1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <net/ip6_checksum.h> 6 #include <net/page_pool/helpers.h> 7 #include <net/inet_ecn.h> 8 #include <linux/iopoll.h> 9 #include <linux/sctp.h> 10 #include <linux/pci.h> 11 #include <net/tcp.h> 12 #include <net/ip.h> 13 14 #include "wx_type.h" 15 #include "wx_lib.h" 16 #include "wx_hw.h" 17 18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */ 19 static struct wx_dec_ptype wx_ptype_lookup[256] = { 20 /* L2: mac */ 21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), 23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), 27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 28 29 /* L2: ethertype filter */ 30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), 31 32 /* L3: ip non-tunnel */ 33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), 34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), 35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), 36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), 37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), 38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), 39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), 40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), 41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), 42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), 43 44 /* L2: fcoe */ 45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), 47 48 /* IPv4 --> IPv4/IPv6 */ 49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), 50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), 51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), 52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), 53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), 54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), 55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), 56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), 57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), 58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), 59 60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ 61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), 62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), 63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), 64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), 65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), 66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), 67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), 68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), 69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), 70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), 71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), 72 73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ 74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), 75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), 76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), 77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), 78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), 79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), 80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), 81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), 82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), 83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), 84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), 85 86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ 87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), 88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), 89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), 90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), 91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), 92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), 93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), 94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), 95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), 96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), 97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), 98 99 /* IPv6 --> IPv4/IPv6 */ 100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), 101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), 102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), 103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), 104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), 105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), 106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), 107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), 108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), 109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), 110 111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ 112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), 113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), 114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), 115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), 116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), 117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), 118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), 119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), 120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), 121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), 122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), 123 124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ 125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), 126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), 127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), 128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), 129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), 130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), 131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), 132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), 133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), 134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), 135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), 136 137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ 138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), 139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), 140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), 141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), 142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), 143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), 144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), 145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), 146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), 147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), 148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), 149 }; 150 151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) 152 { 153 return wx_ptype_lookup[ptype]; 154 } 155 156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ 157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, 158 const u32 stat_err_bits) 159 { 160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); 161 } 162 163 static void wx_dma_sync_frag(struct wx_ring *rx_ring, 164 struct wx_rx_buffer *rx_buffer) 165 { 166 struct sk_buff *skb = rx_buffer->skb; 167 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 168 169 dma_sync_single_range_for_cpu(rx_ring->dev, 170 WX_CB(skb)->dma, 171 skb_frag_off(frag), 172 skb_frag_size(frag), 173 DMA_FROM_DEVICE); 174 175 /* If the page was released, just unmap it. */ 176 if (unlikely(WX_CB(skb)->page_released)) 177 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 178 } 179 180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, 181 union wx_rx_desc *rx_desc, 182 struct sk_buff **skb, 183 int *rx_buffer_pgcnt) 184 { 185 struct wx_rx_buffer *rx_buffer; 186 unsigned int size; 187 188 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 189 size = le16_to_cpu(rx_desc->wb.upper.length); 190 191 #if (PAGE_SIZE < 8192) 192 *rx_buffer_pgcnt = page_count(rx_buffer->page); 193 #else 194 *rx_buffer_pgcnt = 0; 195 #endif 196 197 prefetchw(rx_buffer->page); 198 *skb = rx_buffer->skb; 199 200 /* Delay unmapping of the first packet. It carries the header 201 * information, HW may still access the header after the writeback. 202 * Only unmap it when EOP is reached 203 */ 204 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { 205 if (!*skb) 206 goto skip_sync; 207 } else { 208 if (*skb) 209 wx_dma_sync_frag(rx_ring, rx_buffer); 210 } 211 212 /* we are reusing so sync this buffer for CPU use */ 213 dma_sync_single_range_for_cpu(rx_ring->dev, 214 rx_buffer->dma, 215 rx_buffer->page_offset, 216 size, 217 DMA_FROM_DEVICE); 218 skip_sync: 219 return rx_buffer; 220 } 221 222 static void wx_put_rx_buffer(struct wx_ring *rx_ring, 223 struct wx_rx_buffer *rx_buffer, 224 struct sk_buff *skb, 225 int rx_buffer_pgcnt) 226 { 227 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) 228 /* the page has been released from the ring */ 229 WX_CB(skb)->page_released = true; 230 231 /* clear contents of rx_buffer */ 232 rx_buffer->page = NULL; 233 rx_buffer->skb = NULL; 234 } 235 236 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, 237 struct wx_rx_buffer *rx_buffer, 238 union wx_rx_desc *rx_desc) 239 { 240 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 241 #if (PAGE_SIZE < 8192) 242 unsigned int truesize = WX_RX_BUFSZ; 243 #else 244 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 245 #endif 246 struct sk_buff *skb = rx_buffer->skb; 247 248 if (!skb) { 249 void *page_addr = page_address(rx_buffer->page) + 250 rx_buffer->page_offset; 251 252 /* prefetch first cache line of first page */ 253 prefetch(page_addr); 254 #if L1_CACHE_BYTES < 128 255 prefetch(page_addr + L1_CACHE_BYTES); 256 #endif 257 258 /* allocate a skb to store the frags */ 259 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); 260 if (unlikely(!skb)) 261 return NULL; 262 263 /* we will be copying header into skb->data in 264 * pskb_may_pull so it is in our interest to prefetch 265 * it now to avoid a possible cache miss 266 */ 267 prefetchw(skb->data); 268 269 if (size <= WX_RXBUFFER_256) { 270 memcpy(__skb_put(skb, size), page_addr, 271 ALIGN(size, sizeof(long))); 272 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); 273 return skb; 274 } 275 276 skb_mark_for_recycle(skb); 277 278 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) 279 WX_CB(skb)->dma = rx_buffer->dma; 280 281 skb_add_rx_frag(skb, 0, rx_buffer->page, 282 rx_buffer->page_offset, 283 size, truesize); 284 goto out; 285 286 } else { 287 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 288 rx_buffer->page_offset, size, truesize); 289 } 290 291 out: 292 #if (PAGE_SIZE < 8192) 293 /* flip page offset to other buffer */ 294 rx_buffer->page_offset ^= truesize; 295 #else 296 /* move offset up to the next cache line */ 297 rx_buffer->page_offset += truesize; 298 #endif 299 300 return skb; 301 } 302 303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, 304 struct wx_rx_buffer *bi) 305 { 306 struct page *page = bi->page; 307 dma_addr_t dma; 308 309 /* since we are recycling buffers we should seldom need to alloc */ 310 if (likely(page)) 311 return true; 312 313 page = page_pool_dev_alloc_pages(rx_ring->page_pool); 314 WARN_ON(!page); 315 dma = page_pool_get_dma_addr(page); 316 317 bi->page_dma = dma; 318 bi->page = page; 319 bi->page_offset = 0; 320 321 return true; 322 } 323 324 /** 325 * wx_alloc_rx_buffers - Replace used receive buffers 326 * @rx_ring: ring to place buffers on 327 * @cleaned_count: number of buffers to replace 328 **/ 329 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) 330 { 331 u16 i = rx_ring->next_to_use; 332 union wx_rx_desc *rx_desc; 333 struct wx_rx_buffer *bi; 334 335 /* nothing to do */ 336 if (!cleaned_count) 337 return; 338 339 rx_desc = WX_RX_DESC(rx_ring, i); 340 bi = &rx_ring->rx_buffer_info[i]; 341 i -= rx_ring->count; 342 343 do { 344 if (!wx_alloc_mapped_page(rx_ring, bi)) 345 break; 346 347 /* sync the buffer for use by the device */ 348 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 349 bi->page_offset, 350 WX_RX_BUFSZ, 351 DMA_FROM_DEVICE); 352 353 rx_desc->read.pkt_addr = 354 cpu_to_le64(bi->page_dma + bi->page_offset); 355 356 rx_desc++; 357 bi++; 358 i++; 359 if (unlikely(!i)) { 360 rx_desc = WX_RX_DESC(rx_ring, 0); 361 bi = rx_ring->rx_buffer_info; 362 i -= rx_ring->count; 363 } 364 365 /* clear the status bits for the next_to_use descriptor */ 366 rx_desc->wb.upper.status_error = 0; 367 368 cleaned_count--; 369 } while (cleaned_count); 370 371 i += rx_ring->count; 372 373 if (rx_ring->next_to_use != i) { 374 rx_ring->next_to_use = i; 375 /* update next to alloc since we have filled the ring */ 376 rx_ring->next_to_alloc = i; 377 378 /* Force memory writes to complete before letting h/w 379 * know there are new descriptors to fetch. (Only 380 * applicable for weak-ordered memory model archs, 381 * such as IA-64). 382 */ 383 wmb(); 384 writel(i, rx_ring->tail); 385 } 386 } 387 388 u16 wx_desc_unused(struct wx_ring *ring) 389 { 390 u16 ntc = ring->next_to_clean; 391 u16 ntu = ring->next_to_use; 392 393 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; 394 } 395 396 /** 397 * wx_is_non_eop - process handling of non-EOP buffers 398 * @rx_ring: Rx ring being processed 399 * @rx_desc: Rx descriptor for current buffer 400 * @skb: Current socket buffer containing buffer in progress 401 * 402 * This function updates next to clean. If the buffer is an EOP buffer 403 * this function exits returning false, otherwise it will place the 404 * sk_buff in the next buffer to be chained and return true indicating 405 * that this is in fact a non-EOP buffer. 406 **/ 407 static bool wx_is_non_eop(struct wx_ring *rx_ring, 408 union wx_rx_desc *rx_desc, 409 struct sk_buff *skb) 410 { 411 u32 ntc = rx_ring->next_to_clean + 1; 412 413 /* fetch, update, and store next to clean */ 414 ntc = (ntc < rx_ring->count) ? ntc : 0; 415 rx_ring->next_to_clean = ntc; 416 417 prefetch(WX_RX_DESC(rx_ring, ntc)); 418 419 /* if we are the last buffer then there is nothing else to do */ 420 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) 421 return false; 422 423 rx_ring->rx_buffer_info[ntc].skb = skb; 424 425 return true; 426 } 427 428 static void wx_pull_tail(struct sk_buff *skb) 429 { 430 skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 431 unsigned int pull_len; 432 unsigned char *va; 433 434 /* it is valid to use page_address instead of kmap since we are 435 * working with pages allocated out of the lomem pool per 436 * alloc_page(GFP_ATOMIC) 437 */ 438 va = skb_frag_address(frag); 439 440 /* we need the header to contain the greater of either ETH_HLEN or 441 * 60 bytes if the skb->len is less than 60 for skb_pad. 442 */ 443 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); 444 445 /* align pull length to size of long to optimize memcpy performance */ 446 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 447 448 /* update all of the pointers */ 449 skb_frag_size_sub(frag, pull_len); 450 skb_frag_off_add(frag, pull_len); 451 skb->data_len -= pull_len; 452 skb->tail += pull_len; 453 } 454 455 /** 456 * wx_cleanup_headers - Correct corrupted or empty headers 457 * @rx_ring: rx descriptor ring packet is being transacted on 458 * @rx_desc: pointer to the EOP Rx descriptor 459 * @skb: pointer to current skb being fixed 460 * 461 * Check for corrupted packet headers caused by senders on the local L2 462 * embedded NIC switch not setting up their Tx Descriptors right. These 463 * should be very rare. 464 * 465 * Also address the case where we are pulling data in on pages only 466 * and as such no data is present in the skb header. 467 * 468 * In addition if skb is not at least 60 bytes we need to pad it so that 469 * it is large enough to qualify as a valid Ethernet frame. 470 * 471 * Returns true if an error was encountered and skb was freed. 472 **/ 473 static bool wx_cleanup_headers(struct wx_ring *rx_ring, 474 union wx_rx_desc *rx_desc, 475 struct sk_buff *skb) 476 { 477 struct net_device *netdev = rx_ring->netdev; 478 479 /* verify that the packet does not have any known errors */ 480 if (!netdev || 481 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && 482 !(netdev->features & NETIF_F_RXALL))) { 483 dev_kfree_skb_any(skb); 484 return true; 485 } 486 487 /* place header in linear portion of buffer */ 488 if (!skb_headlen(skb)) 489 wx_pull_tail(skb); 490 491 /* if eth_skb_pad returns an error the skb was freed */ 492 if (eth_skb_pad(skb)) 493 return true; 494 495 return false; 496 } 497 498 static void wx_rx_hash(struct wx_ring *ring, 499 union wx_rx_desc *rx_desc, 500 struct sk_buff *skb) 501 { 502 u16 rss_type; 503 504 if (!(ring->netdev->features & NETIF_F_RXHASH)) 505 return; 506 507 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 508 WX_RXD_RSSTYPE_MASK; 509 510 if (!rss_type) 511 return; 512 513 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 514 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 515 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 516 } 517 518 /** 519 * wx_rx_checksum - indicate in skb if hw indicated a good cksum 520 * @ring: structure containing ring specific data 521 * @rx_desc: current Rx descriptor being processed 522 * @skb: skb currently being received and modified 523 **/ 524 static void wx_rx_checksum(struct wx_ring *ring, 525 union wx_rx_desc *rx_desc, 526 struct sk_buff *skb) 527 { 528 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); 529 530 skb_checksum_none_assert(skb); 531 /* Rx csum disabled */ 532 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 533 return; 534 535 /* if IPv4 header checksum error */ 536 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && 537 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || 538 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && 539 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { 540 ring->rx_stats.csum_err++; 541 return; 542 } 543 544 /* L4 checksum offload flag must set for the below code to work */ 545 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) 546 return; 547 548 /* Hardware can't guarantee csum if IPv6 Dest Header found */ 549 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) 550 return; 551 552 /* if L4 checksum error */ 553 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { 554 ring->rx_stats.csum_err++; 555 return; 556 } 557 558 /* It must be a TCP or UDP or SCTP packet with a valid checksum */ 559 skb->ip_summed = CHECKSUM_UNNECESSARY; 560 561 /* If there is an outer header present that might contain a checksum 562 * we need to bump the checksum level by 1 to reflect the fact that 563 * we are indicating we validated the inner checksum. 564 */ 565 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) 566 __skb_incr_checksum_unnecessary(skb); 567 ring->rx_stats.csum_good_cnt++; 568 } 569 570 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, 571 struct sk_buff *skb) 572 { 573 u16 ethertype; 574 u8 idx = 0; 575 576 if ((ring->netdev->features & 577 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && 578 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { 579 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 580 0x1c0) >> 6; 581 ethertype = ring->q_vector->wx->tpid[idx]; 582 __vlan_hwaccel_put_tag(skb, htons(ethertype), 583 le16_to_cpu(rx_desc->wb.upper.vlan)); 584 } 585 } 586 587 /** 588 * wx_process_skb_fields - Populate skb header fields from Rx descriptor 589 * @rx_ring: rx descriptor ring packet is being transacted on 590 * @rx_desc: pointer to the EOP Rx descriptor 591 * @skb: pointer to current skb being populated 592 * 593 * This function checks the ring, descriptor, and packet information in 594 * order to populate the hash, checksum, protocol, and 595 * other fields within the skb. 596 **/ 597 static void wx_process_skb_fields(struct wx_ring *rx_ring, 598 union wx_rx_desc *rx_desc, 599 struct sk_buff *skb) 600 { 601 wx_rx_hash(rx_ring, rx_desc, skb); 602 wx_rx_checksum(rx_ring, rx_desc, skb); 603 wx_rx_vlan(rx_ring, rx_desc, skb); 604 skb_record_rx_queue(skb, rx_ring->queue_index); 605 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 606 } 607 608 /** 609 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 610 * @q_vector: structure containing interrupt and ring information 611 * @rx_ring: rx descriptor ring to transact packets on 612 * @budget: Total limit on number of packets to process 613 * 614 * This function provides a "bounce buffer" approach to Rx interrupt 615 * processing. The advantage to this is that on systems that have 616 * expensive overhead for IOMMU access this provides a means of avoiding 617 * it by maintaining the mapping of the page to the system. 618 * 619 * Returns amount of work completed. 620 **/ 621 static int wx_clean_rx_irq(struct wx_q_vector *q_vector, 622 struct wx_ring *rx_ring, 623 int budget) 624 { 625 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 626 u16 cleaned_count = wx_desc_unused(rx_ring); 627 628 do { 629 struct wx_rx_buffer *rx_buffer; 630 union wx_rx_desc *rx_desc; 631 struct sk_buff *skb; 632 int rx_buffer_pgcnt; 633 634 /* return some buffers to hardware, one at a time is too slow */ 635 if (cleaned_count >= WX_RX_BUFFER_WRITE) { 636 wx_alloc_rx_buffers(rx_ring, cleaned_count); 637 cleaned_count = 0; 638 } 639 640 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); 641 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) 642 break; 643 644 /* This memory barrier is needed to keep us from reading 645 * any other fields out of the rx_desc until we know the 646 * descriptor has been written back 647 */ 648 dma_rmb(); 649 650 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); 651 652 /* retrieve a buffer from the ring */ 653 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); 654 655 /* exit if we failed to retrieve a buffer */ 656 if (!skb) { 657 break; 658 } 659 660 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); 661 cleaned_count++; 662 663 /* place incomplete frames back on ring for completion */ 664 if (wx_is_non_eop(rx_ring, rx_desc, skb)) 665 continue; 666 667 /* verify the packet layout is correct */ 668 if (wx_cleanup_headers(rx_ring, rx_desc, skb)) 669 continue; 670 671 /* probably a little skewed due to removing CRC */ 672 total_rx_bytes += skb->len; 673 674 /* populate checksum, timestamp, VLAN, and protocol */ 675 wx_process_skb_fields(rx_ring, rx_desc, skb); 676 napi_gro_receive(&q_vector->napi, skb); 677 678 /* update budget accounting */ 679 total_rx_packets++; 680 } while (likely(total_rx_packets < budget)); 681 682 u64_stats_update_begin(&rx_ring->syncp); 683 rx_ring->stats.packets += total_rx_packets; 684 rx_ring->stats.bytes += total_rx_bytes; 685 u64_stats_update_end(&rx_ring->syncp); 686 q_vector->rx.total_packets += total_rx_packets; 687 q_vector->rx.total_bytes += total_rx_bytes; 688 689 return total_rx_packets; 690 } 691 692 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) 693 { 694 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 695 } 696 697 /** 698 * wx_clean_tx_irq - Reclaim resources after transmit completes 699 * @q_vector: structure containing interrupt and ring information 700 * @tx_ring: tx ring to clean 701 * @napi_budget: Used to determine if we are in netpoll 702 **/ 703 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, 704 struct wx_ring *tx_ring, int napi_budget) 705 { 706 unsigned int budget = q_vector->wx->tx_work_limit; 707 unsigned int total_bytes = 0, total_packets = 0; 708 unsigned int i = tx_ring->next_to_clean; 709 struct wx_tx_buffer *tx_buffer; 710 union wx_tx_desc *tx_desc; 711 712 if (!netif_carrier_ok(tx_ring->netdev)) 713 return true; 714 715 tx_buffer = &tx_ring->tx_buffer_info[i]; 716 tx_desc = WX_TX_DESC(tx_ring, i); 717 i -= tx_ring->count; 718 719 do { 720 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; 721 722 /* if next_to_watch is not set then there is no work pending */ 723 if (!eop_desc) 724 break; 725 726 /* prevent any other reads prior to eop_desc */ 727 smp_rmb(); 728 729 /* if DD is not set pending work has not been completed */ 730 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) 731 break; 732 733 /* clear next_to_watch to prevent false hangs */ 734 tx_buffer->next_to_watch = NULL; 735 736 /* update the statistics for this packet */ 737 total_bytes += tx_buffer->bytecount; 738 total_packets += tx_buffer->gso_segs; 739 740 /* free the skb */ 741 napi_consume_skb(tx_buffer->skb, napi_budget); 742 743 /* unmap skb header data */ 744 dma_unmap_single(tx_ring->dev, 745 dma_unmap_addr(tx_buffer, dma), 746 dma_unmap_len(tx_buffer, len), 747 DMA_TO_DEVICE); 748 749 /* clear tx_buffer data */ 750 dma_unmap_len_set(tx_buffer, len, 0); 751 752 /* unmap remaining buffers */ 753 while (tx_desc != eop_desc) { 754 tx_buffer++; 755 tx_desc++; 756 i++; 757 if (unlikely(!i)) { 758 i -= tx_ring->count; 759 tx_buffer = tx_ring->tx_buffer_info; 760 tx_desc = WX_TX_DESC(tx_ring, 0); 761 } 762 763 /* unmap any remaining paged data */ 764 if (dma_unmap_len(tx_buffer, len)) { 765 dma_unmap_page(tx_ring->dev, 766 dma_unmap_addr(tx_buffer, dma), 767 dma_unmap_len(tx_buffer, len), 768 DMA_TO_DEVICE); 769 dma_unmap_len_set(tx_buffer, len, 0); 770 } 771 } 772 773 /* move us one more past the eop_desc for start of next pkt */ 774 tx_buffer++; 775 tx_desc++; 776 i++; 777 if (unlikely(!i)) { 778 i -= tx_ring->count; 779 tx_buffer = tx_ring->tx_buffer_info; 780 tx_desc = WX_TX_DESC(tx_ring, 0); 781 } 782 783 /* issue prefetch for next Tx descriptor */ 784 prefetch(tx_desc); 785 786 /* update budget accounting */ 787 budget--; 788 } while (likely(budget)); 789 790 i += tx_ring->count; 791 tx_ring->next_to_clean = i; 792 u64_stats_update_begin(&tx_ring->syncp); 793 tx_ring->stats.bytes += total_bytes; 794 tx_ring->stats.packets += total_packets; 795 u64_stats_update_end(&tx_ring->syncp); 796 q_vector->tx.total_bytes += total_bytes; 797 q_vector->tx.total_packets += total_packets; 798 799 netdev_tx_completed_queue(wx_txring_txq(tx_ring), 800 total_packets, total_bytes); 801 802 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 803 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 804 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 805 /* Make sure that anybody stopping the queue after this 806 * sees the new next_to_clean. 807 */ 808 smp_mb(); 809 810 if (__netif_subqueue_stopped(tx_ring->netdev, 811 tx_ring->queue_index) && 812 netif_running(tx_ring->netdev)) 813 netif_wake_subqueue(tx_ring->netdev, 814 tx_ring->queue_index); 815 } 816 817 return !!budget; 818 } 819 820 /** 821 * wx_poll - NAPI polling RX/TX cleanup routine 822 * @napi: napi struct with our devices info in it 823 * @budget: amount of work driver is allowed to do this pass, in packets 824 * 825 * This function will clean all queues associated with a q_vector. 826 **/ 827 static int wx_poll(struct napi_struct *napi, int budget) 828 { 829 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); 830 int per_ring_budget, work_done = 0; 831 struct wx *wx = q_vector->wx; 832 bool clean_complete = true; 833 struct wx_ring *ring; 834 835 wx_for_each_ring(ring, q_vector->tx) { 836 if (!wx_clean_tx_irq(q_vector, ring, budget)) 837 clean_complete = false; 838 } 839 840 /* Exit if we are called by netpoll */ 841 if (budget <= 0) 842 return budget; 843 844 /* attempt to distribute budget to each queue fairly, but don't allow 845 * the budget to go below 1 because we'll exit polling 846 */ 847 if (q_vector->rx.count > 1) 848 per_ring_budget = max(budget / q_vector->rx.count, 1); 849 else 850 per_ring_budget = budget; 851 852 wx_for_each_ring(ring, q_vector->rx) { 853 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); 854 855 work_done += cleaned; 856 if (cleaned >= per_ring_budget) 857 clean_complete = false; 858 } 859 860 /* If all work not completed, return budget and keep polling */ 861 if (!clean_complete) 862 return budget; 863 864 /* all work done, exit the polling mode */ 865 if (likely(napi_complete_done(napi, work_done))) { 866 if (netif_running(wx->netdev)) 867 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); 868 } 869 870 return min(work_done, budget - 1); 871 } 872 873 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) 874 { 875 if (likely(wx_desc_unused(tx_ring) >= size)) 876 return 0; 877 878 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 879 880 /* For the next check */ 881 smp_mb(); 882 883 /* We need to check again in a case another CPU has just 884 * made room available. 885 */ 886 if (likely(wx_desc_unused(tx_ring) < size)) 887 return -EBUSY; 888 889 /* A reprieve! - use start_queue because it doesn't call schedule */ 890 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 891 892 return 0; 893 } 894 895 static u32 wx_tx_cmd_type(u32 tx_flags) 896 { 897 /* set type for advanced descriptor with frame checksum insertion */ 898 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; 899 900 /* set HW vlan bit if vlan is present */ 901 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); 902 /* set segmentation enable bits for TSO/FSO */ 903 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); 904 /* set timestamp bit if present */ 905 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); 906 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); 907 908 return cmd_type; 909 } 910 911 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, 912 u32 tx_flags, unsigned int paylen) 913 { 914 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; 915 916 /* enable L4 checksum for TSO and TX checksum offload */ 917 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); 918 /* enable IPv4 checksum for TSO */ 919 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); 920 /* enable outer IPv4 checksum for TSO */ 921 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, 922 WX_TXD_EIPCS); 923 /* Check Context must be set if Tx switch is enabled, which it 924 * always is for case where virtual functions are running 925 */ 926 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); 927 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, 928 WX_TXD_IPSEC); 929 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 930 } 931 932 static void wx_tx_map(struct wx_ring *tx_ring, 933 struct wx_tx_buffer *first, 934 const u8 hdr_len) 935 { 936 struct sk_buff *skb = first->skb; 937 struct wx_tx_buffer *tx_buffer; 938 u32 tx_flags = first->tx_flags; 939 u16 i = tx_ring->next_to_use; 940 unsigned int data_len, size; 941 union wx_tx_desc *tx_desc; 942 skb_frag_t *frag; 943 dma_addr_t dma; 944 u32 cmd_type; 945 946 cmd_type = wx_tx_cmd_type(tx_flags); 947 tx_desc = WX_TX_DESC(tx_ring, i); 948 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 949 950 size = skb_headlen(skb); 951 data_len = skb->data_len; 952 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 953 954 tx_buffer = first; 955 956 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 957 if (dma_mapping_error(tx_ring->dev, dma)) 958 goto dma_error; 959 960 /* record length, and DMA address */ 961 dma_unmap_len_set(tx_buffer, len, size); 962 dma_unmap_addr_set(tx_buffer, dma, dma); 963 964 tx_desc->read.buffer_addr = cpu_to_le64(dma); 965 966 while (unlikely(size > WX_MAX_DATA_PER_TXD)) { 967 tx_desc->read.cmd_type_len = 968 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); 969 970 i++; 971 tx_desc++; 972 if (i == tx_ring->count) { 973 tx_desc = WX_TX_DESC(tx_ring, 0); 974 i = 0; 975 } 976 tx_desc->read.olinfo_status = 0; 977 978 dma += WX_MAX_DATA_PER_TXD; 979 size -= WX_MAX_DATA_PER_TXD; 980 981 tx_desc->read.buffer_addr = cpu_to_le64(dma); 982 } 983 984 if (likely(!data_len)) 985 break; 986 987 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 988 989 i++; 990 tx_desc++; 991 if (i == tx_ring->count) { 992 tx_desc = WX_TX_DESC(tx_ring, 0); 993 i = 0; 994 } 995 tx_desc->read.olinfo_status = 0; 996 997 size = skb_frag_size(frag); 998 999 data_len -= size; 1000 1001 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1002 DMA_TO_DEVICE); 1003 1004 tx_buffer = &tx_ring->tx_buffer_info[i]; 1005 } 1006 1007 /* write last descriptor with RS and EOP bits */ 1008 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; 1009 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1010 1011 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); 1012 1013 skb_tx_timestamp(skb); 1014 1015 /* Force memory writes to complete before letting h/w know there 1016 * are new descriptors to fetch. (Only applicable for weak-ordered 1017 * memory model archs, such as IA-64). 1018 * 1019 * We also need this memory barrier to make certain all of the 1020 * status bits have been updated before next_to_watch is written. 1021 */ 1022 wmb(); 1023 1024 /* set next_to_watch value indicating a packet is present */ 1025 first->next_to_watch = tx_desc; 1026 1027 i++; 1028 if (i == tx_ring->count) 1029 i = 0; 1030 1031 tx_ring->next_to_use = i; 1032 1033 wx_maybe_stop_tx(tx_ring, DESC_NEEDED); 1034 1035 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) 1036 writel(i, tx_ring->tail); 1037 1038 return; 1039 dma_error: 1040 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1041 1042 /* clear dma mappings for failed tx_buffer_info map */ 1043 for (;;) { 1044 tx_buffer = &tx_ring->tx_buffer_info[i]; 1045 if (dma_unmap_len(tx_buffer, len)) 1046 dma_unmap_page(tx_ring->dev, 1047 dma_unmap_addr(tx_buffer, dma), 1048 dma_unmap_len(tx_buffer, len), 1049 DMA_TO_DEVICE); 1050 dma_unmap_len_set(tx_buffer, len, 0); 1051 if (tx_buffer == first) 1052 break; 1053 if (i == 0) 1054 i += tx_ring->count; 1055 i--; 1056 } 1057 1058 dev_kfree_skb_any(first->skb); 1059 first->skb = NULL; 1060 1061 tx_ring->next_to_use = i; 1062 } 1063 1064 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, 1065 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) 1066 { 1067 struct wx_tx_context_desc *context_desc; 1068 u16 i = tx_ring->next_to_use; 1069 1070 context_desc = WX_TX_CTXTDESC(tx_ring, i); 1071 i++; 1072 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1073 1074 /* set bits to identify this as an advanced context descriptor */ 1075 type_tucmd |= WX_TXD_DTYP_CTXT; 1076 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1077 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); 1078 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1079 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1080 } 1081 1082 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) 1083 { 1084 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); 1085 1086 *nexthdr = hdr->nexthdr; 1087 offset += sizeof(struct ipv6hdr); 1088 while (ipv6_ext_hdr(*nexthdr)) { 1089 struct ipv6_opt_hdr _hdr, *hp; 1090 1091 if (*nexthdr == NEXTHDR_NONE) 1092 return; 1093 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); 1094 if (!hp) 1095 return; 1096 if (*nexthdr == NEXTHDR_FRAGMENT) 1097 break; 1098 *nexthdr = hp->nexthdr; 1099 } 1100 } 1101 1102 union network_header { 1103 struct iphdr *ipv4; 1104 struct ipv6hdr *ipv6; 1105 void *raw; 1106 }; 1107 1108 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) 1109 { 1110 u8 tun_prot = 0, l4_prot = 0, ptype = 0; 1111 struct sk_buff *skb = first->skb; 1112 1113 if (skb->encapsulation) { 1114 union network_header hdr; 1115 1116 switch (first->protocol) { 1117 case htons(ETH_P_IP): 1118 tun_prot = ip_hdr(skb)->protocol; 1119 ptype = WX_PTYPE_TUN_IPV4; 1120 break; 1121 case htons(ETH_P_IPV6): 1122 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); 1123 ptype = WX_PTYPE_TUN_IPV6; 1124 break; 1125 default: 1126 return ptype; 1127 } 1128 1129 if (tun_prot == IPPROTO_IPIP) { 1130 hdr.raw = (void *)inner_ip_hdr(skb); 1131 ptype |= WX_PTYPE_PKT_IPIP; 1132 } else if (tun_prot == IPPROTO_UDP) { 1133 hdr.raw = (void *)inner_ip_hdr(skb); 1134 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1135 skb->inner_protocol != htons(ETH_P_TEB)) { 1136 ptype |= WX_PTYPE_PKT_IG; 1137 } else { 1138 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1139 == htons(ETH_P_8021Q)) 1140 ptype |= WX_PTYPE_PKT_IGMV; 1141 else 1142 ptype |= WX_PTYPE_PKT_IGM; 1143 } 1144 1145 } else if (tun_prot == IPPROTO_GRE) { 1146 hdr.raw = (void *)inner_ip_hdr(skb); 1147 if (skb->inner_protocol == htons(ETH_P_IP) || 1148 skb->inner_protocol == htons(ETH_P_IPV6)) { 1149 ptype |= WX_PTYPE_PKT_IG; 1150 } else { 1151 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto 1152 == htons(ETH_P_8021Q)) 1153 ptype |= WX_PTYPE_PKT_IGMV; 1154 else 1155 ptype |= WX_PTYPE_PKT_IGM; 1156 } 1157 } else { 1158 return ptype; 1159 } 1160 1161 switch (hdr.ipv4->version) { 1162 case IPVERSION: 1163 l4_prot = hdr.ipv4->protocol; 1164 break; 1165 case 6: 1166 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); 1167 ptype |= WX_PTYPE_PKT_IPV6; 1168 break; 1169 default: 1170 return ptype; 1171 } 1172 } else { 1173 switch (first->protocol) { 1174 case htons(ETH_P_IP): 1175 l4_prot = ip_hdr(skb)->protocol; 1176 ptype = WX_PTYPE_PKT_IP; 1177 break; 1178 case htons(ETH_P_IPV6): 1179 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); 1180 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; 1181 break; 1182 default: 1183 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; 1184 } 1185 } 1186 switch (l4_prot) { 1187 case IPPROTO_TCP: 1188 ptype |= WX_PTYPE_TYP_TCP; 1189 break; 1190 case IPPROTO_UDP: 1191 ptype |= WX_PTYPE_TYP_UDP; 1192 break; 1193 case IPPROTO_SCTP: 1194 ptype |= WX_PTYPE_TYP_SCTP; 1195 break; 1196 default: 1197 ptype |= WX_PTYPE_TYP_IP; 1198 break; 1199 } 1200 1201 return ptype; 1202 } 1203 1204 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1205 u8 *hdr_len, u8 ptype) 1206 { 1207 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1208 struct net_device *netdev = tx_ring->netdev; 1209 u32 l4len, tunhdr_eiplen_tunlen = 0; 1210 struct sk_buff *skb = first->skb; 1211 bool enc = skb->encapsulation; 1212 struct ipv6hdr *ipv6h; 1213 struct tcphdr *tcph; 1214 struct iphdr *iph; 1215 u8 tun_prot = 0; 1216 int err; 1217 1218 if (skb->ip_summed != CHECKSUM_PARTIAL) 1219 return 0; 1220 1221 if (!skb_is_gso(skb)) 1222 return 0; 1223 1224 err = skb_cow_head(skb, 0); 1225 if (err < 0) 1226 return err; 1227 1228 /* indicates the inner headers in the skbuff are valid. */ 1229 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); 1230 if (iph->version == 4) { 1231 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1232 iph->tot_len = 0; 1233 iph->check = 0; 1234 tcph->check = ~csum_tcpudp_magic(iph->saddr, 1235 iph->daddr, 0, 1236 IPPROTO_TCP, 0); 1237 first->tx_flags |= WX_TX_FLAGS_TSO | 1238 WX_TX_FLAGS_CSUM | 1239 WX_TX_FLAGS_IPV4 | 1240 WX_TX_FLAGS_CC; 1241 } else if (iph->version == 6 && skb_is_gso_v6(skb)) { 1242 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 1243 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); 1244 ipv6h->payload_len = 0; 1245 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, 1246 &ipv6h->daddr, 0, 1247 IPPROTO_TCP, 0); 1248 first->tx_flags |= WX_TX_FLAGS_TSO | 1249 WX_TX_FLAGS_CSUM | 1250 WX_TX_FLAGS_CC; 1251 } 1252 1253 /* compute header lengths */ 1254 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 1255 *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) : 1256 skb_transport_offset(skb); 1257 *hdr_len += l4len; 1258 1259 /* update gso size and bytecount with header size */ 1260 first->gso_segs = skb_shinfo(skb)->gso_segs; 1261 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1262 1263 /* mss_l4len_id: use 0 as index for TSO */ 1264 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; 1265 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; 1266 1267 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 1268 if (enc) { 1269 switch (first->protocol) { 1270 case htons(ETH_P_IP): 1271 tun_prot = ip_hdr(skb)->protocol; 1272 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; 1273 break; 1274 case htons(ETH_P_IPV6): 1275 tun_prot = ipv6_hdr(skb)->nexthdr; 1276 break; 1277 default: 1278 break; 1279 } 1280 switch (tun_prot) { 1281 case IPPROTO_UDP: 1282 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1283 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1284 WX_TXD_OUTER_IPLEN_SHIFT) | 1285 (((skb_inner_mac_header(skb) - 1286 skb_transport_header(skb)) >> 1) << 1287 WX_TXD_TUNNEL_LEN_SHIFT); 1288 break; 1289 case IPPROTO_GRE: 1290 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1291 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1292 WX_TXD_OUTER_IPLEN_SHIFT) | 1293 (((skb_inner_mac_header(skb) - 1294 skb_transport_header(skb)) >> 1) << 1295 WX_TXD_TUNNEL_LEN_SHIFT); 1296 break; 1297 case IPPROTO_IPIP: 1298 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1299 (char *)ip_hdr(skb)) >> 2) << 1300 WX_TXD_OUTER_IPLEN_SHIFT; 1301 break; 1302 default: 1303 break; 1304 } 1305 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; 1306 } else { 1307 vlan_macip_lens = skb_network_header_len(skb) >> 1; 1308 } 1309 1310 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; 1311 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1312 1313 type_tucmd = ptype << 24; 1314 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1315 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1316 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1317 WX_TX_FLAGS_HW_VLAN, 1318 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1319 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1320 type_tucmd, mss_l4len_idx); 1321 1322 return 1; 1323 } 1324 1325 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, 1326 u8 ptype) 1327 { 1328 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; 1329 struct net_device *netdev = tx_ring->netdev; 1330 u32 mss_l4len_idx = 0, type_tucmd; 1331 struct sk_buff *skb = first->skb; 1332 u8 tun_prot = 0; 1333 1334 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1335 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && 1336 !(first->tx_flags & WX_TX_FLAGS_CC)) 1337 return; 1338 vlan_macip_lens = skb_network_offset(skb) << 1339 WX_TXD_MACLEN_SHIFT; 1340 } else { 1341 u8 l4_prot = 0; 1342 union { 1343 struct iphdr *ipv4; 1344 struct ipv6hdr *ipv6; 1345 u8 *raw; 1346 } network_hdr; 1347 union { 1348 struct tcphdr *tcphdr; 1349 u8 *raw; 1350 } transport_hdr; 1351 1352 if (skb->encapsulation) { 1353 network_hdr.raw = skb_inner_network_header(skb); 1354 transport_hdr.raw = skb_inner_transport_header(skb); 1355 vlan_macip_lens = skb_network_offset(skb) << 1356 WX_TXD_MACLEN_SHIFT; 1357 switch (first->protocol) { 1358 case htons(ETH_P_IP): 1359 tun_prot = ip_hdr(skb)->protocol; 1360 break; 1361 case htons(ETH_P_IPV6): 1362 tun_prot = ipv6_hdr(skb)->nexthdr; 1363 break; 1364 default: 1365 return; 1366 } 1367 switch (tun_prot) { 1368 case IPPROTO_UDP: 1369 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; 1370 tunhdr_eiplen_tunlen |= 1371 ((skb_network_header_len(skb) >> 2) << 1372 WX_TXD_OUTER_IPLEN_SHIFT) | 1373 (((skb_inner_mac_header(skb) - 1374 skb_transport_header(skb)) >> 1) << 1375 WX_TXD_TUNNEL_LEN_SHIFT); 1376 break; 1377 case IPPROTO_GRE: 1378 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; 1379 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << 1380 WX_TXD_OUTER_IPLEN_SHIFT) | 1381 (((skb_inner_mac_header(skb) - 1382 skb_transport_header(skb)) >> 1) << 1383 WX_TXD_TUNNEL_LEN_SHIFT); 1384 break; 1385 case IPPROTO_IPIP: 1386 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - 1387 (char *)ip_hdr(skb)) >> 2) << 1388 WX_TXD_OUTER_IPLEN_SHIFT; 1389 break; 1390 default: 1391 break; 1392 } 1393 1394 } else { 1395 network_hdr.raw = skb_network_header(skb); 1396 transport_hdr.raw = skb_transport_header(skb); 1397 vlan_macip_lens = skb_network_offset(skb) << 1398 WX_TXD_MACLEN_SHIFT; 1399 } 1400 1401 switch (network_hdr.ipv4->version) { 1402 case IPVERSION: 1403 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1404 l4_prot = network_hdr.ipv4->protocol; 1405 break; 1406 case 6: 1407 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; 1408 l4_prot = network_hdr.ipv6->nexthdr; 1409 break; 1410 default: 1411 break; 1412 } 1413 1414 switch (l4_prot) { 1415 case IPPROTO_TCP: 1416 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << 1417 WX_TXD_L4LEN_SHIFT; 1418 break; 1419 case IPPROTO_SCTP: 1420 mss_l4len_idx = sizeof(struct sctphdr) << 1421 WX_TXD_L4LEN_SHIFT; 1422 break; 1423 case IPPROTO_UDP: 1424 mss_l4len_idx = sizeof(struct udphdr) << 1425 WX_TXD_L4LEN_SHIFT; 1426 break; 1427 default: 1428 break; 1429 } 1430 1431 /* update TX checksum flag */ 1432 first->tx_flags |= WX_TX_FLAGS_CSUM; 1433 } 1434 first->tx_flags |= WX_TX_FLAGS_CC; 1435 /* vlan_macip_lens: MACLEN, VLAN tag */ 1436 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; 1437 1438 type_tucmd = ptype << 24; 1439 if (skb->vlan_proto == htons(ETH_P_8021AD) && 1440 netdev->features & NETIF_F_HW_VLAN_STAG_TX) 1441 type_tucmd |= WX_SET_FLAG(first->tx_flags, 1442 WX_TX_FLAGS_HW_VLAN, 1443 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); 1444 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, 1445 type_tucmd, mss_l4len_idx); 1446 } 1447 1448 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, 1449 struct wx_ring *tx_ring) 1450 { 1451 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1452 struct wx_tx_buffer *first; 1453 u8 hdr_len = 0, ptype; 1454 unsigned short f; 1455 u32 tx_flags = 0; 1456 int tso; 1457 1458 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, 1459 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, 1460 * + 2 desc gap to keep tail from touching head, 1461 * + 1 desc for context descriptor, 1462 * otherwise try next time 1463 */ 1464 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1465 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> 1466 frags[f])); 1467 1468 if (wx_maybe_stop_tx(tx_ring, count + 3)) 1469 return NETDEV_TX_BUSY; 1470 1471 /* record the location of the first descriptor for this packet */ 1472 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 1473 first->skb = skb; 1474 first->bytecount = skb->len; 1475 first->gso_segs = 1; 1476 1477 /* if we have a HW VLAN tag being added default to the HW one */ 1478 if (skb_vlan_tag_present(skb)) { 1479 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; 1480 tx_flags |= WX_TX_FLAGS_HW_VLAN; 1481 } 1482 1483 /* record initial flags and protocol */ 1484 first->tx_flags = tx_flags; 1485 first->protocol = vlan_get_protocol(skb); 1486 1487 ptype = wx_encode_tx_desc_ptype(first); 1488 1489 tso = wx_tso(tx_ring, first, &hdr_len, ptype); 1490 if (tso < 0) 1491 goto out_drop; 1492 else if (!tso) 1493 wx_tx_csum(tx_ring, first, ptype); 1494 wx_tx_map(tx_ring, first, hdr_len); 1495 1496 return NETDEV_TX_OK; 1497 out_drop: 1498 dev_kfree_skb_any(first->skb); 1499 first->skb = NULL; 1500 1501 return NETDEV_TX_OK; 1502 } 1503 1504 netdev_tx_t wx_xmit_frame(struct sk_buff *skb, 1505 struct net_device *netdev) 1506 { 1507 unsigned int r_idx = skb->queue_mapping; 1508 struct wx *wx = netdev_priv(netdev); 1509 struct wx_ring *tx_ring; 1510 1511 if (!netif_carrier_ok(netdev)) { 1512 dev_kfree_skb_any(skb); 1513 return NETDEV_TX_OK; 1514 } 1515 1516 /* The minimum packet size for olinfo paylen is 17 so pad the skb 1517 * in order to meet this minimum size requirement. 1518 */ 1519 if (skb_put_padto(skb, 17)) 1520 return NETDEV_TX_OK; 1521 1522 if (r_idx >= wx->num_tx_queues) 1523 r_idx = r_idx % wx->num_tx_queues; 1524 tx_ring = wx->tx_ring[r_idx]; 1525 1526 return wx_xmit_frame_ring(skb, tx_ring); 1527 } 1528 EXPORT_SYMBOL(wx_xmit_frame); 1529 1530 void wx_napi_enable_all(struct wx *wx) 1531 { 1532 struct wx_q_vector *q_vector; 1533 int q_idx; 1534 1535 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1536 q_vector = wx->q_vector[q_idx]; 1537 napi_enable(&q_vector->napi); 1538 } 1539 } 1540 EXPORT_SYMBOL(wx_napi_enable_all); 1541 1542 void wx_napi_disable_all(struct wx *wx) 1543 { 1544 struct wx_q_vector *q_vector; 1545 int q_idx; 1546 1547 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { 1548 q_vector = wx->q_vector[q_idx]; 1549 napi_disable(&q_vector->napi); 1550 } 1551 } 1552 EXPORT_SYMBOL(wx_napi_disable_all); 1553 1554 /** 1555 * wx_set_rss_queues: Allocate queues for RSS 1556 * @wx: board private structure to initialize 1557 * 1558 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1559 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1560 * 1561 **/ 1562 static void wx_set_rss_queues(struct wx *wx) 1563 { 1564 wx->num_rx_queues = wx->mac.max_rx_queues; 1565 wx->num_tx_queues = wx->mac.max_tx_queues; 1566 } 1567 1568 static void wx_set_num_queues(struct wx *wx) 1569 { 1570 /* Start with base case */ 1571 wx->num_rx_queues = 1; 1572 wx->num_tx_queues = 1; 1573 wx->queues_per_pool = 1; 1574 1575 wx_set_rss_queues(wx); 1576 } 1577 1578 /** 1579 * wx_acquire_msix_vectors - acquire MSI-X vectors 1580 * @wx: board private structure 1581 * 1582 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will 1583 * return a negative error code if unable to acquire MSI-X vectors for any 1584 * reason. 1585 */ 1586 static int wx_acquire_msix_vectors(struct wx *wx) 1587 { 1588 struct irq_affinity affd = { .pre_vectors = 1 }; 1589 int nvecs, i; 1590 1591 nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors); 1592 1593 wx->msix_entries = kcalloc(nvecs, 1594 sizeof(struct msix_entry), 1595 GFP_KERNEL); 1596 if (!wx->msix_entries) 1597 return -ENOMEM; 1598 1599 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, 1600 nvecs, 1601 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, 1602 &affd); 1603 if (nvecs < 0) { 1604 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); 1605 kfree(wx->msix_entries); 1606 wx->msix_entries = NULL; 1607 return nvecs; 1608 } 1609 1610 for (i = 0; i < nvecs; i++) { 1611 wx->msix_entries[i].entry = i; 1612 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i); 1613 } 1614 1615 /* one for msix_other */ 1616 nvecs -= 1; 1617 wx->num_q_vectors = nvecs; 1618 wx->num_rx_queues = nvecs; 1619 wx->num_tx_queues = nvecs; 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * wx_set_interrupt_capability - set MSI-X or MSI if supported 1626 * @wx: board private structure to initialize 1627 * 1628 * Attempt to configure the interrupts using the best available 1629 * capabilities of the hardware and the kernel. 1630 **/ 1631 static int wx_set_interrupt_capability(struct wx *wx) 1632 { 1633 struct pci_dev *pdev = wx->pdev; 1634 int nvecs, ret; 1635 1636 /* We will try to get MSI-X interrupts first */ 1637 ret = wx_acquire_msix_vectors(wx); 1638 if (ret == 0 || (ret == -ENOMEM)) 1639 return ret; 1640 1641 wx->num_rx_queues = 1; 1642 wx->num_tx_queues = 1; 1643 wx->num_q_vectors = 1; 1644 1645 /* minmum one for queue, one for misc*/ 1646 nvecs = 1; 1647 nvecs = pci_alloc_irq_vectors(pdev, nvecs, 1648 nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY); 1649 if (nvecs == 1) { 1650 if (pdev->msi_enabled) 1651 wx_err(wx, "Fallback to MSI.\n"); 1652 else 1653 wx_err(wx, "Fallback to LEGACY.\n"); 1654 } else { 1655 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs); 1656 return nvecs; 1657 } 1658 1659 pdev->irq = pci_irq_vector(pdev, 0); 1660 1661 return 0; 1662 } 1663 1664 /** 1665 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS 1666 * @wx: board private structure to initialize 1667 * 1668 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. 1669 * 1670 **/ 1671 static void wx_cache_ring_rss(struct wx *wx) 1672 { 1673 u16 i; 1674 1675 for (i = 0; i < wx->num_rx_queues; i++) 1676 wx->rx_ring[i]->reg_idx = i; 1677 1678 for (i = 0; i < wx->num_tx_queues; i++) 1679 wx->tx_ring[i]->reg_idx = i; 1680 } 1681 1682 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) 1683 { 1684 ring->next = head->ring; 1685 head->ring = ring; 1686 head->count++; 1687 } 1688 1689 /** 1690 * wx_alloc_q_vector - Allocate memory for a single interrupt vector 1691 * @wx: board private structure to initialize 1692 * @v_count: q_vectors allocated on wx, used for ring interleaving 1693 * @v_idx: index of vector in wx struct 1694 * @txr_count: total number of Tx rings to allocate 1695 * @txr_idx: index of first Tx ring to allocate 1696 * @rxr_count: total number of Rx rings to allocate 1697 * @rxr_idx: index of first Rx ring to allocate 1698 * 1699 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1700 **/ 1701 static int wx_alloc_q_vector(struct wx *wx, 1702 unsigned int v_count, unsigned int v_idx, 1703 unsigned int txr_count, unsigned int txr_idx, 1704 unsigned int rxr_count, unsigned int rxr_idx) 1705 { 1706 struct wx_q_vector *q_vector; 1707 int ring_count, default_itr; 1708 struct wx_ring *ring; 1709 1710 /* note this will allocate space for the ring structure as well! */ 1711 ring_count = txr_count + rxr_count; 1712 1713 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), 1714 GFP_KERNEL); 1715 if (!q_vector) 1716 return -ENOMEM; 1717 1718 /* initialize NAPI */ 1719 netif_napi_add(wx->netdev, &q_vector->napi, 1720 wx_poll); 1721 1722 /* tie q_vector and wx together */ 1723 wx->q_vector[v_idx] = q_vector; 1724 q_vector->wx = wx; 1725 q_vector->v_idx = v_idx; 1726 if (cpu_online(v_idx)) 1727 q_vector->numa_node = cpu_to_node(v_idx); 1728 1729 /* initialize pointer to rings */ 1730 ring = q_vector->ring; 1731 1732 if (wx->mac.type == wx_mac_sp) 1733 default_itr = WX_12K_ITR; 1734 else 1735 default_itr = WX_7K_ITR; 1736 /* initialize ITR */ 1737 if (txr_count && !rxr_count) 1738 /* tx only vector */ 1739 q_vector->itr = wx->tx_itr_setting ? 1740 default_itr : wx->tx_itr_setting; 1741 else 1742 /* rx or rx/tx vector */ 1743 q_vector->itr = wx->rx_itr_setting ? 1744 default_itr : wx->rx_itr_setting; 1745 1746 while (txr_count) { 1747 /* assign generic ring traits */ 1748 ring->dev = &wx->pdev->dev; 1749 ring->netdev = wx->netdev; 1750 1751 /* configure backlink on ring */ 1752 ring->q_vector = q_vector; 1753 1754 /* update q_vector Tx values */ 1755 wx_add_ring(ring, &q_vector->tx); 1756 1757 /* apply Tx specific ring traits */ 1758 ring->count = wx->tx_ring_count; 1759 1760 ring->queue_index = txr_idx; 1761 1762 /* assign ring to wx */ 1763 wx->tx_ring[txr_idx] = ring; 1764 1765 /* update count and index */ 1766 txr_count--; 1767 txr_idx += v_count; 1768 1769 /* push pointer to next ring */ 1770 ring++; 1771 } 1772 1773 while (rxr_count) { 1774 /* assign generic ring traits */ 1775 ring->dev = &wx->pdev->dev; 1776 ring->netdev = wx->netdev; 1777 1778 /* configure backlink on ring */ 1779 ring->q_vector = q_vector; 1780 1781 /* update q_vector Rx values */ 1782 wx_add_ring(ring, &q_vector->rx); 1783 1784 /* apply Rx specific ring traits */ 1785 ring->count = wx->rx_ring_count; 1786 ring->queue_index = rxr_idx; 1787 1788 /* assign ring to wx */ 1789 wx->rx_ring[rxr_idx] = ring; 1790 1791 /* update count and index */ 1792 rxr_count--; 1793 rxr_idx += v_count; 1794 1795 /* push pointer to next ring */ 1796 ring++; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * wx_free_q_vector - Free memory allocated for specific interrupt vector 1804 * @wx: board private structure to initialize 1805 * @v_idx: Index of vector to be freed 1806 * 1807 * This function frees the memory allocated to the q_vector. In addition if 1808 * NAPI is enabled it will delete any references to the NAPI struct prior 1809 * to freeing the q_vector. 1810 **/ 1811 static void wx_free_q_vector(struct wx *wx, int v_idx) 1812 { 1813 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 1814 struct wx_ring *ring; 1815 1816 wx_for_each_ring(ring, q_vector->tx) 1817 wx->tx_ring[ring->queue_index] = NULL; 1818 1819 wx_for_each_ring(ring, q_vector->rx) 1820 wx->rx_ring[ring->queue_index] = NULL; 1821 1822 wx->q_vector[v_idx] = NULL; 1823 netif_napi_del(&q_vector->napi); 1824 kfree_rcu(q_vector, rcu); 1825 } 1826 1827 /** 1828 * wx_alloc_q_vectors - Allocate memory for interrupt vectors 1829 * @wx: board private structure to initialize 1830 * 1831 * We allocate one q_vector per queue interrupt. If allocation fails we 1832 * return -ENOMEM. 1833 **/ 1834 static int wx_alloc_q_vectors(struct wx *wx) 1835 { 1836 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1837 unsigned int rxr_remaining = wx->num_rx_queues; 1838 unsigned int txr_remaining = wx->num_tx_queues; 1839 unsigned int q_vectors = wx->num_q_vectors; 1840 int rqpv, tqpv; 1841 int err; 1842 1843 for (; v_idx < q_vectors; v_idx++) { 1844 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1845 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1846 err = wx_alloc_q_vector(wx, q_vectors, v_idx, 1847 tqpv, txr_idx, 1848 rqpv, rxr_idx); 1849 1850 if (err) 1851 goto err_out; 1852 1853 /* update counts and index */ 1854 rxr_remaining -= rqpv; 1855 txr_remaining -= tqpv; 1856 rxr_idx++; 1857 txr_idx++; 1858 } 1859 1860 return 0; 1861 1862 err_out: 1863 wx->num_tx_queues = 0; 1864 wx->num_rx_queues = 0; 1865 wx->num_q_vectors = 0; 1866 1867 while (v_idx--) 1868 wx_free_q_vector(wx, v_idx); 1869 1870 return -ENOMEM; 1871 } 1872 1873 /** 1874 * wx_free_q_vectors - Free memory allocated for interrupt vectors 1875 * @wx: board private structure to initialize 1876 * 1877 * This function frees the memory allocated to the q_vectors. In addition if 1878 * NAPI is enabled it will delete any references to the NAPI struct prior 1879 * to freeing the q_vector. 1880 **/ 1881 static void wx_free_q_vectors(struct wx *wx) 1882 { 1883 int v_idx = wx->num_q_vectors; 1884 1885 wx->num_tx_queues = 0; 1886 wx->num_rx_queues = 0; 1887 wx->num_q_vectors = 0; 1888 1889 while (v_idx--) 1890 wx_free_q_vector(wx, v_idx); 1891 } 1892 1893 void wx_reset_interrupt_capability(struct wx *wx) 1894 { 1895 struct pci_dev *pdev = wx->pdev; 1896 1897 if (!pdev->msi_enabled && !pdev->msix_enabled) 1898 return; 1899 1900 if (pdev->msix_enabled) { 1901 kfree(wx->msix_entries); 1902 wx->msix_entries = NULL; 1903 } 1904 pci_free_irq_vectors(wx->pdev); 1905 } 1906 EXPORT_SYMBOL(wx_reset_interrupt_capability); 1907 1908 /** 1909 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings 1910 * @wx: board private structure to clear interrupt scheme on 1911 * 1912 * We go through and clear interrupt specific resources and reset the structure 1913 * to pre-load conditions 1914 **/ 1915 void wx_clear_interrupt_scheme(struct wx *wx) 1916 { 1917 wx_free_q_vectors(wx); 1918 wx_reset_interrupt_capability(wx); 1919 } 1920 EXPORT_SYMBOL(wx_clear_interrupt_scheme); 1921 1922 int wx_init_interrupt_scheme(struct wx *wx) 1923 { 1924 int ret; 1925 1926 /* Number of supported queues */ 1927 wx_set_num_queues(wx); 1928 1929 /* Set interrupt mode */ 1930 ret = wx_set_interrupt_capability(wx); 1931 if (ret) { 1932 wx_err(wx, "Allocate irq vectors for failed.\n"); 1933 return ret; 1934 } 1935 1936 /* Allocate memory for queues */ 1937 ret = wx_alloc_q_vectors(wx); 1938 if (ret) { 1939 wx_err(wx, "Unable to allocate memory for queue vectors.\n"); 1940 wx_reset_interrupt_capability(wx); 1941 return ret; 1942 } 1943 1944 wx_cache_ring_rss(wx); 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL(wx_init_interrupt_scheme); 1949 1950 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) 1951 { 1952 struct wx_q_vector *q_vector = data; 1953 1954 /* EIAM disabled interrupts (on this vector) for us */ 1955 if (q_vector->rx.ring || q_vector->tx.ring) 1956 napi_schedule_irqoff(&q_vector->napi); 1957 1958 return IRQ_HANDLED; 1959 } 1960 EXPORT_SYMBOL(wx_msix_clean_rings); 1961 1962 void wx_free_irq(struct wx *wx) 1963 { 1964 struct pci_dev *pdev = wx->pdev; 1965 int vector; 1966 1967 if (!(pdev->msix_enabled)) { 1968 free_irq(pdev->irq, wx); 1969 return; 1970 } 1971 1972 for (vector = 0; vector < wx->num_q_vectors; vector++) { 1973 struct wx_q_vector *q_vector = wx->q_vector[vector]; 1974 struct msix_entry *entry = &wx->msix_entries[vector]; 1975 1976 /* free only the irqs that were actually requested */ 1977 if (!q_vector->rx.ring && !q_vector->tx.ring) 1978 continue; 1979 1980 free_irq(entry->vector, q_vector); 1981 } 1982 1983 if (wx->mac.type == wx_mac_em) 1984 free_irq(wx->msix_entries[vector].vector, wx); 1985 } 1986 EXPORT_SYMBOL(wx_free_irq); 1987 1988 /** 1989 * wx_setup_isb_resources - allocate interrupt status resources 1990 * @wx: board private structure 1991 * 1992 * Return 0 on success, negative on failure 1993 **/ 1994 int wx_setup_isb_resources(struct wx *wx) 1995 { 1996 struct pci_dev *pdev = wx->pdev; 1997 1998 wx->isb_mem = dma_alloc_coherent(&pdev->dev, 1999 sizeof(u32) * 4, 2000 &wx->isb_dma, 2001 GFP_KERNEL); 2002 if (!wx->isb_mem) { 2003 wx_err(wx, "Alloc isb_mem failed\n"); 2004 return -ENOMEM; 2005 } 2006 2007 return 0; 2008 } 2009 EXPORT_SYMBOL(wx_setup_isb_resources); 2010 2011 /** 2012 * wx_free_isb_resources - allocate all queues Rx resources 2013 * @wx: board private structure 2014 * 2015 * Return 0 on success, negative on failure 2016 **/ 2017 void wx_free_isb_resources(struct wx *wx) 2018 { 2019 struct pci_dev *pdev = wx->pdev; 2020 2021 dma_free_coherent(&pdev->dev, sizeof(u32) * 4, 2022 wx->isb_mem, wx->isb_dma); 2023 wx->isb_mem = NULL; 2024 } 2025 EXPORT_SYMBOL(wx_free_isb_resources); 2026 2027 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) 2028 { 2029 u32 cur_tag = 0; 2030 2031 cur_tag = wx->isb_mem[WX_ISB_HEADER]; 2032 wx->isb_tag[idx] = cur_tag; 2033 2034 return (__force u32)cpu_to_le32(wx->isb_mem[idx]); 2035 } 2036 EXPORT_SYMBOL(wx_misc_isb); 2037 2038 /** 2039 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors 2040 * @wx: pointer to wx struct 2041 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 2042 * @queue: queue to map the corresponding interrupt to 2043 * @msix_vector: the vector to map to the corresponding queue 2044 * 2045 **/ 2046 static void wx_set_ivar(struct wx *wx, s8 direction, 2047 u16 queue, u16 msix_vector) 2048 { 2049 u32 ivar, index; 2050 2051 if (direction == -1) { 2052 /* other causes */ 2053 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2054 index = 0; 2055 ivar = rd32(wx, WX_PX_MISC_IVAR); 2056 ivar &= ~(0xFF << index); 2057 ivar |= (msix_vector << index); 2058 wr32(wx, WX_PX_MISC_IVAR, ivar); 2059 } else { 2060 /* tx or rx causes */ 2061 msix_vector |= WX_PX_IVAR_ALLOC_VAL; 2062 index = ((16 * (queue & 1)) + (8 * direction)); 2063 ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); 2064 ivar &= ~(0xFF << index); 2065 ivar |= (msix_vector << index); 2066 wr32(wx, WX_PX_IVAR(queue >> 1), ivar); 2067 } 2068 } 2069 2070 /** 2071 * wx_write_eitr - write EITR register in hardware specific way 2072 * @q_vector: structure containing interrupt and ring information 2073 * 2074 * This function is made to be called by ethtool and by the driver 2075 * when it needs to update EITR registers at runtime. Hardware 2076 * specific quirks/differences are taken care of here. 2077 */ 2078 static void wx_write_eitr(struct wx_q_vector *q_vector) 2079 { 2080 struct wx *wx = q_vector->wx; 2081 int v_idx = q_vector->v_idx; 2082 u32 itr_reg; 2083 2084 if (wx->mac.type == wx_mac_sp) 2085 itr_reg = q_vector->itr & WX_SP_MAX_EITR; 2086 else 2087 itr_reg = q_vector->itr & WX_EM_MAX_EITR; 2088 2089 itr_reg |= WX_PX_ITR_CNT_WDIS; 2090 2091 wr32(wx, WX_PX_ITR(v_idx), itr_reg); 2092 } 2093 2094 /** 2095 * wx_configure_vectors - Configure vectors for hardware 2096 * @wx: board private structure 2097 * 2098 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY 2099 * interrupts. 2100 **/ 2101 void wx_configure_vectors(struct wx *wx) 2102 { 2103 struct pci_dev *pdev = wx->pdev; 2104 u32 eitrsel = 0; 2105 u16 v_idx; 2106 2107 if (pdev->msix_enabled) { 2108 /* Populate MSIX to EITR Select */ 2109 wr32(wx, WX_PX_ITRSEL, eitrsel); 2110 /* use EIAM to auto-mask when MSI-X interrupt is asserted 2111 * this saves a register write for every interrupt 2112 */ 2113 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); 2114 } else { 2115 /* legacy interrupts, use EIAM to auto-mask when reading EICR, 2116 * specifically only auto mask tx and rx interrupts. 2117 */ 2118 wr32(wx, WX_PX_GPIE, 0); 2119 } 2120 2121 /* Populate the IVAR table and set the ITR values to the 2122 * corresponding register. 2123 */ 2124 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { 2125 struct wx_q_vector *q_vector = wx->q_vector[v_idx]; 2126 struct wx_ring *ring; 2127 2128 wx_for_each_ring(ring, q_vector->rx) 2129 wx_set_ivar(wx, 0, ring->reg_idx, v_idx); 2130 2131 wx_for_each_ring(ring, q_vector->tx) 2132 wx_set_ivar(wx, 1, ring->reg_idx, v_idx); 2133 2134 wx_write_eitr(q_vector); 2135 } 2136 2137 wx_set_ivar(wx, -1, 0, v_idx); 2138 if (pdev->msix_enabled) 2139 wr32(wx, WX_PX_ITR(v_idx), 1950); 2140 } 2141 EXPORT_SYMBOL(wx_configure_vectors); 2142 2143 /** 2144 * wx_clean_rx_ring - Free Rx Buffers per Queue 2145 * @rx_ring: ring to free buffers from 2146 **/ 2147 static void wx_clean_rx_ring(struct wx_ring *rx_ring) 2148 { 2149 struct wx_rx_buffer *rx_buffer; 2150 u16 i = rx_ring->next_to_clean; 2151 2152 rx_buffer = &rx_ring->rx_buffer_info[i]; 2153 2154 /* Free all the Rx ring sk_buffs */ 2155 while (i != rx_ring->next_to_alloc) { 2156 if (rx_buffer->skb) { 2157 struct sk_buff *skb = rx_buffer->skb; 2158 2159 if (WX_CB(skb)->page_released) 2160 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2161 2162 dev_kfree_skb(skb); 2163 } 2164 2165 /* Invalidate cache lines that may have been written to by 2166 * device so that we avoid corrupting memory. 2167 */ 2168 dma_sync_single_range_for_cpu(rx_ring->dev, 2169 rx_buffer->dma, 2170 rx_buffer->page_offset, 2171 WX_RX_BUFSZ, 2172 DMA_FROM_DEVICE); 2173 2174 /* free resources associated with mapping */ 2175 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); 2176 2177 i++; 2178 rx_buffer++; 2179 if (i == rx_ring->count) { 2180 i = 0; 2181 rx_buffer = rx_ring->rx_buffer_info; 2182 } 2183 } 2184 2185 rx_ring->next_to_alloc = 0; 2186 rx_ring->next_to_clean = 0; 2187 rx_ring->next_to_use = 0; 2188 } 2189 2190 /** 2191 * wx_clean_all_rx_rings - Free Rx Buffers for all queues 2192 * @wx: board private structure 2193 **/ 2194 void wx_clean_all_rx_rings(struct wx *wx) 2195 { 2196 int i; 2197 2198 for (i = 0; i < wx->num_rx_queues; i++) 2199 wx_clean_rx_ring(wx->rx_ring[i]); 2200 } 2201 EXPORT_SYMBOL(wx_clean_all_rx_rings); 2202 2203 /** 2204 * wx_free_rx_resources - Free Rx Resources 2205 * @rx_ring: ring to clean the resources from 2206 * 2207 * Free all receive software resources 2208 **/ 2209 static void wx_free_rx_resources(struct wx_ring *rx_ring) 2210 { 2211 wx_clean_rx_ring(rx_ring); 2212 kvfree(rx_ring->rx_buffer_info); 2213 rx_ring->rx_buffer_info = NULL; 2214 2215 /* if not set, then don't free */ 2216 if (!rx_ring->desc) 2217 return; 2218 2219 dma_free_coherent(rx_ring->dev, rx_ring->size, 2220 rx_ring->desc, rx_ring->dma); 2221 2222 rx_ring->desc = NULL; 2223 2224 if (rx_ring->page_pool) { 2225 page_pool_destroy(rx_ring->page_pool); 2226 rx_ring->page_pool = NULL; 2227 } 2228 } 2229 2230 /** 2231 * wx_free_all_rx_resources - Free Rx Resources for All Queues 2232 * @wx: pointer to hardware structure 2233 * 2234 * Free all receive software resources 2235 **/ 2236 static void wx_free_all_rx_resources(struct wx *wx) 2237 { 2238 int i; 2239 2240 for (i = 0; i < wx->num_rx_queues; i++) 2241 wx_free_rx_resources(wx->rx_ring[i]); 2242 } 2243 2244 /** 2245 * wx_clean_tx_ring - Free Tx Buffers 2246 * @tx_ring: ring to be cleaned 2247 **/ 2248 static void wx_clean_tx_ring(struct wx_ring *tx_ring) 2249 { 2250 struct wx_tx_buffer *tx_buffer; 2251 u16 i = tx_ring->next_to_clean; 2252 2253 tx_buffer = &tx_ring->tx_buffer_info[i]; 2254 2255 while (i != tx_ring->next_to_use) { 2256 union wx_tx_desc *eop_desc, *tx_desc; 2257 2258 /* Free all the Tx ring sk_buffs */ 2259 dev_kfree_skb_any(tx_buffer->skb); 2260 2261 /* unmap skb header data */ 2262 dma_unmap_single(tx_ring->dev, 2263 dma_unmap_addr(tx_buffer, dma), 2264 dma_unmap_len(tx_buffer, len), 2265 DMA_TO_DEVICE); 2266 2267 /* check for eop_desc to determine the end of the packet */ 2268 eop_desc = tx_buffer->next_to_watch; 2269 tx_desc = WX_TX_DESC(tx_ring, i); 2270 2271 /* unmap remaining buffers */ 2272 while (tx_desc != eop_desc) { 2273 tx_buffer++; 2274 tx_desc++; 2275 i++; 2276 if (unlikely(i == tx_ring->count)) { 2277 i = 0; 2278 tx_buffer = tx_ring->tx_buffer_info; 2279 tx_desc = WX_TX_DESC(tx_ring, 0); 2280 } 2281 2282 /* unmap any remaining paged data */ 2283 if (dma_unmap_len(tx_buffer, len)) 2284 dma_unmap_page(tx_ring->dev, 2285 dma_unmap_addr(tx_buffer, dma), 2286 dma_unmap_len(tx_buffer, len), 2287 DMA_TO_DEVICE); 2288 } 2289 2290 /* move us one more past the eop_desc for start of next pkt */ 2291 tx_buffer++; 2292 i++; 2293 if (unlikely(i == tx_ring->count)) { 2294 i = 0; 2295 tx_buffer = tx_ring->tx_buffer_info; 2296 } 2297 } 2298 2299 netdev_tx_reset_queue(wx_txring_txq(tx_ring)); 2300 2301 /* reset next_to_use and next_to_clean */ 2302 tx_ring->next_to_use = 0; 2303 tx_ring->next_to_clean = 0; 2304 } 2305 2306 /** 2307 * wx_clean_all_tx_rings - Free Tx Buffers for all queues 2308 * @wx: board private structure 2309 **/ 2310 void wx_clean_all_tx_rings(struct wx *wx) 2311 { 2312 int i; 2313 2314 for (i = 0; i < wx->num_tx_queues; i++) 2315 wx_clean_tx_ring(wx->tx_ring[i]); 2316 } 2317 EXPORT_SYMBOL(wx_clean_all_tx_rings); 2318 2319 /** 2320 * wx_free_tx_resources - Free Tx Resources per Queue 2321 * @tx_ring: Tx descriptor ring for a specific queue 2322 * 2323 * Free all transmit software resources 2324 **/ 2325 static void wx_free_tx_resources(struct wx_ring *tx_ring) 2326 { 2327 wx_clean_tx_ring(tx_ring); 2328 kvfree(tx_ring->tx_buffer_info); 2329 tx_ring->tx_buffer_info = NULL; 2330 2331 /* if not set, then don't free */ 2332 if (!tx_ring->desc) 2333 return; 2334 2335 dma_free_coherent(tx_ring->dev, tx_ring->size, 2336 tx_ring->desc, tx_ring->dma); 2337 tx_ring->desc = NULL; 2338 } 2339 2340 /** 2341 * wx_free_all_tx_resources - Free Tx Resources for All Queues 2342 * @wx: pointer to hardware structure 2343 * 2344 * Free all transmit software resources 2345 **/ 2346 static void wx_free_all_tx_resources(struct wx *wx) 2347 { 2348 int i; 2349 2350 for (i = 0; i < wx->num_tx_queues; i++) 2351 wx_free_tx_resources(wx->tx_ring[i]); 2352 } 2353 2354 void wx_free_resources(struct wx *wx) 2355 { 2356 wx_free_isb_resources(wx); 2357 wx_free_all_rx_resources(wx); 2358 wx_free_all_tx_resources(wx); 2359 } 2360 EXPORT_SYMBOL(wx_free_resources); 2361 2362 static int wx_alloc_page_pool(struct wx_ring *rx_ring) 2363 { 2364 int ret = 0; 2365 2366 struct page_pool_params pp_params = { 2367 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 2368 .order = 0, 2369 .pool_size = rx_ring->size, 2370 .nid = dev_to_node(rx_ring->dev), 2371 .dev = rx_ring->dev, 2372 .dma_dir = DMA_FROM_DEVICE, 2373 .offset = 0, 2374 .max_len = PAGE_SIZE, 2375 }; 2376 2377 rx_ring->page_pool = page_pool_create(&pp_params); 2378 if (IS_ERR(rx_ring->page_pool)) { 2379 ret = PTR_ERR(rx_ring->page_pool); 2380 rx_ring->page_pool = NULL; 2381 } 2382 2383 return ret; 2384 } 2385 2386 /** 2387 * wx_setup_rx_resources - allocate Rx resources (Descriptors) 2388 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2389 * 2390 * Returns 0 on success, negative on failure 2391 **/ 2392 static int wx_setup_rx_resources(struct wx_ring *rx_ring) 2393 { 2394 struct device *dev = rx_ring->dev; 2395 int orig_node = dev_to_node(dev); 2396 int numa_node = NUMA_NO_NODE; 2397 int size, ret; 2398 2399 size = sizeof(struct wx_rx_buffer) * rx_ring->count; 2400 2401 if (rx_ring->q_vector) 2402 numa_node = rx_ring->q_vector->numa_node; 2403 2404 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2405 if (!rx_ring->rx_buffer_info) 2406 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); 2407 if (!rx_ring->rx_buffer_info) 2408 goto err; 2409 2410 /* Round up to nearest 4K */ 2411 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); 2412 rx_ring->size = ALIGN(rx_ring->size, 4096); 2413 2414 set_dev_node(dev, numa_node); 2415 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2416 &rx_ring->dma, GFP_KERNEL); 2417 if (!rx_ring->desc) { 2418 set_dev_node(dev, orig_node); 2419 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 2420 &rx_ring->dma, GFP_KERNEL); 2421 } 2422 2423 if (!rx_ring->desc) 2424 goto err; 2425 2426 rx_ring->next_to_clean = 0; 2427 rx_ring->next_to_use = 0; 2428 2429 ret = wx_alloc_page_pool(rx_ring); 2430 if (ret < 0) { 2431 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); 2432 goto err_desc; 2433 } 2434 2435 return 0; 2436 2437 err_desc: 2438 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); 2439 err: 2440 kvfree(rx_ring->rx_buffer_info); 2441 rx_ring->rx_buffer_info = NULL; 2442 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 2443 return -ENOMEM; 2444 } 2445 2446 /** 2447 * wx_setup_all_rx_resources - allocate all queues Rx resources 2448 * @wx: pointer to hardware structure 2449 * 2450 * If this function returns with an error, then it's possible one or 2451 * more of the rings is populated (while the rest are not). It is the 2452 * callers duty to clean those orphaned rings. 2453 * 2454 * Return 0 on success, negative on failure 2455 **/ 2456 static int wx_setup_all_rx_resources(struct wx *wx) 2457 { 2458 int i, err = 0; 2459 2460 for (i = 0; i < wx->num_rx_queues; i++) { 2461 err = wx_setup_rx_resources(wx->rx_ring[i]); 2462 if (!err) 2463 continue; 2464 2465 wx_err(wx, "Allocation for Rx Queue %u failed\n", i); 2466 goto err_setup_rx; 2467 } 2468 2469 return 0; 2470 err_setup_rx: 2471 /* rewind the index freeing the rings as we go */ 2472 while (i--) 2473 wx_free_rx_resources(wx->rx_ring[i]); 2474 return err; 2475 } 2476 2477 /** 2478 * wx_setup_tx_resources - allocate Tx resources (Descriptors) 2479 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2480 * 2481 * Return 0 on success, negative on failure 2482 **/ 2483 static int wx_setup_tx_resources(struct wx_ring *tx_ring) 2484 { 2485 struct device *dev = tx_ring->dev; 2486 int orig_node = dev_to_node(dev); 2487 int numa_node = NUMA_NO_NODE; 2488 int size; 2489 2490 size = sizeof(struct wx_tx_buffer) * tx_ring->count; 2491 2492 if (tx_ring->q_vector) 2493 numa_node = tx_ring->q_vector->numa_node; 2494 2495 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); 2496 if (!tx_ring->tx_buffer_info) 2497 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); 2498 if (!tx_ring->tx_buffer_info) 2499 goto err; 2500 2501 /* round up to nearest 4K */ 2502 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); 2503 tx_ring->size = ALIGN(tx_ring->size, 4096); 2504 2505 set_dev_node(dev, numa_node); 2506 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2507 &tx_ring->dma, GFP_KERNEL); 2508 if (!tx_ring->desc) { 2509 set_dev_node(dev, orig_node); 2510 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2511 &tx_ring->dma, GFP_KERNEL); 2512 } 2513 2514 if (!tx_ring->desc) 2515 goto err; 2516 2517 tx_ring->next_to_use = 0; 2518 tx_ring->next_to_clean = 0; 2519 2520 return 0; 2521 2522 err: 2523 kvfree(tx_ring->tx_buffer_info); 2524 tx_ring->tx_buffer_info = NULL; 2525 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2526 return -ENOMEM; 2527 } 2528 2529 /** 2530 * wx_setup_all_tx_resources - allocate all queues Tx resources 2531 * @wx: pointer to private structure 2532 * 2533 * If this function returns with an error, then it's possible one or 2534 * more of the rings is populated (while the rest are not). It is the 2535 * callers duty to clean those orphaned rings. 2536 * 2537 * Return 0 on success, negative on failure 2538 **/ 2539 static int wx_setup_all_tx_resources(struct wx *wx) 2540 { 2541 int i, err = 0; 2542 2543 for (i = 0; i < wx->num_tx_queues; i++) { 2544 err = wx_setup_tx_resources(wx->tx_ring[i]); 2545 if (!err) 2546 continue; 2547 2548 wx_err(wx, "Allocation for Tx Queue %u failed\n", i); 2549 goto err_setup_tx; 2550 } 2551 2552 return 0; 2553 err_setup_tx: 2554 /* rewind the index freeing the rings as we go */ 2555 while (i--) 2556 wx_free_tx_resources(wx->tx_ring[i]); 2557 return err; 2558 } 2559 2560 int wx_setup_resources(struct wx *wx) 2561 { 2562 int err; 2563 2564 /* allocate transmit descriptors */ 2565 err = wx_setup_all_tx_resources(wx); 2566 if (err) 2567 return err; 2568 2569 /* allocate receive descriptors */ 2570 err = wx_setup_all_rx_resources(wx); 2571 if (err) 2572 goto err_free_tx; 2573 2574 err = wx_setup_isb_resources(wx); 2575 if (err) 2576 goto err_free_rx; 2577 2578 return 0; 2579 2580 err_free_rx: 2581 wx_free_all_rx_resources(wx); 2582 err_free_tx: 2583 wx_free_all_tx_resources(wx); 2584 2585 return err; 2586 } 2587 EXPORT_SYMBOL(wx_setup_resources); 2588 2589 /** 2590 * wx_get_stats64 - Get System Network Statistics 2591 * @netdev: network interface device structure 2592 * @stats: storage space for 64bit statistics 2593 */ 2594 void wx_get_stats64(struct net_device *netdev, 2595 struct rtnl_link_stats64 *stats) 2596 { 2597 struct wx *wx = netdev_priv(netdev); 2598 int i; 2599 2600 rcu_read_lock(); 2601 for (i = 0; i < wx->num_rx_queues; i++) { 2602 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); 2603 u64 bytes, packets; 2604 unsigned int start; 2605 2606 if (ring) { 2607 do { 2608 start = u64_stats_fetch_begin(&ring->syncp); 2609 packets = ring->stats.packets; 2610 bytes = ring->stats.bytes; 2611 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2612 stats->rx_packets += packets; 2613 stats->rx_bytes += bytes; 2614 } 2615 } 2616 2617 for (i = 0; i < wx->num_tx_queues; i++) { 2618 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); 2619 u64 bytes, packets; 2620 unsigned int start; 2621 2622 if (ring) { 2623 do { 2624 start = u64_stats_fetch_begin(&ring->syncp); 2625 packets = ring->stats.packets; 2626 bytes = ring->stats.bytes; 2627 } while (u64_stats_fetch_retry(&ring->syncp, 2628 start)); 2629 stats->tx_packets += packets; 2630 stats->tx_bytes += bytes; 2631 } 2632 } 2633 2634 rcu_read_unlock(); 2635 } 2636 EXPORT_SYMBOL(wx_get_stats64); 2637 2638 int wx_set_features(struct net_device *netdev, netdev_features_t features) 2639 { 2640 netdev_features_t changed = netdev->features ^ features; 2641 struct wx *wx = netdev_priv(netdev); 2642 2643 if (changed & NETIF_F_RXHASH) 2644 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 2645 WX_RDB_RA_CTL_RSS_EN); 2646 else 2647 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); 2648 2649 netdev->features = features; 2650 2651 if (changed & 2652 (NETIF_F_HW_VLAN_CTAG_RX | 2653 NETIF_F_HW_VLAN_STAG_RX)) 2654 wx_set_rx_mode(netdev); 2655 2656 return 0; 2657 } 2658 EXPORT_SYMBOL(wx_set_features); 2659 2660 MODULE_LICENSE("GPL"); 2661