1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10 
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_hw.h"
14 
15 static void wx_intr_disable(struct wx *wx, u64 qmask)
16 {
17 	u32 mask;
18 
19 	mask = (qmask & U32_MAX);
20 	if (mask)
21 		wr32(wx, WX_PX_IMS(0), mask);
22 
23 	if (wx->mac.type == wx_mac_sp) {
24 		mask = (qmask >> 32);
25 		if (mask)
26 			wr32(wx, WX_PX_IMS(1), mask);
27 	}
28 }
29 
30 void wx_intr_enable(struct wx *wx, u64 qmask)
31 {
32 	u32 mask;
33 
34 	mask = (qmask & U32_MAX);
35 	if (mask)
36 		wr32(wx, WX_PX_IMC(0), mask);
37 	if (wx->mac.type == wx_mac_sp) {
38 		mask = (qmask >> 32);
39 		if (mask)
40 			wr32(wx, WX_PX_IMC(1), mask);
41 	}
42 }
43 EXPORT_SYMBOL(wx_intr_enable);
44 
45 /**
46  * wx_irq_disable - Mask off interrupt generation on the NIC
47  * @wx: board private structure
48  **/
49 void wx_irq_disable(struct wx *wx)
50 {
51 	struct pci_dev *pdev = wx->pdev;
52 
53 	wr32(wx, WX_PX_MISC_IEN, 0);
54 	wx_intr_disable(wx, WX_INTR_ALL);
55 
56 	if (pdev->msix_enabled) {
57 		int vector;
58 
59 		for (vector = 0; vector < wx->num_q_vectors; vector++)
60 			synchronize_irq(wx->msix_entries[vector].vector);
61 
62 		synchronize_irq(wx->msix_entries[vector].vector);
63 	} else {
64 		synchronize_irq(pdev->irq);
65 	}
66 }
67 EXPORT_SYMBOL(wx_irq_disable);
68 
69 /* cmd_addr is used for some special command:
70  * 1. to be sector address, when implemented erase sector command
71  * 2. to be flash address when implemented read, write flash address
72  */
73 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
74 {
75 	u32 cmd_val = 0, val = 0;
76 
77 	cmd_val = WX_SPI_CMD_CMD(cmd) |
78 		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
79 		  cmd_addr;
80 	wr32(wx, WX_SPI_CMD, cmd_val);
81 
82 	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
83 				 false, wx, WX_SPI_STATUS);
84 }
85 
86 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
87 {
88 	int ret = 0;
89 
90 	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
91 	if (ret < 0)
92 		return ret;
93 
94 	*data = rd32(wx, WX_SPI_DATA);
95 
96 	return ret;
97 }
98 
99 int wx_check_flash_load(struct wx *hw, u32 check_bit)
100 {
101 	u32 reg = 0;
102 	int err = 0;
103 
104 	/* if there's flash existing */
105 	if (!(rd32(hw, WX_SPI_STATUS) &
106 	      WX_SPI_STATUS_FLASH_BYPASS)) {
107 		/* wait hw load flash done */
108 		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
109 					false, hw, WX_SPI_ILDR_STATUS);
110 		if (err < 0)
111 			wx_err(hw, "Check flash load timeout.\n");
112 	}
113 
114 	return err;
115 }
116 EXPORT_SYMBOL(wx_check_flash_load);
117 
118 void wx_control_hw(struct wx *wx, bool drv)
119 {
120 	/* True : Let firmware know the driver has taken over
121 	 * False : Let firmware take over control of hw
122 	 */
123 	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
124 	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
125 }
126 EXPORT_SYMBOL(wx_control_hw);
127 
128 /**
129  * wx_mng_present - returns 0 when management capability is present
130  * @wx: pointer to hardware structure
131  */
132 int wx_mng_present(struct wx *wx)
133 {
134 	u32 fwsm;
135 
136 	fwsm = rd32(wx, WX_MIS_ST);
137 	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
138 		return 0;
139 	else
140 		return -EACCES;
141 }
142 EXPORT_SYMBOL(wx_mng_present);
143 
144 /* Software lock to be held while software semaphore is being accessed. */
145 static DEFINE_MUTEX(wx_sw_sync_lock);
146 
147 /**
148  *  wx_release_sw_sync - Release SW semaphore
149  *  @wx: pointer to hardware structure
150  *  @mask: Mask to specify which semaphore to release
151  *
152  *  Releases the SW semaphore for the specified
153  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
154  **/
155 static void wx_release_sw_sync(struct wx *wx, u32 mask)
156 {
157 	mutex_lock(&wx_sw_sync_lock);
158 	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
159 	mutex_unlock(&wx_sw_sync_lock);
160 }
161 
162 /**
163  *  wx_acquire_sw_sync - Acquire SW semaphore
164  *  @wx: pointer to hardware structure
165  *  @mask: Mask to specify which semaphore to acquire
166  *
167  *  Acquires the SW semaphore for the specified
168  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
169  **/
170 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
171 {
172 	u32 sem = 0;
173 	int ret = 0;
174 
175 	mutex_lock(&wx_sw_sync_lock);
176 	ret = read_poll_timeout(rd32, sem, !(sem & mask),
177 				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
178 	if (!ret) {
179 		sem |= mask;
180 		wr32(wx, WX_MNG_SWFW_SYNC, sem);
181 	} else {
182 		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
183 	}
184 	mutex_unlock(&wx_sw_sync_lock);
185 
186 	return ret;
187 }
188 
189 /**
190  *  wx_host_interface_command - Issue command to manageability block
191  *  @wx: pointer to the HW structure
192  *  @buffer: contains the command to write and where the return status will
193  *   be placed
194  *  @length: length of buffer, must be multiple of 4 bytes
195  *  @timeout: time in ms to wait for command completion
196  *  @return_data: read and return data from the buffer (true) or not (false)
197  *   Needed because FW structures are big endian and decoding of
198  *   these fields can be 8 bit or 16 bit based on command. Decoding
199  *   is not easily understood without making a table of commands.
200  *   So we will leave this up to the caller to read back the data
201  *   in these cases.
202  **/
203 int wx_host_interface_command(struct wx *wx, u32 *buffer,
204 			      u32 length, u32 timeout, bool return_data)
205 {
206 	u32 hdr_size = sizeof(struct wx_hic_hdr);
207 	u32 hicr, i, bi, buf[64] = {};
208 	int status = 0;
209 	u32 dword_len;
210 	u16 buf_len;
211 
212 	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
213 		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
214 		return -EINVAL;
215 	}
216 
217 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
218 	if (status != 0)
219 		return status;
220 
221 	/* Calculate length in DWORDs. We must be DWORD aligned */
222 	if ((length % (sizeof(u32))) != 0) {
223 		wx_err(wx, "Buffer length failure, not aligned to dword");
224 		status = -EINVAL;
225 		goto rel_out;
226 	}
227 
228 	dword_len = length >> 2;
229 
230 	/* The device driver writes the relevant command block
231 	 * into the ram area.
232 	 */
233 	for (i = 0; i < dword_len; i++) {
234 		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
235 		/* write flush */
236 		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
237 	}
238 	/* Setting this bit tells the ARC that a new command is pending. */
239 	wr32m(wx, WX_MNG_MBOX_CTL,
240 	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
241 
242 	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
243 				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
244 
245 	/* Check command completion */
246 	if (status) {
247 		wx_dbg(wx, "Command has failed with no status valid.\n");
248 
249 		buf[0] = rd32(wx, WX_MNG_MBOX);
250 		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
251 			status = -EINVAL;
252 			goto rel_out;
253 		}
254 		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
255 			wx_dbg(wx, "It's unknown cmd.\n");
256 			status = -EINVAL;
257 			goto rel_out;
258 		}
259 
260 		wx_dbg(wx, "write value:\n");
261 		for (i = 0; i < dword_len; i++)
262 			wx_dbg(wx, "%x ", buffer[i]);
263 		wx_dbg(wx, "read value:\n");
264 		for (i = 0; i < dword_len; i++)
265 			wx_dbg(wx, "%x ", buf[i]);
266 	}
267 
268 	if (!return_data)
269 		goto rel_out;
270 
271 	/* Calculate length in DWORDs */
272 	dword_len = hdr_size >> 2;
273 
274 	/* first pull in the header so we know the buffer length */
275 	for (bi = 0; bi < dword_len; bi++) {
276 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
277 		le32_to_cpus(&buffer[bi]);
278 	}
279 
280 	/* If there is any thing in data position pull it in */
281 	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
282 	if (buf_len == 0)
283 		goto rel_out;
284 
285 	if (length < buf_len + hdr_size) {
286 		wx_err(wx, "Buffer not large enough for reply message.\n");
287 		status = -EFAULT;
288 		goto rel_out;
289 	}
290 
291 	/* Calculate length in DWORDs, add 3 for odd lengths */
292 	dword_len = (buf_len + 3) >> 2;
293 
294 	/* Pull in the rest of the buffer (bi is where we left off) */
295 	for (; bi <= dword_len; bi++) {
296 		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
297 		le32_to_cpus(&buffer[bi]);
298 	}
299 
300 rel_out:
301 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
302 	return status;
303 }
304 EXPORT_SYMBOL(wx_host_interface_command);
305 
306 /**
307  *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
308  *  assuming that the semaphore is already obtained.
309  *  @wx: pointer to hardware structure
310  *  @offset: offset of  word in the EEPROM to read
311  *  @data: word read from the EEPROM
312  *
313  *  Reads a 16 bit word from the EEPROM using the hostif.
314  **/
315 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
316 {
317 	struct wx_hic_read_shadow_ram buffer;
318 	int status;
319 
320 	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
321 	buffer.hdr.req.buf_lenh = 0;
322 	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
323 	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
324 
325 	/* convert offset from words to bytes */
326 	buffer.address = (__force u32)cpu_to_be32(offset * 2);
327 	/* one word */
328 	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
329 
330 	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
331 					   WX_HI_COMMAND_TIMEOUT, false);
332 
333 	if (status != 0)
334 		return status;
335 
336 	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
337 
338 	return status;
339 }
340 
341 /**
342  *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
343  *  @wx: pointer to hardware structure
344  *  @offset: offset of  word in the EEPROM to read
345  *  @data: word read from the EEPROM
346  *
347  *  Reads a 16 bit word from the EEPROM using the hostif.
348  **/
349 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
350 {
351 	int status = 0;
352 
353 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
354 	if (status == 0) {
355 		status = wx_read_ee_hostif_data(wx, offset, data);
356 		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
357 	}
358 
359 	return status;
360 }
361 EXPORT_SYMBOL(wx_read_ee_hostif);
362 
363 /**
364  *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
365  *  @wx: pointer to hardware structure
366  *  @offset: offset of  word in the EEPROM to read
367  *  @words: number of words
368  *  @data: word(s) read from the EEPROM
369  *
370  *  Reads a 16 bit word(s) from the EEPROM using the hostif.
371  **/
372 int wx_read_ee_hostif_buffer(struct wx *wx,
373 			     u16 offset, u16 words, u16 *data)
374 {
375 	struct wx_hic_read_shadow_ram buffer;
376 	u32 current_word = 0;
377 	u16 words_to_read;
378 	u32 value = 0;
379 	int status;
380 	u32 i;
381 
382 	/* Take semaphore for the entire operation. */
383 	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
384 	if (status != 0)
385 		return status;
386 
387 	while (words) {
388 		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
389 			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
390 		else
391 			words_to_read = words;
392 
393 		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
394 		buffer.hdr.req.buf_lenh = 0;
395 		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
396 		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
397 
398 		/* convert offset from words to bytes */
399 		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
400 		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
401 
402 		status = wx_host_interface_command(wx, (u32 *)&buffer,
403 						   sizeof(buffer),
404 						   WX_HI_COMMAND_TIMEOUT,
405 						   false);
406 
407 		if (status != 0) {
408 			wx_err(wx, "Host interface command failed\n");
409 			goto out;
410 		}
411 
412 		for (i = 0; i < words_to_read; i++) {
413 			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
414 
415 			value = rd32(wx, reg);
416 			data[current_word] = (u16)(value & 0xffff);
417 			current_word++;
418 			i++;
419 			if (i < words_to_read) {
420 				value >>= 16;
421 				data[current_word] = (u16)(value & 0xffff);
422 				current_word++;
423 			}
424 		}
425 		words -= words_to_read;
426 	}
427 
428 out:
429 	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
430 	return status;
431 }
432 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
433 
434 /**
435  *  wx_init_eeprom_params - Initialize EEPROM params
436  *  @wx: pointer to hardware structure
437  *
438  *  Initializes the EEPROM parameters wx_eeprom_info within the
439  *  wx_hw struct in order to set up EEPROM access.
440  **/
441 void wx_init_eeprom_params(struct wx *wx)
442 {
443 	struct wx_eeprom_info *eeprom = &wx->eeprom;
444 	u16 eeprom_size;
445 	u16 data = 0x80;
446 
447 	if (eeprom->type == wx_eeprom_uninitialized) {
448 		eeprom->semaphore_delay = 10;
449 		eeprom->type = wx_eeprom_none;
450 
451 		if (!(rd32(wx, WX_SPI_STATUS) &
452 		      WX_SPI_STATUS_FLASH_BYPASS)) {
453 			eeprom->type = wx_flash;
454 
455 			eeprom_size = 4096;
456 			eeprom->word_size = eeprom_size >> 1;
457 
458 			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
459 			       eeprom->type, eeprom->word_size);
460 		}
461 	}
462 
463 	if (wx->mac.type == wx_mac_sp) {
464 		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
465 			wx_err(wx, "NVM Read Error\n");
466 			return;
467 		}
468 		data = data >> 1;
469 	}
470 
471 	eeprom->sw_region_offset = data;
472 }
473 EXPORT_SYMBOL(wx_init_eeprom_params);
474 
475 /**
476  *  wx_get_mac_addr - Generic get MAC address
477  *  @wx: pointer to hardware structure
478  *  @mac_addr: Adapter MAC address
479  *
480  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
481  *  A reset of the adapter must be performed prior to calling this function
482  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
483  **/
484 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
485 {
486 	u32 rar_high;
487 	u32 rar_low;
488 	u16 i;
489 
490 	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
491 	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
492 	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
493 
494 	for (i = 0; i < 2; i++)
495 		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
496 
497 	for (i = 0; i < 4; i++)
498 		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
499 }
500 EXPORT_SYMBOL(wx_get_mac_addr);
501 
502 /**
503  *  wx_set_rar - Set Rx address register
504  *  @wx: pointer to hardware structure
505  *  @index: Receive address register to write
506  *  @addr: Address to put into receive address register
507  *  @pools: VMDq "set" or "pool" index
508  *  @enable_addr: set flag that address is active
509  *
510  *  Puts an ethernet address into a receive address register.
511  **/
512 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
513 		      u32 enable_addr)
514 {
515 	u32 rar_entries = wx->mac.num_rar_entries;
516 	u32 rar_low, rar_high;
517 
518 	/* Make sure we are using a valid rar index range */
519 	if (index >= rar_entries) {
520 		wx_err(wx, "RAR index %d is out of range.\n", index);
521 		return -EINVAL;
522 	}
523 
524 	/* select the MAC address */
525 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
526 
527 	/* setup VMDq pool mapping */
528 	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
529 	if (wx->mac.type == wx_mac_sp)
530 		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
531 
532 	/* HW expects these in little endian so we reverse the byte
533 	 * order from network order (big endian) to little endian
534 	 *
535 	 * Some parts put the VMDq setting in the extra RAH bits,
536 	 * so save everything except the lower 16 bits that hold part
537 	 * of the address and the address valid bit.
538 	 */
539 	rar_low = ((u32)addr[5] |
540 		  ((u32)addr[4] << 8) |
541 		  ((u32)addr[3] << 16) |
542 		  ((u32)addr[2] << 24));
543 	rar_high = ((u32)addr[1] |
544 		   ((u32)addr[0] << 8));
545 	if (enable_addr != 0)
546 		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
547 
548 	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
549 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
550 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
551 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
552 	       WX_PSR_MAC_SWC_AD_H_AV),
553 	      rar_high);
554 
555 	return 0;
556 }
557 
558 /**
559  *  wx_clear_rar - Remove Rx address register
560  *  @wx: pointer to hardware structure
561  *  @index: Receive address register to write
562  *
563  *  Clears an ethernet address from a receive address register.
564  **/
565 static int wx_clear_rar(struct wx *wx, u32 index)
566 {
567 	u32 rar_entries = wx->mac.num_rar_entries;
568 
569 	/* Make sure we are using a valid rar index range */
570 	if (index >= rar_entries) {
571 		wx_err(wx, "RAR index %d is out of range.\n", index);
572 		return -EINVAL;
573 	}
574 
575 	/* Some parts put the VMDq setting in the extra RAH bits,
576 	 * so save everything except the lower 16 bits that hold part
577 	 * of the address and the address valid bit.
578 	 */
579 	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
580 
581 	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
582 	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
583 
584 	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
585 	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
586 	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
587 	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
588 	       WX_PSR_MAC_SWC_AD_H_AV),
589 	      0);
590 
591 	return 0;
592 }
593 
594 /**
595  *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
596  *  @wx: pointer to hardware struct
597  *  @rar: receive address register index to disassociate
598  *  @vmdq: VMDq pool index to remove from the rar
599  **/
600 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
601 {
602 	u32 rar_entries = wx->mac.num_rar_entries;
603 	u32 mpsar_lo, mpsar_hi;
604 
605 	/* Make sure we are using a valid rar index range */
606 	if (rar >= rar_entries) {
607 		wx_err(wx, "RAR index %d is out of range.\n", rar);
608 		return -EINVAL;
609 	}
610 
611 	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
612 	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
613 	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
614 
615 	if (!mpsar_lo && !mpsar_hi)
616 		return 0;
617 
618 	/* was that the last pool using this rar? */
619 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
620 		wx_clear_rar(wx, rar);
621 
622 	return 0;
623 }
624 
625 /**
626  *  wx_init_uta_tables - Initialize the Unicast Table Array
627  *  @wx: pointer to hardware structure
628  **/
629 static void wx_init_uta_tables(struct wx *wx)
630 {
631 	int i;
632 
633 	wx_dbg(wx, " Clearing UTA\n");
634 
635 	for (i = 0; i < 128; i++)
636 		wr32(wx, WX_PSR_UC_TBL(i), 0);
637 }
638 
639 /**
640  *  wx_init_rx_addrs - Initializes receive address filters.
641  *  @wx: pointer to hardware structure
642  *
643  *  Places the MAC address in receive address register 0 and clears the rest
644  *  of the receive address registers. Clears the multicast table. Assumes
645  *  the receiver is in reset when the routine is called.
646  **/
647 void wx_init_rx_addrs(struct wx *wx)
648 {
649 	u32 rar_entries = wx->mac.num_rar_entries;
650 	u32 psrctl;
651 	int i;
652 
653 	/* If the current mac address is valid, assume it is a software override
654 	 * to the permanent address.
655 	 * Otherwise, use the permanent address from the eeprom.
656 	 */
657 	if (!is_valid_ether_addr(wx->mac.addr)) {
658 		/* Get the MAC address from the RAR0 for later reference */
659 		wx_get_mac_addr(wx, wx->mac.addr);
660 		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
661 	} else {
662 		/* Setup the receive address. */
663 		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
664 		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
665 
666 		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
667 
668 		if (wx->mac.type == wx_mac_sp) {
669 			/* clear VMDq pool/queue selection for RAR 0 */
670 			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
671 		}
672 	}
673 
674 	/* Zero out the other receive addresses. */
675 	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
676 	for (i = 1; i < rar_entries; i++) {
677 		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
678 		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
679 		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
680 	}
681 
682 	/* Clear the MTA */
683 	wx->addr_ctrl.mta_in_use = 0;
684 	psrctl = rd32(wx, WX_PSR_CTL);
685 	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
686 	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
687 	wr32(wx, WX_PSR_CTL, psrctl);
688 	wx_dbg(wx, " Clearing MTA\n");
689 	for (i = 0; i < wx->mac.mcft_size; i++)
690 		wr32(wx, WX_PSR_MC_TBL(i), 0);
691 
692 	wx_init_uta_tables(wx);
693 }
694 EXPORT_SYMBOL(wx_init_rx_addrs);
695 
696 static void wx_sync_mac_table(struct wx *wx)
697 {
698 	int i;
699 
700 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
701 		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
702 			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
703 				wx_set_rar(wx, i,
704 					   wx->mac_table[i].addr,
705 					   wx->mac_table[i].pools,
706 					   WX_PSR_MAC_SWC_AD_H_AV);
707 			} else {
708 				wx_clear_rar(wx, i);
709 			}
710 			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
711 		}
712 	}
713 }
714 
715 /* this function destroys the first RAR entry */
716 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
717 {
718 	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
719 	wx->mac_table[0].pools = 1ULL;
720 	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
721 	wx_set_rar(wx, 0, wx->mac_table[0].addr,
722 		   wx->mac_table[0].pools,
723 		   WX_PSR_MAC_SWC_AD_H_AV);
724 }
725 EXPORT_SYMBOL(wx_mac_set_default_filter);
726 
727 void wx_flush_sw_mac_table(struct wx *wx)
728 {
729 	u32 i;
730 
731 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
732 		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
733 			continue;
734 
735 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
736 		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
737 		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
738 		wx->mac_table[i].pools = 0;
739 	}
740 	wx_sync_mac_table(wx);
741 }
742 EXPORT_SYMBOL(wx_flush_sw_mac_table);
743 
744 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
745 {
746 	u32 i;
747 
748 	if (is_zero_ether_addr(addr))
749 		return -EINVAL;
750 
751 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
752 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
753 			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
754 				if (wx->mac_table[i].pools != (1ULL << pool)) {
755 					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
756 					wx->mac_table[i].pools |= (1ULL << pool);
757 					wx_sync_mac_table(wx);
758 					return i;
759 				}
760 			}
761 		}
762 
763 		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
764 			continue;
765 		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
766 					   WX_MAC_STATE_IN_USE);
767 		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
768 		wx->mac_table[i].pools |= (1ULL << pool);
769 		wx_sync_mac_table(wx);
770 		return i;
771 	}
772 	return -ENOMEM;
773 }
774 
775 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
776 {
777 	u32 i;
778 
779 	if (is_zero_ether_addr(addr))
780 		return -EINVAL;
781 
782 	/* search table for addr, if found, set to 0 and sync */
783 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
784 		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
785 			continue;
786 
787 		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
788 		wx->mac_table[i].pools &= ~(1ULL << pool);
789 		if (!wx->mac_table[i].pools) {
790 			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
791 			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
792 		}
793 		wx_sync_mac_table(wx);
794 		return 0;
795 	}
796 	return -ENOMEM;
797 }
798 
799 static int wx_available_rars(struct wx *wx)
800 {
801 	u32 i, count = 0;
802 
803 	for (i = 0; i < wx->mac.num_rar_entries; i++) {
804 		if (wx->mac_table[i].state == 0)
805 			count++;
806 	}
807 
808 	return count;
809 }
810 
811 /**
812  * wx_write_uc_addr_list - write unicast addresses to RAR table
813  * @netdev: network interface device structure
814  * @pool: index for mac table
815  *
816  * Writes unicast address list to the RAR table.
817  * Returns: -ENOMEM on failure/insufficient address space
818  *                0 on no addresses written
819  *                X on writing X addresses to the RAR table
820  **/
821 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
822 {
823 	struct wx *wx = netdev_priv(netdev);
824 	int count = 0;
825 
826 	/* return ENOMEM indicating insufficient memory for addresses */
827 	if (netdev_uc_count(netdev) > wx_available_rars(wx))
828 		return -ENOMEM;
829 
830 	if (!netdev_uc_empty(netdev)) {
831 		struct netdev_hw_addr *ha;
832 
833 		netdev_for_each_uc_addr(ha, netdev) {
834 			wx_del_mac_filter(wx, ha->addr, pool);
835 			wx_add_mac_filter(wx, ha->addr, pool);
836 			count++;
837 		}
838 	}
839 	return count;
840 }
841 
842 /**
843  *  wx_mta_vector - Determines bit-vector in multicast table to set
844  *  @wx: pointer to private structure
845  *  @mc_addr: the multicast address
846  *
847  *  Extracts the 12 bits, from a multicast address, to determine which
848  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
849  *  incoming rx multicast addresses, to determine the bit-vector to check in
850  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
851  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
852  *  to mc_filter_type.
853  **/
854 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
855 {
856 	u32 vector = 0;
857 
858 	switch (wx->mac.mc_filter_type) {
859 	case 0:   /* use bits [47:36] of the address */
860 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
861 		break;
862 	case 1:   /* use bits [46:35] of the address */
863 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
864 		break;
865 	case 2:   /* use bits [45:34] of the address */
866 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
867 		break;
868 	case 3:   /* use bits [43:32] of the address */
869 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
870 		break;
871 	default:  /* Invalid mc_filter_type */
872 		wx_err(wx, "MC filter type param set incorrectly\n");
873 		break;
874 	}
875 
876 	/* vector can only be 12-bits or boundary will be exceeded */
877 	vector &= 0xFFF;
878 	return vector;
879 }
880 
881 /**
882  *  wx_set_mta - Set bit-vector in multicast table
883  *  @wx: pointer to private structure
884  *  @mc_addr: Multicast address
885  *
886  *  Sets the bit-vector in the multicast table.
887  **/
888 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
889 {
890 	u32 vector, vector_bit, vector_reg;
891 
892 	wx->addr_ctrl.mta_in_use++;
893 
894 	vector = wx_mta_vector(wx, mc_addr);
895 	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
896 
897 	/* The MTA is a register array of 128 32-bit registers. It is treated
898 	 * like an array of 4096 bits.  We want to set bit
899 	 * BitArray[vector_value]. So we figure out what register the bit is
900 	 * in, read it, OR in the new bit, then write back the new value.  The
901 	 * register is determined by the upper 7 bits of the vector value and
902 	 * the bit within that register are determined by the lower 5 bits of
903 	 * the value.
904 	 */
905 	vector_reg = (vector >> 5) & 0x7F;
906 	vector_bit = vector & 0x1F;
907 	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
908 }
909 
910 /**
911  *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
912  *  @wx: pointer to private structure
913  *  @netdev: pointer to net device structure
914  *
915  *  The given list replaces any existing list. Clears the MC addrs from receive
916  *  address registers and the multicast table. Uses unused receive address
917  *  registers for the first multicast addresses, and hashes the rest into the
918  *  multicast table.
919  **/
920 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
921 {
922 	struct netdev_hw_addr *ha;
923 	u32 i, psrctl;
924 
925 	/* Set the new number of MC addresses that we are being requested to
926 	 * use.
927 	 */
928 	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
929 	wx->addr_ctrl.mta_in_use = 0;
930 
931 	/* Clear mta_shadow */
932 	wx_dbg(wx, " Clearing MTA\n");
933 	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
934 
935 	/* Update mta_shadow */
936 	netdev_for_each_mc_addr(ha, netdev) {
937 		wx_dbg(wx, " Adding the multicast addresses:\n");
938 		wx_set_mta(wx, ha->addr);
939 	}
940 
941 	/* Enable mta */
942 	for (i = 0; i < wx->mac.mcft_size; i++)
943 		wr32a(wx, WX_PSR_MC_TBL(0), i,
944 		      wx->mac.mta_shadow[i]);
945 
946 	if (wx->addr_ctrl.mta_in_use > 0) {
947 		psrctl = rd32(wx, WX_PSR_CTL);
948 		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
949 		psrctl |= WX_PSR_CTL_MFE |
950 			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
951 		wr32(wx, WX_PSR_CTL, psrctl);
952 	}
953 
954 	wx_dbg(wx, "Update mc addr list Complete\n");
955 }
956 
957 /**
958  * wx_write_mc_addr_list - write multicast addresses to MTA
959  * @netdev: network interface device structure
960  *
961  * Writes multicast address list to the MTA hash table.
962  * Returns: 0 on no addresses written
963  *          X on writing X addresses to MTA
964  **/
965 static int wx_write_mc_addr_list(struct net_device *netdev)
966 {
967 	struct wx *wx = netdev_priv(netdev);
968 
969 	if (!netif_running(netdev))
970 		return 0;
971 
972 	wx_update_mc_addr_list(wx, netdev);
973 
974 	return netdev_mc_count(netdev);
975 }
976 
977 /**
978  * wx_set_mac - Change the Ethernet Address of the NIC
979  * @netdev: network interface device structure
980  * @p: pointer to an address structure
981  *
982  * Returns 0 on success, negative on failure
983  **/
984 int wx_set_mac(struct net_device *netdev, void *p)
985 {
986 	struct wx *wx = netdev_priv(netdev);
987 	struct sockaddr *addr = p;
988 	int retval;
989 
990 	retval = eth_prepare_mac_addr_change(netdev, addr);
991 	if (retval)
992 		return retval;
993 
994 	wx_del_mac_filter(wx, wx->mac.addr, 0);
995 	eth_hw_addr_set(netdev, addr->sa_data);
996 	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
997 
998 	wx_mac_set_default_filter(wx, wx->mac.addr);
999 
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL(wx_set_mac);
1003 
1004 void wx_disable_rx(struct wx *wx)
1005 {
1006 	u32 pfdtxgswc;
1007 	u32 rxctrl;
1008 
1009 	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1010 	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1011 		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1012 		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1013 			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1014 			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1015 			wx->mac.set_lben = true;
1016 		} else {
1017 			wx->mac.set_lben = false;
1018 		}
1019 		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1020 		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1021 
1022 		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1023 		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1024 			/* disable mac receiver */
1025 			wr32m(wx, WX_MAC_RX_CFG,
1026 			      WX_MAC_RX_CFG_RE, 0);
1027 		}
1028 	}
1029 }
1030 EXPORT_SYMBOL(wx_disable_rx);
1031 
1032 static void wx_enable_rx(struct wx *wx)
1033 {
1034 	u32 psrctl;
1035 
1036 	/* enable mac receiver */
1037 	wr32m(wx, WX_MAC_RX_CFG,
1038 	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1039 
1040 	wr32m(wx, WX_RDB_PB_CTL,
1041 	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1042 
1043 	if (wx->mac.set_lben) {
1044 		psrctl = rd32(wx, WX_PSR_CTL);
1045 		psrctl |= WX_PSR_CTL_SW_EN;
1046 		wr32(wx, WX_PSR_CTL, psrctl);
1047 		wx->mac.set_lben = false;
1048 	}
1049 }
1050 
1051 /**
1052  * wx_set_rxpba - Initialize Rx packet buffer
1053  * @wx: pointer to private structure
1054  **/
1055 static void wx_set_rxpba(struct wx *wx)
1056 {
1057 	u32 rxpktsize, txpktsize, txpbthresh;
1058 
1059 	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1060 	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1061 
1062 	/* Only support an equally distributed Tx packet buffer strategy. */
1063 	txpktsize = wx->mac.tx_pb_size;
1064 	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1065 	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1066 	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1067 }
1068 
1069 static void wx_configure_port(struct wx *wx)
1070 {
1071 	u32 value, i;
1072 
1073 	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1074 	wr32m(wx, WX_CFG_PORT_CTL,
1075 	      WX_CFG_PORT_CTL_D_VLAN |
1076 	      WX_CFG_PORT_CTL_QINQ,
1077 	      value);
1078 
1079 	wr32(wx, WX_CFG_TAG_TPID(0),
1080 	     ETH_P_8021Q | ETH_P_8021AD << 16);
1081 	wx->tpid[0] = ETH_P_8021Q;
1082 	wx->tpid[1] = ETH_P_8021AD;
1083 	for (i = 1; i < 4; i++)
1084 		wr32(wx, WX_CFG_TAG_TPID(i),
1085 		     ETH_P_8021Q | ETH_P_8021Q << 16);
1086 	for (i = 2; i < 8; i++)
1087 		wx->tpid[i] = ETH_P_8021Q;
1088 }
1089 
1090 /**
1091  *  wx_disable_sec_rx_path - Stops the receive data path
1092  *  @wx: pointer to private structure
1093  *
1094  *  Stops the receive data path and waits for the HW to internally empty
1095  *  the Rx security block
1096  **/
1097 static int wx_disable_sec_rx_path(struct wx *wx)
1098 {
1099 	u32 secrx;
1100 
1101 	wr32m(wx, WX_RSC_CTL,
1102 	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1103 
1104 	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1105 				 1000, 40000, false, wx, WX_RSC_ST);
1106 }
1107 
1108 /**
1109  *  wx_enable_sec_rx_path - Enables the receive data path
1110  *  @wx: pointer to private structure
1111  *
1112  *  Enables the receive data path.
1113  **/
1114 static void wx_enable_sec_rx_path(struct wx *wx)
1115 {
1116 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1117 	WX_WRITE_FLUSH(wx);
1118 }
1119 
1120 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1121 {
1122 	int i, j;
1123 
1124 	for (i = 0; i < wx->num_rx_queues; i++) {
1125 		struct wx_ring *ring = wx->rx_ring[i];
1126 
1127 		j = ring->reg_idx;
1128 		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1129 		      enable ? WX_PX_RR_CFG_VLAN : 0);
1130 	}
1131 }
1132 
1133 void wx_set_rx_mode(struct net_device *netdev)
1134 {
1135 	struct wx *wx = netdev_priv(netdev);
1136 	netdev_features_t features;
1137 	u32 fctrl, vmolr, vlnctrl;
1138 	int count;
1139 
1140 	features = netdev->features;
1141 
1142 	/* Check for Promiscuous and All Multicast modes */
1143 	fctrl = rd32(wx, WX_PSR_CTL);
1144 	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1145 	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1146 	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1147 		   WX_PSR_VM_L2CTL_MPE |
1148 		   WX_PSR_VM_L2CTL_ROPE |
1149 		   WX_PSR_VM_L2CTL_ROMPE);
1150 	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1151 	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1152 
1153 	/* set all bits that we expect to always be set */
1154 	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1155 	vmolr |= WX_PSR_VM_L2CTL_BAM |
1156 		 WX_PSR_VM_L2CTL_AUPE |
1157 		 WX_PSR_VM_L2CTL_VACC;
1158 	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1159 
1160 	wx->addr_ctrl.user_set_promisc = false;
1161 	if (netdev->flags & IFF_PROMISC) {
1162 		wx->addr_ctrl.user_set_promisc = true;
1163 		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1164 		/* pf don't want packets routing to vf, so clear UPE */
1165 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1166 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1167 	}
1168 
1169 	if (netdev->flags & IFF_ALLMULTI) {
1170 		fctrl |= WX_PSR_CTL_MPE;
1171 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1172 	}
1173 
1174 	if (netdev->features & NETIF_F_RXALL) {
1175 		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1176 		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1177 		/* receive bad packets */
1178 		wr32m(wx, WX_RSC_CTL,
1179 		      WX_RSC_CTL_SAVE_MAC_ERR,
1180 		      WX_RSC_CTL_SAVE_MAC_ERR);
1181 	} else {
1182 		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1183 	}
1184 
1185 	/* Write addresses to available RAR registers, if there is not
1186 	 * sufficient space to store all the addresses then enable
1187 	 * unicast promiscuous mode
1188 	 */
1189 	count = wx_write_uc_addr_list(netdev, 0);
1190 	if (count < 0) {
1191 		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1192 		vmolr |= WX_PSR_VM_L2CTL_UPE;
1193 	}
1194 
1195 	/* Write addresses to the MTA, if the attempt fails
1196 	 * then we should just turn on promiscuous mode so
1197 	 * that we can at least receive multicast traffic
1198 	 */
1199 	count = wx_write_mc_addr_list(netdev);
1200 	if (count < 0) {
1201 		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1202 		vmolr |= WX_PSR_VM_L2CTL_MPE;
1203 	}
1204 
1205 	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1206 	wr32(wx, WX_PSR_CTL, fctrl);
1207 	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1208 
1209 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1210 	    (features & NETIF_F_HW_VLAN_STAG_RX))
1211 		wx_vlan_strip_control(wx, true);
1212 	else
1213 		wx_vlan_strip_control(wx, false);
1214 
1215 }
1216 EXPORT_SYMBOL(wx_set_rx_mode);
1217 
1218 static void wx_set_rx_buffer_len(struct wx *wx)
1219 {
1220 	struct net_device *netdev = wx->netdev;
1221 	u32 mhadd, max_frame;
1222 
1223 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1224 	/* adjust max frame to be at least the size of a standard frame */
1225 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1226 		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1227 
1228 	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1229 	if (max_frame != mhadd)
1230 		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1231 }
1232 
1233 /**
1234  * wx_change_mtu - Change the Maximum Transfer Unit
1235  * @netdev: network interface device structure
1236  * @new_mtu: new value for maximum frame size
1237  *
1238  * Returns 0 on success, negative on failure
1239  **/
1240 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1241 {
1242 	struct wx *wx = netdev_priv(netdev);
1243 
1244 	netdev->mtu = new_mtu;
1245 	wx_set_rx_buffer_len(wx);
1246 
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL(wx_change_mtu);
1250 
1251 /* Disable the specified rx queue */
1252 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1253 {
1254 	u8 reg_idx = ring->reg_idx;
1255 	u32 rxdctl;
1256 	int ret;
1257 
1258 	/* write value back with RRCFG.EN bit cleared */
1259 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1260 	      WX_PX_RR_CFG_RR_EN, 0);
1261 
1262 	/* the hardware may take up to 100us to really disable the rx queue */
1263 	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1264 				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1265 
1266 	if (ret == -ETIMEDOUT) {
1267 		/* Just for information */
1268 		wx_err(wx,
1269 		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1270 		       reg_idx);
1271 	}
1272 }
1273 EXPORT_SYMBOL(wx_disable_rx_queue);
1274 
1275 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1276 {
1277 	u8 reg_idx = ring->reg_idx;
1278 	u32 rxdctl;
1279 	int ret;
1280 
1281 	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1282 				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1283 
1284 	if (ret == -ETIMEDOUT) {
1285 		/* Just for information */
1286 		wx_err(wx,
1287 		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1288 		       reg_idx);
1289 	}
1290 }
1291 
1292 static void wx_configure_srrctl(struct wx *wx,
1293 				struct wx_ring *rx_ring)
1294 {
1295 	u16 reg_idx = rx_ring->reg_idx;
1296 	u32 srrctl;
1297 
1298 	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1299 	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1300 		    WX_PX_RR_CFG_RR_BUF_SZ |
1301 		    WX_PX_RR_CFG_SPLIT_MODE);
1302 	/* configure header buffer length, needed for RSC */
1303 	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1304 
1305 	/* configure the packet buffer length */
1306 	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1307 
1308 	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1309 }
1310 
1311 static void wx_configure_tx_ring(struct wx *wx,
1312 				 struct wx_ring *ring)
1313 {
1314 	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1315 	u8 reg_idx = ring->reg_idx;
1316 	u64 tdba = ring->dma;
1317 	int ret;
1318 
1319 	/* disable queue to avoid issues while updating state */
1320 	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1321 	WX_WRITE_FLUSH(wx);
1322 
1323 	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1324 	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1325 
1326 	/* reset head and tail pointers */
1327 	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1328 	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1329 	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1330 
1331 	if (ring->count < WX_MAX_TXD)
1332 		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1333 	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1334 
1335 	/* reinitialize tx_buffer_info */
1336 	memset(ring->tx_buffer_info, 0,
1337 	       sizeof(struct wx_tx_buffer) * ring->count);
1338 
1339 	/* enable queue */
1340 	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1341 
1342 	/* poll to verify queue is enabled */
1343 	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1344 				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1345 	if (ret == -ETIMEDOUT)
1346 		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1347 }
1348 
1349 static void wx_configure_rx_ring(struct wx *wx,
1350 				 struct wx_ring *ring)
1351 {
1352 	u16 reg_idx = ring->reg_idx;
1353 	union wx_rx_desc *rx_desc;
1354 	u64 rdba = ring->dma;
1355 	u32 rxdctl;
1356 
1357 	/* disable queue to avoid issues while updating state */
1358 	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1359 	wx_disable_rx_queue(wx, ring);
1360 
1361 	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1362 	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1363 
1364 	if (ring->count == WX_MAX_RXD)
1365 		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1366 	else
1367 		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1368 
1369 	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1370 	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1371 
1372 	/* reset head and tail pointers */
1373 	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1374 	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1375 	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1376 
1377 	wx_configure_srrctl(wx, ring);
1378 
1379 	/* initialize rx_buffer_info */
1380 	memset(ring->rx_buffer_info, 0,
1381 	       sizeof(struct wx_rx_buffer) * ring->count);
1382 
1383 	/* initialize Rx descriptor 0 */
1384 	rx_desc = WX_RX_DESC(ring, 0);
1385 	rx_desc->wb.upper.length = 0;
1386 
1387 	/* enable receive descriptor ring */
1388 	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1389 	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1390 
1391 	wx_enable_rx_queue(wx, ring);
1392 	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1393 }
1394 
1395 /**
1396  * wx_configure_tx - Configure Transmit Unit after Reset
1397  * @wx: pointer to private structure
1398  *
1399  * Configure the Tx unit of the MAC after a reset.
1400  **/
1401 static void wx_configure_tx(struct wx *wx)
1402 {
1403 	u32 i;
1404 
1405 	/* TDM_CTL.TE must be before Tx queues are enabled */
1406 	wr32m(wx, WX_TDM_CTL,
1407 	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1408 
1409 	/* Setup the HW Tx Head and Tail descriptor pointers */
1410 	for (i = 0; i < wx->num_tx_queues; i++)
1411 		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1412 
1413 	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1414 
1415 	if (wx->mac.type == wx_mac_em)
1416 		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1417 
1418 	/* enable mac transmitter */
1419 	wr32m(wx, WX_MAC_TX_CFG,
1420 	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1421 }
1422 
1423 static void wx_restore_vlan(struct wx *wx)
1424 {
1425 	u16 vid = 1;
1426 
1427 	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1428 
1429 	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1430 		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1431 }
1432 
1433 /**
1434  * wx_configure_rx - Configure Receive Unit after Reset
1435  * @wx: pointer to private structure
1436  *
1437  * Configure the Rx unit of the MAC after a reset.
1438  **/
1439 void wx_configure_rx(struct wx *wx)
1440 {
1441 	u32 psrtype, i;
1442 	int ret;
1443 
1444 	wx_disable_rx(wx);
1445 
1446 	psrtype = WX_RDB_PL_CFG_L4HDR |
1447 		  WX_RDB_PL_CFG_L3HDR |
1448 		  WX_RDB_PL_CFG_L2HDR |
1449 		  WX_RDB_PL_CFG_TUN_TUNHDR;
1450 	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1451 
1452 	/* enable hw crc stripping */
1453 	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1454 
1455 	if (wx->mac.type == wx_mac_sp) {
1456 		u32 psrctl;
1457 
1458 		/* RSC Setup */
1459 		psrctl = rd32(wx, WX_PSR_CTL);
1460 		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1461 		psrctl |= WX_PSR_CTL_RSC_DIS;
1462 		wr32(wx, WX_PSR_CTL, psrctl);
1463 	}
1464 
1465 	/* set_rx_buffer_len must be called before ring initialization */
1466 	wx_set_rx_buffer_len(wx);
1467 
1468 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1469 	 * the Base and Length of the Rx Descriptor Ring
1470 	 */
1471 	for (i = 0; i < wx->num_rx_queues; i++)
1472 		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1473 
1474 	/* Enable all receives, disable security engine prior to block traffic */
1475 	ret = wx_disable_sec_rx_path(wx);
1476 	if (ret < 0)
1477 		wx_err(wx, "The register status is abnormal, please check device.");
1478 
1479 	wx_enable_rx(wx);
1480 	wx_enable_sec_rx_path(wx);
1481 }
1482 EXPORT_SYMBOL(wx_configure_rx);
1483 
1484 static void wx_configure_isb(struct wx *wx)
1485 {
1486 	/* set ISB Address */
1487 	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1488 	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1489 		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1490 }
1491 
1492 void wx_configure(struct wx *wx)
1493 {
1494 	wx_set_rxpba(wx);
1495 	wx_configure_port(wx);
1496 
1497 	wx_set_rx_mode(wx->netdev);
1498 	wx_restore_vlan(wx);
1499 	wx_enable_sec_rx_path(wx);
1500 
1501 	wx_configure_tx(wx);
1502 	wx_configure_rx(wx);
1503 	wx_configure_isb(wx);
1504 }
1505 EXPORT_SYMBOL(wx_configure);
1506 
1507 /**
1508  *  wx_disable_pcie_master - Disable PCI-express master access
1509  *  @wx: pointer to hardware structure
1510  *
1511  *  Disables PCI-Express master access and verifies there are no pending
1512  *  requests.
1513  **/
1514 int wx_disable_pcie_master(struct wx *wx)
1515 {
1516 	int status = 0;
1517 	u32 val;
1518 
1519 	/* Always set this bit to ensure any future transactions are blocked */
1520 	pci_clear_master(wx->pdev);
1521 
1522 	/* Exit if master requests are blocked */
1523 	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1524 		return 0;
1525 
1526 	/* Poll for master request bit to clear */
1527 	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1528 				   false, wx, WX_PX_TRANSACTION_PENDING);
1529 	if (status < 0)
1530 		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1531 
1532 	return status;
1533 }
1534 EXPORT_SYMBOL(wx_disable_pcie_master);
1535 
1536 /**
1537  *  wx_stop_adapter - Generic stop Tx/Rx units
1538  *  @wx: pointer to hardware structure
1539  *
1540  *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1541  *  disables transmit and receive units. The adapter_stopped flag is used by
1542  *  the shared code and drivers to determine if the adapter is in a stopped
1543  *  state and should not touch the hardware.
1544  **/
1545 int wx_stop_adapter(struct wx *wx)
1546 {
1547 	u16 i;
1548 
1549 	/* Set the adapter_stopped flag so other driver functions stop touching
1550 	 * the hardware
1551 	 */
1552 	wx->adapter_stopped = true;
1553 
1554 	/* Disable the receive unit */
1555 	wx_disable_rx(wx);
1556 
1557 	/* Set interrupt mask to stop interrupts from being generated */
1558 	wx_intr_disable(wx, WX_INTR_ALL);
1559 
1560 	/* Clear any pending interrupts, flush previous writes */
1561 	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1562 	wr32(wx, WX_BME_CTL, 0x3);
1563 
1564 	/* Disable the transmit unit.  Each queue must be disabled. */
1565 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1566 		wr32m(wx, WX_PX_TR_CFG(i),
1567 		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1568 		      WX_PX_TR_CFG_SWFLSH);
1569 	}
1570 
1571 	/* Disable the receive unit by stopping each queue */
1572 	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1573 		wr32m(wx, WX_PX_RR_CFG(i),
1574 		      WX_PX_RR_CFG_RR_EN, 0);
1575 	}
1576 
1577 	/* flush all queues disables */
1578 	WX_WRITE_FLUSH(wx);
1579 
1580 	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1581 	 * access and verify no pending requests
1582 	 */
1583 	return wx_disable_pcie_master(wx);
1584 }
1585 EXPORT_SYMBOL(wx_stop_adapter);
1586 
1587 void wx_reset_misc(struct wx *wx)
1588 {
1589 	int i;
1590 
1591 	/* receive packets that size > 2048 */
1592 	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1593 
1594 	/* clear counters on read */
1595 	wr32m(wx, WX_MMC_CONTROL,
1596 	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1597 
1598 	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1599 	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1600 
1601 	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1602 
1603 	wr32m(wx, WX_MIS_RST_ST,
1604 	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1605 
1606 	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1607 	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1608 	for (i = 0; i < 16; i++) {
1609 		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1610 		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1611 		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1612 	}
1613 	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1614 	for (i = 0; i < 16; i++) {
1615 		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1616 		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1617 		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1618 	}
1619 
1620 	/* set pause frame dst mac addr */
1621 	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1622 	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1623 }
1624 EXPORT_SYMBOL(wx_reset_misc);
1625 
1626 /**
1627  *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1628  *  @wx: pointer to hardware structure
1629  *  @msix_count: number of MSI interrupts that can be obtained
1630  *  @max_msix_count: number of MSI interrupts that mac need
1631  *
1632  *  Read PCIe configuration space, and get the MSI-X vector count from
1633  *  the capabilities table.
1634  **/
1635 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1636 {
1637 	struct pci_dev *pdev = wx->pdev;
1638 	struct device *dev = &pdev->dev;
1639 	int pos;
1640 
1641 	*msix_count = 1;
1642 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1643 	if (!pos) {
1644 		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1645 		return -EINVAL;
1646 	}
1647 	pci_read_config_word(pdev,
1648 			     pos + PCI_MSIX_FLAGS,
1649 			     msix_count);
1650 	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1651 	/* MSI-X count is zero-based in HW */
1652 	*msix_count += 1;
1653 
1654 	if (*msix_count > max_msix_count)
1655 		*msix_count = max_msix_count;
1656 
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1660 
1661 int wx_sw_init(struct wx *wx)
1662 {
1663 	struct pci_dev *pdev = wx->pdev;
1664 	u32 ssid = 0;
1665 	int err = 0;
1666 
1667 	wx->vendor_id = pdev->vendor;
1668 	wx->device_id = pdev->device;
1669 	wx->revision_id = pdev->revision;
1670 	wx->oem_svid = pdev->subsystem_vendor;
1671 	wx->oem_ssid = pdev->subsystem_device;
1672 	wx->bus.device = PCI_SLOT(pdev->devfn);
1673 	wx->bus.func = PCI_FUNC(pdev->devfn);
1674 
1675 	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1676 		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1677 		wx->subsystem_device_id = pdev->subsystem_device;
1678 	} else {
1679 		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1680 		if (!err)
1681 			wx->subsystem_device_id = swab16((u16)ssid);
1682 
1683 		return err;
1684 	}
1685 
1686 	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1687 				sizeof(struct wx_mac_addr),
1688 				GFP_KERNEL);
1689 	if (!wx->mac_table) {
1690 		wx_err(wx, "mac_table allocation failed\n");
1691 		return -ENOMEM;
1692 	}
1693 
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(wx_sw_init);
1697 
1698 /**
1699  *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1700  *  @wx: pointer to hardware structure
1701  *  @vlan: VLAN id to write to VLAN filter
1702  *
1703  *  return the VLVF index where this VLAN id should be placed
1704  *
1705  **/
1706 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1707 {
1708 	u32 bits = 0, first_empty_slot = 0;
1709 	int regindex;
1710 
1711 	/* short cut the special case */
1712 	if (vlan == 0)
1713 		return 0;
1714 
1715 	/* Search for the vlan id in the VLVF entries. Save off the first empty
1716 	 * slot found along the way
1717 	 */
1718 	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1719 		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1720 		bits = rd32(wx, WX_PSR_VLAN_SWC);
1721 		if (!bits && !(first_empty_slot))
1722 			first_empty_slot = regindex;
1723 		else if ((bits & 0x0FFF) == vlan)
1724 			break;
1725 	}
1726 
1727 	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1728 		if (first_empty_slot)
1729 			regindex = first_empty_slot;
1730 		else
1731 			regindex = -ENOMEM;
1732 	}
1733 
1734 	return regindex;
1735 }
1736 
1737 /**
1738  *  wx_set_vlvf - Set VLAN Pool Filter
1739  *  @wx: pointer to hardware structure
1740  *  @vlan: VLAN id to write to VLAN filter
1741  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
1742  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
1743  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
1744  *                 should be changed
1745  *
1746  *  Turn on/off specified bit in VLVF table.
1747  **/
1748 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
1749 		       bool *vfta_changed)
1750 {
1751 	int vlvf_index;
1752 	u32 vt, bits;
1753 
1754 	/* If VT Mode is set
1755 	 *   Either vlan_on
1756 	 *     make sure the vlan is in VLVF
1757 	 *     set the vind bit in the matching VLVFB
1758 	 *   Or !vlan_on
1759 	 *     clear the pool bit and possibly the vind
1760 	 */
1761 	vt = rd32(wx, WX_CFG_PORT_CTL);
1762 	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
1763 		return 0;
1764 
1765 	vlvf_index = wx_find_vlvf_slot(wx, vlan);
1766 	if (vlvf_index < 0)
1767 		return vlvf_index;
1768 
1769 	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
1770 	if (vlan_on) {
1771 		/* set the pool bit */
1772 		if (vind < 32) {
1773 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1774 			bits |= (1 << vind);
1775 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1776 		} else {
1777 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1778 			bits |= (1 << (vind - 32));
1779 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1780 		}
1781 	} else {
1782 		/* clear the pool bit */
1783 		if (vind < 32) {
1784 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1785 			bits &= ~(1 << vind);
1786 			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1787 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1788 		} else {
1789 			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1790 			bits &= ~(1 << (vind - 32));
1791 			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1792 			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1793 		}
1794 	}
1795 
1796 	if (bits) {
1797 		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
1798 		if (!vlan_on && vfta_changed)
1799 			*vfta_changed = false;
1800 	} else {
1801 		wr32(wx, WX_PSR_VLAN_SWC, 0);
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 /**
1808  *  wx_set_vfta - Set VLAN filter table
1809  *  @wx: pointer to hardware structure
1810  *  @vlan: VLAN id to write to VLAN filter
1811  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
1812  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
1813  *
1814  *  Turn on/off specified VLAN in the VLAN filter table.
1815  **/
1816 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
1817 {
1818 	u32 bitindex, vfta, targetbit;
1819 	bool vfta_changed = false;
1820 	int regindex, ret;
1821 
1822 	/* this is a 2 part operation - first the VFTA, then the
1823 	 * VLVF and VLVFB if VT Mode is set
1824 	 * We don't write the VFTA until we know the VLVF part succeeded.
1825 	 */
1826 
1827 	/* Part 1
1828 	 * The VFTA is a bitstring made up of 128 32-bit registers
1829 	 * that enable the particular VLAN id, much like the MTA:
1830 	 *    bits[11-5]: which register
1831 	 *    bits[4-0]:  which bit in the register
1832 	 */
1833 	regindex = (vlan >> 5) & 0x7F;
1834 	bitindex = vlan & 0x1F;
1835 	targetbit = (1 << bitindex);
1836 	/* errata 5 */
1837 	vfta = wx->mac.vft_shadow[regindex];
1838 	if (vlan_on) {
1839 		if (!(vfta & targetbit)) {
1840 			vfta |= targetbit;
1841 			vfta_changed = true;
1842 		}
1843 	} else {
1844 		if ((vfta & targetbit)) {
1845 			vfta &= ~targetbit;
1846 			vfta_changed = true;
1847 		}
1848 	}
1849 	/* Part 2
1850 	 * Call wx_set_vlvf to set VLVFB and VLVF
1851 	 */
1852 	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
1853 	if (ret != 0)
1854 		return ret;
1855 
1856 	if (vfta_changed)
1857 		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
1858 	wx->mac.vft_shadow[regindex] = vfta;
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  *  wx_clear_vfta - Clear VLAN filter table
1865  *  @wx: pointer to hardware structure
1866  *
1867  *  Clears the VLAN filer table, and the VMDq index associated with the filter
1868  **/
1869 static void wx_clear_vfta(struct wx *wx)
1870 {
1871 	u32 offset;
1872 
1873 	for (offset = 0; offset < wx->mac.vft_size; offset++) {
1874 		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
1875 		wx->mac.vft_shadow[offset] = 0;
1876 	}
1877 
1878 	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
1879 		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
1880 		wr32(wx, WX_PSR_VLAN_SWC, 0);
1881 		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
1882 		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
1883 	}
1884 }
1885 
1886 int wx_vlan_rx_add_vid(struct net_device *netdev,
1887 		       __be16 proto, u16 vid)
1888 {
1889 	struct wx *wx = netdev_priv(netdev);
1890 
1891 	/* add VID to filter table */
1892 	wx_set_vfta(wx, vid, VMDQ_P(0), true);
1893 	set_bit(vid, wx->active_vlans);
1894 
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
1898 
1899 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
1900 {
1901 	struct wx *wx = netdev_priv(netdev);
1902 
1903 	/* remove VID from filter table */
1904 	if (vid)
1905 		wx_set_vfta(wx, vid, VMDQ_P(0), false);
1906 	clear_bit(vid, wx->active_vlans);
1907 
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
1911 
1912 /**
1913  *  wx_start_hw - Prepare hardware for Tx/Rx
1914  *  @wx: pointer to hardware structure
1915  *
1916  *  Starts the hardware using the generic start_hw function
1917  *  and the generation start_hw function.
1918  *  Then performs revision-specific operations, if any.
1919  **/
1920 void wx_start_hw(struct wx *wx)
1921 {
1922 	int i;
1923 
1924 	/* Clear the VLAN filter table */
1925 	wx_clear_vfta(wx);
1926 	WX_WRITE_FLUSH(wx);
1927 	/* Clear the rate limiters */
1928 	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1929 		wr32(wx, WX_TDM_RP_IDX, i);
1930 		wr32(wx, WX_TDM_RP_RATE, 0);
1931 	}
1932 }
1933 EXPORT_SYMBOL(wx_start_hw);
1934 
1935 MODULE_LICENSE("GPL");
1936