1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/netdevice.h> 6 #include <linux/if_ether.h> 7 #include <linux/if_vlan.h> 8 #include <linux/iopoll.h> 9 #include <linux/pci.h> 10 11 #include "wx_type.h" 12 #include "wx_lib.h" 13 #include "wx_hw.h" 14 15 static void wx_intr_disable(struct wx *wx, u64 qmask) 16 { 17 u32 mask; 18 19 mask = (qmask & U32_MAX); 20 if (mask) 21 wr32(wx, WX_PX_IMS(0), mask); 22 23 if (wx->mac.type == wx_mac_sp) { 24 mask = (qmask >> 32); 25 if (mask) 26 wr32(wx, WX_PX_IMS(1), mask); 27 } 28 } 29 30 void wx_intr_enable(struct wx *wx, u64 qmask) 31 { 32 u32 mask; 33 34 mask = (qmask & U32_MAX); 35 if (mask) 36 wr32(wx, WX_PX_IMC(0), mask); 37 if (wx->mac.type == wx_mac_sp) { 38 mask = (qmask >> 32); 39 if (mask) 40 wr32(wx, WX_PX_IMC(1), mask); 41 } 42 } 43 EXPORT_SYMBOL(wx_intr_enable); 44 45 /** 46 * wx_irq_disable - Mask off interrupt generation on the NIC 47 * @wx: board private structure 48 **/ 49 void wx_irq_disable(struct wx *wx) 50 { 51 struct pci_dev *pdev = wx->pdev; 52 53 wr32(wx, WX_PX_MISC_IEN, 0); 54 wx_intr_disable(wx, WX_INTR_ALL); 55 56 if (pdev->msix_enabled) { 57 int vector; 58 59 for (vector = 0; vector < wx->num_q_vectors; vector++) 60 synchronize_irq(wx->msix_entries[vector].vector); 61 62 synchronize_irq(wx->msix_entries[vector].vector); 63 } else { 64 synchronize_irq(pdev->irq); 65 } 66 } 67 EXPORT_SYMBOL(wx_irq_disable); 68 69 /* cmd_addr is used for some special command: 70 * 1. to be sector address, when implemented erase sector command 71 * 2. to be flash address when implemented read, write flash address 72 */ 73 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) 74 { 75 u32 cmd_val = 0, val = 0; 76 77 cmd_val = WX_SPI_CMD_CMD(cmd) | 78 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | 79 cmd_addr; 80 wr32(wx, WX_SPI_CMD, cmd_val); 81 82 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, 83 false, wx, WX_SPI_STATUS); 84 } 85 86 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) 87 { 88 int ret = 0; 89 90 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); 91 if (ret < 0) 92 return ret; 93 94 *data = rd32(wx, WX_SPI_DATA); 95 96 return ret; 97 } 98 99 int wx_check_flash_load(struct wx *hw, u32 check_bit) 100 { 101 u32 reg = 0; 102 int err = 0; 103 104 /* if there's flash existing */ 105 if (!(rd32(hw, WX_SPI_STATUS) & 106 WX_SPI_STATUS_FLASH_BYPASS)) { 107 /* wait hw load flash done */ 108 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, 109 false, hw, WX_SPI_ILDR_STATUS); 110 if (err < 0) 111 wx_err(hw, "Check flash load timeout.\n"); 112 } 113 114 return err; 115 } 116 EXPORT_SYMBOL(wx_check_flash_load); 117 118 void wx_control_hw(struct wx *wx, bool drv) 119 { 120 /* True : Let firmware know the driver has taken over 121 * False : Let firmware take over control of hw 122 */ 123 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, 124 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); 125 } 126 EXPORT_SYMBOL(wx_control_hw); 127 128 /** 129 * wx_mng_present - returns 0 when management capability is present 130 * @wx: pointer to hardware structure 131 */ 132 int wx_mng_present(struct wx *wx) 133 { 134 u32 fwsm; 135 136 fwsm = rd32(wx, WX_MIS_ST); 137 if (fwsm & WX_MIS_ST_MNG_INIT_DN) 138 return 0; 139 else 140 return -EACCES; 141 } 142 EXPORT_SYMBOL(wx_mng_present); 143 144 /* Software lock to be held while software semaphore is being accessed. */ 145 static DEFINE_MUTEX(wx_sw_sync_lock); 146 147 /** 148 * wx_release_sw_sync - Release SW semaphore 149 * @wx: pointer to hardware structure 150 * @mask: Mask to specify which semaphore to release 151 * 152 * Releases the SW semaphore for the specified 153 * function (CSR, PHY0, PHY1, EEPROM, Flash) 154 **/ 155 static void wx_release_sw_sync(struct wx *wx, u32 mask) 156 { 157 mutex_lock(&wx_sw_sync_lock); 158 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); 159 mutex_unlock(&wx_sw_sync_lock); 160 } 161 162 /** 163 * wx_acquire_sw_sync - Acquire SW semaphore 164 * @wx: pointer to hardware structure 165 * @mask: Mask to specify which semaphore to acquire 166 * 167 * Acquires the SW semaphore for the specified 168 * function (CSR, PHY0, PHY1, EEPROM, Flash) 169 **/ 170 static int wx_acquire_sw_sync(struct wx *wx, u32 mask) 171 { 172 u32 sem = 0; 173 int ret = 0; 174 175 mutex_lock(&wx_sw_sync_lock); 176 ret = read_poll_timeout(rd32, sem, !(sem & mask), 177 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); 178 if (!ret) { 179 sem |= mask; 180 wr32(wx, WX_MNG_SWFW_SYNC, sem); 181 } else { 182 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); 183 } 184 mutex_unlock(&wx_sw_sync_lock); 185 186 return ret; 187 } 188 189 /** 190 * wx_host_interface_command - Issue command to manageability block 191 * @wx: pointer to the HW structure 192 * @buffer: contains the command to write and where the return status will 193 * be placed 194 * @length: length of buffer, must be multiple of 4 bytes 195 * @timeout: time in ms to wait for command completion 196 * @return_data: read and return data from the buffer (true) or not (false) 197 * Needed because FW structures are big endian and decoding of 198 * these fields can be 8 bit or 16 bit based on command. Decoding 199 * is not easily understood without making a table of commands. 200 * So we will leave this up to the caller to read back the data 201 * in these cases. 202 **/ 203 int wx_host_interface_command(struct wx *wx, u32 *buffer, 204 u32 length, u32 timeout, bool return_data) 205 { 206 u32 hdr_size = sizeof(struct wx_hic_hdr); 207 u32 hicr, i, bi, buf[64] = {}; 208 int status = 0; 209 u32 dword_len; 210 u16 buf_len; 211 212 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { 213 wx_err(wx, "Buffer length failure buffersize=%d.\n", length); 214 return -EINVAL; 215 } 216 217 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 218 if (status != 0) 219 return status; 220 221 /* Calculate length in DWORDs. We must be DWORD aligned */ 222 if ((length % (sizeof(u32))) != 0) { 223 wx_err(wx, "Buffer length failure, not aligned to dword"); 224 status = -EINVAL; 225 goto rel_out; 226 } 227 228 dword_len = length >> 2; 229 230 /* The device driver writes the relevant command block 231 * into the ram area. 232 */ 233 for (i = 0; i < dword_len; i++) { 234 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); 235 /* write flush */ 236 buf[i] = rd32a(wx, WX_MNG_MBOX, i); 237 } 238 /* Setting this bit tells the ARC that a new command is pending. */ 239 wr32m(wx, WX_MNG_MBOX_CTL, 240 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); 241 242 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, 243 timeout * 1000, false, wx, WX_MNG_MBOX_CTL); 244 245 /* Check command completion */ 246 if (status) { 247 wx_dbg(wx, "Command has failed with no status valid.\n"); 248 249 buf[0] = rd32(wx, WX_MNG_MBOX); 250 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) { 251 status = -EINVAL; 252 goto rel_out; 253 } 254 if ((buf[0] & 0xff0000) >> 16 == 0x80) { 255 wx_dbg(wx, "It's unknown cmd.\n"); 256 status = -EINVAL; 257 goto rel_out; 258 } 259 260 wx_dbg(wx, "write value:\n"); 261 for (i = 0; i < dword_len; i++) 262 wx_dbg(wx, "%x ", buffer[i]); 263 wx_dbg(wx, "read value:\n"); 264 for (i = 0; i < dword_len; i++) 265 wx_dbg(wx, "%x ", buf[i]); 266 } 267 268 if (!return_data) 269 goto rel_out; 270 271 /* Calculate length in DWORDs */ 272 dword_len = hdr_size >> 2; 273 274 /* first pull in the header so we know the buffer length */ 275 for (bi = 0; bi < dword_len; bi++) { 276 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 277 le32_to_cpus(&buffer[bi]); 278 } 279 280 /* If there is any thing in data position pull it in */ 281 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; 282 if (buf_len == 0) 283 goto rel_out; 284 285 if (length < buf_len + hdr_size) { 286 wx_err(wx, "Buffer not large enough for reply message.\n"); 287 status = -EFAULT; 288 goto rel_out; 289 } 290 291 /* Calculate length in DWORDs, add 3 for odd lengths */ 292 dword_len = (buf_len + 3) >> 2; 293 294 /* Pull in the rest of the buffer (bi is where we left off) */ 295 for (; bi <= dword_len; bi++) { 296 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); 297 le32_to_cpus(&buffer[bi]); 298 } 299 300 rel_out: 301 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); 302 return status; 303 } 304 EXPORT_SYMBOL(wx_host_interface_command); 305 306 /** 307 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd 308 * assuming that the semaphore is already obtained. 309 * @wx: pointer to hardware structure 310 * @offset: offset of word in the EEPROM to read 311 * @data: word read from the EEPROM 312 * 313 * Reads a 16 bit word from the EEPROM using the hostif. 314 **/ 315 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) 316 { 317 struct wx_hic_read_shadow_ram buffer; 318 int status; 319 320 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 321 buffer.hdr.req.buf_lenh = 0; 322 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 323 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 324 325 /* convert offset from words to bytes */ 326 buffer.address = (__force u32)cpu_to_be32(offset * 2); 327 /* one word */ 328 buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); 329 330 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), 331 WX_HI_COMMAND_TIMEOUT, false); 332 333 if (status != 0) 334 return status; 335 336 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); 337 338 return status; 339 } 340 341 /** 342 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd 343 * @wx: pointer to hardware structure 344 * @offset: offset of word in the EEPROM to read 345 * @data: word read from the EEPROM 346 * 347 * Reads a 16 bit word from the EEPROM using the hostif. 348 **/ 349 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) 350 { 351 int status = 0; 352 353 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 354 if (status == 0) { 355 status = wx_read_ee_hostif_data(wx, offset, data); 356 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 357 } 358 359 return status; 360 } 361 EXPORT_SYMBOL(wx_read_ee_hostif); 362 363 /** 364 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif 365 * @wx: pointer to hardware structure 366 * @offset: offset of word in the EEPROM to read 367 * @words: number of words 368 * @data: word(s) read from the EEPROM 369 * 370 * Reads a 16 bit word(s) from the EEPROM using the hostif. 371 **/ 372 int wx_read_ee_hostif_buffer(struct wx *wx, 373 u16 offset, u16 words, u16 *data) 374 { 375 struct wx_hic_read_shadow_ram buffer; 376 u32 current_word = 0; 377 u16 words_to_read; 378 u32 value = 0; 379 int status; 380 u32 i; 381 382 /* Take semaphore for the entire operation. */ 383 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 384 if (status != 0) 385 return status; 386 387 while (words) { 388 if (words > FW_MAX_READ_BUFFER_SIZE / 2) 389 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; 390 else 391 words_to_read = words; 392 393 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; 394 buffer.hdr.req.buf_lenh = 0; 395 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; 396 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; 397 398 /* convert offset from words to bytes */ 399 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); 400 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); 401 402 status = wx_host_interface_command(wx, (u32 *)&buffer, 403 sizeof(buffer), 404 WX_HI_COMMAND_TIMEOUT, 405 false); 406 407 if (status != 0) { 408 wx_err(wx, "Host interface command failed\n"); 409 goto out; 410 } 411 412 for (i = 0; i < words_to_read; i++) { 413 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; 414 415 value = rd32(wx, reg); 416 data[current_word] = (u16)(value & 0xffff); 417 current_word++; 418 i++; 419 if (i < words_to_read) { 420 value >>= 16; 421 data[current_word] = (u16)(value & 0xffff); 422 current_word++; 423 } 424 } 425 words -= words_to_read; 426 } 427 428 out: 429 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); 430 return status; 431 } 432 EXPORT_SYMBOL(wx_read_ee_hostif_buffer); 433 434 /** 435 * wx_init_eeprom_params - Initialize EEPROM params 436 * @wx: pointer to hardware structure 437 * 438 * Initializes the EEPROM parameters wx_eeprom_info within the 439 * wx_hw struct in order to set up EEPROM access. 440 **/ 441 void wx_init_eeprom_params(struct wx *wx) 442 { 443 struct wx_eeprom_info *eeprom = &wx->eeprom; 444 u16 eeprom_size; 445 u16 data = 0x80; 446 447 if (eeprom->type == wx_eeprom_uninitialized) { 448 eeprom->semaphore_delay = 10; 449 eeprom->type = wx_eeprom_none; 450 451 if (!(rd32(wx, WX_SPI_STATUS) & 452 WX_SPI_STATUS_FLASH_BYPASS)) { 453 eeprom->type = wx_flash; 454 455 eeprom_size = 4096; 456 eeprom->word_size = eeprom_size >> 1; 457 458 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", 459 eeprom->type, eeprom->word_size); 460 } 461 } 462 463 if (wx->mac.type == wx_mac_sp) { 464 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { 465 wx_err(wx, "NVM Read Error\n"); 466 return; 467 } 468 data = data >> 1; 469 } 470 471 eeprom->sw_region_offset = data; 472 } 473 EXPORT_SYMBOL(wx_init_eeprom_params); 474 475 /** 476 * wx_get_mac_addr - Generic get MAC address 477 * @wx: pointer to hardware structure 478 * @mac_addr: Adapter MAC address 479 * 480 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 481 * A reset of the adapter must be performed prior to calling this function 482 * in order for the MAC address to have been loaded from the EEPROM into RAR0 483 **/ 484 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) 485 { 486 u32 rar_high; 487 u32 rar_low; 488 u16 i; 489 490 wr32(wx, WX_PSR_MAC_SWC_IDX, 0); 491 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); 492 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); 493 494 for (i = 0; i < 2; i++) 495 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); 496 497 for (i = 0; i < 4; i++) 498 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); 499 } 500 EXPORT_SYMBOL(wx_get_mac_addr); 501 502 /** 503 * wx_set_rar - Set Rx address register 504 * @wx: pointer to hardware structure 505 * @index: Receive address register to write 506 * @addr: Address to put into receive address register 507 * @pools: VMDq "set" or "pool" index 508 * @enable_addr: set flag that address is active 509 * 510 * Puts an ethernet address into a receive address register. 511 **/ 512 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, 513 u32 enable_addr) 514 { 515 u32 rar_entries = wx->mac.num_rar_entries; 516 u32 rar_low, rar_high; 517 518 /* Make sure we are using a valid rar index range */ 519 if (index >= rar_entries) { 520 wx_err(wx, "RAR index %d is out of range.\n", index); 521 return -EINVAL; 522 } 523 524 /* select the MAC address */ 525 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 526 527 /* setup VMDq pool mapping */ 528 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); 529 if (wx->mac.type == wx_mac_sp) 530 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); 531 532 /* HW expects these in little endian so we reverse the byte 533 * order from network order (big endian) to little endian 534 * 535 * Some parts put the VMDq setting in the extra RAH bits, 536 * so save everything except the lower 16 bits that hold part 537 * of the address and the address valid bit. 538 */ 539 rar_low = ((u32)addr[5] | 540 ((u32)addr[4] << 8) | 541 ((u32)addr[3] << 16) | 542 ((u32)addr[2] << 24)); 543 rar_high = ((u32)addr[1] | 544 ((u32)addr[0] << 8)); 545 if (enable_addr != 0) 546 rar_high |= WX_PSR_MAC_SWC_AD_H_AV; 547 548 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); 549 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 550 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 551 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 552 WX_PSR_MAC_SWC_AD_H_AV), 553 rar_high); 554 555 return 0; 556 } 557 558 /** 559 * wx_clear_rar - Remove Rx address register 560 * @wx: pointer to hardware structure 561 * @index: Receive address register to write 562 * 563 * Clears an ethernet address from a receive address register. 564 **/ 565 static int wx_clear_rar(struct wx *wx, u32 index) 566 { 567 u32 rar_entries = wx->mac.num_rar_entries; 568 569 /* Make sure we are using a valid rar index range */ 570 if (index >= rar_entries) { 571 wx_err(wx, "RAR index %d is out of range.\n", index); 572 return -EINVAL; 573 } 574 575 /* Some parts put the VMDq setting in the extra RAH bits, 576 * so save everything except the lower 16 bits that hold part 577 * of the address and the address valid bit. 578 */ 579 wr32(wx, WX_PSR_MAC_SWC_IDX, index); 580 581 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); 582 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); 583 584 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 585 wr32m(wx, WX_PSR_MAC_SWC_AD_H, 586 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | 587 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | 588 WX_PSR_MAC_SWC_AD_H_AV), 589 0); 590 591 return 0; 592 } 593 594 /** 595 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address 596 * @wx: pointer to hardware struct 597 * @rar: receive address register index to disassociate 598 * @vmdq: VMDq pool index to remove from the rar 599 **/ 600 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) 601 { 602 u32 rar_entries = wx->mac.num_rar_entries; 603 u32 mpsar_lo, mpsar_hi; 604 605 /* Make sure we are using a valid rar index range */ 606 if (rar >= rar_entries) { 607 wx_err(wx, "RAR index %d is out of range.\n", rar); 608 return -EINVAL; 609 } 610 611 wr32(wx, WX_PSR_MAC_SWC_IDX, rar); 612 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); 613 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); 614 615 if (!mpsar_lo && !mpsar_hi) 616 return 0; 617 618 /* was that the last pool using this rar? */ 619 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 620 wx_clear_rar(wx, rar); 621 622 return 0; 623 } 624 625 /** 626 * wx_init_uta_tables - Initialize the Unicast Table Array 627 * @wx: pointer to hardware structure 628 **/ 629 static void wx_init_uta_tables(struct wx *wx) 630 { 631 int i; 632 633 wx_dbg(wx, " Clearing UTA\n"); 634 635 for (i = 0; i < 128; i++) 636 wr32(wx, WX_PSR_UC_TBL(i), 0); 637 } 638 639 /** 640 * wx_init_rx_addrs - Initializes receive address filters. 641 * @wx: pointer to hardware structure 642 * 643 * Places the MAC address in receive address register 0 and clears the rest 644 * of the receive address registers. Clears the multicast table. Assumes 645 * the receiver is in reset when the routine is called. 646 **/ 647 void wx_init_rx_addrs(struct wx *wx) 648 { 649 u32 rar_entries = wx->mac.num_rar_entries; 650 u32 psrctl; 651 int i; 652 653 /* If the current mac address is valid, assume it is a software override 654 * to the permanent address. 655 * Otherwise, use the permanent address from the eeprom. 656 */ 657 if (!is_valid_ether_addr(wx->mac.addr)) { 658 /* Get the MAC address from the RAR0 for later reference */ 659 wx_get_mac_addr(wx, wx->mac.addr); 660 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); 661 } else { 662 /* Setup the receive address. */ 663 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); 664 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); 665 666 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); 667 668 if (wx->mac.type == wx_mac_sp) { 669 /* clear VMDq pool/queue selection for RAR 0 */ 670 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); 671 } 672 } 673 674 /* Zero out the other receive addresses. */ 675 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); 676 for (i = 1; i < rar_entries; i++) { 677 wr32(wx, WX_PSR_MAC_SWC_IDX, i); 678 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); 679 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); 680 } 681 682 /* Clear the MTA */ 683 wx->addr_ctrl.mta_in_use = 0; 684 psrctl = rd32(wx, WX_PSR_CTL); 685 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 686 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; 687 wr32(wx, WX_PSR_CTL, psrctl); 688 wx_dbg(wx, " Clearing MTA\n"); 689 for (i = 0; i < wx->mac.mcft_size; i++) 690 wr32(wx, WX_PSR_MC_TBL(i), 0); 691 692 wx_init_uta_tables(wx); 693 } 694 EXPORT_SYMBOL(wx_init_rx_addrs); 695 696 static void wx_sync_mac_table(struct wx *wx) 697 { 698 int i; 699 700 for (i = 0; i < wx->mac.num_rar_entries; i++) { 701 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { 702 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 703 wx_set_rar(wx, i, 704 wx->mac_table[i].addr, 705 wx->mac_table[i].pools, 706 WX_PSR_MAC_SWC_AD_H_AV); 707 } else { 708 wx_clear_rar(wx, i); 709 } 710 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); 711 } 712 } 713 } 714 715 /* this function destroys the first RAR entry */ 716 void wx_mac_set_default_filter(struct wx *wx, u8 *addr) 717 { 718 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); 719 wx->mac_table[0].pools = 1ULL; 720 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); 721 wx_set_rar(wx, 0, wx->mac_table[0].addr, 722 wx->mac_table[0].pools, 723 WX_PSR_MAC_SWC_AD_H_AV); 724 } 725 EXPORT_SYMBOL(wx_mac_set_default_filter); 726 727 void wx_flush_sw_mac_table(struct wx *wx) 728 { 729 u32 i; 730 731 for (i = 0; i < wx->mac.num_rar_entries; i++) { 732 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) 733 continue; 734 735 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 736 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 737 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 738 wx->mac_table[i].pools = 0; 739 } 740 wx_sync_mac_table(wx); 741 } 742 EXPORT_SYMBOL(wx_flush_sw_mac_table); 743 744 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) 745 { 746 u32 i; 747 748 if (is_zero_ether_addr(addr)) 749 return -EINVAL; 750 751 for (i = 0; i < wx->mac.num_rar_entries; i++) { 752 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { 753 if (ether_addr_equal(addr, wx->mac_table[i].addr)) { 754 if (wx->mac_table[i].pools != (1ULL << pool)) { 755 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 756 wx->mac_table[i].pools |= (1ULL << pool); 757 wx_sync_mac_table(wx); 758 return i; 759 } 760 } 761 } 762 763 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) 764 continue; 765 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | 766 WX_MAC_STATE_IN_USE); 767 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); 768 wx->mac_table[i].pools |= (1ULL << pool); 769 wx_sync_mac_table(wx); 770 return i; 771 } 772 return -ENOMEM; 773 } 774 775 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) 776 { 777 u32 i; 778 779 if (is_zero_ether_addr(addr)) 780 return -EINVAL; 781 782 /* search table for addr, if found, set to 0 and sync */ 783 for (i = 0; i < wx->mac.num_rar_entries; i++) { 784 if (!ether_addr_equal(addr, wx->mac_table[i].addr)) 785 continue; 786 787 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; 788 wx->mac_table[i].pools &= ~(1ULL << pool); 789 if (!wx->mac_table[i].pools) { 790 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; 791 memset(wx->mac_table[i].addr, 0, ETH_ALEN); 792 } 793 wx_sync_mac_table(wx); 794 return 0; 795 } 796 return -ENOMEM; 797 } 798 799 static int wx_available_rars(struct wx *wx) 800 { 801 u32 i, count = 0; 802 803 for (i = 0; i < wx->mac.num_rar_entries; i++) { 804 if (wx->mac_table[i].state == 0) 805 count++; 806 } 807 808 return count; 809 } 810 811 /** 812 * wx_write_uc_addr_list - write unicast addresses to RAR table 813 * @netdev: network interface device structure 814 * @pool: index for mac table 815 * 816 * Writes unicast address list to the RAR table. 817 * Returns: -ENOMEM on failure/insufficient address space 818 * 0 on no addresses written 819 * X on writing X addresses to the RAR table 820 **/ 821 static int wx_write_uc_addr_list(struct net_device *netdev, int pool) 822 { 823 struct wx *wx = netdev_priv(netdev); 824 int count = 0; 825 826 /* return ENOMEM indicating insufficient memory for addresses */ 827 if (netdev_uc_count(netdev) > wx_available_rars(wx)) 828 return -ENOMEM; 829 830 if (!netdev_uc_empty(netdev)) { 831 struct netdev_hw_addr *ha; 832 833 netdev_for_each_uc_addr(ha, netdev) { 834 wx_del_mac_filter(wx, ha->addr, pool); 835 wx_add_mac_filter(wx, ha->addr, pool); 836 count++; 837 } 838 } 839 return count; 840 } 841 842 /** 843 * wx_mta_vector - Determines bit-vector in multicast table to set 844 * @wx: pointer to private structure 845 * @mc_addr: the multicast address 846 * 847 * Extracts the 12 bits, from a multicast address, to determine which 848 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 849 * incoming rx multicast addresses, to determine the bit-vector to check in 850 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 851 * by the MO field of the MCSTCTRL. The MO field is set during initialization 852 * to mc_filter_type. 853 **/ 854 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) 855 { 856 u32 vector = 0; 857 858 switch (wx->mac.mc_filter_type) { 859 case 0: /* use bits [47:36] of the address */ 860 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 861 break; 862 case 1: /* use bits [46:35] of the address */ 863 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 864 break; 865 case 2: /* use bits [45:34] of the address */ 866 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 867 break; 868 case 3: /* use bits [43:32] of the address */ 869 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 870 break; 871 default: /* Invalid mc_filter_type */ 872 wx_err(wx, "MC filter type param set incorrectly\n"); 873 break; 874 } 875 876 /* vector can only be 12-bits or boundary will be exceeded */ 877 vector &= 0xFFF; 878 return vector; 879 } 880 881 /** 882 * wx_set_mta - Set bit-vector in multicast table 883 * @wx: pointer to private structure 884 * @mc_addr: Multicast address 885 * 886 * Sets the bit-vector in the multicast table. 887 **/ 888 static void wx_set_mta(struct wx *wx, u8 *mc_addr) 889 { 890 u32 vector, vector_bit, vector_reg; 891 892 wx->addr_ctrl.mta_in_use++; 893 894 vector = wx_mta_vector(wx, mc_addr); 895 wx_dbg(wx, " bit-vector = 0x%03X\n", vector); 896 897 /* The MTA is a register array of 128 32-bit registers. It is treated 898 * like an array of 4096 bits. We want to set bit 899 * BitArray[vector_value]. So we figure out what register the bit is 900 * in, read it, OR in the new bit, then write back the new value. The 901 * register is determined by the upper 7 bits of the vector value and 902 * the bit within that register are determined by the lower 5 bits of 903 * the value. 904 */ 905 vector_reg = (vector >> 5) & 0x7F; 906 vector_bit = vector & 0x1F; 907 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 908 } 909 910 /** 911 * wx_update_mc_addr_list - Updates MAC list of multicast addresses 912 * @wx: pointer to private structure 913 * @netdev: pointer to net device structure 914 * 915 * The given list replaces any existing list. Clears the MC addrs from receive 916 * address registers and the multicast table. Uses unused receive address 917 * registers for the first multicast addresses, and hashes the rest into the 918 * multicast table. 919 **/ 920 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) 921 { 922 struct netdev_hw_addr *ha; 923 u32 i, psrctl; 924 925 /* Set the new number of MC addresses that we are being requested to 926 * use. 927 */ 928 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 929 wx->addr_ctrl.mta_in_use = 0; 930 931 /* Clear mta_shadow */ 932 wx_dbg(wx, " Clearing MTA\n"); 933 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); 934 935 /* Update mta_shadow */ 936 netdev_for_each_mc_addr(ha, netdev) { 937 wx_dbg(wx, " Adding the multicast addresses:\n"); 938 wx_set_mta(wx, ha->addr); 939 } 940 941 /* Enable mta */ 942 for (i = 0; i < wx->mac.mcft_size; i++) 943 wr32a(wx, WX_PSR_MC_TBL(0), i, 944 wx->mac.mta_shadow[i]); 945 946 if (wx->addr_ctrl.mta_in_use > 0) { 947 psrctl = rd32(wx, WX_PSR_CTL); 948 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); 949 psrctl |= WX_PSR_CTL_MFE | 950 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); 951 wr32(wx, WX_PSR_CTL, psrctl); 952 } 953 954 wx_dbg(wx, "Update mc addr list Complete\n"); 955 } 956 957 /** 958 * wx_write_mc_addr_list - write multicast addresses to MTA 959 * @netdev: network interface device structure 960 * 961 * Writes multicast address list to the MTA hash table. 962 * Returns: 0 on no addresses written 963 * X on writing X addresses to MTA 964 **/ 965 static int wx_write_mc_addr_list(struct net_device *netdev) 966 { 967 struct wx *wx = netdev_priv(netdev); 968 969 if (!netif_running(netdev)) 970 return 0; 971 972 wx_update_mc_addr_list(wx, netdev); 973 974 return netdev_mc_count(netdev); 975 } 976 977 /** 978 * wx_set_mac - Change the Ethernet Address of the NIC 979 * @netdev: network interface device structure 980 * @p: pointer to an address structure 981 * 982 * Returns 0 on success, negative on failure 983 **/ 984 int wx_set_mac(struct net_device *netdev, void *p) 985 { 986 struct wx *wx = netdev_priv(netdev); 987 struct sockaddr *addr = p; 988 int retval; 989 990 retval = eth_prepare_mac_addr_change(netdev, addr); 991 if (retval) 992 return retval; 993 994 wx_del_mac_filter(wx, wx->mac.addr, 0); 995 eth_hw_addr_set(netdev, addr->sa_data); 996 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); 997 998 wx_mac_set_default_filter(wx, wx->mac.addr); 999 1000 return 0; 1001 } 1002 EXPORT_SYMBOL(wx_set_mac); 1003 1004 void wx_disable_rx(struct wx *wx) 1005 { 1006 u32 pfdtxgswc; 1007 u32 rxctrl; 1008 1009 rxctrl = rd32(wx, WX_RDB_PB_CTL); 1010 if (rxctrl & WX_RDB_PB_CTL_RXEN) { 1011 pfdtxgswc = rd32(wx, WX_PSR_CTL); 1012 if (pfdtxgswc & WX_PSR_CTL_SW_EN) { 1013 pfdtxgswc &= ~WX_PSR_CTL_SW_EN; 1014 wr32(wx, WX_PSR_CTL, pfdtxgswc); 1015 wx->mac.set_lben = true; 1016 } else { 1017 wx->mac.set_lben = false; 1018 } 1019 rxctrl &= ~WX_RDB_PB_CTL_RXEN; 1020 wr32(wx, WX_RDB_PB_CTL, rxctrl); 1021 1022 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || 1023 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { 1024 /* disable mac receiver */ 1025 wr32m(wx, WX_MAC_RX_CFG, 1026 WX_MAC_RX_CFG_RE, 0); 1027 } 1028 } 1029 } 1030 EXPORT_SYMBOL(wx_disable_rx); 1031 1032 static void wx_enable_rx(struct wx *wx) 1033 { 1034 u32 psrctl; 1035 1036 /* enable mac receiver */ 1037 wr32m(wx, WX_MAC_RX_CFG, 1038 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); 1039 1040 wr32m(wx, WX_RDB_PB_CTL, 1041 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); 1042 1043 if (wx->mac.set_lben) { 1044 psrctl = rd32(wx, WX_PSR_CTL); 1045 psrctl |= WX_PSR_CTL_SW_EN; 1046 wr32(wx, WX_PSR_CTL, psrctl); 1047 wx->mac.set_lben = false; 1048 } 1049 } 1050 1051 /** 1052 * wx_set_rxpba - Initialize Rx packet buffer 1053 * @wx: pointer to private structure 1054 **/ 1055 static void wx_set_rxpba(struct wx *wx) 1056 { 1057 u32 rxpktsize, txpktsize, txpbthresh; 1058 1059 rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT; 1060 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); 1061 1062 /* Only support an equally distributed Tx packet buffer strategy. */ 1063 txpktsize = wx->mac.tx_pb_size; 1064 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; 1065 wr32(wx, WX_TDB_PB_SZ(0), txpktsize); 1066 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); 1067 } 1068 1069 static void wx_configure_port(struct wx *wx) 1070 { 1071 u32 value, i; 1072 1073 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; 1074 wr32m(wx, WX_CFG_PORT_CTL, 1075 WX_CFG_PORT_CTL_D_VLAN | 1076 WX_CFG_PORT_CTL_QINQ, 1077 value); 1078 1079 wr32(wx, WX_CFG_TAG_TPID(0), 1080 ETH_P_8021Q | ETH_P_8021AD << 16); 1081 wx->tpid[0] = ETH_P_8021Q; 1082 wx->tpid[1] = ETH_P_8021AD; 1083 for (i = 1; i < 4; i++) 1084 wr32(wx, WX_CFG_TAG_TPID(i), 1085 ETH_P_8021Q | ETH_P_8021Q << 16); 1086 for (i = 2; i < 8; i++) 1087 wx->tpid[i] = ETH_P_8021Q; 1088 } 1089 1090 /** 1091 * wx_disable_sec_rx_path - Stops the receive data path 1092 * @wx: pointer to private structure 1093 * 1094 * Stops the receive data path and waits for the HW to internally empty 1095 * the Rx security block 1096 **/ 1097 static int wx_disable_sec_rx_path(struct wx *wx) 1098 { 1099 u32 secrx; 1100 1101 wr32m(wx, WX_RSC_CTL, 1102 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); 1103 1104 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, 1105 1000, 40000, false, wx, WX_RSC_ST); 1106 } 1107 1108 /** 1109 * wx_enable_sec_rx_path - Enables the receive data path 1110 * @wx: pointer to private structure 1111 * 1112 * Enables the receive data path. 1113 **/ 1114 static void wx_enable_sec_rx_path(struct wx *wx) 1115 { 1116 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); 1117 WX_WRITE_FLUSH(wx); 1118 } 1119 1120 static void wx_vlan_strip_control(struct wx *wx, bool enable) 1121 { 1122 int i, j; 1123 1124 for (i = 0; i < wx->num_rx_queues; i++) { 1125 struct wx_ring *ring = wx->rx_ring[i]; 1126 1127 j = ring->reg_idx; 1128 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, 1129 enable ? WX_PX_RR_CFG_VLAN : 0); 1130 } 1131 } 1132 1133 void wx_set_rx_mode(struct net_device *netdev) 1134 { 1135 struct wx *wx = netdev_priv(netdev); 1136 netdev_features_t features; 1137 u32 fctrl, vmolr, vlnctrl; 1138 int count; 1139 1140 features = netdev->features; 1141 1142 /* Check for Promiscuous and All Multicast modes */ 1143 fctrl = rd32(wx, WX_PSR_CTL); 1144 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); 1145 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); 1146 vmolr &= ~(WX_PSR_VM_L2CTL_UPE | 1147 WX_PSR_VM_L2CTL_MPE | 1148 WX_PSR_VM_L2CTL_ROPE | 1149 WX_PSR_VM_L2CTL_ROMPE); 1150 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); 1151 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); 1152 1153 /* set all bits that we expect to always be set */ 1154 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; 1155 vmolr |= WX_PSR_VM_L2CTL_BAM | 1156 WX_PSR_VM_L2CTL_AUPE | 1157 WX_PSR_VM_L2CTL_VACC; 1158 vlnctrl |= WX_PSR_VLAN_CTL_VFE; 1159 1160 wx->addr_ctrl.user_set_promisc = false; 1161 if (netdev->flags & IFF_PROMISC) { 1162 wx->addr_ctrl.user_set_promisc = true; 1163 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; 1164 /* pf don't want packets routing to vf, so clear UPE */ 1165 vmolr |= WX_PSR_VM_L2CTL_MPE; 1166 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1167 } 1168 1169 if (netdev->flags & IFF_ALLMULTI) { 1170 fctrl |= WX_PSR_CTL_MPE; 1171 vmolr |= WX_PSR_VM_L2CTL_MPE; 1172 } 1173 1174 if (netdev->features & NETIF_F_RXALL) { 1175 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); 1176 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; 1177 /* receive bad packets */ 1178 wr32m(wx, WX_RSC_CTL, 1179 WX_RSC_CTL_SAVE_MAC_ERR, 1180 WX_RSC_CTL_SAVE_MAC_ERR); 1181 } else { 1182 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; 1183 } 1184 1185 /* Write addresses to available RAR registers, if there is not 1186 * sufficient space to store all the addresses then enable 1187 * unicast promiscuous mode 1188 */ 1189 count = wx_write_uc_addr_list(netdev, 0); 1190 if (count < 0) { 1191 vmolr &= ~WX_PSR_VM_L2CTL_ROPE; 1192 vmolr |= WX_PSR_VM_L2CTL_UPE; 1193 } 1194 1195 /* Write addresses to the MTA, if the attempt fails 1196 * then we should just turn on promiscuous mode so 1197 * that we can at least receive multicast traffic 1198 */ 1199 count = wx_write_mc_addr_list(netdev); 1200 if (count < 0) { 1201 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; 1202 vmolr |= WX_PSR_VM_L2CTL_MPE; 1203 } 1204 1205 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); 1206 wr32(wx, WX_PSR_CTL, fctrl); 1207 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); 1208 1209 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 1210 (features & NETIF_F_HW_VLAN_STAG_RX)) 1211 wx_vlan_strip_control(wx, true); 1212 else 1213 wx_vlan_strip_control(wx, false); 1214 1215 } 1216 EXPORT_SYMBOL(wx_set_rx_mode); 1217 1218 static void wx_set_rx_buffer_len(struct wx *wx) 1219 { 1220 struct net_device *netdev = wx->netdev; 1221 u32 mhadd, max_frame; 1222 1223 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 1224 /* adjust max frame to be at least the size of a standard frame */ 1225 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 1226 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); 1227 1228 mhadd = rd32(wx, WX_PSR_MAX_SZ); 1229 if (max_frame != mhadd) 1230 wr32(wx, WX_PSR_MAX_SZ, max_frame); 1231 } 1232 1233 /** 1234 * wx_change_mtu - Change the Maximum Transfer Unit 1235 * @netdev: network interface device structure 1236 * @new_mtu: new value for maximum frame size 1237 * 1238 * Returns 0 on success, negative on failure 1239 **/ 1240 int wx_change_mtu(struct net_device *netdev, int new_mtu) 1241 { 1242 struct wx *wx = netdev_priv(netdev); 1243 1244 netdev->mtu = new_mtu; 1245 wx_set_rx_buffer_len(wx); 1246 1247 return 0; 1248 } 1249 EXPORT_SYMBOL(wx_change_mtu); 1250 1251 /* Disable the specified rx queue */ 1252 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) 1253 { 1254 u8 reg_idx = ring->reg_idx; 1255 u32 rxdctl; 1256 int ret; 1257 1258 /* write value back with RRCFG.EN bit cleared */ 1259 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1260 WX_PX_RR_CFG_RR_EN, 0); 1261 1262 /* the hardware may take up to 100us to really disable the rx queue */ 1263 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), 1264 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); 1265 1266 if (ret == -ETIMEDOUT) { 1267 /* Just for information */ 1268 wx_err(wx, 1269 "RRCFG.EN on Rx queue %d not cleared within the polling period\n", 1270 reg_idx); 1271 } 1272 } 1273 EXPORT_SYMBOL(wx_disable_rx_queue); 1274 1275 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) 1276 { 1277 u8 reg_idx = ring->reg_idx; 1278 u32 rxdctl; 1279 int ret; 1280 1281 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, 1282 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); 1283 1284 if (ret == -ETIMEDOUT) { 1285 /* Just for information */ 1286 wx_err(wx, 1287 "RRCFG.EN on Rx queue %d not set within the polling period\n", 1288 reg_idx); 1289 } 1290 } 1291 1292 static void wx_configure_srrctl(struct wx *wx, 1293 struct wx_ring *rx_ring) 1294 { 1295 u16 reg_idx = rx_ring->reg_idx; 1296 u32 srrctl; 1297 1298 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1299 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | 1300 WX_PX_RR_CFG_RR_BUF_SZ | 1301 WX_PX_RR_CFG_SPLIT_MODE); 1302 /* configure header buffer length, needed for RSC */ 1303 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; 1304 1305 /* configure the packet buffer length */ 1306 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; 1307 1308 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); 1309 } 1310 1311 static void wx_configure_tx_ring(struct wx *wx, 1312 struct wx_ring *ring) 1313 { 1314 u32 txdctl = WX_PX_TR_CFG_ENABLE; 1315 u8 reg_idx = ring->reg_idx; 1316 u64 tdba = ring->dma; 1317 int ret; 1318 1319 /* disable queue to avoid issues while updating state */ 1320 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); 1321 WX_WRITE_FLUSH(wx); 1322 1323 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1324 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); 1325 1326 /* reset head and tail pointers */ 1327 wr32(wx, WX_PX_TR_RP(reg_idx), 0); 1328 wr32(wx, WX_PX_TR_WP(reg_idx), 0); 1329 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); 1330 1331 if (ring->count < WX_MAX_TXD) 1332 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; 1333 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; 1334 1335 /* reinitialize tx_buffer_info */ 1336 memset(ring->tx_buffer_info, 0, 1337 sizeof(struct wx_tx_buffer) * ring->count); 1338 1339 /* enable queue */ 1340 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); 1341 1342 /* poll to verify queue is enabled */ 1343 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, 1344 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); 1345 if (ret == -ETIMEDOUT) 1346 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); 1347 } 1348 1349 static void wx_configure_rx_ring(struct wx *wx, 1350 struct wx_ring *ring) 1351 { 1352 u16 reg_idx = ring->reg_idx; 1353 union wx_rx_desc *rx_desc; 1354 u64 rdba = ring->dma; 1355 u32 rxdctl; 1356 1357 /* disable queue to avoid issues while updating state */ 1358 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); 1359 wx_disable_rx_queue(wx, ring); 1360 1361 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1362 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); 1363 1364 if (ring->count == WX_MAX_RXD) 1365 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1366 else 1367 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; 1368 1369 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; 1370 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); 1371 1372 /* reset head and tail pointers */ 1373 wr32(wx, WX_PX_RR_RP(reg_idx), 0); 1374 wr32(wx, WX_PX_RR_WP(reg_idx), 0); 1375 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); 1376 1377 wx_configure_srrctl(wx, ring); 1378 1379 /* initialize rx_buffer_info */ 1380 memset(ring->rx_buffer_info, 0, 1381 sizeof(struct wx_rx_buffer) * ring->count); 1382 1383 /* initialize Rx descriptor 0 */ 1384 rx_desc = WX_RX_DESC(ring, 0); 1385 rx_desc->wb.upper.length = 0; 1386 1387 /* enable receive descriptor ring */ 1388 wr32m(wx, WX_PX_RR_CFG(reg_idx), 1389 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); 1390 1391 wx_enable_rx_queue(wx, ring); 1392 wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); 1393 } 1394 1395 /** 1396 * wx_configure_tx - Configure Transmit Unit after Reset 1397 * @wx: pointer to private structure 1398 * 1399 * Configure the Tx unit of the MAC after a reset. 1400 **/ 1401 static void wx_configure_tx(struct wx *wx) 1402 { 1403 u32 i; 1404 1405 /* TDM_CTL.TE must be before Tx queues are enabled */ 1406 wr32m(wx, WX_TDM_CTL, 1407 WX_TDM_CTL_TE, WX_TDM_CTL_TE); 1408 1409 /* Setup the HW Tx Head and Tail descriptor pointers */ 1410 for (i = 0; i < wx->num_tx_queues; i++) 1411 wx_configure_tx_ring(wx, wx->tx_ring[i]); 1412 1413 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); 1414 1415 if (wx->mac.type == wx_mac_em) 1416 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); 1417 1418 /* enable mac transmitter */ 1419 wr32m(wx, WX_MAC_TX_CFG, 1420 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); 1421 } 1422 1423 static void wx_restore_vlan(struct wx *wx) 1424 { 1425 u16 vid = 1; 1426 1427 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); 1428 1429 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) 1430 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); 1431 } 1432 1433 /** 1434 * wx_configure_rx - Configure Receive Unit after Reset 1435 * @wx: pointer to private structure 1436 * 1437 * Configure the Rx unit of the MAC after a reset. 1438 **/ 1439 void wx_configure_rx(struct wx *wx) 1440 { 1441 u32 psrtype, i; 1442 int ret; 1443 1444 wx_disable_rx(wx); 1445 1446 psrtype = WX_RDB_PL_CFG_L4HDR | 1447 WX_RDB_PL_CFG_L3HDR | 1448 WX_RDB_PL_CFG_L2HDR | 1449 WX_RDB_PL_CFG_TUN_TUNHDR; 1450 wr32(wx, WX_RDB_PL_CFG(0), psrtype); 1451 1452 /* enable hw crc stripping */ 1453 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); 1454 1455 if (wx->mac.type == wx_mac_sp) { 1456 u32 psrctl; 1457 1458 /* RSC Setup */ 1459 psrctl = rd32(wx, WX_PSR_CTL); 1460 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ 1461 psrctl |= WX_PSR_CTL_RSC_DIS; 1462 wr32(wx, WX_PSR_CTL, psrctl); 1463 } 1464 1465 /* set_rx_buffer_len must be called before ring initialization */ 1466 wx_set_rx_buffer_len(wx); 1467 1468 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1469 * the Base and Length of the Rx Descriptor Ring 1470 */ 1471 for (i = 0; i < wx->num_rx_queues; i++) 1472 wx_configure_rx_ring(wx, wx->rx_ring[i]); 1473 1474 /* Enable all receives, disable security engine prior to block traffic */ 1475 ret = wx_disable_sec_rx_path(wx); 1476 if (ret < 0) 1477 wx_err(wx, "The register status is abnormal, please check device."); 1478 1479 wx_enable_rx(wx); 1480 wx_enable_sec_rx_path(wx); 1481 } 1482 EXPORT_SYMBOL(wx_configure_rx); 1483 1484 static void wx_configure_isb(struct wx *wx) 1485 { 1486 /* set ISB Address */ 1487 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); 1488 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 1489 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); 1490 } 1491 1492 void wx_configure(struct wx *wx) 1493 { 1494 wx_set_rxpba(wx); 1495 wx_configure_port(wx); 1496 1497 wx_set_rx_mode(wx->netdev); 1498 wx_restore_vlan(wx); 1499 wx_enable_sec_rx_path(wx); 1500 1501 wx_configure_tx(wx); 1502 wx_configure_rx(wx); 1503 wx_configure_isb(wx); 1504 } 1505 EXPORT_SYMBOL(wx_configure); 1506 1507 /** 1508 * wx_disable_pcie_master - Disable PCI-express master access 1509 * @wx: pointer to hardware structure 1510 * 1511 * Disables PCI-Express master access and verifies there are no pending 1512 * requests. 1513 **/ 1514 int wx_disable_pcie_master(struct wx *wx) 1515 { 1516 int status = 0; 1517 u32 val; 1518 1519 /* Always set this bit to ensure any future transactions are blocked */ 1520 pci_clear_master(wx->pdev); 1521 1522 /* Exit if master requests are blocked */ 1523 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) 1524 return 0; 1525 1526 /* Poll for master request bit to clear */ 1527 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, 1528 false, wx, WX_PX_TRANSACTION_PENDING); 1529 if (status < 0) 1530 wx_err(wx, "PCIe transaction pending bit did not clear.\n"); 1531 1532 return status; 1533 } 1534 EXPORT_SYMBOL(wx_disable_pcie_master); 1535 1536 /** 1537 * wx_stop_adapter - Generic stop Tx/Rx units 1538 * @wx: pointer to hardware structure 1539 * 1540 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, 1541 * disables transmit and receive units. The adapter_stopped flag is used by 1542 * the shared code and drivers to determine if the adapter is in a stopped 1543 * state and should not touch the hardware. 1544 **/ 1545 int wx_stop_adapter(struct wx *wx) 1546 { 1547 u16 i; 1548 1549 /* Set the adapter_stopped flag so other driver functions stop touching 1550 * the hardware 1551 */ 1552 wx->adapter_stopped = true; 1553 1554 /* Disable the receive unit */ 1555 wx_disable_rx(wx); 1556 1557 /* Set interrupt mask to stop interrupts from being generated */ 1558 wx_intr_disable(wx, WX_INTR_ALL); 1559 1560 /* Clear any pending interrupts, flush previous writes */ 1561 wr32(wx, WX_PX_MISC_IC, 0xffffffff); 1562 wr32(wx, WX_BME_CTL, 0x3); 1563 1564 /* Disable the transmit unit. Each queue must be disabled. */ 1565 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1566 wr32m(wx, WX_PX_TR_CFG(i), 1567 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, 1568 WX_PX_TR_CFG_SWFLSH); 1569 } 1570 1571 /* Disable the receive unit by stopping each queue */ 1572 for (i = 0; i < wx->mac.max_rx_queues; i++) { 1573 wr32m(wx, WX_PX_RR_CFG(i), 1574 WX_PX_RR_CFG_RR_EN, 0); 1575 } 1576 1577 /* flush all queues disables */ 1578 WX_WRITE_FLUSH(wx); 1579 1580 /* Prevent the PCI-E bus from hanging by disabling PCI-E master 1581 * access and verify no pending requests 1582 */ 1583 return wx_disable_pcie_master(wx); 1584 } 1585 EXPORT_SYMBOL(wx_stop_adapter); 1586 1587 void wx_reset_misc(struct wx *wx) 1588 { 1589 int i; 1590 1591 /* receive packets that size > 2048 */ 1592 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); 1593 1594 /* clear counters on read */ 1595 wr32m(wx, WX_MMC_CONTROL, 1596 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); 1597 1598 wr32m(wx, WX_MAC_RX_FLOW_CTRL, 1599 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); 1600 1601 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); 1602 1603 wr32m(wx, WX_MIS_RST_ST, 1604 WX_MIS_RST_ST_RST_INIT, 0x1E00); 1605 1606 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ 1607 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); 1608 for (i = 0; i < 16; i++) { 1609 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); 1610 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); 1611 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); 1612 } 1613 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); 1614 for (i = 0; i < 16; i++) { 1615 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); 1616 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); 1617 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); 1618 } 1619 1620 /* set pause frame dst mac addr */ 1621 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); 1622 wr32(wx, WX_RDB_PFCMACDAH, 0x0180); 1623 } 1624 EXPORT_SYMBOL(wx_reset_misc); 1625 1626 /** 1627 * wx_get_pcie_msix_counts - Gets MSI-X vector count 1628 * @wx: pointer to hardware structure 1629 * @msix_count: number of MSI interrupts that can be obtained 1630 * @max_msix_count: number of MSI interrupts that mac need 1631 * 1632 * Read PCIe configuration space, and get the MSI-X vector count from 1633 * the capabilities table. 1634 **/ 1635 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) 1636 { 1637 struct pci_dev *pdev = wx->pdev; 1638 struct device *dev = &pdev->dev; 1639 int pos; 1640 1641 *msix_count = 1; 1642 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 1643 if (!pos) { 1644 dev_err(dev, "Unable to find MSI-X Capabilities\n"); 1645 return -EINVAL; 1646 } 1647 pci_read_config_word(pdev, 1648 pos + PCI_MSIX_FLAGS, 1649 msix_count); 1650 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; 1651 /* MSI-X count is zero-based in HW */ 1652 *msix_count += 1; 1653 1654 if (*msix_count > max_msix_count) 1655 *msix_count = max_msix_count; 1656 1657 return 0; 1658 } 1659 EXPORT_SYMBOL(wx_get_pcie_msix_counts); 1660 1661 int wx_sw_init(struct wx *wx) 1662 { 1663 struct pci_dev *pdev = wx->pdev; 1664 u32 ssid = 0; 1665 int err = 0; 1666 1667 wx->vendor_id = pdev->vendor; 1668 wx->device_id = pdev->device; 1669 wx->revision_id = pdev->revision; 1670 wx->oem_svid = pdev->subsystem_vendor; 1671 wx->oem_ssid = pdev->subsystem_device; 1672 wx->bus.device = PCI_SLOT(pdev->devfn); 1673 wx->bus.func = PCI_FUNC(pdev->devfn); 1674 1675 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { 1676 wx->subsystem_vendor_id = pdev->subsystem_vendor; 1677 wx->subsystem_device_id = pdev->subsystem_device; 1678 } else { 1679 err = wx_flash_read_dword(wx, 0xfffdc, &ssid); 1680 if (err < 0) { 1681 wx_err(wx, "read of internal subsystem device id failed\n"); 1682 return err; 1683 } 1684 1685 wx->subsystem_device_id = swab16((u16)ssid); 1686 } 1687 1688 wx->mac_table = kcalloc(wx->mac.num_rar_entries, 1689 sizeof(struct wx_mac_addr), 1690 GFP_KERNEL); 1691 if (!wx->mac_table) { 1692 wx_err(wx, "mac_table allocation failed\n"); 1693 return -ENOMEM; 1694 } 1695 1696 return 0; 1697 } 1698 EXPORT_SYMBOL(wx_sw_init); 1699 1700 /** 1701 * wx_find_vlvf_slot - find the vlanid or the first empty slot 1702 * @wx: pointer to hardware structure 1703 * @vlan: VLAN id to write to VLAN filter 1704 * 1705 * return the VLVF index where this VLAN id should be placed 1706 * 1707 **/ 1708 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) 1709 { 1710 u32 bits = 0, first_empty_slot = 0; 1711 int regindex; 1712 1713 /* short cut the special case */ 1714 if (vlan == 0) 1715 return 0; 1716 1717 /* Search for the vlan id in the VLVF entries. Save off the first empty 1718 * slot found along the way 1719 */ 1720 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { 1721 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); 1722 bits = rd32(wx, WX_PSR_VLAN_SWC); 1723 if (!bits && !(first_empty_slot)) 1724 first_empty_slot = regindex; 1725 else if ((bits & 0x0FFF) == vlan) 1726 break; 1727 } 1728 1729 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { 1730 if (first_empty_slot) 1731 regindex = first_empty_slot; 1732 else 1733 regindex = -ENOMEM; 1734 } 1735 1736 return regindex; 1737 } 1738 1739 /** 1740 * wx_set_vlvf - Set VLAN Pool Filter 1741 * @wx: pointer to hardware structure 1742 * @vlan: VLAN id to write to VLAN filter 1743 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 1744 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 1745 * @vfta_changed: pointer to boolean flag which indicates whether VFTA 1746 * should be changed 1747 * 1748 * Turn on/off specified bit in VLVF table. 1749 **/ 1750 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, 1751 bool *vfta_changed) 1752 { 1753 int vlvf_index; 1754 u32 vt, bits; 1755 1756 /* If VT Mode is set 1757 * Either vlan_on 1758 * make sure the vlan is in VLVF 1759 * set the vind bit in the matching VLVFB 1760 * Or !vlan_on 1761 * clear the pool bit and possibly the vind 1762 */ 1763 vt = rd32(wx, WX_CFG_PORT_CTL); 1764 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) 1765 return 0; 1766 1767 vlvf_index = wx_find_vlvf_slot(wx, vlan); 1768 if (vlvf_index < 0) 1769 return vlvf_index; 1770 1771 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); 1772 if (vlan_on) { 1773 /* set the pool bit */ 1774 if (vind < 32) { 1775 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1776 bits |= (1 << vind); 1777 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 1778 } else { 1779 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1780 bits |= (1 << (vind - 32)); 1781 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 1782 } 1783 } else { 1784 /* clear the pool bit */ 1785 if (vind < 32) { 1786 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1787 bits &= ~(1 << vind); 1788 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); 1789 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1790 } else { 1791 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); 1792 bits &= ~(1 << (vind - 32)); 1793 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); 1794 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); 1795 } 1796 } 1797 1798 if (bits) { 1799 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); 1800 if (!vlan_on && vfta_changed) 1801 *vfta_changed = false; 1802 } else { 1803 wr32(wx, WX_PSR_VLAN_SWC, 0); 1804 } 1805 1806 return 0; 1807 } 1808 1809 /** 1810 * wx_set_vfta - Set VLAN filter table 1811 * @wx: pointer to hardware structure 1812 * @vlan: VLAN id to write to VLAN filter 1813 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 1814 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 1815 * 1816 * Turn on/off specified VLAN in the VLAN filter table. 1817 **/ 1818 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) 1819 { 1820 u32 bitindex, vfta, targetbit; 1821 bool vfta_changed = false; 1822 int regindex, ret; 1823 1824 /* this is a 2 part operation - first the VFTA, then the 1825 * VLVF and VLVFB if VT Mode is set 1826 * We don't write the VFTA until we know the VLVF part succeeded. 1827 */ 1828 1829 /* Part 1 1830 * The VFTA is a bitstring made up of 128 32-bit registers 1831 * that enable the particular VLAN id, much like the MTA: 1832 * bits[11-5]: which register 1833 * bits[4-0]: which bit in the register 1834 */ 1835 regindex = (vlan >> 5) & 0x7F; 1836 bitindex = vlan & 0x1F; 1837 targetbit = (1 << bitindex); 1838 /* errata 5 */ 1839 vfta = wx->mac.vft_shadow[regindex]; 1840 if (vlan_on) { 1841 if (!(vfta & targetbit)) { 1842 vfta |= targetbit; 1843 vfta_changed = true; 1844 } 1845 } else { 1846 if ((vfta & targetbit)) { 1847 vfta &= ~targetbit; 1848 vfta_changed = true; 1849 } 1850 } 1851 /* Part 2 1852 * Call wx_set_vlvf to set VLVFB and VLVF 1853 */ 1854 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); 1855 if (ret != 0) 1856 return ret; 1857 1858 if (vfta_changed) 1859 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); 1860 wx->mac.vft_shadow[regindex] = vfta; 1861 1862 return 0; 1863 } 1864 1865 /** 1866 * wx_clear_vfta - Clear VLAN filter table 1867 * @wx: pointer to hardware structure 1868 * 1869 * Clears the VLAN filer table, and the VMDq index associated with the filter 1870 **/ 1871 static void wx_clear_vfta(struct wx *wx) 1872 { 1873 u32 offset; 1874 1875 for (offset = 0; offset < wx->mac.vft_size; offset++) { 1876 wr32(wx, WX_PSR_VLAN_TBL(offset), 0); 1877 wx->mac.vft_shadow[offset] = 0; 1878 } 1879 1880 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { 1881 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); 1882 wr32(wx, WX_PSR_VLAN_SWC, 0); 1883 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); 1884 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); 1885 } 1886 } 1887 1888 int wx_vlan_rx_add_vid(struct net_device *netdev, 1889 __be16 proto, u16 vid) 1890 { 1891 struct wx *wx = netdev_priv(netdev); 1892 1893 /* add VID to filter table */ 1894 wx_set_vfta(wx, vid, VMDQ_P(0), true); 1895 set_bit(vid, wx->active_vlans); 1896 1897 return 0; 1898 } 1899 EXPORT_SYMBOL(wx_vlan_rx_add_vid); 1900 1901 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1902 { 1903 struct wx *wx = netdev_priv(netdev); 1904 1905 /* remove VID from filter table */ 1906 if (vid) 1907 wx_set_vfta(wx, vid, VMDQ_P(0), false); 1908 clear_bit(vid, wx->active_vlans); 1909 1910 return 0; 1911 } 1912 EXPORT_SYMBOL(wx_vlan_rx_kill_vid); 1913 1914 /** 1915 * wx_start_hw - Prepare hardware for Tx/Rx 1916 * @wx: pointer to hardware structure 1917 * 1918 * Starts the hardware using the generic start_hw function 1919 * and the generation start_hw function. 1920 * Then performs revision-specific operations, if any. 1921 **/ 1922 void wx_start_hw(struct wx *wx) 1923 { 1924 int i; 1925 1926 /* Clear the VLAN filter table */ 1927 wx_clear_vfta(wx); 1928 WX_WRITE_FLUSH(wx); 1929 /* Clear the rate limiters */ 1930 for (i = 0; i < wx->mac.max_tx_queues; i++) { 1931 wr32(wx, WX_TDM_RP_IDX, i); 1932 wr32(wx, WX_TDM_RP_RATE, 0); 1933 } 1934 } 1935 EXPORT_SYMBOL(wx_start_hw); 1936 1937 MODULE_LICENSE("GPL"); 1938