptype(first); 1556 1557 tso = wx_tso(tx_ring, first, &hdr_len, ptype); 1558 if (tso < 0) 1559 goto out_drop; 1560 else if (!tso) 1561 wx_tx_csum(tx_ring, first, ptype); 1562 wx_tx_map(tx_ring, first, hdr_len); 1563 1564 return NETDEV_TX_OK; 1565 out_drop: 1566 dev_kfree_skb_any(first->skb); 1567 first->skb = NULL; 1568 1569 return NETDEV_TX_OK; 1570 } 1571 1572 netdev_tx_t wx_xmit_frame(struct sk_buff *skb, 1573 struct net_device *netdev) 1574 { 1575 unsigned int r_idx = skb->queue_mapping; 1576 struct wx *wx = netdev_priv(netdev); 1577 struct wx_ring *tx_ring; 1578 1579 if (!netif_carrier_ok(netdev)) { 1580 dev_kfree_skb_any(skb); 1581 return NETDEV_TX_OK; 1582 } 1583 1584 /* The minimum packet size for olinfo paylen is 17 so pad the skb 1585 * in order to meet this minimum size requirement. 1586 */ 1587 if (skb_put_padto(skb, 17)) 1588 return NETDEV_TX_OK; 1589 1590 if (r_idx >= wx->num_tx_queues) 1591 r_idx = r_idx % wx->num_tx_queues; 1592 tx_ring = wx->tx_ring[r_idx]; 1593 1594 return wx_xmit_frame_ring(skb, tx_ring); 1595 } 1596 EXPORT_SYMBOL(wx_xmit_frame); 1597 1598 void wx_napi_enable_all(struct wx *wx) 1599 { 1600 struct wx_q_vector *q_vector; 1601 int q_idx; 1602 1603 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1604 q_vector = wx->q_vector[q_idx]; 1605 napi_enable(&q_vector->napi); 1606 } 1607 } 1608 EXPORT_SYMBOL(wx_napi_enable_all); 1609 1610 void wx_napi_disable_all(struct wx *wx) 1611 { 1612 struct wx_q_vector *q_vector; 1613 int q_idx; 1614 1615 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1616 q_vector = wx->q_vector[q_idx]; 1617 napi_disable(&q_vector->napi); 1618 } 1619 } 1620 EXPORT_SYMBOL(wx_napi_disable_all); 1621 1622 /** 1623 * wx_set_rss_queues: Allocate queues for RSS 1624 * @wx: board private structure to initialize 1625 * 1626 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1627 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1628 * 1629 **/ 1630 static void wx_set_rss_queues(struct wx *wx) 1631 { 1632 wx->num_rx_queues = wx->mac.max_rx_queues; 1633 wx->num_tx_queues = wx->mac.max_tx_queues; 1634 } 1635 1636 static void wx_set_num_queues(struct wx *wx) 1637 { 1638 /* Start with base case */ 1639 wx->num_rx_queues = 1; 1640 wx->num_tx_queues = 1; 1641 wx->queues_per_pool = 1; 1642 1643 wx_set_rss_queues(wx); 1644 } 1645 1646 /** 1647 * wx_acquire_msix_vectors - acquire MSI-X vectors 1648 * @wx: board private structure 1649 * 1650 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will 1651 * return a negative error code if unable to acquire MSI-X vectors for any 1652 * reason. 1653 */ 1654 static int wx_acquire_msix_vectors(struct wx *wx) 1655 { 1656 struct irq_affinity affd = {0, }; 1657 int nvecs, i; 1658 1659 nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors); 1660 1661 wx->msix_entries = kcalloc(nvecs, 1662 sizeof(struct msix_entry), 1663 GFP_KERNEL); 1664 if (!wx->msix_entries) 1665 return -ENOMEM; 1666 1667 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, 1668 nvecs, 1669 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, 1670 &affd); 1671 if (nvecs < 0) { 1672 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); 1673 kfree(wx->msix_entries); 1674 wx->msix_entries = NULL; 1675 return nvecs; 1676 } 1677 1678 for (i = 0; i < nvecs; i++) { 1679 wx->msix_entries[i].entry = i; 1680 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i); 1681 } 1682 1683 /* one for msix_other */ 1684 nvecs -= 1; 1685 wx->num_q_vectors = nvecs; 1686 wx->num_rx_queues = nvecs; 1687 wx->num_tx_queues = nvecs; 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * wx_set_interrupt_capability - set MSI-X or MSI if supported 1694 * @wx: board private structure to initialize 1695 * 1696 * Attempt to configure the interrupts using the best available 1697 * capabilities of the hardware and the kernel. 1698 **/ 1699 static int wx_set_interrupt_capability(struct wx *wx) 1700 { 1701 struct pci_dev *pdev = wx->pdev; 1702 int nvecs, ret; 1703 1704 /* We will try to get MSI-X interrupts first */ 1705 ret = wx_acquire_msix_vectors(wx); 1706 if (ret == 0 || (ret == -ENOMEM)) 1707 return ret; 1708 1709 wx->num_rx_queues = 1; 1710 wx->num_tx_queues = 1; 1711 wx->num_q_vectors = 1; 1712 1713 /* minmum one for queue, one for misc*/ 1714 nvecs = 1; 1715 nvecs = pci_alloc_irq_vectors(pdev, nvecs, 1716 nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY); 1717 if (nvecs == 1) { 1718 if (pdev->msi_enabled) 1719 wx_err(wx, "Fallback to MSI.\n"); 1720 else 1721 wx_err(wx, "Fallback to LEGACY.\n"); 1722 } else { 1723 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs); 1724 return nvecs; 1725 } 1726 1727 pdev->irq = pci_irq_vector(pdev, 0); 1728 1729 return 0; 1730 } 1731 1732 /** 1733 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS 1734 * @wx: board private structure to initialize 1735 * 1736 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. 1737 * 1738 **/ 1739 static void wx_cache_ring_rss(struct wx *wx) 1740 { 1741 u16 i; 1742 1743 for (i = 0; i < wx->num_rx_queues; i++) 1744 wx->rx_ring[i]->reg_idx = i; 1745 1746 for (i = 0; i < wx->num_tx_queues; i++) 1747 wx->tx_ring[i]->reg_idx = i; 1748 } 1749 1750 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) 1751 { 1752 ring->next = head->ring; 1753 head->ring = ring; 1754 head->count++; 1755 } 1756 1757 /** 1758 * wx_alloc_q_vector - Allocate memory for a single interrupt vector 1759 * @wx: board private structure to initialize 1760 * @v_count: q_vectors allocated on wx, used for ring interleaving 1761 * @v_idx: index of vector in wx struct 1762 * @txr_count: total number of Tx rings to allocate 1763 * @txr_idx: index of first Tx ring to allocate 1764 * @rxr_count: total number of Rx rings to allocate 1765 * @rxr_idx: index of first Rx ring to allocate 1766 * 1767 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1768 **/ 1769 static int wx_alloc_q_vector(struct wx *wx, 1770 unsigned int v_count, unsigned int v_idx, 1771 unsigned int txr_count, unsigned int txr_idx, 1772 unsigned int rxr_count, unsigned int rxr_idx) 1773 { 1774 struct wx_q_vector *q_vector; 1775 int ring_count, default_itr; 1776 struct wx_ring *ring; 1777 1778 /* note this will allocate space for the ring structure as well! */ 1779 ring_count = txr_count + rxr_count; 1780 1781 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 1782 GFP_KERNEL); 1783 if (!q_vector) 1784 return -ENOMEM; 1785 1786 /* initialize NAPI */ 1787 netif_napi_add(wx->netdev, &q_vector->napi, 1788 wx_poll); 1789 1790 /* tie q_vector and wx together */ 1791 wx->q_vector[v_idx] = q_vector; 1792 q_vector->wx = wx; 1793 q_vector->v_idx = v_idx; 1794 if (cpu_online(v_idx)) 1795 q_vector->numa_node = cpu_to_node(v_idx); 1796 1797 /* initialize pointer to rings */ 1798 ring = q_vector->ring; 1799 1800 if (wx->mac.type == wx_mac_sp) 1801 default_itr = WX_12K_ITR; 1802 else 1803 default_itr = WX_7K_ITR; 1804 /* initialize ITR */ 1805 if (txr_count && !rxr_count) 1806 /* tx only vector */ 1807 q_vector->itr = wx->tx_itr_setting ? 1808 default_itr : wx->tx_itr_setting; 1809 else 1810 /* rx or rx/tx vector */ 1811 q_vector->itr = wx->rx_itr_setting ? 1812 default_itr : wx->rx_itr_setting; 1813 1814 while (txr_count) { 1815 /* assign generic ring traits */ 1816 ring->dev = &wx->pdev->dev; 1817 ring->netdev = wx->netdev; 1818 1819 /* configure backlink on ring */ 1820 ring->q_vector = q_vector; 1821 1822 /* update q_vector Tx values */ 1823 wx_add_ring(ring, &q_vector->tx); 1824 1825 /* apply Tx specific ring traits */ 1826 ring->count = wx->tx_ring_count; 1827 1828 ring->queue_index = txr_idx; 1829 1830 /* assign ring to wx */ 1831 wx->tx_ring[txr_idx] = ring; 1832 1833 /* update count and index */ 1834 txr_count--; 1835 txr_idx += v_count; 1836 1837 /* push pointer to next ring */ 1838 ring++; 1839 } 1840 1841 while (rxr_count) { 1842 /* assign generic ring traits */ 1843 ring->dev = &wx->pdev->dev; 1844 ring->netdev = wx->netdev; 1845 1846 /* configure backlink on ring */ 1847 ring->q_vector = q_vector; 1848 1849 /* update q_vector Rx values */ 1850 wx_add_ring(ring, &q_vector->rx); 1851 1852 /* apply Rx specific ring traits */ 1853 ring->count = wx->rx_ring_count; 1854 ring->queue_index = rxr_idx; 1855 1856 /* assign ring to wx */ 1857 wx->rx_ring[rxr_idx] = ring; 1858 1859 /* update count and index */ 1860 rxr_count--; 1861 rxr_idx += v_count; 1862 1863 /* push pointer to next ring */ 1864 ring++; 1865 } 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * wx_free_q_vector - Free memory allocated for specific interrupt vector 1872 * @wx: board private structure to initialize 1873 * @v_idx: Index of vector to be freed 1874 * 1875 * This function frees the memory allocated to the q_vector. In addition if 1876 * NAPI is enabled it will delete any references to the NAPI struct prior 1877 * to freeing the q_vector. 1878 **/ 1879 static void wx_free_q_vector(struct wx *wx, int v_idx) 1880 { 1881 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 1882 struct wx_ring *ring; 1883 1884 wx_for_each_ring(ring, q_vector->tx) 1885 wx->tx_ring[ring->queue_index] = NULL; 1886 1887 wx_for_each_ring(ring, q_vector->rx) 1888 wx->rx_ring[ring->queue_index] = NULL; 1889 1890 wx->q_vector[v_idx] = NULL; 1891 netif_napi_del(&q_vector->napi); 1892 kfree_rcu(q_vector, rcu); 1893 } 1894 1895 /** 1896 * wx_alloc_q_vectors - Allocate memory for interrupt vectors 1897 * @wx: board private structure to initialize 1898 * 1899 * We allocate one q_vector per queue interrupt. If allocation fails we 1900 * return -ENOMEM. 1901 **/ 1902 static int wx_alloc_q_vectors(struct wx *wx) 1903 { 1904 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1905 unsigned int rxr_remaining = wx->num_rx_queues; 1906 unsigned int txr_remaining = wx->num_tx_queues; 1907 unsigned int q_vectors = wx->num_q_vectors; 1908 int rqpv, tqpv; 1909 int err; 1910 1911 for (; v_idx < q_vectors; v_idx++) { 1912 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1913 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1914 err = wx_alloc_q_vector(wx, q_vectors, v_idx, 1915 tqpv, txr_idx, 1916 rqpv, rxr_idx); 1917 1918 if (err) 1919 goto err_out; 1920 1921 /* update counts and index */ 1922 rxr_remaining -= rqpv; 1923 txr_remaining -= tqpv; 1924 rxr_idx++; 1925 txr_idx++; 1926 } 1927 1928 return 0; 1929 1930 err_out: 1931 wx->num_tx_queues = 0; 1932 wx->num_rx_queues = 0; 1933 wx->num_q_vectors = 0; 1934 1935 while (v_idx--) 1936 wx_free_q_vector(wx, v_idx); 1937 1938 return -ENOMEM; 1939 } 1940 1941 /** 1942 * wx_free_q_vectors - Free memory allocated for interrupt vectors 1943 * @wx: board private structure to initialize 1944 * 1945 * This function frees the memory allocated to the q_vectors. In addition if 1946 * NAPI is enabled it will delete any references to the NAPI struct prior 1947 * to freeing the q_vector. 1948 **/ 1949 static void wx_free_q_vectors(struct wx *wx) 1950 { 1951 int v_idx = wx->num_q_vectors; 1952 1953 wx->num_tx_queues = 0; 1954 wx->num_rx_queues = 0; 1955 wx->num_q_vectors = 0; 1956 1957 while (v_idx--) 1958 wx_free_q_vector(wx, v_idx); 1959 } 1960 1961 void wx_reset_interrupt_capability(struct wx *wx) 1962 { 1963 struct pci_dev *pdev = wx->pdev; 1964 1965 if (!pdev->msi_enabled && !pdev->msix_enabled) 1966 return; 1967 1968 pci_free_irq_vectors(wx->pdev); 1969 if (pdev->msix_enabled) { 1970 kfree(wx->msix_entries); 1971 wx->msix_entries = NULL; 1972 } 1973 } 1974 EXPORT_SYMBOL(wx_reset_interrupt_capability); 1975 1976 /** 1977 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings 1978 * @wx: board private structure to clear interrupt scheme on 1979 * 1980 * We go through and clear interrupt specific resources and reset the structure 1981 * to pre-load conditions 1982 **/ 1983 void wx_clear_interrupt_scheme(struct wx *wx) 1984 { 1985 wx_free_q_vectors(wx); 1986 wx_reset_interrupt_capability(wx); 1987 } 1988 EXPORT_SYMBOL(wx_clear_interrupt_scheme); 1989 1990 int wx_init_interrupt_scheme(struct wx *wx) 1991 { 1992 int ret; 1993 1994 /* Number of supported queues */ 1995 wx_set_num_queues(wx); 1996 1997 /* Set interrupt mode */ 1998 ret = wx_set_interrupt_capability(wx); 1999 if (ret) { 2000 wx_err(wx, "Allocate irq vectors for failed.\n"); 2001 return ret; 2002 } 2003 2004 /* Allocate memory for queues */ 2005 ret = wx_alloc_q_vectors(wx); 2006 if (ret) { 2007 wx_err(wx, "Unable to allocate memory for queue vectors.\n"); 2008 wx_reset_interrupt_capability(wx); 2009 return ret; 2010 } 2011 2012 wx_cache_ring_rss(wx); 2013 2014 return 0; 2015 } 2016 EXPORT_SYMBOL(wx_init_interrupt_scheme); 2017 2018 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) 2019 { 2020 struct wx_q_vector *q_vector = data; 2021 2022 /* EIAM disabled interrupts (on this vector) for us */ 2023 if (q_vector->rx.ring || q_vector->tx.ring) 2024 napi_schedule_irqoff(&q_vector->napi); 2025 2026 return IRQ_HANDLED; 2027 } 2028 EXPORT_SYMBOL(wx_msix_clean_rings); 2029 2030 void wx_free_irq(struct wx *wx) 2031 { 2032 struct pci_dev *pdev = wx->pdev; 2033 int vector; 2034 2035 if (!(pdev->msix_enabled)) { 2036 free_irq(pdev->irq, wx); 2037 return; 2038 } 2039 2040 for (vector = 0; vector < wx->num_q_vectors; vector++) { 2041 struct wx_q_vector *q_vector = wx->q_vector[vector]; 2042 struct msix_entry *entry = &wx->msix_entries[vector]; 2043 2044 /* free only the irqs that were actually requested */ 2045 if (!q_vector->rx.ring && !q_vector->tx.ring) 2046 continue; 2047 2048 free_irq(entry->vector, q_vector); 2049 } 2050 2051 free_irq(wx->msix_entries[vector].vector, wx); 2052 } 2053 EXPORT_SYMBOL(wx_free_irq); 2054 2055 /** 2056 * wx_setup_isb_resources - allocate interrupt status resources 2057 * @wx: board private structure 2058 * 2059 * Return 0 on success, negative on failure 2060 **/ 2061 int wx_setup_isb_resources(struct wx *wx) 2062 { 2063 struct pci_dev *pdev = wx->pdev; 2064 2065 wx->isb_mem = dma_alloc_coherent(&pdev->dev, 2066 sizeof(u32) * 4, 2067 &wx->isb_dma, 2068 GFP_KERNEL); 2069 if (!wx->isb_mem) { 2070 wx_err(wx, "Alloc isb_mem failed\n"); 2071 return -ENOMEM; 2072 } 2073 2074 return 0; 2075 } 2076 EXPORT_SYMBOL(wx_setup_isb_resources); 2077 2078 /** 2079 * wx_free_isb_resources - allocate all queues Rx resources 2080 * @wx: board private structure 2081 * 2082 * Return 0 on success, negative on failure 2083 **/ 2084 void wx_free_isb_resources(struct wx *wx) 2085 { 2086 struct pci_dev *pdev = wx->pdev; 2087 2088 dma_free_coherent(&pdev->dev, sizeof(u32) * 4, 2089 wx->isb_mem, wx->isb_dma); 2090 wx->isb_mem = NULL; 2091 } 2092 EXPORT_SYMBOL(wx_free_isb_resources); 2093 2094 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) 2095 { 2096 u32 cur_tag = 0; 2097 2098 cur_tag = wx->isb_mem[WX_ISB_HEADER]; 2099 wx->isb_tag[idx] = cur_tag; 2100 2101 return (__force u32)cpu_to_le32(wx->isb_mem[idx]); 2102 } 2103 EXPORT_SYMBOL(wx_misc_isb); 2104 2105 /** 2106 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors 2107 * @wx: pointer to wx struct 2108 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 2109 * @queue: queue to map the corresponding interrupt to 2110 * @msix_vector: the vector to map to the corresponding queue 2111 * 2112 **/ 2113 static void wx_set_ivar(struct wx *wx, s8 direction, 2114 u16 queue, u16 msix_vector) 2115 { 2116 u32 ivar, index; 2117 2118 if (direction == -1) { 2119 /* other causes */ 2120 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2121 index = 0; 2122 ivar = rd32(wx, WX_PX_MISC_IVAR); 2123 ivar &= ~(0xFF << index); 2124 ivar |= (msix_vector << index); 2125 wr32(wx, WX_PX_MISC_IVAR, ivar); 2126 } else { 2127 /* tx or rx causes */ 2128 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2129 index = ((16 * (queue & 1)) + (8 * direction)); 2130 ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); 2131 ivar &= ~(0xFF << index); 2132 ivar |= (msix_vector << index); 2133 wr32(wx, WX_PX_IVAR(queue >> 1), ivar); 2134 } 2135 } 2136 2137 /** 2138 * wx_write_eitr - write EITR register in hardware specific way 2139 * @q_vector: structure containing interrupt and ring information 2140 * 2141 * This function is made to be called by ethtool and by the driver 2142 * when it needs to update EITR registers at runtime. Hardware 2143 * specific quirks/differences are taken care of here. 2144 */ 2145 static void wx_write_eitr(struct wx_q_vector *q_vector) 2146 { 2147 struct wx *wx = q_vector->wx; 2148 int v_idx = q_vector->v_idx; 2149 u32 itr_reg; 2150 2151 if (wx->mac.type == wx_mac_sp) 2152 itr_reg = q_vector->itr & WX_SP_MAX_EITR; 2153 else 2154 itr_reg = q_vector->itr & WX_EM_MAX_EITR; 2155 2156 itr_reg |= WX_PX_ITR_CNT_WDIS; 2157 2158 wr32(wx, WX_PX_ITR(v_idx), itr_reg); 2159 } 2160 2161 /** 2162 * wx_configure_vectors - Configure vectors for hardware 2163 * @wx: board private structure 2164 * 2165 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY 2166 * interrupts. 2167 **/ 2168 void wx_configure_vectors(struct wx *wx) 2169 { 2170 struct pci_dev *pdev = wx->pdev; 2171 u32 eitrsel = 0; 2172 u16 v_idx; 2173 2174 if (pdev->msix_enabled) { 2175 /* Populate MSIX to EITR Select */ 2176 wr32(wx, WX_PX_ITRSEL, eitrsel); 2177 /* use EIAM to auto-mask when MSI-X interrupt is asserted 2178 * this saves a register write for every interrupt 2179 */ 2180 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); 2181 } else { 2182 /* legacy interrupts, use EIAM to auto-mask when reading EICR, 2183 * specifically only auto mask tx and rx interrupts. 2184 */ 2185 wr32(wx, WX_PX_GPIE, 0); 2186 } 2187 2188 /* Populate the IVAR table and set the ITR values to the 2189 * corresponding register. 2190 */ 2191 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { 2192 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2193 struct wx_ring *ring; 2194 2195 wx_for_each_ring(ring, q_vector->rx) 2196 wx_set_ivar(wx, 0, ring->reg_idx, v_idx); 2197 2198 wx_for_each_ring(ring, q_vector->tx) 2199 wx_set_ivar(wx, 1, ring->reg_idx, v_idx); 2200 2201 wx_write_eitr(q_vector); 2202 } 2203 2204 wx_set_ivar(wx, -1, 0, v_idx); 2205 if (pdev->msix_enabled) 2206 wr32(wx, WX_PX_ITR(v_idx), 1950); 2207 } 2208 EXPORT_SYMBOL(wx_configure_vectors); 2209 2210 /** 2211 * wx_clean_rx_ring - Free Rx Buffers per Queue 2212 * @rx_ring: ring to free buffers from 2213 **/ 2214 static void wx_clean_rx_ring(struct wx_ring *rx_ring) 2215 { 2216 struct wx_rx_buffer *rx_buffer; 2217 u16 i = rx_ring->next_to_clean; 2218 2219 rx_buffer = &rx_ring->rx_buffer_info[i]; 2220 2221 /* Free all the Rx ring sk_buffs */ 2222 while (i != rx_ring->next_to_alloc) { 2223 if (rx_buffer->skb) { 2224 struct sk_buff *skb = rx_buffer->skb; 2225 2226 if (WX_CB(skb)->page_released) 2227 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2228 2229 dev_kfree_skb(skb); 2230 } 2231 2232 /* Invalidate cache lines that may have been written to by 2233 * device so that we avoid corrupting memory. 2234 */ 2235 dma_sync_single_range_for_cpu(rx_ring->dev, 2236 rx_buffer->dma, 2237 rx_buffer->page_offset, 2238 WX_RX_BUFSZ, 2239 DMA_FROM_DEVICE); 2240 2241 /* free resources associated with mapping */ 2242 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2243 __page_frag_cache_drain(rx_buffer->page, 2244 rx_buffer->pagecnt_bias); 2245 2246 i++; 2247 rx_buffer++; 2248 if (i == rx_ring->count) { 2249 i = 0; 2250 rx_buffer = rx_ring->rx_buffer_info; 2251 } 2252 } 2253 2254 rx_ring->next_to_alloc = 0; 2255 rx_ring->next_to_clean = 0; 2256 rx_ring->next_to_use = 0; 2257 } 2258 2259 /** 2260 * wx_clean_all_rx_rings - Free Rx Buffers for all queues 2261 * @wx: board private structure 2262 **/ 2263 void wx_clean_all_rx_rings(struct wx *wx) 2264 { 2265 int i; 2266 2267 for (i = 0; i < wx->num_rx_queues; i++) 2268 wx_clean_rx_ring(wx->rx_ring[i]); 2269 } 2270 EXPORT_SYMBOL(wx_clean_all_rx_rings); 2271 2272 /** 2273 * wx_free_rx_resources - Free Rx Resources 2274 * @rx_ring: ring to clean the resources from 2275 * 2276 * Free all receive software resources 2277 **/ 2278 static void wx_free_rx_resources(struct wx_ring *rx_ring) 2279 { 2280 wx_clean_rx_ring(rx_ring); 2281 kvfree(rx_ring->rx_buffer_info); 2282 rx_ring->rx_buffer_info = NULL; 2283 2284 /* if not set, then don't free */ 2285 if (!rx_ring->desc) 2286 return; 2287 2288 dma_free_coherent(rx_ring->dev, rx_ring->size, 2289 rx_ring->desc, rx_ring->dma); 2290 2291 rx_ring->desc = NULL; 2292 2293 if (rx_ring->page_pool) { 2294 page_pool_destroy(rx_ring->page_pool); 2295 rx_ring->page_pool = NULL; 2296 } 2297 } 2298 2299 /** 2300 * wx_free_all_rx_resources - Free Rx Resources for All Queues 2301 * @wx: pointer to hardware structure 2302 * 2303 * Free all receive software resources 2304 **/ 2305 static void wx_free_all_rx_resources(struct wx *wx) 2306 { 2307 int i; 2308 2309 for (i = 0; i < wx->num_rx_queues; i++) 2310 wx_free_rx_resources(wx->rx_ring[i]); 2311 } 2312 2313 /** 2314 * wx_clean_tx_ring - Free Tx Buffers 2315 * @tx_ring: ring to be cleaned 2316 **/ 2317 static void wx_clean_tx_ring(struct wx_ring *tx_ring) 2318 { 2319 struct wx_tx_buffer *tx_buffer; 2320 u16 i = tx_ring->next_to_clean; 2321 2322 tx_buffer = &tx_ring->tx_buffer_info[i]; 2323 2324 while (i != tx_ring->next_to_use) { 2325 union wx_tx_desc *eop_desc, *tx_desc; 2326 2327 /* Free all the Tx ring sk_buffs */ 2328 dev_kfree_skb_any(tx_buffer->skb); 2329 2330 /* unmap skb header data */ 2331 dma_unmap_single(tx_ring->dev, 2332 dma_unmap_addr(tx_buffer, dma), 2333 dma_unmap_len(tx_buffer, len), 2334 DMA_TO_DEVICE); 2335 2336 /* check for eop_desc to determine the end of the packet */ 2337 eop_desc = tx_buffer->next_to_watch; 2338 tx_desc = WX_TX_DESC(tx_ring, i); 2339 2340 /* unmap remaining buffers */ 2341 while (tx_desc != eop_desc) { 2342 tx_buffer++; 2343 tx_desc++; 2344 i++; 2345 if (unlikely(i == tx_ring->count)) { 2346 i = 0; 2347 tx_buffer = tx_ring->tx_buffer_info; 2348 tx_desc = WX_TX_DESC(tx_ring, 0); 2349 } 2350 2351 /* unmap any remaining paged data */ 2352 if (dma_unmap_len(tx_buffer, len)) 2353 dma_unmap_page(tx_ring->dev, 2354 dma_unmap_addr(tx_buffer, dma), 2355 dma_unmap_len(tx_buffer, len), 2356 DMA_TO_DEVICE); 2357 } 2358 2359 /* move us one more past the eop_desc for start of next pkt */ 2360 tx_buffer++; 2361 i++; 2362 if (unlikely(i == tx_ring->count)) { 2363 i = 0; 2364 tx_buffer = tx_ring->tx_buffer_info; 2365 } 2366 } 2367 2368 netdev_tx_reset_queue(wx_txring_txq(tx_ring)); 2369 2370 /* reset next_to_use and next_to_clean */ 2371 tx_ring->next_to_use = 0; 2372 tx_ring->next_to_clean = 0; 2373 } 2374 2375 /** 2376 * wx_clean_all_tx_rings - Free Tx Buffers for all queues 2377 * @wx: board private structure 2378 **/ 2379 void wx_clean_all_tx_rings(struct wx *wx) 2380 { 2381 int i; 2382 2383 for (i = 0; i < wx->num_tx_queues; i++) 2384 wx_clean_tx_ring(wx->tx_ring[i]); 2385 } 2386 EXPORT_SYMBOL(wx_clean_all_tx_rings); 2387 2388 /** 2389 * wx_free_tx_resources - Free Tx Resources per Queue 2390 * @tx_ring: Tx descriptor ring for a specific queue 2391 * 2392 * Free all transmit software resources 2393 **/ 2394 static void wx_free_tx_resources(struct wx_ring *tx_ring) 2395 { 2396 wx_clean_tx_ring(tx_ring); 2397 kvfree(tx_ring->tx_buffer_info); 2398 tx_ring->tx_buffer_info = NULL; 2399 2400 /* if not set, then don't free */ 2401 if (!tx_ring->desc) 2402 return; 2403 2404 dma_free_coherent(tx_ring->dev, tx_ring->size, 2405 tx_ring->desc, tx_ring->dma); 2406 tx_ring->desc = NULL; 2407 } 2408 2409 /** 2410 * wx_free_all_tx_resources - Free Tx Resources for All Queues 2411 * @wx: pointer to hardware structure 2412 * 2413 * Free all transmit software resources 2414 **/ 2415 static void wx_free_all_tx_resources(struct wx *wx) 2416 { 2417 int i; 2418 2419 for (i = 0; i < wx->num_tx_queues; i++) 2420 wx_free_tx_resources(wx->tx_ring[i]); 2421 } 2422 2423 void wx_free_resources(struct wx *wx) 2424 { 2425 wx_free_isb_resources(wx); 2426 wx_free_all_rx_resources(wx); 2427 wx_free_all_tx_resources(wx); 2428 } 2429 EXPORT_SYMBOL(wx_free_resources); 2430 2431 static int wx_alloc_page_pool(struct wx_ring *rx_ring) 2432 { 2433 int ret = 0; 2434 2435 struct page_pool_params pp_params = { 2436 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 2437 .order = 0, 2438 .pool_size = rx_ring->size, 2439 .nid = dev_to_node(rx_ring->dev), 2440 .dev = rx_ring->dev, 2441 .dma_dir = DMA_FROM_DEVICE, 2442 .offset = 0, 2443 .max_len = PAGE_SIZE, 2444 }; 2445 2446 rx_ring->page_pool = page_pool_create(&pp_params); 2447 if (IS_ERR(rx_ring->page_pool)) { 2448 ret = PTR_ERR(rx_ring->page_pool); 2449 rx_ring->page_pool = NULL; 2450 } 2451 2452 return ret; 2453 } 2454 2455 /** 2456 * wx_setup_rx_resources - allocate Rx resources (Descriptors) 2457 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2458 * 2459 * Returns 0 on success, negative on failure 2460 **/ 2461 static int wx_setup_rx_resources(struct wx_ring *rx_ring) 2462 { 2463 struct device *dev = rx_ring->dev; 2464 int orig_node = dev_to_node(dev); 2465 int numa_node = NUMA_NO_NODE; 2466 int size, ret; 2467 2468 size = sizeof(struct wx_rx_buffer) * rx_ring->count; 2469 2470 if (rx_ring->q_vector) 2471 numa_node = rx_ring->q_vector->numa_node; 2472 2473 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2474 if (!rx_ring->rx_buffer_info) 2475 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); 2476 if (!rx_ring->rx_buffer_info) 2477 goto err; 2478 2479 /* Round up to nearest 4K */ 2480 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); 2481 rx_ring->size = ALIGN(rx_ring->size, 4096); 2482 2483 set_dev_node(dev, numa_node); 2484 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2485 &rx_ring->dma, GFP_KERNEL); 2486 if (!rx_ring->desc) { 2487 set_dev_node(dev, orig_node); 2488 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2489 &rx_ring->dma, GFP_KERNEL); 2490 } 2491 2492 if (!rx_ring->desc) 2493 goto err; 2494 2495 rx_ring->next_to_clean = 0; 2496 rx_ring->next_to_use = 0; 2497 2498 ret = wx_alloc_page_pool(rx_ring); 2499 if (ret < 0) { 2500 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); 2501 goto err_desc; 2502 } 2503 2504 return 0; 2505 2506 err_desc: 2507 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); 2508 err: 2509 kvfree(rx_ring->rx_buffer_info); 2510 rx_ring->rx_buffer_info = NULL; 2511 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 2512 return -ENOMEM; 2513 } 2514 2515 /** 2516 * wx_setup_all_rx_resources - allocate all queues Rx resources 2517 * @wx: pointer to hardware structure 2518 * 2519 * If this function returns with an error, then it's possible one or 2520 * more of the rings is populated (while the rest are not). It is the 2521 * callers duty to clean those orphaned rings. 2522 * 2523 * Return 0 on success, negative on failure 2524 **/ 2525 static int wx_setup_all_rx_resources(struct wx *wx) 2526 { 2527 int i, err = 0; 2528 2529 for (i = 0; i < wx->num_rx_queues; i++) { 2530 err = wx_setup_rx_resources(wx->rx_ring[i]); 2531 if (!err) 2532 continue; 2533 2534 wx_err(wx, "Allocation for Rx Queue %u failed\n", i); 2535 goto err_setup_rx; 2536 } 2537 2538 return 0; 2539 err_setup_rx: 2540 /* rewind the index freeing the rings as we go */ 2541 while (i--) 2542 wx_free_rx_resources(wx->rx_ring[i]); 2543 return err; 2544 } 2545 2546 /** 2547 * wx_setup_tx_resources - allocate Tx resources (Descriptors) 2548 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2549 * 2550 * Return 0 on success, negative on failure 2551 **/ 2552 static int wx_setup_tx_resources(struct wx_ring *tx_ring) 2553 { 2554 struct device *dev = tx_ring->dev; 2555 int orig_node = dev_to_node(dev); 2556 int numa_node = NUMA_NO_NODE; 2557 int size; 2558 2559 size = sizeof(struct wx_tx_buffer) * tx_ring->count; 2560 2561 if (tx_ring->q_vector) 2562 numa_node = tx_ring->q_vector->numa_node; 2563 2564 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2565 if (!tx_ring->tx_buffer_info) 2566 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); 2567 if (!tx_ring->tx_buffer_info) 2568 goto err; 2569 2570 /* round up to nearest 4K */ 2571 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); 2572 tx_ring->size = ALIGN(tx_ring->size, 4096); 2573 2574 set_dev_node(dev, numa_node); 2575 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2576 &tx_ring->dma, GFP_KERNEL); 2577 if (!tx_ring->desc) { 2578 set_dev_node(dev, orig_node); 2579 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2580 &tx_ring->dma, GFP_KERNEL); 2581 } 2582 2583 if (!tx_ring->desc) 2584 goto err; 2585 2586 tx_ring->next_to_use = 0; 2587 tx_ring->next_to_clean = 0; 2588 2589 return 0; 2590 2591 err: 2592 kvfree(tx_ring->tx_buffer_info); 2593 tx_ring->tx_buffer_info = NULL; 2594 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2595 return -ENOMEM; 2596 } 2597 2598 /** 2599 * wx_setup_all_tx_resources - allocate all queues Tx resources 2600 * @wx: pointer to private structure 2601 * 2602 * If this function returns with an error, then it's possible one or 2603 * more of the rings is populated (while the rest are not). It is the 2604 * callers duty to clean those orphaned rings. 2605 * 2606 * Return 0 on success, negative on failure 2607 **/ 2608 static int wx_setup_all_tx_resources(struct wx *wx) 2609 { 2610 int i, err = 0; 2611 2612 for (i = 0; i < wx->num_tx_queues; i++) { 2613 err = wx_setup_tx_resources(wx->tx_ring[i]); 2614 if (!err) 2615 continue; 2616 2617 wx_err(wx, "Allocation for Tx Queue %u failed\n", i); 2618 goto err_setup_tx; 2619 } 2620 2621 return 0; 2622 err_setup_tx: 2623 /* rewind the index freeing the rings as we go */ 2624 while (i--) 2625 wx_free_tx_resources(wx->tx_ring[i]); 2626 return err; 2627 } 2628 2629 int wx_setup_resources(struct wx *wx) 2630 { 2631 int err; 2632 2633 /* allocate transmit descriptors */ 2634 err = wx_setup_all_tx_resources(wx); 2635 if (err) 2636 return err; 2637 2638 /* allocate receive descriptors */ 2639 err = wx_setup_all_rx_resources(wx); 2640 if (err) 2641 goto err_free_tx; 2642 2643 err = wx_setup_isb_resources(wx); 2644 if (err) 2645 goto err_free_rx; 2646 2647 return 0; 2648 2649 err_free_rx: 2650 wx_free_all_rx_resources(wx); 2651 err_free_tx: 2652 wx_free_all_tx_resources(wx); 2653 2654 return err; 2655 } 2656 EXPORT_SYMBOL(wx_setup_resources); 2657 2658 /** 2659 * wx_get_stats64 - Get System Network Statistics 2660 * @netdev: network interface device structure 2661 * @stats: storage space for 64bit statistics 2662 */ 2663 void wx_get_stats64(struct net_device *netdev, 2664 struct rtnl_link_stats64 *stats) 2665 { 2666 struct wx *wx = netdev_priv(netdev); 2667 int i; 2668 2669 rcu_read_lock(); 2670 for (i = 0; i < wx->num_rx_queues; i++) { 2671 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); 2672 u64 bytes, packets; 2673 unsigned int start; 2674 2675 if (ring) { 2676 do { 2677 start = u64_stats_fetch_begin(&ring->syncp); 2678 packets = ring->stats.packets; 2679 bytes = ring->stats.bytes; 2680 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2681 stats->rx_packets += packets; 2682 stats->rx_bytes += bytes; 2683 } 2684 } 2685 2686 for (i = 0; i < wx->num_tx_queues; i++) { 2687 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); 2688 u64 bytes, packets; 2689 unsigned int start; 2690 2691 if (ring) { 2692 do { 2693 start = u64_stats_fetch_begin(&ring->syncp); 2694 packets = ring->stats.packets; 2695 bytes = ring->stats.bytes; 2696 } while (u64_stats_fetch_retry(&ring->syncp, 2697 start)); 2698 stats->tx_packets += packets; 2699 stats->tx_bytes += bytes; 2700 } 2701 } 2702 2703 rcu_read_unlock(); 2704 } 2705 EXPORT_SYMBOL(wx_get_stats64); 2706 2707 int wx_set_features(struct net_device *netdev, netdev_features_t features) 2708 { 2709 netdev_features_t changed = netdev->features ^ features; 2710 struct wx *wx = netdev_priv(netdev); 2711 2712 if (changed & NETIF_F_RXHASH) 2713 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 2714 WX_RDB_RA_CTL_RSS_EN); 2715 else 2716 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); 2717 2718 if (changed & 2719 (NETIF_F_HW_VLAN_CTAG_RX | 2720 NETIF_F_HW_VLAN_STAG_RX)) 2721 wx_set_rx_mode(netdev); 2722 2723 return 1; 2724 } 2725 EXPORT_SYMBOL(wx_set_features); 2726 2727 MODULE_LICENSE("GPL"); 2728