xref: /openbmc/linux/drivers/net/ethernet/wangxun/libwx/wx_hw.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/iopoll.h>
8 #include <linux/pci.h>
9 
10 #include "wx_type.h"
11 #include "wx_lib.h"
12 #include "wx_hw.h"
13 
14 static void wx_intr_disable(struct wx *wx, u64 qmask)
15 {
16 	u32 mask;
17 
18 	mask = (qmask & U32_MAX);
19 	if (mask)
20 		wr32(wx, WX_PX_IMS(0), mask);
21 
22 	if (wx->mac.type == wx_mac_sp) {
23 		mask = (qmask >> 32);
24 		if (mask)
25 			wr32(wx, WX_PX_IMS(1), mask);
26 	}
27 }
28 
29 void wx_intr_enable(struct wx *wx, u64 qmask)
30 {
31 	u32 mask;
32 
33 	mask = (qmask & U32_MAX);
34 	if (mask)
35 		wr32(wx, WX_PX_IMC(0), mask);
36 	if (wx->mac.type == wx_mac_sp) {
37 		mask = (qmask >> 32);
38 		if (mask)
39 			wr32(wx, WX_PX_IMC(1), mask);
40 	}
41 }
42 EXPORT_SYMBOL(wx_intr_enable);
43 
44 /**
45  * wx_irq_disable - Mask off interrupt generation on the NIC
46  * @wx: board private structure
47  **/
48 void wx_irq_disable(struct wx *wx)
49 {
50 	struct pci_dev *pdev = wx->pdev;
51 
52 	wr32(wx, WX_PX_MISC_IEN, 0);
53 	wx_intr_disable(wx, WX_INTR_ALL);
54 
55 	if (pdev->msix_enabled) {
56 		int vector;
57 
58 		for (vector = 0; vector < wx->num_q_vectors; vector++)
59 			synchronize_irq(wx->msix_entries[vector].vector);
60 
61 		synchronize_irq(wx->msix_entries[vector].vector);
62 	} else {
63 		synchronize_irq(pdev->irq);
64 	}
65 }
66 EXPORT_SYMBOL(wx_irq_disable);
67 
68 /* cmd_addr is used for some special command:
69  * 1. to be sector address, when implemented erase sector command
70  * 2. to be flash address when implemented read, write flash address
71  */
72 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
73 {
74 	u32 cmd_val = 0, val = 0;
75 
76 	cmd_val = WX_SPI_CMD_CMD(cmd) |
77 		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
78 		  cmd_addr;
79 	wr32(wx, WX_SPI_CMD, cmd_val);
80 
81 	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
82 				 false, wx, WX_SPI_STATUS);
83 }
84 
85 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
86 {
87 	int ret = 0;
88 
89 	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
90 	if (ret < 0)
91 		return ret;
92 
93 	*data = rd32(wx, WX_SPI_DATA);
94 
95 	return ret;
96 }
97 
98 int wx_check_flash_load(struct wx *hw, u32 check_bit)
99 {
100 	u32 reg = 0;
101 	int err = 0;
102 
103 	/* if there's flash existing */
104 	if (!(rd32(hw, WX_SPI_STATUS) &
105 	      WX_SPI_STATUS_FLASH_BYPASS)) {
106 		/* wait hw load flash done */
107 		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
108 					false, hw, WX_SPI_ILDR_STATUS);
109 		if (err < 0)
110 			wx_err(hw, "Check flash load timeout.\n");
111 	}
112 
113 	return err;
114 }
115 EXPORT_SYMBOL(wx_check_flash_load);
116 
117 void wx_control_hw(struct wx *wx, bool drv)
118 {
119 	/* True : Let firmware know the driver has taken over
120 	 * False : Let firmware take over control of hw
121 	 */
122 	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
123 	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
124 }
125 EXPORT_SYMBOL(wx_control_hw);
126 
127 /**
128  * wx_mng_present - returns 0 when management capability is present
129  * @wx: pointer to hardware structure
130  */
131 int wx_mng_present(struct wx *wx)
132 {
133 	u32 fwsm;
134 
135 	fwsm = rd32(wx, WX_MIS_ST);
136 	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
137 		return 0;
138 	else
139 		return -EACCES;
140 }
141 EXPORT_SYMBOL(wx_mng_present);
142 
143 /* Software lock to be held while software semaphore is being accessed. */
144 static DEFINE_MUTEX(wx_sw_sync_lock);
145 
146 /**
147  *  wx_release_sw_sync - Release SW semaphore
148  *  @wx: pointer to hardware structure
149  *  @mask: Mask to specify which semaphore to release
150  *
151  *  Releases the SW semaphore for the specified
152  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
153  **/
154 static void wx_release_sw_sync(struct wx *wx, u32 mask)
155 {
156 	mutex_lock(&wx_sw_sync_lock);
157 	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
158 	mutex_unlock(&wx_sw_sync_lock);
159 }
160 
161 /**
162  *  wx_acquire_sw_sync - Acquire SW semaphore
163  *  @wx: pointer to hardware structure
164  *  @mask: Mask to specify which semaphore to acquire
165  *
166  *  Acquires the SW semaphore for the specified
167  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
168  **/
169 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
170 {
171 	u32 sem = 0;
172 	int ret = 0;
173 
174 	mutex_lock(&wx_sw_sync_lock);
175 	ret = read_poll_timeout(rd32, sem, !(sem & mask),
176 				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
177 	if (!ret) {
178 		sem |= mask;
179 		wr32(wx, WX_MNG_SWFW_SYNC, sem);
180 	} else {
181 		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
182 	}
183 	mutex_unlock(&wx_sw_sync_lock);
184 
185 	return ret;
186 }
187 
188 /**
189  *  wx_host_interface_command - Issue command to manageability block
190  *  @wx: pointer to the HW structure
191  *  @buffer: contains the command to write and where the return status will
192  *   be placed
193  *  @length: length of buffer, must be multiple of 4 bytes
194  *  @timeout: time in ms to wait for command completion
195  *  @return_data: read and return data from the buffer (true) or not (false)
196  *   Needed because FW structures are big endian and decoding of
197  *   these fields can be 8 bit or 16 bit based on command. Decoding
198  *   is not easily understood without making a table of commands.
199  *   So we will leave this up to the caller to read back the data
200  *   in these cases.
201  **/
202 int wx_host_interface_command(struct wx *wx, u32 *buffer,
203 			      u32 length, u32 timeout, bool return_data)
204 {
205 	u32 hdr_size = sizeof(struct wx_hic_hdr);
206 	u32 hicr, i, bi, buf[64] = {};
207 	int status = 0;
208 	u32 dword_len;
209 	u16 buf_len;
210 
211 	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
212 		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
213 		return -EINVAL;
214 	}
215 
216 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
217 	if (status != 0)
218 		return status;
219 
220 	/* Calculate length in DWORDs. We must be DWORD aligned */
221 	if ((length % (sizeof(u32))) != 0) {
222 		wx_err(wx, "Buffer length failure, not aligned to dword");
223 		status = -EINVAL;
224 		goto rel_out;
225 	}
226 
227 	dword_len = length >> 2;
228 
229 	/* The device driver writes the relevant command block
230 	 * into the ram area.
231 	 */
232 	for (i = 0; i < dword_len; i++) {
233 		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
234 		/* write flush */
235 		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
236 	}
237 	/* Setting this bit tells the ARC that a new command is pending. */
238 	wr32m(wx, WX_MNG_MBOX_CTL,
239 	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
240 
241 	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
242 				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
243 
244 	/* Check command completion */
245 	if (status) {
246 		wx_dbg(wx, "Command has failed with no status valid.\n");
247 
248 		buf[0] = rd32(wx, WX_MNG_MBOX);
249 		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
250 			status = -EINVAL;
251 			goto rel_out;
252 		}
253 		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
254 			wx_dbg(wx, "It's unknown cmd.\n");
255 			status = -EINVAL;
256 			goto rel_out;
257 		}
258 
259 		wx_dbg(wx, "write value:\n");
260 		for (i = 0; i < dword_len; i++)
261 			wx_dbg(wx, "%x ", buffer[i]);
262 		wx_dbg(wx, "read value:\n");
263 		for (i = 0; i < dword_len; i++)
264 			wx_dbg(wx, "%x ", buf[i]);
265 	}
266 
267 	if (!return_data)
268 		goto rel_out;
269 
270 	/* Calculate length in DWORDs */
271 	dword_len = hdr_size >> 2;
272 
273 	/* first pull in the header so we know the buffer length */
274 	for (bi = 0; bi < dword_len; bi++) {
275 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
276 		le32_to_cpus(&buffer[bi]);
277 	}
278 
279 	/* If there is any thing in data position pull it in */
280 	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
281 	if (buf_len == 0)
282 		goto rel_out;
283 
284 	if (length < buf_len + hdr_size) {
285 		wx_err(wx, "Buffer not large enough for reply message.\n");
286 		status = -EFAULT;
287 		goto rel_out;
288 	}
289 
290 	/* Calculate length in DWORDs, add 3 for odd lengths */
291 	dword_len = (buf_len + 3) >> 2;
292 
293 	/* Pull in the rest of the buffer (bi is where we left off) */
294 	for (; bi <= dword_len; bi++) {
295 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
296 		le32_to_cpus(&buffer[bi]);
297 	}
298 
299 rel_out:
300 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
301 	return status;
302 }
303 EXPORT_SYMBOL(wx_host_interface_command);
304 
305 /**
306  *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
307  *  assuming that the semaphore is already obtained.
308  *  @wx: pointer to hardware structure
309  *  @offset: offset of  word in the EEPROM to read
310  *  @data: word read from the EEPROM
311  *
312  *  Reads a 16 bit word from the EEPROM using the hostif.
313  **/
314 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
315 {
316 	struct wx_hic_read_shadow_ram buffer;
317 	int status;
318 
319 	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
320 	buffer.hdr.req.buf_lenh = 0;
321 	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
322 	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
323 
324 	/* convert offset from words to bytes */
325 	buffer.address = (__force u32)cpu_to_be32(offset * 2);
326 	/* one word */
327 	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
328 
329 	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
330 					   WX_HI_COMMAND_TIMEOUT, false);
331 
332 	if (status != 0)
333 		return status;
334 
335 	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
336 
337 	return status;
338 }
339 
340 /**
341  *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
342  *  @wx: pointer to hardware structure
343  *  @offset: offset of  word in the EEPROM to read
344  *  @data: word read from the EEPROM
345  *
346  *  Reads a 16 bit word from the EEPROM using the hostif.
347  **/
348 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
349 {
350 	int status = 0;
351 
352 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
353 	if (status == 0) {
354 		status = wx_read_ee_hostif_data(wx, offset, data);
355 		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
356 	}
357 
358 	return status;
359 }
360 EXPORT_SYMBOL(wx_read_ee_hostif);
361 
362 /**
363  *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
364  *  @wx: pointer to hardware structure
365  *  @offset: offset of  word in the EEPROM to read
366  *  @words: number of words
367  *  @data: word(s) read from the EEPROM
368  *
369  *  Reads a 16 bit word(s) from the EEPROM using the hostif.
370  **/
371 int wx_read_ee_hostif_buffer(struct wx *wx,
372 			     u16 offset, u16 words, u16 *data)
373 {
374 	struct wx_hic_read_shadow_ram buffer;
375 	u32 current_word = 0;
376 	u16 words_to_read;
377 	u32 value = 0;
378 	int status;
379 	u32 i;
380 
381 	/* Take semaphore for the entire operation. */
382 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
383 	if (status != 0)
384 		return status;
385 
386 	while (words) {
387 		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
388 			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
389 		else
390 			words_to_read = words;
391 
392 		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
393 		buffer.hdr.req.buf_lenh = 0;
394 		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
395 		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
396 
397 		/* convert offset from words to bytes */
398 		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
399 		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
400 
401 		status = wx_host_interface_command(wx, (u32 *)&buffer,
402 						   sizeof(buffer),
403 						   WX_HI_COMMAND_TIMEOUT,
404 						   false);
405 
406 		if (status != 0) {
407 			wx_err(wx, "Host interface command failed\n");
408 			goto out;
409 		}
410 
411 		for (i = 0; i < words_to_read; i++) {
412 			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
413 
414 			value = rd32(wx, reg);
415 			data[current_word] = (u16)(value & 0xffff);
416 			current_word++;
417 			i++;
418 			if (i < words_to_read) {
419 				value >>= 16;
420 				data[current_word] = (u16)(value & 0xffff);
421 				current_word++;
422 			}
423 		}
424 		words -= words_to_read;
425 	}
426 
427 out:
428 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
429 	return status;
430 }
431 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
432 
433 /**
434  *  wx_calculate_checksum - Calculate checksum for buffer
435  *  @buffer: pointer to EEPROM
436  *  @length: size of EEPROM to calculate a checksum for
437  *  Calculates the checksum for some buffer on a specified length.  The
438  *  checksum calculated is returned.
439  **/
440 static u8 wx_calculate_checksum(u8 *buffer, u32 length)
441 {
442 	u8 sum = 0;
443 	u32 i;
444 
445 	if (!buffer)
446 		return 0;
447 
448 	for (i = 0; i < length; i++)
449 		sum += buffer[i];
450 
451 	return (u8)(0 - sum);
452 }
453 
454 /**
455  *  wx_reset_hostif - send reset cmd to fw
456  *  @wx: pointer to hardware structure
457  *
458  *  Sends reset cmd to firmware through the manageability
459  *  block.
460  **/
461 int wx_reset_hostif(struct wx *wx)
462 {
463 	struct wx_hic_reset reset_cmd;
464 	int ret_val = 0;
465 	int i;
466 
467 	reset_cmd.hdr.cmd = FW_RESET_CMD;
468 	reset_cmd.hdr.buf_len = FW_RESET_LEN;
469 	reset_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
470 	reset_cmd.lan_id = wx->bus.func;
471 	reset_cmd.reset_type = (u16)wx->reset_type;
472 	reset_cmd.hdr.checksum = 0;
473 	reset_cmd.hdr.checksum = wx_calculate_checksum((u8 *)&reset_cmd,
474 						       (FW_CEM_HDR_LEN +
475 							reset_cmd.hdr.buf_len));
476 
477 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
478 		ret_val = wx_host_interface_command(wx, (u32 *)&reset_cmd,
479 						    sizeof(reset_cmd),
480 						    WX_HI_COMMAND_TIMEOUT,
481 						    true);
482 		if (ret_val != 0)
483 			continue;
484 
485 		if (reset_cmd.hdr.cmd_or_resp.ret_status ==
486 		    FW_CEM_RESP_STATUS_SUCCESS)
487 			ret_val = 0;
488 		else
489 			ret_val = -EFAULT;
490 
491 		break;
492 	}
493 
494 	return ret_val;
495 }
496 EXPORT_SYMBOL(wx_reset_hostif);
497 
498 /**
499  *  wx_init_eeprom_params - Initialize EEPROM params
500  *  @wx: pointer to hardware structure
501  *
502  *  Initializes the EEPROM parameters wx_eeprom_info within the
503  *  wx_hw struct in order to set up EEPROM access.
504  **/
505 void wx_init_eeprom_params(struct wx *wx)
506 {
507 	struct wx_eeprom_info *eeprom = &wx->eeprom;
508 	u16 eeprom_size;
509 	u16 data = 0x80;
510 
511 	if (eeprom->type == wx_eeprom_uninitialized) {
512 		eeprom->semaphore_delay = 10;
513 		eeprom->type = wx_eeprom_none;
514 
515 		if (!(rd32(wx, WX_SPI_STATUS) &
516 		      WX_SPI_STATUS_FLASH_BYPASS)) {
517 			eeprom->type = wx_flash;
518 
519 			eeprom_size = 4096;
520 			eeprom->word_size = eeprom_size >> 1;
521 
522 			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
523 			       eeprom->type, eeprom->word_size);
524 		}
525 	}
526 
527 	if (wx->mac.type == wx_mac_sp) {
528 		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
529 			wx_err(wx, "NVM Read Error\n");
530 			return;
531 		}
532 		data = data >> 1;
533 	}
534 
535 	eeprom->sw_region_offset = data;
536 }
537 EXPORT_SYMBOL(wx_init_eeprom_params);
538 
539 /**
540  *  wx_get_mac_addr - Generic get MAC address
541  *  @wx: pointer to hardware structure
542  *  @mac_addr: Adapter MAC address
543  *
544  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
545  *  A reset of the adapter must be performed prior to calling this function
546  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
547  **/
548 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
549 {
550 	u32 rar_high;
551 	u32 rar_low;
552 	u16 i;
553 
554 	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
555 	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
556 	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
557 
558 	for (i = 0; i < 2; i++)
559 		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
560 
561 	for (i = 0; i < 4; i++)
562 		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
563 }
564 EXPORT_SYMBOL(wx_get_mac_addr);
565 
566 /**
567  *  wx_set_rar - Set Rx address register
568  *  @wx: pointer to hardware structure
569  *  @index: Receive address register to write
570  *  @addr: Address to put into receive address register
571  *  @pools: VMDq "set" or "pool" index
572  *  @enable_addr: set flag that address is active
573  *
574  *  Puts an ethernet address into a receive address register.
575  **/
576 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
577 		      u32 enable_addr)
578 {
579 	u32 rar_entries = wx->mac.num_rar_entries;
580 	u32 rar_low, rar_high;
581 
582 	/* Make sure we are using a valid rar index range */
583 	if (index >= rar_entries) {
584 		wx_err(wx, "RAR index %d is out of range.\n", index);
585 		return -EINVAL;
586 	}
587 
588 	/* select the MAC address */
589 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
590 
591 	/* setup VMDq pool mapping */
592 	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
593 	if (wx->mac.type == wx_mac_sp)
594 		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
595 
596 	/* HW expects these in little endian so we reverse the byte
597 	 * order from network order (big endian) to little endian
598 	 *
599 	 * Some parts put the VMDq setting in the extra RAH bits,
600 	 * so save everything except the lower 16 bits that hold part
601 	 * of the address and the address valid bit.
602 	 */
603 	rar_low = ((u32)addr[5] |
604 		  ((u32)addr[4] << 8) |
605 		  ((u32)addr[3] << 16) |
606 		  ((u32)addr[2] << 24));
607 	rar_high = ((u32)addr[1] |
608 		   ((u32)addr[0] << 8));
609 	if (enable_addr != 0)
610 		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
611 
612 	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
613 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
614 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
615 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
616 	       WX_PSR_MAC_SWC_AD_H_AV),
617 	      rar_high);
618 
619 	return 0;
620 }
621 
622 /**
623  *  wx_clear_rar - Remove Rx address register
624  *  @wx: pointer to hardware structure
625  *  @index: Receive address register to write
626  *
627  *  Clears an ethernet address from a receive address register.
628  **/
629 static int wx_clear_rar(struct wx *wx, u32 index)
630 {
631 	u32 rar_entries = wx->mac.num_rar_entries;
632 
633 	/* Make sure we are using a valid rar index range */
634 	if (index >= rar_entries) {
635 		wx_err(wx, "RAR index %d is out of range.\n", index);
636 		return -EINVAL;
637 	}
638 
639 	/* Some parts put the VMDq setting in the extra RAH bits,
640 	 * so save everything except the lower 16 bits that hold part
641 	 * of the address and the address valid bit.
642 	 */
643 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
644 
645 	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
646 	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
647 
648 	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
649 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
650 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
651 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
652 	       WX_PSR_MAC_SWC_AD_H_AV),
653 	      0);
654 
655 	return 0;
656 }
657 
658 /**
659  *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
660  *  @wx: pointer to hardware struct
661  *  @rar: receive address register index to disassociate
662  *  @vmdq: VMDq pool index to remove from the rar
663  **/
664 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
665 {
666 	u32 rar_entries = wx->mac.num_rar_entries;
667 	u32 mpsar_lo, mpsar_hi;
668 
669 	/* Make sure we are using a valid rar index range */
670 	if (rar >= rar_entries) {
671 		wx_err(wx, "RAR index %d is out of range.\n", rar);
672 		return -EINVAL;
673 	}
674 
675 	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
676 	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
677 	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
678 
679 	if (!mpsar_lo && !mpsar_hi)
680 		return 0;
681 
682 	/* was that the last pool using this rar? */
683 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
684 		wx_clear_rar(wx, rar);
685 
686 	return 0;
687 }
688 
689 /**
690  *  wx_init_uta_tables - Initialize the Unicast Table Array
691  *  @wx: pointer to hardware structure
692  **/
693 static void wx_init_uta_tables(struct wx *wx)
694 {
695 	int i;
696 
697 	wx_dbg(wx, " Clearing UTA\n");
698 
699 	for (i = 0; i < 128; i++)
700 		wr32(wx, WX_PSR_UC_TBL(i), 0);
701 }
702 
703 /**
704  *  wx_init_rx_addrs - Initializes receive address filters.
705  *  @wx: pointer to hardware structure
706  *
707  *  Places the MAC address in receive address register 0 and clears the rest
708  *  of the receive address registers. Clears the multicast table. Assumes
709  *  the receiver is in reset when the routine is called.
710  **/
711 void wx_init_rx_addrs(struct wx *wx)
712 {
713 	u32 rar_entries = wx->mac.num_rar_entries;
714 	u32 psrctl;
715 	int i;
716 
717 	/* If the current mac address is valid, assume it is a software override
718 	 * to the permanent address.
719 	 * Otherwise, use the permanent address from the eeprom.
720 	 */
721 	if (!is_valid_ether_addr(wx->mac.addr)) {
722 		/* Get the MAC address from the RAR0 for later reference */
723 		wx_get_mac_addr(wx, wx->mac.addr);
724 		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
725 	} else {
726 		/* Setup the receive address. */
727 		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
728 		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
729 
730 		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
731 
732 		if (wx->mac.type == wx_mac_sp) {
733 			/* clear VMDq pool/queue selection for RAR 0 */
734 			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
735 		}
736 	}
737 
738 	/* Zero out the other receive addresses. */
739 	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
740 	for (i = 1; i < rar_entries; i++) {
741 		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
742 		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
743 		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
744 	}
745 
746 	/* Clear the MTA */
747 	wx->addr_ctrl.mta_in_use = 0;
748 	psrctl = rd32(wx, WX_PSR_CTL);
749 	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
750 	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
751 	wr32(wx, WX_PSR_CTL, psrctl);
752 	wx_dbg(wx, " Clearing MTA\n");
753 	for (i = 0; i < wx->mac.mcft_size; i++)
754 		wr32(wx, WX_PSR_MC_TBL(i), 0);
755 
756 	wx_init_uta_tables(wx);
757 }
758 EXPORT_SYMBOL(wx_init_rx_addrs);
759 
760 static void wx_sync_mac_table(struct wx *wx)
761 {
762 	int i;
763 
764 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
765 		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
766 			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
767 				wx_set_rar(wx, i,
768 					   wx->mac_table[i].addr,
769 					   wx->mac_table[i].pools,
770 					   WX_PSR_MAC_SWC_AD_H_AV);
771 			} else {
772 				wx_clear_rar(wx, i);
773 			}
774 			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
775 		}
776 	}
777 }
778 
779 /* this function destroys the first RAR entry */
780 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
781 {
782 	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
783 	wx->mac_table[0].pools = 1ULL;
784 	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
785 	wx_set_rar(wx, 0, wx->mac_table[0].addr,
786 		   wx->mac_table[0].pools,
787 		   WX_PSR_MAC_SWC_AD_H_AV);
788 }
789 EXPORT_SYMBOL(wx_mac_set_default_filter);
790 
791 void wx_flush_sw_mac_table(struct wx *wx)
792 {
793 	u32 i;
794 
795 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
796 		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
797 			continue;
798 
799 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
800 		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
801 		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
802 		wx->mac_table[i].pools = 0;
803 	}
804 	wx_sync_mac_table(wx);
805 }
806 EXPORT_SYMBOL(wx_flush_sw_mac_table);
807 
808 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
809 {
810 	u32 i;
811 
812 	if (is_zero_ether_addr(addr))
813 		return -EINVAL;
814 
815 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
816 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
817 			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
818 				if (wx->mac_table[i].pools != (1ULL << pool)) {
819 					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
820 					wx->mac_table[i].pools |= (1ULL << pool);
821 					wx_sync_mac_table(wx);
822 					return i;
823 				}
824 			}
825 		}
826 
827 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
828 			continue;
829 		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
830 					   WX_MAC_STATE_IN_USE);
831 		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
832 		wx->mac_table[i].pools |= (1ULL << pool);
833 		wx_sync_mac_table(wx);
834 		return i;
835 	}
836 	return -ENOMEM;
837 }
838 
839 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
840 {
841 	u32 i;
842 
843 	if (is_zero_ether_addr(addr))
844 		return -EINVAL;
845 
846 	/* search table for addr, if found, set to 0 and sync */
847 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
848 		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
849 			continue;
850 
851 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
852 		wx->mac_table[i].pools &= ~(1ULL << pool);
853 		if (!wx->mac_table[i].pools) {
854 			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
855 			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
856 		}
857 		wx_sync_mac_table(wx);
858 		return 0;
859 	}
860 	return -ENOMEM;
861 }
862 
863 static int wx_available_rars(struct wx *wx)
864 {
865 	u32 i, count = 0;
866 
867 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
868 		if (wx->mac_table[i].state == 0)
869 			count++;
870 	}
871 
872 	return count;
873 }
874 
875 /**
876  * wx_write_uc_addr_list - write unicast addresses to RAR table
877  * @netdev: network interface device structure
878  * @pool: index for mac table
879  *
880  * Writes unicast address list to the RAR table.
881  * Returns: -ENOMEM on failure/insufficient address space
882  *                0 on no addresses written
883  *                X on writing X addresses to the RAR table
884  **/
885 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
886 {
887 	struct wx *wx = netdev_priv(netdev);
888 	int count = 0;
889 
890 	/* return ENOMEM indicating insufficient memory for addresses */
891 	if (netdev_uc_count(netdev) > wx_available_rars(wx))
892 		return -ENOMEM;
893 
894 	if (!netdev_uc_empty(netdev)) {
895 		struct netdev_hw_addr *ha;
896 
897 		netdev_for_each_uc_addr(ha, netdev) {
898 			wx_del_mac_filter(wx, ha->addr, pool);
899 			wx_add_mac_filter(wx, ha->addr, pool);
900 			count++;
901 		}
902 	}
903 	return count;
904 }
905 
906 /**
907  *  wx_mta_vector - Determines bit-vector in multicast table to set
908  *  @wx: pointer to private structure
909  *  @mc_addr: the multicast address
910  *
911  *  Extracts the 12 bits, from a multicast address, to determine which
912  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
913  *  incoming rx multicast addresses, to determine the bit-vector to check in
914  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
915  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
916  *  to mc_filter_type.
917  **/
918 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
919 {
920 	u32 vector = 0;
921 
922 	switch (wx->mac.mc_filter_type) {
923 	case 0:   /* use bits [47:36] of the address */
924 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
925 		break;
926 	case 1:   /* use bits [46:35] of the address */
927 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
928 		break;
929 	case 2:   /* use bits [45:34] of the address */
930 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
931 		break;
932 	case 3:   /* use bits [43:32] of the address */
933 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
934 		break;
935 	default:  /* Invalid mc_filter_type */
936 		wx_err(wx, "MC filter type param set incorrectly\n");
937 		break;
938 	}
939 
940 	/* vector can only be 12-bits or boundary will be exceeded */
941 	vector &= 0xFFF;
942 	return vector;
943 }
944 
945 /**
946  *  wx_set_mta - Set bit-vector in multicast table
947  *  @wx: pointer to private structure
948  *  @mc_addr: Multicast address
949  *
950  *  Sets the bit-vector in the multicast table.
951  **/
952 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
953 {
954 	u32 vector, vector_bit, vector_reg;
955 
956 	wx->addr_ctrl.mta_in_use++;
957 
958 	vector = wx_mta_vector(wx, mc_addr);
959 	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
960 
961 	/* The MTA is a register array of 128 32-bit registers. It is treated
962 	 * like an array of 4096 bits.  We want to set bit
963 	 * BitArray[vector_value]. So we figure out what register the bit is
964 	 * in, read it, OR in the new bit, then write back the new value.  The
965 	 * register is determined by the upper 7 bits of the vector value and
966 	 * the bit within that register are determined by the lower 5 bits of
967 	 * the value.
968 	 */
969 	vector_reg = (vector >> 5) & 0x7F;
970 	vector_bit = vector & 0x1F;
971 	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
972 }
973 
974 /**
975  *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
976  *  @wx: pointer to private structure
977  *  @netdev: pointer to net device structure
978  *
979  *  The given list replaces any existing list. Clears the MC addrs from receive
980  *  address registers and the multicast table. Uses unused receive address
981  *  registers for the first multicast addresses, and hashes the rest into the
982  *  multicast table.
983  **/
984 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
985 {
986 	struct netdev_hw_addr *ha;
987 	u32 i, psrctl;
988 
989 	/* Set the new number of MC addresses that we are being requested to
990 	 * use.
991 	 */
992 	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
993 	wx->addr_ctrl.mta_in_use = 0;
994 
995 	/* Clear mta_shadow */
996 	wx_dbg(wx, " Clearing MTA\n");
997 	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
998 
999 	/* Update mta_shadow */
1000 	netdev_for_each_mc_addr(ha, netdev) {
1001 		wx_dbg(wx, " Adding the multicast addresses:\n");
1002 		wx_set_mta(wx, ha->addr);
1003 	}
1004 
1005 	/* Enable mta */
1006 	for (i = 0; i < wx->mac.mcft_size; i++)
1007 		wr32a(wx, WX_PSR_MC_TBL(0), i,
1008 		      wx->mac.mta_shadow[i]);
1009 
1010 	if (wx->addr_ctrl.mta_in_use > 0) {
1011 		psrctl = rd32(wx, WX_PSR_CTL);
1012 		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1013 		psrctl |= WX_PSR_CTL_MFE |
1014 			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1015 		wr32(wx, WX_PSR_CTL, psrctl);
1016 	}
1017 
1018 	wx_dbg(wx, "Update mc addr list Complete\n");
1019 }
1020 
1021 /**
1022  * wx_write_mc_addr_list - write multicast addresses to MTA
1023  * @netdev: network interface device structure
1024  *
1025  * Writes multicast address list to the MTA hash table.
1026  * Returns: 0 on no addresses written
1027  *          X on writing X addresses to MTA
1028  **/
1029 static int wx_write_mc_addr_list(struct net_device *netdev)
1030 {
1031 	struct wx *wx = netdev_priv(netdev);
1032 
1033 	if (!netif_running(netdev))
1034 		return 0;
1035 
1036 	wx_update_mc_addr_list(wx, netdev);
1037 
1038 	return netdev_mc_count(netdev);
1039 }
1040 
1041 /**
1042  * wx_set_mac - Change the Ethernet Address of the NIC
1043  * @netdev: network interface device structure
1044  * @p: pointer to an address structure
1045  *
1046  * Returns 0 on success, negative on failure
1047  **/
1048 int wx_set_mac(struct net_device *netdev, void *p)
1049 {
1050 	struct wx *wx = netdev_priv(netdev);
1051 	struct sockaddr *addr = p;
1052 	int retval;
1053 
1054 	retval = eth_prepare_mac_addr_change(netdev, addr);
1055 	if (retval)
1056 		return retval;
1057 
1058 	wx_del_mac_filter(wx, wx->mac.addr, 0);
1059 	eth_hw_addr_set(netdev, addr->sa_data);
1060 	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1061 
1062 	wx_mac_set_default_filter(wx, wx->mac.addr);
1063 
1064 	return 0;
1065 }
1066 EXPORT_SYMBOL(wx_set_mac);
1067 
1068 void wx_disable_rx(struct wx *wx)
1069 {
1070 	u32 pfdtxgswc;
1071 	u32 rxctrl;
1072 
1073 	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1074 	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1075 		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1076 		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1077 			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1078 			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1079 			wx->mac.set_lben = true;
1080 		} else {
1081 			wx->mac.set_lben = false;
1082 		}
1083 		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1084 		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1085 
1086 		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1087 		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1088 			/* disable mac receiver */
1089 			wr32m(wx, WX_MAC_RX_CFG,
1090 			      WX_MAC_RX_CFG_RE, 0);
1091 		}
1092 	}
1093 }
1094 EXPORT_SYMBOL(wx_disable_rx);
1095 
1096 static void wx_enable_rx(struct wx *wx)
1097 {
1098 	u32 psrctl;
1099 
1100 	/* enable mac receiver */
1101 	wr32m(wx, WX_MAC_RX_CFG,
1102 	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1103 
1104 	wr32m(wx, WX_RDB_PB_CTL,
1105 	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1106 
1107 	if (wx->mac.set_lben) {
1108 		psrctl = rd32(wx, WX_PSR_CTL);
1109 		psrctl |= WX_PSR_CTL_SW_EN;
1110 		wr32(wx, WX_PSR_CTL, psrctl);
1111 		wx->mac.set_lben = false;
1112 	}
1113 }
1114 
1115 /**
1116  * wx_set_rxpba - Initialize Rx packet buffer
1117  * @wx: pointer to private structure
1118  **/
1119 static void wx_set_rxpba(struct wx *wx)
1120 {
1121 	u32 rxpktsize, txpktsize, txpbthresh;
1122 
1123 	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1124 	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1125 
1126 	/* Only support an equally distributed Tx packet buffer strategy. */
1127 	txpktsize = wx->mac.tx_pb_size;
1128 	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1129 	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1130 	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1131 }
1132 
1133 static void wx_configure_port(struct wx *wx)
1134 {
1135 	u32 value, i;
1136 
1137 	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1138 	wr32m(wx, WX_CFG_PORT_CTL,
1139 	      WX_CFG_PORT_CTL_D_VLAN |
1140 	      WX_CFG_PORT_CTL_QINQ,
1141 	      value);
1142 
1143 	wr32(wx, WX_CFG_TAG_TPID(0),
1144 	     ETH_P_8021Q | ETH_P_8021AD << 16);
1145 	wx->tpid[0] = ETH_P_8021Q;
1146 	wx->tpid[1] = ETH_P_8021AD;
1147 	for (i = 1; i < 4; i++)
1148 		wr32(wx, WX_CFG_TAG_TPID(i),
1149 		     ETH_P_8021Q | ETH_P_8021Q << 16);
1150 	for (i = 2; i < 8; i++)
1151 		wx->tpid[i] = ETH_P_8021Q;
1152 }
1153 
1154 /**
1155  *  wx_disable_sec_rx_path - Stops the receive data path
1156  *  @wx: pointer to private structure
1157  *
1158  *  Stops the receive data path and waits for the HW to internally empty
1159  *  the Rx security block
1160  **/
1161 static int wx_disable_sec_rx_path(struct wx *wx)
1162 {
1163 	u32 secrx;
1164 
1165 	wr32m(wx, WX_RSC_CTL,
1166 	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1167 
1168 	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1169 				 1000, 40000, false, wx, WX_RSC_ST);
1170 }
1171 
1172 /**
1173  *  wx_enable_sec_rx_path - Enables the receive data path
1174  *  @wx: pointer to private structure
1175  *
1176  *  Enables the receive data path.
1177  **/
1178 static void wx_enable_sec_rx_path(struct wx *wx)
1179 {
1180 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1181 	WX_WRITE_FLUSH(wx);
1182 }
1183 
1184 void wx_set_rx_mode(struct net_device *netdev)
1185 {
1186 	struct wx *wx = netdev_priv(netdev);
1187 	u32 fctrl, vmolr, vlnctrl;
1188 	int count;
1189 
1190 	/* Check for Promiscuous and All Multicast modes */
1191 	fctrl = rd32(wx, WX_PSR_CTL);
1192 	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1193 	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1194 	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1195 		   WX_PSR_VM_L2CTL_MPE |
1196 		   WX_PSR_VM_L2CTL_ROPE |
1197 		   WX_PSR_VM_L2CTL_ROMPE);
1198 	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1199 	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1200 
1201 	/* set all bits that we expect to always be set */
1202 	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1203 	vmolr |= WX_PSR_VM_L2CTL_BAM |
1204 		 WX_PSR_VM_L2CTL_AUPE |
1205 		 WX_PSR_VM_L2CTL_VACC;
1206 	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1207 
1208 	wx->addr_ctrl.user_set_promisc = false;
1209 	if (netdev->flags & IFF_PROMISC) {
1210 		wx->addr_ctrl.user_set_promisc = true;
1211 		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1212 		/* pf don't want packets routing to vf, so clear UPE */
1213 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1214 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1215 	}
1216 
1217 	if (netdev->flags & IFF_ALLMULTI) {
1218 		fctrl |= WX_PSR_CTL_MPE;
1219 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1220 	}
1221 
1222 	if (netdev->features & NETIF_F_RXALL) {
1223 		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1224 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1225 		/* receive bad packets */
1226 		wr32m(wx, WX_RSC_CTL,
1227 		      WX_RSC_CTL_SAVE_MAC_ERR,
1228 		      WX_RSC_CTL_SAVE_MAC_ERR);
1229 	} else {
1230 		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1231 	}
1232 
1233 	/* Write addresses to available RAR registers, if there is not
1234 	 * sufficient space to store all the addresses then enable
1235 	 * unicast promiscuous mode
1236 	 */
1237 	count = wx_write_uc_addr_list(netdev, 0);
1238 	if (count < 0) {
1239 		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1240 		vmolr |= WX_PSR_VM_L2CTL_UPE;
1241 	}
1242 
1243 	/* Write addresses to the MTA, if the attempt fails
1244 	 * then we should just turn on promiscuous mode so
1245 	 * that we can at least receive multicast traffic
1246 	 */
1247 	count = wx_write_mc_addr_list(netdev);
1248 	if (count < 0) {
1249 		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1250 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1251 	}
1252 
1253 	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1254 	wr32(wx, WX_PSR_CTL, fctrl);
1255 	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1256 }
1257 EXPORT_SYMBOL(wx_set_rx_mode);
1258 
1259 static void wx_set_rx_buffer_len(struct wx *wx)
1260 {
1261 	struct net_device *netdev = wx->netdev;
1262 	u32 mhadd, max_frame;
1263 
1264 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1265 	/* adjust max frame to be at least the size of a standard frame */
1266 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1267 		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1268 
1269 	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1270 	if (max_frame != mhadd)
1271 		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1272 }
1273 
1274 /* Disable the specified rx queue */
1275 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1276 {
1277 	u8 reg_idx = ring->reg_idx;
1278 	u32 rxdctl;
1279 	int ret;
1280 
1281 	/* write value back with RRCFG.EN bit cleared */
1282 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1283 	      WX_PX_RR_CFG_RR_EN, 0);
1284 
1285 	/* the hardware may take up to 100us to really disable the rx queue */
1286 	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1287 				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1288 
1289 	if (ret == -ETIMEDOUT) {
1290 		/* Just for information */
1291 		wx_err(wx,
1292 		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1293 		       reg_idx);
1294 	}
1295 }
1296 EXPORT_SYMBOL(wx_disable_rx_queue);
1297 
1298 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1299 {
1300 	u8 reg_idx = ring->reg_idx;
1301 	u32 rxdctl;
1302 	int ret;
1303 
1304 	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1305 				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1306 
1307 	if (ret == -ETIMEDOUT) {
1308 		/* Just for information */
1309 		wx_err(wx,
1310 		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1311 		       reg_idx);
1312 	}
1313 }
1314 
1315 static void wx_configure_srrctl(struct wx *wx,
1316 				struct wx_ring *rx_ring)
1317 {
1318 	u16 reg_idx = rx_ring->reg_idx;
1319 	u32 srrctl;
1320 
1321 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1322 	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1323 		    WX_PX_RR_CFG_RR_BUF_SZ |
1324 		    WX_PX_RR_CFG_SPLIT_MODE);
1325 	/* configure header buffer length, needed for RSC */
1326 	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1327 
1328 	/* configure the packet buffer length */
1329 	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1330 
1331 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1332 }
1333 
1334 static void wx_configure_tx_ring(struct wx *wx,
1335 				 struct wx_ring *ring)
1336 {
1337 	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1338 	u8 reg_idx = ring->reg_idx;
1339 	u64 tdba = ring->dma;
1340 	int ret;
1341 
1342 	/* disable queue to avoid issues while updating state */
1343 	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1344 	WX_WRITE_FLUSH(wx);
1345 
1346 	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1347 	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1348 
1349 	/* reset head and tail pointers */
1350 	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1351 	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1352 	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1353 
1354 	if (ring->count < WX_MAX_TXD)
1355 		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1356 	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1357 
1358 	/* reinitialize tx_buffer_info */
1359 	memset(ring->tx_buffer_info, 0,
1360 	       sizeof(struct wx_tx_buffer) * ring->count);
1361 
1362 	/* enable queue */
1363 	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1364 
1365 	/* poll to verify queue is enabled */
1366 	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1367 				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1368 	if (ret == -ETIMEDOUT)
1369 		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1370 }
1371 
1372 static void wx_configure_rx_ring(struct wx *wx,
1373 				 struct wx_ring *ring)
1374 {
1375 	u16 reg_idx = ring->reg_idx;
1376 	union wx_rx_desc *rx_desc;
1377 	u64 rdba = ring->dma;
1378 	u32 rxdctl;
1379 
1380 	/* disable queue to avoid issues while updating state */
1381 	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1382 	wx_disable_rx_queue(wx, ring);
1383 
1384 	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1385 	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1386 
1387 	if (ring->count == WX_MAX_RXD)
1388 		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1389 	else
1390 		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1391 
1392 	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1393 	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1394 
1395 	/* reset head and tail pointers */
1396 	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1397 	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1398 	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1399 
1400 	wx_configure_srrctl(wx, ring);
1401 
1402 	/* initialize rx_buffer_info */
1403 	memset(ring->rx_buffer_info, 0,
1404 	       sizeof(struct wx_rx_buffer) * ring->count);
1405 
1406 	/* initialize Rx descriptor 0 */
1407 	rx_desc = WX_RX_DESC(ring, 0);
1408 	rx_desc->wb.upper.length = 0;
1409 
1410 	/* enable receive descriptor ring */
1411 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1412 	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1413 
1414 	wx_enable_rx_queue(wx, ring);
1415 	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1416 }
1417 
1418 /**
1419  * wx_configure_tx - Configure Transmit Unit after Reset
1420  * @wx: pointer to private structure
1421  *
1422  * Configure the Tx unit of the MAC after a reset.
1423  **/
1424 static void wx_configure_tx(struct wx *wx)
1425 {
1426 	u32 i;
1427 
1428 	/* TDM_CTL.TE must be before Tx queues are enabled */
1429 	wr32m(wx, WX_TDM_CTL,
1430 	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1431 
1432 	/* Setup the HW Tx Head and Tail descriptor pointers */
1433 	for (i = 0; i < wx->num_tx_queues; i++)
1434 		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1435 
1436 	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1437 
1438 	if (wx->mac.type == wx_mac_em)
1439 		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1440 
1441 	/* enable mac transmitter */
1442 	wr32m(wx, WX_MAC_TX_CFG,
1443 	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1444 }
1445 
1446 /**
1447  * wx_configure_rx - Configure Receive Unit after Reset
1448  * @wx: pointer to private structure
1449  *
1450  * Configure the Rx unit of the MAC after a reset.
1451  **/
1452 static void wx_configure_rx(struct wx *wx)
1453 {
1454 	u32 psrtype, i;
1455 	int ret;
1456 
1457 	wx_disable_rx(wx);
1458 
1459 	psrtype = WX_RDB_PL_CFG_L4HDR |
1460 		  WX_RDB_PL_CFG_L3HDR |
1461 		  WX_RDB_PL_CFG_L2HDR |
1462 		  WX_RDB_PL_CFG_TUN_TUNHDR |
1463 		  WX_RDB_PL_CFG_TUN_TUNHDR;
1464 	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1465 
1466 	/* enable hw crc stripping */
1467 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1468 
1469 	if (wx->mac.type == wx_mac_sp) {
1470 		u32 psrctl;
1471 
1472 		/* RSC Setup */
1473 		psrctl = rd32(wx, WX_PSR_CTL);
1474 		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1475 		psrctl |= WX_PSR_CTL_RSC_DIS;
1476 		wr32(wx, WX_PSR_CTL, psrctl);
1477 	}
1478 
1479 	/* set_rx_buffer_len must be called before ring initialization */
1480 	wx_set_rx_buffer_len(wx);
1481 
1482 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1483 	 * the Base and Length of the Rx Descriptor Ring
1484 	 */
1485 	for (i = 0; i < wx->num_rx_queues; i++)
1486 		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1487 
1488 	/* Enable all receives, disable security engine prior to block traffic */
1489 	ret = wx_disable_sec_rx_path(wx);
1490 	if (ret < 0)
1491 		wx_err(wx, "The register status is abnormal, please check device.");
1492 
1493 	wx_enable_rx(wx);
1494 	wx_enable_sec_rx_path(wx);
1495 }
1496 
1497 static void wx_configure_isb(struct wx *wx)
1498 {
1499 	/* set ISB Address */
1500 	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1501 	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1502 		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1503 }
1504 
1505 void wx_configure(struct wx *wx)
1506 {
1507 	wx_set_rxpba(wx);
1508 	wx_configure_port(wx);
1509 
1510 	wx_set_rx_mode(wx->netdev);
1511 
1512 	wx_enable_sec_rx_path(wx);
1513 
1514 	wx_configure_tx(wx);
1515 	wx_configure_rx(wx);
1516 	wx_configure_isb(wx);
1517 }
1518 EXPORT_SYMBOL(wx_configure);
1519 
1520 /**
1521  *  wx_disable_pcie_master - Disable PCI-express master access
1522  *  @wx: pointer to hardware structure
1523  *
1524  *  Disables PCI-Express master access and verifies there are no pending
1525  *  requests.
1526  **/
1527 int wx_disable_pcie_master(struct wx *wx)
1528 {
1529 	int status = 0;
1530 	u32 val;
1531 
1532 	/* Always set this bit to ensure any future transactions are blocked */
1533 	pci_clear_master(wx->pdev);
1534 
1535 	/* Exit if master requests are blocked */
1536 	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1537 		return 0;
1538 
1539 	/* Poll for master request bit to clear */
1540 	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1541 				   false, wx, WX_PX_TRANSACTION_PENDING);
1542 	if (status < 0)
1543 		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1544 
1545 	return status;
1546 }
1547 EXPORT_SYMBOL(wx_disable_pcie_master);
1548 
1549 /**
1550  *  wx_stop_adapter - Generic stop Tx/Rx units
1551  *  @wx: pointer to hardware structure
1552  *
1553  *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1554  *  disables transmit and receive units. The adapter_stopped flag is used by
1555  *  the shared code and drivers to determine if the adapter is in a stopped
1556  *  state and should not touch the hardware.
1557  **/
1558 int wx_stop_adapter(struct wx *wx)
1559 {
1560 	u16 i;
1561 
1562 	/* Set the adapter_stopped flag so other driver functions stop touching
1563 	 * the hardware
1564 	 */
1565 	wx->adapter_stopped = true;
1566 
1567 	/* Disable the receive unit */
1568 	wx_disable_rx(wx);
1569 
1570 	/* Set interrupt mask to stop interrupts from being generated */
1571 	wx_intr_disable(wx, WX_INTR_ALL);
1572 
1573 	/* Clear any pending interrupts, flush previous writes */
1574 	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1575 	wr32(wx, WX_BME_CTL, 0x3);
1576 
1577 	/* Disable the transmit unit.  Each queue must be disabled. */
1578 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1579 		wr32m(wx, WX_PX_TR_CFG(i),
1580 		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1581 		      WX_PX_TR_CFG_SWFLSH);
1582 	}
1583 
1584 	/* Disable the receive unit by stopping each queue */
1585 	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1586 		wr32m(wx, WX_PX_RR_CFG(i),
1587 		      WX_PX_RR_CFG_RR_EN, 0);
1588 	}
1589 
1590 	/* flush all queues disables */
1591 	WX_WRITE_FLUSH(wx);
1592 
1593 	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1594 	 * access and verify no pending requests
1595 	 */
1596 	return wx_disable_pcie_master(wx);
1597 }
1598 EXPORT_SYMBOL(wx_stop_adapter);
1599 
1600 void wx_reset_misc(struct wx *wx)
1601 {
1602 	int i;
1603 
1604 	/* receive packets that size > 2048 */
1605 	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1606 
1607 	/* clear counters on read */
1608 	wr32m(wx, WX_MMC_CONTROL,
1609 	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1610 
1611 	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1612 	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1613 
1614 	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1615 
1616 	wr32m(wx, WX_MIS_RST_ST,
1617 	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1618 
1619 	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1620 	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1621 	for (i = 0; i < 16; i++) {
1622 		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1623 		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1624 		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1625 	}
1626 	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1627 	for (i = 0; i < 16; i++) {
1628 		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1629 		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1630 		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1631 	}
1632 
1633 	/* set pause frame dst mac addr */
1634 	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1635 	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1636 }
1637 EXPORT_SYMBOL(wx_reset_misc);
1638 
1639 /**
1640  *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1641  *  @wx: pointer to hardware structure
1642  *  @msix_count: number of MSI interrupts that can be obtained
1643  *  @max_msix_count: number of MSI interrupts that mac need
1644  *
1645  *  Read PCIe configuration space, and get the MSI-X vector count from
1646  *  the capabilities table.
1647  **/
1648 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1649 {
1650 	struct pci_dev *pdev = wx->pdev;
1651 	struct device *dev = &pdev->dev;
1652 	int pos;
1653 
1654 	*msix_count = 1;
1655 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1656 	if (!pos) {
1657 		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1658 		return -EINVAL;
1659 	}
1660 	pci_read_config_word(pdev,
1661 			     pos + PCI_MSIX_FLAGS,
1662 			     msix_count);
1663 	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1664 	/* MSI-X count is zero-based in HW */
1665 	*msix_count += 1;
1666 
1667 	if (*msix_count > max_msix_count)
1668 		*msix_count = max_msix_count;
1669 
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1673 
1674 int wx_sw_init(struct wx *wx)
1675 {
1676 	struct pci_dev *pdev = wx->pdev;
1677 	u32 ssid = 0;
1678 	int err = 0;
1679 
1680 	wx->vendor_id = pdev->vendor;
1681 	wx->device_id = pdev->device;
1682 	wx->revision_id = pdev->revision;
1683 	wx->oem_svid = pdev->subsystem_vendor;
1684 	wx->oem_ssid = pdev->subsystem_device;
1685 	wx->bus.device = PCI_SLOT(pdev->devfn);
1686 	wx->bus.func = PCI_FUNC(pdev->devfn);
1687 
1688 	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1689 		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1690 		wx->subsystem_device_id = pdev->subsystem_device;
1691 	} else {
1692 		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1693 		if (!err)
1694 			wx->subsystem_device_id = swab16((u16)ssid);
1695 
1696 		return err;
1697 	}
1698 
1699 	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1700 				sizeof(struct wx_mac_addr),
1701 				GFP_KERNEL);
1702 	if (!wx->mac_table) {
1703 		wx_err(wx, "mac_table allocation failed\n");
1704 		return -ENOMEM;
1705 	}
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(wx_sw_init);
1710 
1711 MODULE_LICENSE("GPL");
1712