1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/netdevice.h> 6 #include <linux/if_ether.h> 7 #include <linux/if_vlan.h> 8 #include <linux/iopoll.h> 9 #include <linux/pci.h> 10 11 #include "wx_type.h" 12 #include "wx_lib.h" 13 #include "wx_hw.h" 14 15 static void wx_intr_disable(struct wx *wx, u64 qmask) 16 { 17 u32 mask; 18 19 mask = (qmask & U32_MAX); 20 if (mask) 21 wr32(wx, WX_PX_IMS(0), mask); 22 23 if (wx->mac.type == wx_mac_sp) { 24 mask = (qmask >> 32); 25 if (mask) 26 wr32(wx, WX_PX_IMS(1), mask); 27 } 28 } 29 30 void wx_intr_enable(struct wx *wx, u64 qmask) 31 { 32 u32 mask; 33 34 mask = (qmask & U32_MAX); 35 if (mask) 36 wr32(wx, WX_PX_IMC(0), mask); 37 if (wx->mac.type == wx_mac_sp) { 38 mask = (qmask >> 32); 39 if (mask) 40 wr32(wx, WX_PX_IMC(1), mask); 41 } 42 } 43 EXPORT_SYMBOL(wx_intr_enable); 44 45 /** 46 * wx_irq_disable - Mask off interrupt generation on the NIC 47 * @wx: board private structure 48 **/ 49 void wx_irq_disable(struct wx *wx) 50 { 51 struct pci_dev *pdev = wx->pdev; 52 53 wr32(wx, WX_PX_MISC_IEN, 0); 54 wx_intr_disable(wx, WX_INTR_ALL); 55 56 if (pdev->msix_enabled) { 57 int vector; 58 59 for (vector = 0; vector < wx->num_q_vectors; vector++) 60 synchronize_irq(wx->msix_entries[vector].vector); 61 62 synchronize_irq(wx->msix_entries[vector].vector); 63 } else { 64 synchronize_irq(pdev->irq); 65 } 66 } 67 EXPORT_SYMBOL(wx_irq_disable); 68 69 /* cmd_addr is used for some special command: 70 * 1. to be sector address, when implemented erase sector command 71 * 2. to be flash address when implemented read, write flash address 72 */ 73 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) 74 { 75 u32 cmd_val = 0, val = 0; 76 77 cmd_val = WX_SPI_CMD_CMD(cmd) | 78 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | 79 cmd_addr; 80 wr32(wx, WX_SPI_CMD, cmd_val); 81 82 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, 83 false, wx, WX_SPI_STATUS); 84 } 85 86 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) 87 { 88 int ret = 0; 89 90 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); 91 if (ret < 0) 92 return ret; 93 94 *data = rd32(wx, WX_SPI_DATA); 95 96 return ret; 97 } 98 99 int wx_check_flash_load(struct wx *hw, u32 check_bit) 100 { 101 u32 reg = 0; 102 int err = 0; 103 104 /* if there's flash existing */ 105 if (!(rd32(hw, WX_SPI_STATUS) & 106 WX_SPI_STATUS_FLASH_BYPASS)) { 107 /* wait hw load flash done */ 108 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, 109 false, hw, WX_SPI_ILDR_STATUS); 110 if (err < 0) 111 wx_err(hw, "Check flash load timeout.\n"); 112 } 113 114 return err; 115 } 116 EXPORT_SYMBOL(wx_check_flash_load); 117 118 void wx_control_hw(struct wx *wx, bool drv) 119 { 120 /* True : Let firmware know the driver has taken over 121 * False : Let firmware take over control of hw 122 */ 123 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, 124 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); 125 } 126 EXPORT_SYMBOL(wx_control_hw); 127 128 /** 129 * wx_mng_present - returns 0 when management capability is present 130 * @wx: pointer to hardware structure 131 */ 132 int wx_mng_present(struct wx *wx) 133 { 134 u32 fwsm; 135 136 fwsm = rd32(wx, WX_MIS_ST); 137 if (fwsm & WX_MIS_ST_MNG_INIT_DN) 138 return 0; 139 else 140 return -EACCES; 141 } 142 EXPORT_SYMBOL(wx_mng_present); 143 144 /* Software lock to be held while software semaphore is being accessed. */ 145 static DEFINE_MUTEX(wx_sw_sync_lock); 146 147 /** 148 * wx_release_sw_sync - Release SW semaphore 149 * @wx: pointer to hardware structure 150 * @mask: Mask to specify which semaphore to release 151 * 152 * Releases the SW semaphore for the specified 153 * function (CSR, PHY0, PHY1, EEPROM, Flash) 154 **/ 155 static void wx_release_sw_sync(struct wx *wx, u32 mask) 156 { 157 mutex_lock(&wx_sw_sync_lock); 158 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); 159 mutex_unlock(&wx_sw_sync_lock); 160 } 161 162 /** 163 * wx_acquire_sw_sync - Acquire SW semaphore 164 * @wx: pointer to hardware structure 165 * @mask: Mask to specify which semaphore to acquire 166 * 167 * Acquires the SW semaphore for the specified 168 * function (CSR, PHY0, PHY1, EEPROM, Flash) 169 **/ 170 static int wx_acquire_sw_sync(struct wx *wx, u32 mask) 171 { 172 u32 sem = 0; 173 int ret = 0; 174 175 mutex_lock(&wx_sw_sync_lock); 176 ret = read_poll_timeout(rd32, sem, !(sem & mask), 177 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); 178 if (!ret) { 179 sem |= mask; 180 wr32(wx, WX_MNG_SWFW_SYNC, sem); 181 } else { 182 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); 183 } 184 mutex_unlock(&wx_sw_sync_lock); 185 186 return ret; 187 } 188 189 /** 190 * wx_host_interface_command - Issue command to manageability block 191 * @wx: pointer to the HW structure 192 * @buffer: contains the command to write and where the return status will 193 * be placed 194 * @length: length of buffer, must be multiple of 4 bytes 195 * @timeout: time in ms to wait for command completion 196 * @return_data: read and return data from the buffer (true) or not (false) 197 * Needed because FW structures are big endian and decoding of 198 * these fields can be 8 bit or 16 bit based on command. Decoding 199 * is not easily understood without making a table of commands. 200 * So we will leave this up to the caller to read back the data 201 * in these cases. 202 **/ 203 int wx_host_interface_command(struct wx *wx, u32 *buffer, 204 u32 length, u32 timeout, bool return_data) 205 { 206 u32 hdr_size = sizeof(struct wx_hic_hdr); 207 u32 hicr, i, bi, buf[64] = {}; 208 int status = 0; 209 u32 dword_len; 210 u16 buf_len; 211 212 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { 213 wx_err(wx, "Buffer length failure buffersize=%d.\n", length); 214 return -EINVAL; 215 } 216 217 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 218 if (status != 0) 219 return status; 220 221 /* Calculate length in DWORDs. We must be DWORD aligned */ 222 if ((length % (sizeof(u32))) != 0) { 223 wx_err(wx, "Buffer length failure, not aligned to dword"); 224 status = -EINVAL; 225 goto rel_out; 226 } 227 228 dword_len = length >> 2; 229 230 /* The device driver writes the relevant command block 231 * into the ram area. 232 */ 233 for (i = 0; i < dword_len; i++) { 234 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); 235 /* write flush */ 236 buf[i] = rd32a(wx, WX_MNG_MBOX, i); 237 } 238 /* Setting this bit tells the ARC that a new command is pending. */ 239 wr32m(wx, WX_MNG_MBOX_CTL, 240 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); 241 242 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, 243 timeout * 1000, false, wx, WX_MNG_MBOX_CTL); 244 245 buf[0] = rd32(wx, WX_MNG_MBOX); 246 if ((buf[0] & 0xff0000) >> 16 == 0x80) { 247 wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff); 248 status = -EINVAL; 249 goto rel_out; 250 } 251 252 /* Check command completion */ 253 if (status) { 254 wx_err(wx, "Command has failed with no status valid.\n"); 255 wx_dbg(wx, "write value:\n"); 256 for (i = 0; i < dword_len; i++) 257 wx_dbg(wx, "%x ", buffer[i]); 258 wx_dbg(wx, "read value:\n"); 259 for (i = 0; i < dword_len; i++) 260 wx_dbg(wx, "%x ", buf[i]); 261 wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24); 262 263 goto rel_out; 264 } 265 266 if (!return_data) 267 goto rel_out; 268 269 /* Calculate length in DWORDs */ 270 dword_len = hdr_size >> 2; 271 272 /* first pull in the header so we know the buffer length */ 273 for (bi = 0; bi < dword_len; bi++) { 274 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 275 le32_to_cpus(&buffer[bi]); 276 } 277 278 /* If there is any thing in data position pull it in */ 279 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; 280 if (buf_len == 0) 281 goto rel_out; 282 283 if (length < buf_len + hdr_size) { 284 wx_err(wx, "Buffer not large enough for reply message.\n"); 285 status = -EFAULT; 286 goto rel_out; 287 } 288 289 /* Calculate length in DWORDs, add 3 for odd lengths */ 290 dword_len = (buf_len + 3) >> 2; 291 292 /* Pull in the rest of the buffer (bi is where we left off) */ 293 for (; bi <= dword_len; bi++) { 294 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 295 le32_to_cpus(&buffer[bi]); 296 } 297 298 rel_out: 299 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 300 return status; 301 } 302 EXPORT_SYMBOL(wx_host_interface_command); 303 304 /** 305 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd 306 * assuming that the semaphore is already obtained. 307 * @wx: pointer to hardware structure 308 * @offset: offset of word in the EEPROM to read 309 * @data: word read from the EEPROM 310 * 311 * Reads a 16 bit word from the EEPROM using the hostif. 312 **/ 313 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) 314 { 315 struct wx_hic_read_shadow_ram buffer; 316 int status; 317 318 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 319 buffer.hdr.req.buf_lenh = 0; 320 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 321 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 322 323 /* convert offset from words to bytes */ 324 buffer.address = (__force u32)cpu_to_be32(offset * 2); 325 /* one word */ 326 buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); 327 328 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), 329 WX_HI_COMMAND_TIMEOUT, false); 330 331 if (status != 0) 332 return status; 333 334 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); 335 336 return status; 337 } 338 339 /** 340 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd 341 * @wx: pointer to hardware structure 342 * @offset: offset of word in the EEPROM to read 343 * @data: word read from the EEPROM 344 * 345 * Reads a 16 bit word from the EEPROM using the hostif. 346 **/ 347 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) 348 { 349 int status = 0; 350 351 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 352 if (status == 0) { 353 status = wx_read_ee_hostif_data(wx, offset, data); 354 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 355 } 356 357 return status; 358 } 359 EXPORT_SYMBOL(wx_read_ee_hostif); 360 361 /** 362 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif 363 * @wx: pointer to hardware structure 364 * @offset: offset of word in the EEPROM to read 365 * @words: number of words 366 * @data: word(s) read from the EEPROM 367 * 368 * Reads a 16 bit word(s) from the EEPROM using the hostif. 369 **/ 370 int wx_read_ee_hostif_buffer(struct wx *wx, 371 u16 offset, u16 words, u16 *data) 372 { 373 struct wx_hic_read_shadow_ram buffer; 374 u32 current_word = 0; 375 u16 words_to_read; 376 u32 value = 0; 377 int status; 378 u32 i; 379 380 /* Take semaphore for the entire operation. */ 381 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 382 if (status != 0) 383 return status; 384 385 while (words) { 386 if (words > FW_MAX_READ_BUFFER_SIZE / 2) 387 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; 388 else 389 words_to_read = words; 390 391 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 392 buffer.hdr.req.buf_lenh = 0; 393 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 394 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 395 396 /* convert offset from words to bytes */ 397 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); 398 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); 399 400 status = wx_host_interface_command(wx, (u32 *)&buffer, 401 sizeof(buffer), 402 WX_HI_COMMAND_TIMEOUT, 403 false); 404 405 if (status != 0) { 406 wx_err(wx, "Host interface command failed\n"); 407 goto out; 408 } 409 410 for (i = 0; i < words_to_read; i++) { 411 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; 412 413 value = rd32(wx, reg); 414 data[current_word] = (u16)(value & 0xffff); 415 current_word++; 416 i++; 417 if (i < words_to_read) { 418 value >>= 16; 419 data[current_word] = (u16)(value & 0xffff); 420 current_word++; 421 } 422 } 423 words -= words_to_read; 424 } 425 426 out: 427 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 428 return status; 429 } 430 EXPORT_SYMBOL(wx_read_ee_hostif_buffer); 431 432 /** 433 * wx_init_eeprom_params - Initialize EEPROM params 434 * @wx: pointer to hardware structure 435 * 436 * Initializes the EEPROM parameters wx_eeprom_info within the 437 * wx_hw struct in order to set up EEPROM access. 438 **/ 439 void wx_init_eeprom_params(struct wx *wx) 440 { 441 struct wx_eeprom_info *eeprom = &wx->eeprom; 442 u16 eeprom_size; 443 u16 data = 0x80; 444 445 if (eeprom->type == wx_eeprom_uninitialized) { 446 eeprom->semaphore_delay = 10; 447 eeprom->type = wx_eeprom_none; 448 449 if (!(rd32(wx, WX_SPI_STATUS) & 450 WX_SPI_STATUS_FLASH_BYPASS)) { 451 eeprom->type = wx_flash; 452 453 eeprom_size = 4096; 454 eeprom->word_size = eeprom_size >> 1; 455 456 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", 457 eeprom->type, eeprom->word_size); 458 } 459 } 460 461 if (wx->mac.type == wx_mac_sp) { 462 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { 463 wx_err(wx, "NVM Read Error\n"); 464 return; 465 } 466 data = data >> 1; 467 } 468 469 eeprom->sw_region_offset = data; 470 } 471 EXPORT_SYMBOL(wx_init_eeprom_params); 472 473 /** 474 * wx_get_mac_addr - Generic get MAC address 475 * @wx: pointer to hardware structure 476 * @mac_addr: Adapter MAC address 477 * 478 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 479 * A reset of the adapter must be performed prior to calling this function 480 * in order for the MAC address to have been loaded from the EEPROM into RAR0 481 **/ 482 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) 483 { 484 u32 rar_high; 485 u32 rar_low; 486 u16 i; 487 488 wr32(wx, WX_PSR_MAC_SWC_IDX, 0); 489 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); 490 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); 491 492 for (i = 0; i < 2; i++) 493 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); 494 495 for (i = 0; i < 4; i++) 496 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); 497 } 498 EXPORT_SYMBOL(wx_get_mac_addr); 499 500 /** 501 * wx_set_rar - Set Rx address register 502 * @wx: pointer to hardware structure 503 * @index: Receive address register to write 504 * @addr: Address to put into receive address register 505 * @pools: VMDq "set" or "pool" index 506 * @enable_addr: set flag that address is active 507 * 508 * Puts an ethernet address into a receive address register. 509 **/ 510 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, 511 u32 enable_addr) 512 { 513 u32 rar_entries = wx->mac.num_rar_entries; 514 u32 rar_low, rar_high; 515 516 /* Make sure we are using a valid rar index range */ 517 if (index >= rar_entries) { 518 wx_err(wx, "RAR index %d is out of range.\n", index); 519 return -EINVAL; 520 } 521 522 /* select the MAC address */ 523 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 524 525 /* setup VMDq pool mapping */ 526 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); 527 if (wx->mac.type == wx_mac_sp) 528 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); 529 530 /* HW expects these in little endian so we reverse the byte 531 * order from network order (big endian) to little endian 532 * 533 * Some parts put the VMDq setting in the extra RAH bits, 534 * so save everything except the lower 16 bits that hold part 535 * of the address and the address valid bit. 536 */ 537 rar_low = ((u32)addr[5] | 538 ((u32)addr[4] << 8) | 539 ((u32)addr[3] << 16) | 540 ((u32)addr[2] << 24)); 541 rar_high = ((u32)addr[1] | 542 ((u32)addr[0] << 8)); 543 if (enable_addr != 0) 544 rar_high |= WX_PSR_MAC_SWC_AD_H_AV; 545 546 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); 547 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 548 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 549 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 550 WX_PSR_MAC_SWC_AD_H_AV), 551 rar_high); 552 553 return 0; 554 } 555 556 /** 557 * wx_clear_rar - Remove Rx address register 558 * @wx: pointer to hardware structure 559 * @index: Receive address register to write 560 * 561 * Clears an ethernet address from a receive address register. 562 **/ 563 static int wx_clear_rar(struct wx *wx, u32 index) 564 { 565 u32 rar_entries = wx->mac.num_rar_entries; 566 567 /* Make sure we are using a valid rar index range */ 568 if (index >= rar_entries) { 569 wx_err(wx, "RAR index %d is out of range.\n", index); 570 return -EINVAL; 571 } 572 573 /* Some parts put the VMDq setting in the extra RAH bits, 574 * so save everything except the lower 16 bits that hold part 575 * of the address and the address valid bit. 576 */ 577 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 578 579 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); 580 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); 581 582 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 583 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 584 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 585 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 586 WX_PSR_MAC_SWC_AD_H_AV), 587 0); 588 589 return 0; 590 } 591 592 /** 593 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address 594 * @wx: pointer to hardware struct 595 * @rar: receive address register index to disassociate 596 * @vmdq: VMDq pool index to remove from the rar 597 **/ 598 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) 599 { 600 u32 rar_entries = wx->mac.num_rar_entries; 601 u32 mpsar_lo, mpsar_hi; 602 603 /* Make sure we are using a valid rar index range */ 604 if (rar >= rar_entries) { 605 wx_err(wx, "RAR index %d is out of range.\n", rar); 606 return -EINVAL; 607 } 608 609 wr32(wx, WX_PSR_MAC_SWC_IDX, rar); 610 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); 611 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); 612 613 if (!mpsar_lo && !mpsar_hi) 614 return 0; 615 616 /* was that the last pool using this rar? */ 617 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 618 wx_clear_rar(wx, rar); 619 620 return 0; 621 } 622 623 /** 624 * wx_init_uta_tables - Initialize the Unicast Table Array 625 * @wx: pointer to hardware structure 626 **/ 627 static void wx_init_uta_tables(struct wx *wx) 628 { 629 int i; 630 631 wx_dbg(wx, " Clearing UTA\n"); 632 633 for (i = 0; i < 128; i++) 634 wr32(wx, WX_PSR_UC_TBL(i), 0); 635 } 636 637 /** 638 * wx_init_rx_addrs - Initializes receive address filters. 639 * @wx: pointer to hardware structure 640 * 641 * Places the MAC address in receive address register 0 and clears the rest 642 * of the receive address registers. Clears the multicast table. Assumes 643 * the receiver is in reset when the routine is called. 644 **/ 645 void wx_init_rx_addrs(struct wx *wx) 646 { 647 u32 rar_entries = wx->mac.num_rar_entries; 648 u32 psrctl; 649 int i; 650 651 /* If the current mac address is valid, assume it is a software override 652 * to the permanent address. 653 * Otherwise, use the permanent address from the eeprom. 654 */ 655 if (!is_valid_ether_addr(wx->mac.addr)) { 656 /* Get the MAC address from the RAR0 for later reference */ 657 wx_get_mac_addr(wx, wx->mac.addr); 658 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); 659 } else { 660 /* Setup the receive address. */ 661 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); 662 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); 663 664 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); 665 666 if (wx->mac.type == wx_mac_sp) { 667 /* clear VMDq pool/queue selection for RAR 0 */ 668 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); 669 } 670 } 671 672 /* Zero out the other receive addresses. */ 673 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); 674 for (i = 1; i < rar_entries; i++) { 675 wr32(wx, WX_PSR_MAC_SWC_IDX, i); 676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 677 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); 678 } 679 680 /* Clear the MTA */ 681 wx->addr_ctrl.mta_in_use = 0; 682 psrctl = rd32(wx, WX_PSR_CTL); 683 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 684 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; 685 wr32(wx, WX_PSR_CTL, psrctl); 686 wx_dbg(wx, " Clearing MTA\n"); 687 for (i = 0; i < wx->mac.mcft_size; i++) 688 wr32(wx, WX_PSR_MC_TBL(i), 0); 689 690 wx_init_uta_tables(wx); 691 } 692 EXPORT_SYMBOL(wx_init_rx_addrs); 693 694 static void wx_sync_mac_table(struct wx *wx) 695 { 696 int i; 697 698 for (i = 0; i < wx->mac.num_rar_entries; i++) { 699 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { 700 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 701 wx_set_rar(wx, i, 702 wx->mac_table[i].addr, 703 wx->mac_table[i].pools, 704 WX_PSR_MAC_SWC_AD_H_AV); 705 } else { 706 wx_clear_rar(wx, i); 707 } 708 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); 709 } 710 } 711 } 712 713 /* this function destroys the first RAR entry */ 714 void wx_mac_set_default_filter(struct wx *wx, u8 *addr) 715 { 716 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); 717 wx->mac_table[0].pools = 1ULL; 718 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); 719 wx_set_rar(wx, 0, wx->mac_table[0].addr, 720 wx->mac_table[0].pools, 721 WX_PSR_MAC_SWC_AD_H_AV); 722 } 723 EXPORT_SYMBOL(wx_mac_set_default_filter); 724 725 void wx_flush_sw_mac_table(struct wx *wx) 726 { 727 u32 i; 728 729 for (i = 0; i < wx->mac.num_rar_entries; i++) { 730 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) 731 continue; 732 733 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 734 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 735 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 736 wx->mac_table[i].pools = 0; 737 } 738 wx_sync_mac_table(wx); 739 } 740 EXPORT_SYMBOL(wx_flush_sw_mac_table); 741 742 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) 743 { 744 u32 i; 745 746 if (is_zero_ether_addr(addr)) 747 return -EINVAL; 748 749 for (i = 0; i < wx->mac.num_rar_entries; i++) { 750 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 751 if (ether_addr_equal(addr, wx->mac_table[i].addr)) { 752 if (wx->mac_table[i].pools != (1ULL << pool)) { 753 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 754 wx->mac_table[i].pools |= (1ULL << pool); 755 wx_sync_mac_table(wx); 756 return i; 757 } 758 } 759 } 760 761 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) 762 continue; 763 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | 764 WX_MAC_STATE_IN_USE); 765 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 766 wx->mac_table[i].pools |= (1ULL << pool); 767 wx_sync_mac_table(wx); 768 return i; 769 } 770 return -ENOMEM; 771 } 772 773 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) 774 { 775 u32 i; 776 777 if (is_zero_ether_addr(addr)) 778 return -EINVAL; 779 780 /* search table for addr, if found, set to 0 and sync */ 781 for (i = 0; i < wx->mac.num_rar_entries; i++) { 782 if (!ether_addr_equal(addr, wx->mac_table[i].addr)) 783 continue; 784 785 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 786 wx->mac_table[i].pools &= ~(1ULL << pool); 787 if (!wx->mac_table[i].pools) { 788 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 789 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 790 } 791 wx_sync_mac_table(wx); 792 return 0; 793 } 794 return -ENOMEM; 795 } 796 797 static int wx_available_rars(struct wx *wx) 798 { 799 u32 i, count = 0; 800 801 for (i = 0; i < wx->mac.num_rar_entries; i++) { 802 if (wx->mac_table[i].state == 0) 803 count++; 804 } 805 806 return count; 807 } 808 809 /** 810 * wx_write_uc_addr_list - write unicast addresses to RAR table 811 * @netdev: network interface device structure 812 * @pool: index for mac table 813 * 814 * Writes unicast address list to the RAR table. 815 * Returns: -ENOMEM on failure/insufficient address space 816 * 0 on no addresses written 817 * X on writing X addresses to the RAR table 818 **/ 819 static int wx_write_uc_addr_list(struct net_device *netdev, int pool) 820 { 821 struct wx *wx = netdev_priv(netdev); 822 int count = 0; 823 824 /* return ENOMEM indicating insufficient memory for addresses */ 825 if (netdev_uc_count(netdev) > wx_available_rars(wx)) 826 return -ENOMEM; 827 828 if (!netdev_uc_empty(netdev)) { 829 struct netdev_hw_addr *ha; 830 831 netdev_for_each_uc_addr(ha, netdev) { 832 wx_del_mac_filter(wx, ha->addr, pool); 833 wx_add_mac_filter(wx, ha->addr, pool); 834 count++; 835 } 836 } 837 return count; 838 } 839 840 /** 841 * wx_mta_vector - Determines bit-vector in multicast table to set 842 * @wx: pointer to private structure 843 * @mc_addr: the multicast address 844 * 845 * Extracts the 12 bits, from a multicast address, to determine which 846 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 847 * incoming rx multicast addresses, to determine the bit-vector to check in 848 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 849 * by the MO field of the MCSTCTRL. The MO field is set during initialization 850 * to mc_filter_type. 851 **/ 852 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) 853 { 854 u32 vector = 0; 855 856 switch (wx->mac.mc_filter_type) { 857 case 0: /* use bits [47:36] of the address */ 858 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 859 break; 860 case 1: /* use bits [46:35] of the address */ 861 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 862 break; 863 case 2: /* use bits [45:34] of the address */ 864 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 865 break; 866 case 3: /* use bits [43:32] of the address */ 867 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 868 break; 869 default: /* Invalid mc_filter_type */ 870 wx_err(wx, "MC filter type param set incorrectly\n"); 871 break; 872 } 873 874 /* vector can only be 12-bits or boundary will be exceeded */ 875 vector &= 0xFFF; 876 return vector; 877 } 878 879 /** 880 * wx_set_mta - Set bit-vector in multicast table 881 * @wx: pointer to private structure 882 * @mc_addr: Multicast address 883 * 884 * Sets the bit-vector in the multicast table. 885 **/ 886 static void wx_set_mta(struct wx *wx, u8 *mc_addr) 887 { 888 u32 vector, vector_bit, vector_reg; 889 890 wx->addr_ctrl.mta_in_use++; 891 892 vector = wx_mta_vector(wx, mc_addr); 893 wx_dbg(wx, " bit-vector = 0x%03X\n", vector); 894 895 /* The MTA is a register array of 128 32-bit registers. It is treated 896 * like an array of 4096 bits. We want to set bit 897 * BitArray[vector_value]. So we figure out what register the bit is 898 * in, read it, OR in the new bit, then write back the new value. The 899 * register is determined by the upper 7 bits of the vector value and 900 * the bit within that register are determined by the lower 5 bits of 901 * the value. 902 */ 903 vector_reg = (vector >> 5) & 0x7F; 904 vector_bit = vector & 0x1F; 905 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 906 } 907 908 /** 909 * wx_update_mc_addr_list - Updates MAC list of multicast addresses 910 * @wx: pointer to private structure 911 * @netdev: pointer to net device structure 912 * 913 * The given list replaces any existing list. Clears the MC addrs from receive 914 * address registers and the multicast table. Uses unused receive address 915 * registers for the first multicast addresses, and hashes the rest into the 916 * multicast table. 917 **/ 918 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) 919 { 920 struct netdev_hw_addr *ha; 921 u32 i, psrctl; 922 923 /* Set the new number of MC addresses that we are being requested to 924 * use. 925 */ 926 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 927 wx->addr_ctrl.mta_in_use = 0; 928 929 /* Clear mta_shadow */ 930 wx_dbg(wx, " Clearing MTA\n"); 931 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); 932 933 /* Update mta_shadow */ 934 netdev_for_each_mc_addr(ha, netdev) { 935 wx_dbg(wx, " Adding the multicast addresses:\n"); 936 wx_set_mta(wx, ha->addr); 937 } 938 939 /* Enable mta */ 940 for (i = 0; i < wx->mac.mcft_size; i++) 941 wr32a(wx, WX_PSR_MC_TBL(0), i, 942 wx->mac.mta_shadow[i]); 943 944 if (wx->addr_ctrl.mta_in_use > 0) { 945 psrctl = rd32(wx, WX_PSR_CTL); 946 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 947 psrctl |= WX_PSR_CTL_MFE | 948 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); 949 wr32(wx, WX_PSR_CTL, psrctl); 950 } 951 952 wx_dbg(wx, "Update mc addr list Complete\n"); 953 } 954 955 /** 956 * wx_write_mc_addr_list - write multicast addresses to MTA 957 * @netdev: network interface device structure 958 * 959 * Writes multicast address list to the MTA hash table. 960 * Returns: 0 on no addresses written 961 * X on writing X addresses to MTA 962 **/ 963 static int wx_write_mc_addr_list(struct net_device *netdev) 964 { 965 struct wx *wx = netdev_priv(netdev); 966 967 if (!netif_running(netdev)) 968 return 0; 969 970 wx_update_mc_addr_list(wx, netdev); 971 972 return netdev_mc_count(netdev); 973 } 974 975 /** 976 * wx_set_mac - Change the Ethernet Address of the NIC 977 * @netdev: network interface device structure 978 * @p: pointer to an address structure 979 * 980 * Returns 0 on success, negative on failure 981 **/ 982 int wx_set_mac(struct net_device *netdev, void *p) 983 { 984 struct wx *wx = netdev_priv(netdev); 985 struct sockaddr *addr = p; 986 int retval; 987 988 retval = eth_prepare_mac_addr_change(netdev, addr); 989 if (retval) 990 return retval; 991 992 wx_del_mac_filter(wx, wx->mac.addr, 0); 993 eth_hw_addr_set(netdev, addr->sa_data); 994 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); 995 996 wx_mac_set_default_filter(wx, wx->mac.addr); 997 998 return 0; 999 } 1000 EXPORT_SYMBOL(wx_set_mac); 1001 1002 void wx_disable_rx(struct wx *wx) 1003 { 1004 u32 pfdtxgswc; 1005 u32 rxctrl; 1006 1007 rxctrl = rd32(wx, WX_RDB_PB_CTL); 1008 if (rxctrl & WX_RDB_PB_CTL_RXEN) { 1009 pfdtxgswc = rd32(wx, WX_PSR_CTL); 1010 if (pfdtxgswc & WX_PSR_CTL_SW_EN) { 1011 pfdtxgswc &= ~WX_PSR_CTL_SW_EN; 1012 wr32(wx, WX_PSR_CTL, pfdtxgswc); 1013 wx->mac.set_lben = true; 1014 } else { 1015 wx->mac.set_lben = false; 1016 } 1017 rxctrl &= ~WX_RDB_PB_CTL_RXEN; 1018 wr32(wx, WX_RDB_PB_CTL, rxctrl); 1019 1020 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || 1021 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { 1022 /* disable mac receiver */ 1023 wr32m(wx, WX_MAC_RX_CFG, 1024 WX_MAC_RX_CFG_RE, 0); 1025 } 1026 } 1027 } 1028 EXPORT_SYMBOL(wx_disable_rx); 1029 1030 static void wx_enable_rx(struct wx *wx) 1031 { 1032 u32 psrctl; 1033 1034 /* enable mac receiver */ 1035 wr32m(wx, WX_MAC_RX_CFG, 1036 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); 1037 1038 wr32m(wx, WX_RDB_PB_CTL, 1039 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); 1040 1041 if (wx->mac.set_lben) { 1042 psrctl = rd32(wx, WX_PSR_CTL); 1043 psrctl |= WX_PSR_CTL_SW_EN; 1044 wr32(wx, WX_PSR_CTL, psrctl); 1045 wx->mac.set_lben = false; 1046 } 1047 } 1048 1049 /** 1050 * wx_set_rxpba - Initialize Rx packet buffer 1051 * @wx: pointer to private structure 1052 **/ 1053 static void wx_set_rxpba(struct wx *wx) 1054 { 1055 u32 rxpktsize, txpktsize, txpbthresh; 1056 1057 rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT; 1058 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); 1059 1060 /* Only support an equally distributed Tx packet buffer strategy. */ 1061 txpktsize = wx->mac.tx_pb_size; 1062 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; 1063 wr32(wx, WX_TDB_PB_SZ(0), txpktsize); 1064 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); 1065 } 1066 1067 static void wx_configure_port(struct wx *wx) 1068 { 1069 u32 value, i; 1070 1071 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; 1072 wr32m(wx, WX_CFG_PORT_CTL, 1073 WX_CFG_PORT_CTL_D_VLAN | 1074 WX_CFG_PORT_CTL_QINQ, 1075 value); 1076 1077 wr32(wx, WX_CFG_TAG_TPID(0), 1078 ETH_P_8021Q | ETH_P_8021AD << 16); 1079 wx->tpid[0] = ETH_P_8021Q; 1080 wx->tpid[1] = ETH_P_8021AD; 1081 for (i = 1; i < 4; i++) 1082 wr32(wx, WX_CFG_TAG_TPID(i), 1083 ETH_P_8021Q | ETH_P_8021Q << 16); 1084 for (i = 2; i < 8; i++) 1085 wx->tpid[i] = ETH_P_8021Q; 1086 } 1087 1088 /** 1089 * wx_disable_sec_rx_path - Stops the receive data path 1090 * @wx: pointer to private structure 1091 * 1092 * Stops the receive data path and waits for the HW to internally empty 1093 * the Rx security block 1094 **/ 1095 static int wx_disable_sec_rx_path(struct wx *wx) 1096 { 1097 u32 secrx; 1098 1099 wr32m(wx, WX_RSC_CTL, 1100 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); 1101 1102 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, 1103 1000, 40000, false, wx, WX_RSC_ST); 1104 } 1105 1106 /** 1107 * wx_enable_sec_rx_path - Enables the receive data path 1108 * @wx: pointer to private structure 1109 * 1110 * Enables the receive data path. 1111 **/ 1112 static void wx_enable_sec_rx_path(struct wx *wx) 1113 { 1114 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); 1115 WX_WRITE_FLUSH(wx); 1116 } 1117 1118 static void wx_vlan_strip_control(struct wx *wx, bool enable) 1119 { 1120 int i, j; 1121 1122 for (i = 0; i < wx->num_rx_queues; i++) { 1123 struct wx_ring *ring = wx->rx_ring[i]; 1124 1125 j = ring->reg_idx; 1126 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, 1127 enable ? WX_PX_RR_CFG_VLAN : 0); 1128 } 1129 } 1130 1131 void wx_set_rx_mode(struct net_device *netdev) 1132 { 1133 struct wx *wx = netdev_priv(netdev); 1134 netdev_features_t features; 1135 u32 fctrl, vmolr, vlnctrl; 1136 int count; 1137 1138 features = netdev->features; 1139 1140 /* Check for Promiscuous and All Multicast modes */ 1141 fctrl = rd32(wx, WX_PSR_CTL); 1142 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); 1143 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); 1144 vmolr &= ~(WX_PSR_VM_L2CTL_UPE | 1145 WX_PSR_VM_L2CTL_MPE | 1146 WX_PSR_VM_L2CTL_ROPE | 1147 WX_PSR_VM_L2CTL_ROMPE); 1148 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); 1149 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); 1150 1151 /* set all bits that we expect to always be set */ 1152 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; 1153 vmolr |= WX_PSR_VM_L2CTL_BAM | 1154 WX_PSR_VM_L2CTL_AUPE | 1155 WX_PSR_VM_L2CTL_VACC; 1156 vlnctrl |= WX_PSR_VLAN_CTL_VFE; 1157 1158 wx->addr_ctrl.user_set_promisc = false; 1159 if (netdev->flags & IFF_PROMISC) { 1160 wx->addr_ctrl.user_set_promisc = true; 1161 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; 1162 /* pf don't want packets routing to vf, so clear UPE */ 1163 vmolr |= WX_PSR_VM_L2CTL_MPE; 1164 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1165 } 1166 1167 if (netdev->flags & IFF_ALLMULTI) { 1168 fctrl |= WX_PSR_CTL_MPE; 1169 vmolr |= WX_PSR_VM_L2CTL_MPE; 1170 } 1171 1172 if (netdev->features & NETIF_F_RXALL) { 1173 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); 1174 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1175 /* receive bad packets */ 1176 wr32m(wx, WX_RSC_CTL, 1177 WX_RSC_CTL_SAVE_MAC_ERR, 1178 WX_RSC_CTL_SAVE_MAC_ERR); 1179 } else { 1180 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; 1181 } 1182 1183 /* Write addresses to available RAR registers, if there is not 1184 * sufficient space to store all the addresses then enable 1185 * unicast promiscuous mode 1186 */ 1187 count = wx_write_uc_addr_list(netdev, 0); 1188 if (count < 0) { 1189 vmolr &= ~WX_PSR_VM_L2CTL_ROPE; 1190 vmolr |= WX_PSR_VM_L2CTL_UPE; 1191 } 1192 1193 /* Write addresses to the MTA, if the attempt fails 1194 * then we should just turn on promiscuous mode so 1195 * that we can at least receive multicast traffic 1196 */ 1197 count = wx_write_mc_addr_list(netdev); 1198 if (count < 0) { 1199 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; 1200 vmolr |= WX_PSR_VM_L2CTL_MPE; 1201 } 1202 1203 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); 1204 wr32(wx, WX_PSR_CTL, fctrl); 1205 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); 1206 1207 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1208 (features & NETIF_F_HW_VLAN_STAG_RX)) 1209 wx_vlan_strip_control(wx, true); 1210 else 1211 wx_vlan_strip_control(wx, false); 1212 1213 } 1214 EXPORT_SYMBOL(wx_set_rx_mode); 1215 1216 static void wx_set_rx_buffer_len(struct wx *wx) 1217 { 1218 struct net_device *netdev = wx->netdev; 1219 u32 mhadd, max_frame; 1220 1221 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1222 /* adjust max frame to be at least the size of a standard frame */ 1223 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1224 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); 1225 1226 mhadd = rd32(wx, WX_PSR_MAX_SZ); 1227 if (max_frame != mhadd) 1228 wr32(wx, WX_PSR_MAX_SZ, max_frame); 1229 } 1230 1231 /** 1232 * wx_change_mtu - Change the Maximum Transfer Unit 1233 * @netdev: network interface device structure 1234 * @new_mtu: new value for maximum frame size 1235 * 1236 * Returns 0 on success, negative on failure 1237 **/ 1238 int wx_change_mtu(struct net_device *netdev, int new_mtu) 1239 { 1240 struct wx *wx = netdev_priv(netdev); 1241 1242 netdev->mtu = new_mtu; 1243 wx_set_rx_buffer_len(wx); 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(wx_change_mtu); 1248 1249 /* Disable the specified rx queue */ 1250 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) 1251 { 1252 u8 reg_idx = ring->reg_idx; 1253 u32 rxdctl; 1254 int ret; 1255 1256 /* write value back with RRCFG.EN bit cleared */ 1257 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1258 WX_PX_RR_CFG_RR_EN, 0); 1259 1260 /* the hardware may take up to 100us to really disable the rx queue */ 1261 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), 1262 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); 1263 1264 if (ret == -ETIMEDOUT) { 1265 /* Just for information */ 1266 wx_err(wx, 1267 "RRCFG.EN on Rx queue %d not cleared within the polling period\n", 1268 reg_idx); 1269 } 1270 } 1271 EXPORT_SYMBOL(wx_disable_rx_queue); 1272 1273 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) 1274 { 1275 u8 reg_idx = ring->reg_idx; 1276 u32 rxdctl; 1277 int ret; 1278 1279 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, 1280 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); 1281 1282 if (ret == -ETIMEDOUT) { 1283 /* Just for information */ 1284 wx_err(wx, 1285 "RRCFG.EN on Rx queue %d not set within the polling period\n", 1286 reg_idx); 1287 } 1288 } 1289 1290 static void wx_configure_srrctl(struct wx *wx, 1291 struct wx_ring *rx_ring) 1292 { 1293 u16 reg_idx = rx_ring->reg_idx; 1294 u32 srrctl; 1295 1296 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1297 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | 1298 WX_PX_RR_CFG_RR_BUF_SZ | 1299 WX_PX_RR_CFG_SPLIT_MODE); 1300 /* configure header buffer length, needed for RSC */ 1301 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; 1302 1303 /* configure the packet buffer length */ 1304 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; 1305 1306 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 1307 } 1308 1309 static void wx_configure_tx_ring(struct wx *wx, 1310 struct wx_ring *ring) 1311 { 1312 u32 txdctl = WX_PX_TR_CFG_ENABLE; 1313 u8 reg_idx = ring->reg_idx; 1314 u64 tdba = ring->dma; 1315 int ret; 1316 1317 /* disable queue to avoid issues while updating state */ 1318 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); 1319 WX_WRITE_FLUSH(wx); 1320 1321 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1322 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); 1323 1324 /* reset head and tail pointers */ 1325 wr32(wx, WX_PX_TR_RP(reg_idx), 0); 1326 wr32(wx, WX_PX_TR_WP(reg_idx), 0); 1327 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); 1328 1329 if (ring->count < WX_MAX_TXD) 1330 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; 1331 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; 1332 1333 /* reinitialize tx_buffer_info */ 1334 memset(ring->tx_buffer_info, 0, 1335 sizeof(struct wx_tx_buffer) * ring->count); 1336 1337 /* enable queue */ 1338 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); 1339 1340 /* poll to verify queue is enabled */ 1341 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, 1342 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); 1343 if (ret == -ETIMEDOUT) 1344 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); 1345 } 1346 1347 static void wx_configure_rx_ring(struct wx *wx, 1348 struct wx_ring *ring) 1349 { 1350 u16 reg_idx = ring->reg_idx; 1351 union wx_rx_desc *rx_desc; 1352 u64 rdba = ring->dma; 1353 u32 rxdctl; 1354 1355 /* disable queue to avoid issues while updating state */ 1356 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1357 wx_disable_rx_queue(wx, ring); 1358 1359 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1360 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); 1361 1362 if (ring->count == WX_MAX_RXD) 1363 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1364 else 1365 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1366 1367 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; 1368 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); 1369 1370 /* reset head and tail pointers */ 1371 wr32(wx, WX_PX_RR_RP(reg_idx), 0); 1372 wr32(wx, WX_PX_RR_WP(reg_idx), 0); 1373 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); 1374 1375 wx_configure_srrctl(wx, ring); 1376 1377 /* initialize rx_buffer_info */ 1378 memset(ring->rx_buffer_info, 0, 1379 sizeof(struct wx_rx_buffer) * ring->count); 1380 1381 /* initialize Rx descriptor 0 */ 1382 rx_desc = WX_RX_DESC(ring, 0); 1383 rx_desc->wb.upper.length = 0; 1384 1385 /* enable receive descriptor ring */ 1386 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1387 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); 1388 1389 wx_enable_rx_queue(wx, ring); 1390 wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); 1391 } 1392 1393 /** 1394 * wx_configure_tx - Configure Transmit Unit after Reset 1395 * @wx: pointer to private structure 1396 * 1397 * Configure the Tx unit of the MAC after a reset. 1398 **/ 1399 static void wx_configure_tx(struct wx *wx) 1400 { 1401 u32 i; 1402 1403 /* TDM_CTL.TE must be before Tx queues are enabled */ 1404 wr32m(wx, WX_TDM_CTL, 1405 WX_TDM_CTL_TE, WX_TDM_CTL_TE); 1406 1407 /* Setup the HW Tx Head and Tail descriptor pointers */ 1408 for (i = 0; i < wx->num_tx_queues; i++) 1409 wx_configure_tx_ring(wx, wx->tx_ring[i]); 1410 1411 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); 1412 1413 if (wx->mac.type == wx_mac_em) 1414 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); 1415 1416 /* enable mac transmitter */ 1417 wr32m(wx, WX_MAC_TX_CFG, 1418 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); 1419 } 1420 1421 static void wx_restore_vlan(struct wx *wx) 1422 { 1423 u16 vid = 1; 1424 1425 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); 1426 1427 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) 1428 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); 1429 } 1430 1431 /** 1432 * wx_configure_rx - Configure Receive Unit after Reset 1433 * @wx: pointer to private structure 1434 * 1435 * Configure the Rx unit of the MAC after a reset. 1436 **/ 1437 void wx_configure_rx(struct wx *wx) 1438 { 1439 u32 psrtype, i; 1440 int ret; 1441 1442 wx_disable_rx(wx); 1443 1444 psrtype = WX_RDB_PL_CFG_L4HDR | 1445 WX_RDB_PL_CFG_L3HDR | 1446 WX_RDB_PL_CFG_L2HDR | 1447 WX_RDB_PL_CFG_TUN_TUNHDR; 1448 wr32(wx, WX_RDB_PL_CFG(0), psrtype); 1449 1450 /* enable hw crc stripping */ 1451 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); 1452 1453 if (wx->mac.type == wx_mac_sp) { 1454 u32 psrctl; 1455 1456 /* RSC Setup */ 1457 psrctl = rd32(wx, WX_PSR_CTL); 1458 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ 1459 psrctl |= WX_PSR_CTL_RSC_DIS; 1460 wr32(wx, WX_PSR_CTL, psrctl); 1461 } 1462 1463 /* set_rx_buffer_len must be called before ring initialization */ 1464 wx_set_rx_buffer_len(wx); 1465 1466 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1467 * the Base and Length of the Rx Descriptor Ring 1468 */ 1469 for (i = 0; i < wx->num_rx_queues; i++) 1470 wx_configure_rx_ring(wx, wx->rx_ring[i]); 1471 1472 /* Enable all receives, disable security engine prior to block traffic */ 1473 ret = wx_disable_sec_rx_path(wx); 1474 if (ret < 0) 1475 wx_err(wx, "The register status is abnormal, please check device."); 1476 1477 wx_enable_rx(wx); 1478 wx_enable_sec_rx_path(wx); 1479 } 1480 EXPORT_SYMBOL(wx_configure_rx); 1481 1482 static void wx_configure_isb(struct wx *wx) 1483 { 1484 /* set ISB Address */ 1485 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); 1486 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 1487 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); 1488 } 1489 1490 void wx_configure(struct wx *wx) 1491 { 1492 wx_set_rxpba(wx); 1493 wx_configure_port(wx); 1494 1495 wx_set_rx_mode(wx->netdev); 1496 wx_restore_vlan(wx); 1497 wx_enable_sec_rx_path(wx); 1498 1499 wx_configure_tx(wx); 1500 wx_configure_rx(wx); 1501 wx_configure_isb(wx); 1502 } 1503 EXPORT_SYMBOL(wx_configure); 1504 1505 /** 1506 * wx_disable_pcie_master - Disable PCI-express master access 1507 * @wx: pointer to hardware structure 1508 * 1509 * Disables PCI-Express master access and verifies there are no pending 1510 * requests. 1511 **/ 1512 int wx_disable_pcie_master(struct wx *wx) 1513 { 1514 int status = 0; 1515 u32 val; 1516 1517 /* Always set this bit to ensure any future transactions are blocked */ 1518 pci_clear_master(wx->pdev); 1519 1520 /* Exit if master requests are blocked */ 1521 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) 1522 return 0; 1523 1524 /* Poll for master request bit to clear */ 1525 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, 1526 false, wx, WX_PX_TRANSACTION_PENDING); 1527 if (status < 0) 1528 wx_err(wx, "PCIe transaction pending bit did not clear.\n"); 1529 1530 return status; 1531 } 1532 EXPORT_SYMBOL(wx_disable_pcie_master); 1533 1534 /** 1535 * wx_stop_adapter - Generic stop Tx/Rx units 1536 * @wx: pointer to hardware structure 1537 * 1538 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, 1539 * disables transmit and receive units. The adapter_stopped flag is used by 1540 * the shared code and drivers to determine if the adapter is in a stopped 1541 * state and should not touch the hardware. 1542 **/ 1543 int wx_stop_adapter(struct wx *wx) 1544 { 1545 u16 i; 1546 1547 /* Set the adapter_stopped flag so other driver functions stop touching 1548 * the hardware 1549 */ 1550 wx->adapter_stopped = true; 1551 1552 /* Disable the receive unit */ 1553 wx_disable_rx(wx); 1554 1555 /* Set interrupt mask to stop interrupts from being generated */ 1556 wx_intr_disable(wx, WX_INTR_ALL); 1557 1558 /* Clear any pending interrupts, flush previous writes */ 1559 wr32(wx, WX_PX_MISC_IC, 0xffffffff); 1560 wr32(wx, WX_BME_CTL, 0x3); 1561 1562 /* Disable the transmit unit. Each queue must be disabled. */ 1563 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1564 wr32m(wx, WX_PX_TR_CFG(i), 1565 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, 1566 WX_PX_TR_CFG_SWFLSH); 1567 } 1568 1569 /* Disable the receive unit by stopping each queue */ 1570 for (i = 0; i < wx->mac.max_rx_queues; i++) { 1571 wr32m(wx, WX_PX_RR_CFG(i), 1572 WX_PX_RR_CFG_RR_EN, 0); 1573 } 1574 1575 /* flush all queues disables */ 1576 WX_WRITE_FLUSH(wx); 1577 1578 /* Prevent the PCI-E bus from hanging by disabling PCI-E master 1579 * access and verify no pending requests 1580 */ 1581 return wx_disable_pcie_master(wx); 1582 } 1583 EXPORT_SYMBOL(wx_stop_adapter); 1584 1585 void wx_reset_misc(struct wx *wx) 1586 { 1587 int i; 1588 1589 /* receive packets that size > 2048 */ 1590 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); 1591 1592 /* clear counters on read */ 1593 wr32m(wx, WX_MMC_CONTROL, 1594 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); 1595 1596 wr32m(wx, WX_MAC_RX_FLOW_CTRL, 1597 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); 1598 1599 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); 1600 1601 wr32m(wx, WX_MIS_RST_ST, 1602 WX_MIS_RST_ST_RST_INIT, 0x1E00); 1603 1604 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ 1605 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); 1606 for (i = 0; i < 16; i++) { 1607 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); 1608 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); 1609 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); 1610 } 1611 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); 1612 for (i = 0; i < 16; i++) { 1613 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); 1614 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); 1615 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); 1616 } 1617 1618 /* set pause frame dst mac addr */ 1619 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); 1620 wr32(wx, WX_RDB_PFCMACDAH, 0x0180); 1621 } 1622 EXPORT_SYMBOL(wx_reset_misc); 1623 1624 /** 1625 * wx_get_pcie_msix_counts - Gets MSI-X vector count 1626 * @wx: pointer to hardware structure 1627 * @msix_count: number of MSI interrupts that can be obtained 1628 * @max_msix_count: number of MSI interrupts that mac need 1629 * 1630 * Read PCIe configuration space, and get the MSI-X vector count from 1631 * the capabilities table. 1632 **/ 1633 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) 1634 { 1635 struct pci_dev *pdev = wx->pdev; 1636 struct device *dev = &pdev->dev; 1637 int pos; 1638 1639 *msix_count = 1; 1640 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 1641 if (!pos) { 1642 dev_err(dev, "Unable to find MSI-X Capabilities\n"); 1643 return -EINVAL; 1644 } 1645 pci_read_config_word(pdev, 1646 pos + PCI_MSIX_FLAGS, 1647 msix_count); 1648 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; 1649 /* MSI-X count is zero-based in HW */ 1650 *msix_count += 1; 1651 1652 if (*msix_count > max_msix_count) 1653 *msix_count = max_msix_count; 1654 1655 return 0; 1656 } 1657 EXPORT_SYMBOL(wx_get_pcie_msix_counts); 1658 1659 int wx_sw_init(struct wx *wx) 1660 { 1661 struct pci_dev *pdev = wx->pdev; 1662 u32 ssid = 0; 1663 int err = 0; 1664 1665 wx->vendor_id = pdev->vendor; 1666 wx->device_id = pdev->device; 1667 wx->revision_id = pdev->revision; 1668 wx->oem_svid = pdev->subsystem_vendor; 1669 wx->oem_ssid = pdev->subsystem_device; 1670 wx->bus.device = PCI_SLOT(pdev->devfn); 1671 wx->bus.func = PCI_FUNC(pdev->devfn); 1672 1673 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { 1674 wx->subsystem_vendor_id = pdev->subsystem_vendor; 1675 wx->subsystem_device_id = pdev->subsystem_device; 1676 } else { 1677 err = wx_flash_read_dword(wx, 0xfffdc, &ssid); 1678 if (err < 0) { 1679 wx_err(wx, "read of internal subsystem device id failed\n"); 1680 return err; 1681 } 1682 1683 wx->subsystem_device_id = swab16((u16)ssid); 1684 } 1685 1686 wx->mac_table = kcalloc(wx->mac.num_rar_entries, 1687 sizeof(struct wx_mac_addr), 1688 GFP_KERNEL); 1689 if (!wx->mac_table) { 1690 wx_err(wx, "mac_table allocation failed\n"); 1691 return -ENOMEM; 1692 } 1693 1694 return 0; 1695 } 1696 EXPORT_SYMBOL(wx_sw_init); 1697 1698 /** 1699 * wx_find_vlvf_slot - find the vlanid or the first empty slot 1700 * @wx: pointer to hardware structure 1701 * @vlan: VLAN id to write to VLAN filter 1702 * 1703 * return the VLVF index where this VLAN id should be placed 1704 * 1705 **/ 1706 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) 1707 { 1708 u32 bits = 0, first_empty_slot = 0; 1709 int regindex; 1710 1711 /* short cut the special case */ 1712 if (vlan == 0) 1713 return 0; 1714 1715 /* Search for the vlan id in the VLVF entries. Save off the first empty 1716 * slot found along the way 1717 */ 1718 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { 1719 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); 1720 bits = rd32(wx, WX_PSR_VLAN_SWC); 1721 if (!bits && !(first_empty_slot)) 1722 first_empty_slot = regindex; 1723 else if ((bits & 0x0FFF) == vlan) 1724 break; 1725 } 1726 1727 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { 1728 if (first_empty_slot) 1729 regindex = first_empty_slot; 1730 else 1731 regindex = -ENOMEM; 1732 } 1733 1734 return regindex; 1735 } 1736 1737 /** 1738 * wx_set_vlvf - Set VLAN Pool Filter 1739 * @wx: pointer to hardware structure 1740 * @vlan: VLAN id to write to VLAN filter 1741 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 1742 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 1743 * @vfta_changed: pointer to boolean flag which indicates whether VFTA 1744 * should be changed 1745 * 1746 * Turn on/off specified bit in VLVF table. 1747 **/ 1748 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, 1749 bool *vfta_changed) 1750 { 1751 int vlvf_index; 1752 u32 vt, bits; 1753 1754 /* If VT Mode is set 1755 * Either vlan_on 1756 * make sure the vlan is in VLVF 1757 * set the vind bit in the matching VLVFB 1758 * Or !vlan_on 1759 * clear the pool bit and possibly the vind 1760 */ 1761 vt = rd32(wx, WX_CFG_PORT_CTL); 1762 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) 1763 return 0; 1764 1765 vlvf_index = wx_find_vlvf_slot(wx, vlan); 1766 if (vlvf_index < 0) 1767 return vlvf_index; 1768 1769 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); 1770 if (vlan_on) { 1771 /* set the pool bit */ 1772 if (vind < 32) { 1773 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1774 bits |= (1 << vind); 1775 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 1776 } else { 1777 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1778 bits |= (1 << (vind - 32)); 1779 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 1780 } 1781 } else { 1782 /* clear the pool bit */ 1783 if (vind < 32) { 1784 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1785 bits &= ~(1 << vind); 1786 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 1787 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1788 } else { 1789 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1790 bits &= ~(1 << (vind - 32)); 1791 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 1792 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1793 } 1794 } 1795 1796 if (bits) { 1797 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); 1798 if (!vlan_on && vfta_changed) 1799 *vfta_changed = false; 1800 } else { 1801 wr32(wx, WX_PSR_VLAN_SWC, 0); 1802 } 1803 1804 return 0; 1805 } 1806 1807 /** 1808 * wx_set_vfta - Set VLAN filter table 1809 * @wx: pointer to hardware structure 1810 * @vlan: VLAN id to write to VLAN filter 1811 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 1812 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 1813 * 1814 * Turn on/off specified VLAN in the VLAN filter table. 1815 **/ 1816 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) 1817 { 1818 u32 bitindex, vfta, targetbit; 1819 bool vfta_changed = false; 1820 int regindex, ret; 1821 1822 /* this is a 2 part operation - first the VFTA, then the 1823 * VLVF and VLVFB if VT Mode is set 1824 * We don't write the VFTA until we know the VLVF part succeeded. 1825 */ 1826 1827 /* Part 1 1828 * The VFTA is a bitstring made up of 128 32-bit registers 1829 * that enable the particular VLAN id, much like the MTA: 1830 * bits[11-5]: which register 1831 * bits[4-0]: which bit in the register 1832 */ 1833 regindex = (vlan >> 5) & 0x7F; 1834 bitindex = vlan & 0x1F; 1835 targetbit = (1 << bitindex); 1836 /* errata 5 */ 1837 vfta = wx->mac.vft_shadow[regindex]; 1838 if (vlan_on) { 1839 if (!(vfta & targetbit)) { 1840 vfta |= targetbit; 1841 vfta_changed = true; 1842 } 1843 } else { 1844 if ((vfta & targetbit)) { 1845 vfta &= ~targetbit; 1846 vfta_changed = true; 1847 } 1848 } 1849 /* Part 2 1850 * Call wx_set_vlvf to set VLVFB and VLVF 1851 */ 1852 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); 1853 if (ret != 0) 1854 return ret; 1855 1856 if (vfta_changed) 1857 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); 1858 wx->mac.vft_shadow[regindex] = vfta; 1859 1860 return 0; 1861 } 1862 1863 /** 1864 * wx_clear_vfta - Clear VLAN filter table 1865 * @wx: pointer to hardware structure 1866 * 1867 * Clears the VLAN filer table, and the VMDq index associated with the filter 1868 **/ 1869 static void wx_clear_vfta(struct wx *wx) 1870 { 1871 u32 offset; 1872 1873 for (offset = 0; offset < wx->mac.vft_size; offset++) { 1874 wr32(wx, WX_PSR_VLAN_TBL(offset), 0); 1875 wx->mac.vft_shadow[offset] = 0; 1876 } 1877 1878 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { 1879 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); 1880 wr32(wx, WX_PSR_VLAN_SWC, 0); 1881 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); 1882 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); 1883 } 1884 } 1885 1886 int wx_vlan_rx_add_vid(struct net_device *netdev, 1887 __be16 proto, u16 vid) 1888 { 1889 struct wx *wx = netdev_priv(netdev); 1890 1891 /* add VID to filter table */ 1892 wx_set_vfta(wx, vid, VMDQ_P(0), true); 1893 set_bit(vid, wx->active_vlans); 1894 1895 return 0; 1896 } 1897 EXPORT_SYMBOL(wx_vlan_rx_add_vid); 1898 1899 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1900 { 1901 struct wx *wx = netdev_priv(netdev); 1902 1903 /* remove VID from filter table */ 1904 if (vid) 1905 wx_set_vfta(wx, vid, VMDQ_P(0), false); 1906 clear_bit(vid, wx->active_vlans); 1907 1908 return 0; 1909 } 1910 EXPORT_SYMBOL(wx_vlan_rx_kill_vid); 1911 1912 /** 1913 * wx_start_hw - Prepare hardware for Tx/Rx 1914 * @wx: pointer to hardware structure 1915 * 1916 * Starts the hardware using the generic start_hw function 1917 * and the generation start_hw function. 1918 * Then performs revision-specific operations, if any. 1919 **/ 1920 void wx_start_hw(struct wx *wx) 1921 { 1922 int i; 1923 1924 /* Clear the VLAN filter table */ 1925 wx_clear_vfta(wx); 1926 WX_WRITE_FLUSH(wx); 1927 /* Clear the rate limiters */ 1928 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1929 wr32(wx, WX_TDM_RP_IDX, i); 1930 wr32(wx, WX_TDM_RP_RATE, 0); 1931 } 1932 } 1933 EXPORT_SYMBOL(wx_start_hw); 1934 1935 MODULE_LICENSE("GPL"); 1936