xref: /openbmc/linux/drivers/net/ethernet/via/via-velocity.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This code is derived from the VIA reference driver (copyright message
4  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
5  * addition to the Linux kernel.
6  *
7  * The code has been merged into one source file, cleaned up to follow
8  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
9  * for 64bit hardware platforms.
10  *
11  * TODO
12  *	rx_copybreak/alignment
13  *	More testing
14  *
15  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16  * Additional fixes and clean up: Francois Romieu
17  *
18  * This source has not been verified for use in safety critical systems.
19  *
20  * Please direct queries about the revamped driver to the linux-kernel
21  * list not VIA.
22  *
23  * Original code:
24  *
25  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26  * All rights reserved.
27  *
28  * Author: Chuang Liang-Shing, AJ Jiang
29  *
30  * Date: Jan 24, 2003
31  *
32  * MODULE_LICENSE("GPL");
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/bitops.h>
40 #include <linux/init.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/mm.h>
43 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/skbuff.h>
50 #include <linux/delay.h>
51 #include <linux/timer.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/string.h>
55 #include <linux/wait.h>
56 #include <linux/io.h>
57 #include <linux/if.h>
58 #include <linux/uaccess.h>
59 #include <linux/proc_fs.h>
60 #include <linux/of_address.h>
61 #include <linux/of_device.h>
62 #include <linux/of_irq.h>
63 #include <linux/inetdevice.h>
64 #include <linux/platform_device.h>
65 #include <linux/reboot.h>
66 #include <linux/ethtool.h>
67 #include <linux/mii.h>
68 #include <linux/in.h>
69 #include <linux/if_arp.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ip.h>
72 #include <linux/tcp.h>
73 #include <linux/udp.h>
74 #include <linux/crc-ccitt.h>
75 #include <linux/crc32.h>
76 
77 #include "via-velocity.h"
78 
79 enum velocity_bus_type {
80 	BUS_PCI,
81 	BUS_PLATFORM,
82 };
83 
84 static int velocity_nics;
85 
86 static void velocity_set_power_state(struct velocity_info *vptr, char state)
87 {
88 	void *addr = vptr->mac_regs;
89 
90 	if (vptr->pdev)
91 		pci_set_power_state(vptr->pdev, state);
92 	else
93 		writeb(state, addr + 0x154);
94 }
95 
96 /**
97  *	mac_get_cam_mask	-	Read a CAM mask
98  *	@regs: register block for this velocity
99  *	@mask: buffer to store mask
100  *
101  *	Fetch the mask bits of the selected CAM and store them into the
102  *	provided mask buffer.
103  */
104 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
105 {
106 	int i;
107 
108 	/* Select CAM mask */
109 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
110 
111 	writeb(0, &regs->CAMADDR);
112 
113 	/* read mask */
114 	for (i = 0; i < 8; i++)
115 		*mask++ = readb(&(regs->MARCAM[i]));
116 
117 	/* disable CAMEN */
118 	writeb(0, &regs->CAMADDR);
119 
120 	/* Select mar */
121 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
122 }
123 
124 /**
125  *	mac_set_cam_mask	-	Set a CAM mask
126  *	@regs: register block for this velocity
127  *	@mask: CAM mask to load
128  *
129  *	Store a new mask into a CAM
130  */
131 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
132 {
133 	int i;
134 	/* Select CAM mask */
135 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
136 
137 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
138 
139 	for (i = 0; i < 8; i++)
140 		writeb(*mask++, &(regs->MARCAM[i]));
141 
142 	/* disable CAMEN */
143 	writeb(0, &regs->CAMADDR);
144 
145 	/* Select mar */
146 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
147 }
148 
149 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
150 {
151 	int i;
152 	/* Select CAM mask */
153 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
154 
155 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
156 
157 	for (i = 0; i < 8; i++)
158 		writeb(*mask++, &(regs->MARCAM[i]));
159 
160 	/* disable CAMEN */
161 	writeb(0, &regs->CAMADDR);
162 
163 	/* Select mar */
164 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
165 }
166 
167 /**
168  *	mac_set_cam	-	set CAM data
169  *	@regs: register block of this velocity
170  *	@idx: Cam index
171  *	@addr: 2 or 6 bytes of CAM data
172  *
173  *	Load an address or vlan tag into a CAM
174  */
175 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
176 {
177 	int i;
178 
179 	/* Select CAM mask */
180 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
181 
182 	idx &= (64 - 1);
183 
184 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
185 
186 	for (i = 0; i < 6; i++)
187 		writeb(*addr++, &(regs->MARCAM[i]));
188 
189 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
190 
191 	udelay(10);
192 
193 	writeb(0, &regs->CAMADDR);
194 
195 	/* Select mar */
196 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197 }
198 
199 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
200 			     const u8 *addr)
201 {
202 
203 	/* Select CAM mask */
204 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
205 
206 	idx &= (64 - 1);
207 
208 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
209 	writew(*((u16 *) addr), &regs->MARCAM[0]);
210 
211 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
212 
213 	udelay(10);
214 
215 	writeb(0, &regs->CAMADDR);
216 
217 	/* Select mar */
218 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219 }
220 
221 
222 /**
223  *	mac_wol_reset	-	reset WOL after exiting low power
224  *	@regs: register block of this velocity
225  *
226  *	Called after we drop out of wake on lan mode in order to
227  *	reset the Wake on lan features. This function doesn't restore
228  *	the rest of the logic from the result of sleep/wakeup
229  */
230 static void mac_wol_reset(struct mac_regs __iomem *regs)
231 {
232 
233 	/* Turn off SWPTAG right after leaving power mode */
234 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
235 	/* clear sticky bits */
236 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
237 
238 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
239 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
240 	/* disable force PME-enable */
241 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
242 	/* disable power-event config bit */
243 	writew(0xFFFF, &regs->WOLCRClr);
244 	/* clear power status */
245 	writew(0xFFFF, &regs->WOLSRClr);
246 }
247 
248 static const struct ethtool_ops velocity_ethtool_ops;
249 
250 /*
251     Define module options
252 */
253 
254 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
255 MODULE_LICENSE("GPL");
256 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
257 
258 #define VELOCITY_PARAM(N, D) \
259 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
260 	module_param_array(N, int, NULL, 0); \
261 	MODULE_PARM_DESC(N, D);
262 
263 #define RX_DESC_MIN     64
264 #define RX_DESC_MAX     255
265 #define RX_DESC_DEF     64
266 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
267 
268 #define TX_DESC_MIN     16
269 #define TX_DESC_MAX     256
270 #define TX_DESC_DEF     64
271 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
272 
273 #define RX_THRESH_MIN   0
274 #define RX_THRESH_MAX   3
275 #define RX_THRESH_DEF   0
276 /* rx_thresh[] is used for controlling the receive fifo threshold.
277    0: indicate the rxfifo threshold is 128 bytes.
278    1: indicate the rxfifo threshold is 512 bytes.
279    2: indicate the rxfifo threshold is 1024 bytes.
280    3: indicate the rxfifo threshold is store & forward.
281 */
282 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
283 
284 #define DMA_LENGTH_MIN  0
285 #define DMA_LENGTH_MAX  7
286 #define DMA_LENGTH_DEF  6
287 
288 /* DMA_length[] is used for controlling the DMA length
289    0: 8 DWORDs
290    1: 16 DWORDs
291    2: 32 DWORDs
292    3: 64 DWORDs
293    4: 128 DWORDs
294    5: 256 DWORDs
295    6: SF(flush till emply)
296    7: SF(flush till emply)
297 */
298 VELOCITY_PARAM(DMA_length, "DMA length");
299 
300 #define IP_ALIG_DEF     0
301 /* IP_byte_align[] is used for IP header DWORD byte aligned
302    0: indicate the IP header won't be DWORD byte aligned.(Default) .
303    1: indicate the IP header will be DWORD byte aligned.
304       In some environment, the IP header should be DWORD byte aligned,
305       or the packet will be droped when we receive it. (eg: IPVS)
306 */
307 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
308 
309 #define FLOW_CNTL_DEF   1
310 #define FLOW_CNTL_MIN   1
311 #define FLOW_CNTL_MAX   5
312 
313 /* flow_control[] is used for setting the flow control ability of NIC.
314    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
315    2: enable TX flow control.
316    3: enable RX flow control.
317    4: enable RX/TX flow control.
318    5: disable
319 */
320 VELOCITY_PARAM(flow_control, "Enable flow control ability");
321 
322 #define MED_LNK_DEF 0
323 #define MED_LNK_MIN 0
324 #define MED_LNK_MAX 5
325 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
326    0: indicate autonegotiation for both speed and duplex mode
327    1: indicate 100Mbps half duplex mode
328    2: indicate 100Mbps full duplex mode
329    3: indicate 10Mbps half duplex mode
330    4: indicate 10Mbps full duplex mode
331    5: indicate 1000Mbps full duplex mode
332 
333    Note:
334    if EEPROM have been set to the force mode, this option is ignored
335    by driver.
336 */
337 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
338 
339 #define WOL_OPT_DEF     0
340 #define WOL_OPT_MIN     0
341 #define WOL_OPT_MAX     7
342 /* wol_opts[] is used for controlling wake on lan behavior.
343    0: Wake up if recevied a magic packet. (Default)
344    1: Wake up if link status is on/off.
345    2: Wake up if recevied an arp packet.
346    4: Wake up if recevied any unicast packet.
347    Those value can be sumed up to support more than one option.
348 */
349 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
350 
351 static int rx_copybreak = 200;
352 module_param(rx_copybreak, int, 0644);
353 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
354 
355 /*
356  *	Internal board variants. At the moment we have only one
357  */
358 static struct velocity_info_tbl chip_info_table[] = {
359 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
360 	{ }
361 };
362 
363 /*
364  *	Describe the PCI device identifiers that we support in this
365  *	device driver. Used for hotplug autoloading.
366  */
367 
368 static const struct pci_device_id velocity_pci_id_table[] = {
369 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
370 	{ }
371 };
372 
373 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
374 
375 /*
376  *	Describe the OF device identifiers that we support in this
377  *	device driver. Used for devicetree nodes.
378  */
379 static const struct of_device_id velocity_of_ids[] = {
380 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
381 	{ /* Sentinel */ },
382 };
383 MODULE_DEVICE_TABLE(of, velocity_of_ids);
384 
385 /**
386  *	get_chip_name	- 	identifier to name
387  *	@chip_id: chip identifier
388  *
389  *	Given a chip identifier return a suitable description. Returns
390  *	a pointer a static string valid while the driver is loaded.
391  */
392 static const char *get_chip_name(enum chip_type chip_id)
393 {
394 	int i;
395 	for (i = 0; chip_info_table[i].name != NULL; i++)
396 		if (chip_info_table[i].chip_id == chip_id)
397 			break;
398 	return chip_info_table[i].name;
399 }
400 
401 /**
402  *	velocity_set_int_opt	-	parser for integer options
403  *	@opt: pointer to option value
404  *	@val: value the user requested (or -1 for default)
405  *	@min: lowest value allowed
406  *	@max: highest value allowed
407  *	@def: default value
408  *	@name: property name
409  *
410  *	Set an integer property in the module options. This function does
411  *	all the verification and checking as well as reporting so that
412  *	we don't duplicate code for each option.
413  */
414 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
415 				 char *name)
416 {
417 	if (val == -1)
418 		*opt = def;
419 	else if (val < min || val > max) {
420 		pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
421 			  name, min, max);
422 		*opt = def;
423 	} else {
424 		pr_info("set value of parameter %s to %d\n", name, val);
425 		*opt = val;
426 	}
427 }
428 
429 /**
430  *	velocity_set_bool_opt	-	parser for boolean options
431  *	@opt: pointer to option value
432  *	@val: value the user requested (or -1 for default)
433  *	@def: default value (yes/no)
434  *	@flag: numeric value to set for true.
435  *	@name: property name
436  *
437  *	Set a boolean property in the module options. This function does
438  *	all the verification and checking as well as reporting so that
439  *	we don't duplicate code for each option.
440  */
441 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
442 				  char *name)
443 {
444 	(*opt) &= (~flag);
445 	if (val == -1)
446 		*opt |= (def ? flag : 0);
447 	else if (val < 0 || val > 1) {
448 		pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
449 			  name, 0, 1);
450 		*opt |= (def ? flag : 0);
451 	} else {
452 		pr_info("set parameter %s to %s\n",
453 			name, val ? "TRUE" : "FALSE");
454 		*opt |= (val ? flag : 0);
455 	}
456 }
457 
458 /**
459  *	velocity_get_options	-	set options on device
460  *	@opts: option structure for the device
461  *	@index: index of option to use in module options array
462  *
463  *	Turn the module and command options into a single structure
464  *	for the current device
465  */
466 static void velocity_get_options(struct velocity_opt *opts, int index)
467 {
468 
469 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index],
470 			     RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF,
471 			     "rx_thresh");
472 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index],
473 			     DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF,
474 			     "DMA_length");
475 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index],
476 			     RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF,
477 			     "RxDescriptors");
478 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index],
479 			     TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF,
480 			     "TxDescriptors");
481 
482 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index],
483 			     FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF,
484 			     "flow_control");
485 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index],
486 			      IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN,
487 			      "IP_byte_align");
488 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index],
489 			     MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF,
490 			     "Media link mode");
491 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index],
492 			     WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF,
493 			     "Wake On Lan options");
494 	opts->numrx = (opts->numrx & ~3);
495 }
496 
497 /**
498  *	velocity_init_cam_filter	-	initialise CAM
499  *	@vptr: velocity to program
500  *
501  *	Initialize the content addressable memory used for filters. Load
502  *	appropriately according to the presence of VLAN
503  */
504 static void velocity_init_cam_filter(struct velocity_info *vptr)
505 {
506 	struct mac_regs __iomem *regs = vptr->mac_regs;
507 	unsigned int vid, i = 0;
508 
509 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
510 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
511 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
512 
513 	/* Disable all CAMs */
514 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
515 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
516 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
517 	mac_set_cam_mask(regs, vptr->mCAMmask);
518 
519 	/* Enable VCAMs */
520 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
521 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
522 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
523 		if (++i >= VCAM_SIZE)
524 			break;
525 	}
526 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
527 }
528 
529 static int velocity_vlan_rx_add_vid(struct net_device *dev,
530 				    __be16 proto, u16 vid)
531 {
532 	struct velocity_info *vptr = netdev_priv(dev);
533 
534 	spin_lock_irq(&vptr->lock);
535 	set_bit(vid, vptr->active_vlans);
536 	velocity_init_cam_filter(vptr);
537 	spin_unlock_irq(&vptr->lock);
538 	return 0;
539 }
540 
541 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
542 				     __be16 proto, u16 vid)
543 {
544 	struct velocity_info *vptr = netdev_priv(dev);
545 
546 	spin_lock_irq(&vptr->lock);
547 	clear_bit(vid, vptr->active_vlans);
548 	velocity_init_cam_filter(vptr);
549 	spin_unlock_irq(&vptr->lock);
550 	return 0;
551 }
552 
553 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
554 {
555 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
556 }
557 
558 /**
559  *	velocity_rx_reset	-	handle a receive reset
560  *	@vptr: velocity we are resetting
561  *
562  *	Reset the ownership and status for the receive ring side.
563  *	Hand all the receive queue to the NIC.
564  */
565 static void velocity_rx_reset(struct velocity_info *vptr)
566 {
567 
568 	struct mac_regs __iomem *regs = vptr->mac_regs;
569 	int i;
570 
571 	velocity_init_rx_ring_indexes(vptr);
572 
573 	/*
574 	 *	Init state, all RD entries belong to the NIC
575 	 */
576 	for (i = 0; i < vptr->options.numrx; ++i)
577 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
578 
579 	writew(vptr->options.numrx, &regs->RBRDU);
580 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
581 	writew(0, &regs->RDIdx);
582 	writew(vptr->options.numrx - 1, &regs->RDCSize);
583 }
584 
585 /**
586  *	velocity_get_opt_media_mode	-	get media selection
587  *	@vptr: velocity adapter
588  *
589  *	Get the media mode stored in EEPROM or module options and load
590  *	mii_status accordingly. The requested link state information
591  *	is also returned.
592  */
593 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
594 {
595 	u32 status = 0;
596 
597 	switch (vptr->options.spd_dpx) {
598 	case SPD_DPX_AUTO:
599 		status = VELOCITY_AUTONEG_ENABLE;
600 		break;
601 	case SPD_DPX_100_FULL:
602 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
603 		break;
604 	case SPD_DPX_10_FULL:
605 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
606 		break;
607 	case SPD_DPX_100_HALF:
608 		status = VELOCITY_SPEED_100;
609 		break;
610 	case SPD_DPX_10_HALF:
611 		status = VELOCITY_SPEED_10;
612 		break;
613 	case SPD_DPX_1000_FULL:
614 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
615 		break;
616 	}
617 	vptr->mii_status = status;
618 	return status;
619 }
620 
621 /**
622  *	safe_disable_mii_autopoll	-	autopoll off
623  *	@regs: velocity registers
624  *
625  *	Turn off the autopoll and wait for it to disable on the chip
626  */
627 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
628 {
629 	u16 ww;
630 
631 	/*  turn off MAUTO */
632 	writeb(0, &regs->MIICR);
633 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
634 		udelay(1);
635 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
636 			break;
637 	}
638 }
639 
640 /**
641  *	enable_mii_autopoll	-	turn on autopolling
642  *	@regs: velocity registers
643  *
644  *	Enable the MII link status autopoll feature on the Velocity
645  *	hardware. Wait for it to enable.
646  */
647 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
648 {
649 	int ii;
650 
651 	writeb(0, &(regs->MIICR));
652 	writeb(MIIADR_SWMPL, &regs->MIIADR);
653 
654 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
655 		udelay(1);
656 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
657 			break;
658 	}
659 
660 	writeb(MIICR_MAUTO, &regs->MIICR);
661 
662 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
663 		udelay(1);
664 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
665 			break;
666 	}
667 
668 }
669 
670 /**
671  *	velocity_mii_read	-	read MII data
672  *	@regs: velocity registers
673  *	@index: MII register index
674  *	@data: buffer for received data
675  *
676  *	Perform a single read of an MII 16bit register. Returns zero
677  *	on success or -ETIMEDOUT if the PHY did not respond.
678  */
679 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
680 {
681 	u16 ww;
682 
683 	/*
684 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
685 	 */
686 	safe_disable_mii_autopoll(regs);
687 
688 	writeb(index, &regs->MIIADR);
689 
690 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
691 
692 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
693 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
694 			break;
695 	}
696 
697 	*data = readw(&regs->MIIDATA);
698 
699 	enable_mii_autopoll(regs);
700 	if (ww == W_MAX_TIMEOUT)
701 		return -ETIMEDOUT;
702 	return 0;
703 }
704 
705 /**
706  *	mii_check_media_mode	-	check media state
707  *	@regs: velocity registers
708  *
709  *	Check the current MII status and determine the link status
710  *	accordingly
711  */
712 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
713 {
714 	u32 status = 0;
715 	u16 ANAR;
716 
717 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
718 		status |= VELOCITY_LINK_FAIL;
719 
720 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
721 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
722 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
723 		status |= (VELOCITY_SPEED_1000);
724 	else {
725 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
726 		if (ANAR & ADVERTISE_100FULL)
727 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
728 		else if (ANAR & ADVERTISE_100HALF)
729 			status |= VELOCITY_SPEED_100;
730 		else if (ANAR & ADVERTISE_10FULL)
731 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
732 		else
733 			status |= (VELOCITY_SPEED_10);
734 	}
735 
736 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
737 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
738 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
739 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
740 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
741 				status |= VELOCITY_AUTONEG_ENABLE;
742 		}
743 	}
744 
745 	return status;
746 }
747 
748 /**
749  *	velocity_mii_write	-	write MII data
750  *	@regs: velocity registers
751  *	@mii_addr: MII register index
752  *	@data: 16bit data for the MII register
753  *
754  *	Perform a single write to an MII 16bit register. Returns zero
755  *	on success or -ETIMEDOUT if the PHY did not respond.
756  */
757 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
758 {
759 	u16 ww;
760 
761 	/*
762 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
763 	 */
764 	safe_disable_mii_autopoll(regs);
765 
766 	/* MII reg offset */
767 	writeb(mii_addr, &regs->MIIADR);
768 	/* set MII data */
769 	writew(data, &regs->MIIDATA);
770 
771 	/* turn on MIICR_WCMD */
772 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
773 
774 	/* W_MAX_TIMEOUT is the timeout period */
775 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
776 		udelay(5);
777 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
778 			break;
779 	}
780 	enable_mii_autopoll(regs);
781 
782 	if (ww == W_MAX_TIMEOUT)
783 		return -ETIMEDOUT;
784 	return 0;
785 }
786 
787 /**
788  *	set_mii_flow_control	-	flow control setup
789  *	@vptr: velocity interface
790  *
791  *	Set up the flow control on this interface according to
792  *	the supplied user/eeprom options.
793  */
794 static void set_mii_flow_control(struct velocity_info *vptr)
795 {
796 	/*Enable or Disable PAUSE in ANAR */
797 	switch (vptr->options.flow_cntl) {
798 	case FLOW_CNTL_TX:
799 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
800 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
801 		break;
802 
803 	case FLOW_CNTL_RX:
804 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
805 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
806 		break;
807 
808 	case FLOW_CNTL_TX_RX:
809 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
810 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
811 		break;
812 
813 	case FLOW_CNTL_DISABLE:
814 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
815 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
816 		break;
817 	default:
818 		break;
819 	}
820 }
821 
822 /**
823  *	mii_set_auto_on		-	autonegotiate on
824  *	@vptr: velocity
825  *
826  *	Enable autonegotation on this interface
827  */
828 static void mii_set_auto_on(struct velocity_info *vptr)
829 {
830 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
831 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
832 	else
833 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
834 }
835 
836 static u32 check_connection_type(struct mac_regs __iomem *regs)
837 {
838 	u32 status = 0;
839 	u8 PHYSR0;
840 	u16 ANAR;
841 	PHYSR0 = readb(&regs->PHYSR0);
842 
843 	/*
844 	   if (!(PHYSR0 & PHYSR0_LINKGD))
845 	   status|=VELOCITY_LINK_FAIL;
846 	 */
847 
848 	if (PHYSR0 & PHYSR0_FDPX)
849 		status |= VELOCITY_DUPLEX_FULL;
850 
851 	if (PHYSR0 & PHYSR0_SPDG)
852 		status |= VELOCITY_SPEED_1000;
853 	else if (PHYSR0 & PHYSR0_SPD10)
854 		status |= VELOCITY_SPEED_10;
855 	else
856 		status |= VELOCITY_SPEED_100;
857 
858 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
859 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
860 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
861 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
862 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
863 				status |= VELOCITY_AUTONEG_ENABLE;
864 		}
865 	}
866 
867 	return status;
868 }
869 
870 /**
871  *	velocity_set_media_mode		-	set media mode
872  *	@vptr: velocity adapter
873  *	@mii_status: old MII link state
874  *
875  *	Check the media link state and configure the flow control
876  *	PHY and also velocity hardware setup accordingly. In particular
877  *	we need to set up CD polling and frame bursting.
878  */
879 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
880 {
881 	struct mac_regs __iomem *regs = vptr->mac_regs;
882 
883 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
884 
885 	/* Set mii link status */
886 	set_mii_flow_control(vptr);
887 
888 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
889 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
890 
891 	/*
892 	 *	If connection type is AUTO
893 	 */
894 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
895 		netdev_info(vptr->netdev, "Velocity is in AUTO mode\n");
896 		/* clear force MAC mode bit */
897 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
898 		/* set duplex mode of MAC according to duplex mode of MII */
899 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
900 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
901 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
902 
903 		/* enable AUTO-NEGO mode */
904 		mii_set_auto_on(vptr);
905 	} else {
906 		u16 CTRL1000;
907 		u16 ANAR;
908 		u8 CHIPGCR;
909 
910 		/*
911 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
912 		 *    and enable it in fullduplex mode
913 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
914 		 * 3. only enable CD heart beat counter in 10HD mode
915 		 */
916 
917 		/* set force MAC mode bit */
918 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
919 
920 		CHIPGCR = readb(&regs->CHIPGCR);
921 
922 		if (mii_status & VELOCITY_SPEED_1000)
923 			CHIPGCR |= CHIPGCR_FCGMII;
924 		else
925 			CHIPGCR &= ~CHIPGCR_FCGMII;
926 
927 		if (mii_status & VELOCITY_DUPLEX_FULL) {
928 			CHIPGCR |= CHIPGCR_FCFDX;
929 			writeb(CHIPGCR, &regs->CHIPGCR);
930 			netdev_info(vptr->netdev,
931 				    "set Velocity to forced full mode\n");
932 			if (vptr->rev_id < REV_ID_VT3216_A0)
933 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
934 		} else {
935 			CHIPGCR &= ~CHIPGCR_FCFDX;
936 			netdev_info(vptr->netdev,
937 				    "set Velocity to forced half mode\n");
938 			writeb(CHIPGCR, &regs->CHIPGCR);
939 			if (vptr->rev_id < REV_ID_VT3216_A0)
940 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
941 		}
942 
943 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
944 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
945 		if ((mii_status & VELOCITY_SPEED_1000) &&
946 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
947 			CTRL1000 |= ADVERTISE_1000FULL;
948 		}
949 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
950 
951 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
952 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
953 		else
954 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
955 
956 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
957 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
958 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
959 		if (mii_status & VELOCITY_SPEED_100) {
960 			if (mii_status & VELOCITY_DUPLEX_FULL)
961 				ANAR |= ADVERTISE_100FULL;
962 			else
963 				ANAR |= ADVERTISE_100HALF;
964 		} else if (mii_status & VELOCITY_SPEED_10) {
965 			if (mii_status & VELOCITY_DUPLEX_FULL)
966 				ANAR |= ADVERTISE_10FULL;
967 			else
968 				ANAR |= ADVERTISE_10HALF;
969 		}
970 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
971 		/* enable AUTO-NEGO mode */
972 		mii_set_auto_on(vptr);
973 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
974 	}
975 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
976 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
977 	return VELOCITY_LINK_CHANGE;
978 }
979 
980 /**
981  *	velocity_print_link_status	-	link status reporting
982  *	@vptr: velocity to report on
983  *
984  *	Turn the link status of the velocity card into a kernel log
985  *	description of the new link state, detailing speed and duplex
986  *	status
987  */
988 static void velocity_print_link_status(struct velocity_info *vptr)
989 {
990 	const char *link;
991 	const char *speed;
992 	const char *duplex;
993 
994 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
995 		netdev_notice(vptr->netdev, "failed to detect cable link\n");
996 		return;
997 	}
998 
999 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000 		link = "auto-negotiation";
1001 
1002 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1003 			speed = "1000";
1004 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1005 			speed = "100";
1006 		else
1007 			speed = "10";
1008 
1009 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010 			duplex = "full";
1011 		else
1012 			duplex = "half";
1013 	} else {
1014 		link = "forced";
1015 
1016 		switch (vptr->options.spd_dpx) {
1017 		case SPD_DPX_1000_FULL:
1018 			speed = "1000";
1019 			duplex = "full";
1020 			break;
1021 		case SPD_DPX_100_HALF:
1022 			speed = "100";
1023 			duplex = "half";
1024 			break;
1025 		case SPD_DPX_100_FULL:
1026 			speed = "100";
1027 			duplex = "full";
1028 			break;
1029 		case SPD_DPX_10_HALF:
1030 			speed = "10";
1031 			duplex = "half";
1032 			break;
1033 		case SPD_DPX_10_FULL:
1034 			speed = "10";
1035 			duplex = "full";
1036 			break;
1037 		default:
1038 			speed = "unknown";
1039 			duplex = "unknown";
1040 			break;
1041 		}
1042 	}
1043 	netdev_notice(vptr->netdev, "Link %s speed %sM bps %s duplex\n",
1044 		      link, speed, duplex);
1045 }
1046 
1047 /**
1048  *	enable_flow_control_ability	-	flow control
1049  *	@vptr: veloity to configure
1050  *
1051  *	Set up flow control according to the flow control options
1052  *	determined by the eeprom/configuration.
1053  */
1054 static void enable_flow_control_ability(struct velocity_info *vptr)
1055 {
1056 
1057 	struct mac_regs __iomem *regs = vptr->mac_regs;
1058 
1059 	switch (vptr->options.flow_cntl) {
1060 
1061 	case FLOW_CNTL_DEFAULT:
1062 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1064 		else
1065 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066 
1067 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1069 		else
1070 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071 		break;
1072 
1073 	case FLOW_CNTL_TX:
1074 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1075 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 		break;
1077 
1078 	case FLOW_CNTL_RX:
1079 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1080 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081 		break;
1082 
1083 	case FLOW_CNTL_TX_RX:
1084 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1085 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1086 		break;
1087 
1088 	case FLOW_CNTL_DISABLE:
1089 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091 		break;
1092 
1093 	default:
1094 		break;
1095 	}
1096 
1097 }
1098 
1099 /**
1100  *	velocity_soft_reset	-	soft reset
1101  *	@vptr: velocity to reset
1102  *
1103  *	Kick off a soft reset of the velocity adapter and then poll
1104  *	until the reset sequence has completed before returning.
1105  */
1106 static int velocity_soft_reset(struct velocity_info *vptr)
1107 {
1108 	struct mac_regs __iomem *regs = vptr->mac_regs;
1109 	int i = 0;
1110 
1111 	writel(CR0_SFRST, &regs->CR0Set);
1112 
1113 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114 		udelay(5);
1115 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116 			break;
1117 	}
1118 
1119 	if (i == W_MAX_TIMEOUT) {
1120 		writel(CR0_FORSRST, &regs->CR0Set);
1121 		/* FIXME: PCI POSTING */
1122 		/* delay 2ms */
1123 		mdelay(2);
1124 	}
1125 	return 0;
1126 }
1127 
1128 /**
1129  *	velocity_set_multi	-	filter list change callback
1130  *	@dev: network device
1131  *
1132  *	Called by the network layer when the filter lists need to change
1133  *	for a velocity adapter. Reload the CAMs with the new address
1134  *	filter ruleset.
1135  */
1136 static void velocity_set_multi(struct net_device *dev)
1137 {
1138 	struct velocity_info *vptr = netdev_priv(dev);
1139 	struct mac_regs __iomem *regs = vptr->mac_regs;
1140 	u8 rx_mode;
1141 	int i;
1142 	struct netdev_hw_addr *ha;
1143 
1144 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1145 		writel(0xffffffff, &regs->MARCAM[0]);
1146 		writel(0xffffffff, &regs->MARCAM[4]);
1147 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149 		   (dev->flags & IFF_ALLMULTI)) {
1150 		writel(0xffffffff, &regs->MARCAM[0]);
1151 		writel(0xffffffff, &regs->MARCAM[4]);
1152 		rx_mode = (RCR_AM | RCR_AB);
1153 	} else {
1154 		int offset = MCAM_SIZE - vptr->multicast_limit;
1155 		mac_get_cam_mask(regs, vptr->mCAMmask);
1156 
1157 		i = 0;
1158 		netdev_for_each_mc_addr(ha, dev) {
1159 			mac_set_cam(regs, i + offset, ha->addr);
1160 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161 			i++;
1162 		}
1163 
1164 		mac_set_cam_mask(regs, vptr->mCAMmask);
1165 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166 	}
1167 	if (dev->mtu > 1500)
1168 		rx_mode |= RCR_AL;
1169 
1170 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171 
1172 }
1173 
1174 /*
1175  * MII access , media link mode setting functions
1176  */
1177 
1178 /**
1179  *	mii_init	-	set up MII
1180  *	@vptr: velocity adapter
1181  *	@mii_status:  links tatus
1182  *
1183  *	Set up the PHY for the current link state.
1184  */
1185 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186 {
1187 	u16 BMCR;
1188 
1189 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190 	case PHYID_ICPLUS_IP101A:
1191 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192 						MII_ADVERTISE, vptr->mac_regs);
1193 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195 								vptr->mac_regs);
1196 		else
1197 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198 								vptr->mac_regs);
1199 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200 		break;
1201 	case PHYID_CICADA_CS8201:
1202 		/*
1203 		 *	Reset to hardware default
1204 		 */
1205 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 		/*
1207 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1209 		 *	legacy-forced issue.
1210 		 */
1211 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 		else
1214 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 		/*
1216 		 *	Turn on Link/Activity LED enable bit for CIS8201
1217 		 */
1218 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219 		break;
1220 	case PHYID_VT3216_32BIT:
1221 	case PHYID_VT3216_64BIT:
1222 		/*
1223 		 *	Reset to hardware default
1224 		 */
1225 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 		/*
1227 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1228 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1229 		 *	legacy-forced issue
1230 		 */
1231 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233 		else
1234 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235 		break;
1236 
1237 	case PHYID_MARVELL_1000:
1238 	case PHYID_MARVELL_1000S:
1239 		/*
1240 		 *	Assert CRS on Transmit
1241 		 */
1242 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243 		/*
1244 		 *	Reset to hardware default
1245 		 */
1246 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247 		break;
1248 	default:
1249 		;
1250 	}
1251 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252 	if (BMCR & BMCR_ISOLATE) {
1253 		BMCR &= ~BMCR_ISOLATE;
1254 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255 	}
1256 }
1257 
1258 /**
1259  * setup_queue_timers	-	Setup interrupt timers
1260  * @vptr: velocity adapter
1261  *
1262  * Setup interrupt frequency during suppression (timeout if the frame
1263  * count isn't filled).
1264  */
1265 static void setup_queue_timers(struct velocity_info *vptr)
1266 {
1267 	/* Only for newer revisions */
1268 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1269 		u8 txqueue_timer = 0;
1270 		u8 rxqueue_timer = 0;
1271 
1272 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1273 				VELOCITY_SPEED_100)) {
1274 			txqueue_timer = vptr->options.txqueue_timer;
1275 			rxqueue_timer = vptr->options.rxqueue_timer;
1276 		}
1277 
1278 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1279 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1280 	}
1281 }
1282 
1283 /**
1284  * setup_adaptive_interrupts  -  Setup interrupt suppression
1285  * @vptr: velocity adapter
1286  *
1287  * The velocity is able to suppress interrupt during high interrupt load.
1288  * This function turns on that feature.
1289  */
1290 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291 {
1292 	struct mac_regs __iomem *regs = vptr->mac_regs;
1293 	u16 tx_intsup = vptr->options.tx_intsup;
1294 	u16 rx_intsup = vptr->options.rx_intsup;
1295 
1296 	/* Setup default interrupt mask (will be changed below) */
1297 	vptr->int_mask = INT_MASK_DEF;
1298 
1299 	/* Set Tx Interrupt Suppression Threshold */
1300 	writeb(CAMCR_PS0, &regs->CAMCR);
1301 	if (tx_intsup != 0) {
1302 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303 				ISR_PTX2I | ISR_PTX3I);
1304 		writew(tx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Set Rx Interrupt Suppression Threshold */
1309 	writeb(CAMCR_PS1, &regs->CAMCR);
1310 	if (rx_intsup != 0) {
1311 		vptr->int_mask &= ~ISR_PRXI;
1312 		writew(rx_intsup, &regs->ISRCTL);
1313 	} else
1314 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315 
1316 	/* Select page to interrupt hold timer */
1317 	writeb(0, &regs->CAMCR);
1318 }
1319 
1320 /**
1321  *	velocity_init_registers	-	initialise MAC registers
1322  *	@vptr: velocity to init
1323  *	@type: type of initialisation (hot or cold)
1324  *
1325  *	Initialise the MAC on a reset or on first set up on the
1326  *	hardware.
1327  */
1328 static void velocity_init_registers(struct velocity_info *vptr,
1329 				    enum velocity_init_type type)
1330 {
1331 	struct mac_regs __iomem *regs = vptr->mac_regs;
1332 	struct net_device *netdev = vptr->netdev;
1333 	int i, mii_status;
1334 
1335 	mac_wol_reset(regs);
1336 
1337 	switch (type) {
1338 	case VELOCITY_INIT_RESET:
1339 	case VELOCITY_INIT_WOL:
1340 
1341 		netif_stop_queue(netdev);
1342 
1343 		/*
1344 		 *	Reset RX to prevent RX pointer not on the 4X location
1345 		 */
1346 		velocity_rx_reset(vptr);
1347 		mac_rx_queue_run(regs);
1348 		mac_rx_queue_wake(regs);
1349 
1350 		mii_status = velocity_get_opt_media_mode(vptr);
1351 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352 			velocity_print_link_status(vptr);
1353 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354 				netif_wake_queue(netdev);
1355 		}
1356 
1357 		enable_flow_control_ability(vptr);
1358 
1359 		mac_clear_isr(regs);
1360 		writel(CR0_STOP, &regs->CR0Clr);
1361 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362 							&regs->CR0Set);
1363 
1364 		break;
1365 
1366 	case VELOCITY_INIT_COLD:
1367 	default:
1368 		/*
1369 		 *	Do reset
1370 		 */
1371 		velocity_soft_reset(vptr);
1372 		mdelay(5);
1373 
1374 		if (!vptr->no_eeprom) {
1375 			mac_eeprom_reload(regs);
1376 			for (i = 0; i < 6; i++)
1377 				writeb(netdev->dev_addr[i], regs->PAR + i);
1378 		}
1379 
1380 		/*
1381 		 *	clear Pre_ACPI bit.
1382 		 */
1383 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385 		mac_set_dma_length(regs, vptr->options.DMA_length);
1386 
1387 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388 		/*
1389 		 *	Back off algorithm use original IEEE standard
1390 		 */
1391 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392 
1393 		/*
1394 		 *	Init CAM filter
1395 		 */
1396 		velocity_init_cam_filter(vptr);
1397 
1398 		/*
1399 		 *	Set packet filter: Receive directed and broadcast address
1400 		 */
1401 		velocity_set_multi(netdev);
1402 
1403 		/*
1404 		 *	Enable MII auto-polling
1405 		 */
1406 		enable_mii_autopoll(regs);
1407 
1408 		setup_adaptive_interrupts(vptr);
1409 
1410 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1412 		mac_rx_queue_run(regs);
1413 		mac_rx_queue_wake(regs);
1414 
1415 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1416 
1417 		for (i = 0; i < vptr->tx.numq; i++) {
1418 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419 			mac_tx_queue_run(regs, i);
1420 		}
1421 
1422 		init_flow_control_register(vptr);
1423 
1424 		writel(CR0_STOP, &regs->CR0Clr);
1425 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426 
1427 		mii_status = velocity_get_opt_media_mode(vptr);
1428 		netif_stop_queue(netdev);
1429 
1430 		mii_init(vptr, mii_status);
1431 
1432 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433 			velocity_print_link_status(vptr);
1434 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435 				netif_wake_queue(netdev);
1436 		}
1437 
1438 		enable_flow_control_ability(vptr);
1439 		mac_hw_mibs_init(regs);
1440 		mac_write_int_mask(vptr->int_mask, regs);
1441 		mac_clear_isr(regs);
1442 
1443 	}
1444 }
1445 
1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447 {
1448 	struct mac_regs __iomem *regs = vptr->mac_regs;
1449 	int avail, dirty, unusable;
1450 
1451 	/*
1452 	 * RD number must be equal to 4X per hardware spec
1453 	 * (programming guide rev 1.20, p.13)
1454 	 */
1455 	if (vptr->rx.filled < 4)
1456 		return;
1457 
1458 	wmb();
1459 
1460 	unusable = vptr->rx.filled & 0x0003;
1461 	dirty = vptr->rx.dirty - unusable;
1462 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465 	}
1466 
1467 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468 	vptr->rx.filled = unusable;
1469 }
1470 
1471 /**
1472  *	velocity_init_dma_rings	-	set up DMA rings
1473  *	@vptr: Velocity to set up
1474  *
1475  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1476  *	to use.
1477  */
1478 static int velocity_init_dma_rings(struct velocity_info *vptr)
1479 {
1480 	struct velocity_opt *opt = &vptr->options;
1481 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483 	dma_addr_t pool_dma;
1484 	void *pool;
1485 	unsigned int i;
1486 
1487 	/*
1488 	 * Allocate all RD/TD rings a single pool.
1489 	 *
1490 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491 	 * alignment
1492 	 */
1493 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1495 	if (!pool) {
1496 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497 			vptr->netdev->name);
1498 		return -ENOMEM;
1499 	}
1500 
1501 	vptr->rx.ring = pool;
1502 	vptr->rx.pool_dma = pool_dma;
1503 
1504 	pool += rx_ring_size;
1505 	pool_dma += rx_ring_size;
1506 
1507 	for (i = 0; i < vptr->tx.numq; i++) {
1508 		vptr->tx.rings[i] = pool;
1509 		vptr->tx.pool_dma[i] = pool_dma;
1510 		pool += tx_ring_size;
1511 		pool_dma += tx_ring_size;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518 {
1519 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520 }
1521 
1522 /**
1523  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1524  *	@vptr: velocity
1525  *	@idx: ring index
1526  *
1527  *	Allocate a new full sized buffer for the reception of a frame and
1528  *	map it into PCI space for the hardware to use. The hardware
1529  *	requires *64* byte alignment of the buffer which makes life
1530  *	less fun than would be ideal.
1531  */
1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533 {
1534 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536 
1537 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538 	if (rd_info->skb == NULL)
1539 		return -ENOMEM;
1540 
1541 	/*
1542 	 *	Do the gymnastics to get the buffer head for data at
1543 	 *	64byte alignment.
1544 	 */
1545 	skb_reserve(rd_info->skb,
1546 			64 - ((unsigned long) rd_info->skb->data & 63));
1547 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549 
1550 	/*
1551 	 *	Fill in the descriptor to match
1552 	 */
1553 
1554 	*((u32 *) & (rd->rdesc0)) = 0;
1555 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557 	rd->pa_high = 0;
1558 	return 0;
1559 }
1560 
1561 
1562 static int velocity_rx_refill(struct velocity_info *vptr)
1563 {
1564 	int dirty = vptr->rx.dirty, done = 0;
1565 
1566 	do {
1567 		struct rx_desc *rd = vptr->rx.ring + dirty;
1568 
1569 		/* Fine for an all zero Rx desc at init time as well */
1570 		if (rd->rdesc0.len & OWNED_BY_NIC)
1571 			break;
1572 
1573 		if (!vptr->rx.info[dirty].skb) {
1574 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575 				break;
1576 		}
1577 		done++;
1578 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579 	} while (dirty != vptr->rx.curr);
1580 
1581 	if (done) {
1582 		vptr->rx.dirty = dirty;
1583 		vptr->rx.filled += done;
1584 	}
1585 
1586 	return done;
1587 }
1588 
1589 /**
1590  *	velocity_free_rd_ring	-	free receive ring
1591  *	@vptr: velocity to clean up
1592  *
1593  *	Free the receive buffers for each ring slot and any
1594  *	attached socket buffers that need to go away.
1595  */
1596 static void velocity_free_rd_ring(struct velocity_info *vptr)
1597 {
1598 	int i;
1599 
1600 	if (vptr->rx.info == NULL)
1601 		return;
1602 
1603 	for (i = 0; i < vptr->options.numrx; i++) {
1604 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605 		struct rx_desc *rd = vptr->rx.ring + i;
1606 
1607 		memset(rd, 0, sizeof(*rd));
1608 
1609 		if (!rd_info->skb)
1610 			continue;
1611 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612 				 DMA_FROM_DEVICE);
1613 		rd_info->skb_dma = 0;
1614 
1615 		dev_kfree_skb(rd_info->skb);
1616 		rd_info->skb = NULL;
1617 	}
1618 
1619 	kfree(vptr->rx.info);
1620 	vptr->rx.info = NULL;
1621 }
1622 
1623 /**
1624  *	velocity_init_rd_ring	-	set up receive ring
1625  *	@vptr: velocity to configure
1626  *
1627  *	Allocate and set up the receive buffers for each ring slot and
1628  *	assign them to the network adapter.
1629  */
1630 static int velocity_init_rd_ring(struct velocity_info *vptr)
1631 {
1632 	int ret = -ENOMEM;
1633 
1634 	vptr->rx.info = kcalloc(vptr->options.numrx,
1635 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1636 	if (!vptr->rx.info)
1637 		goto out;
1638 
1639 	velocity_init_rx_ring_indexes(vptr);
1640 
1641 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642 		netdev_err(vptr->netdev, "failed to allocate RX buffer\n");
1643 		velocity_free_rd_ring(vptr);
1644 		goto out;
1645 	}
1646 
1647 	ret = 0;
1648 out:
1649 	return ret;
1650 }
1651 
1652 /**
1653  *	velocity_init_td_ring	-	set up transmit ring
1654  *	@vptr:	velocity
1655  *
1656  *	Set up the transmit ring and chain the ring pointers together.
1657  *	Returns zero on success or a negative posix errno code for
1658  *	failure.
1659  */
1660 static int velocity_init_td_ring(struct velocity_info *vptr)
1661 {
1662 	int j;
1663 
1664 	/* Init the TD ring entries */
1665 	for (j = 0; j < vptr->tx.numq; j++) {
1666 
1667 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1668 					    sizeof(struct velocity_td_info),
1669 					    GFP_KERNEL);
1670 		if (!vptr->tx.infos[j])	{
1671 			while (--j >= 0)
1672 				kfree(vptr->tx.infos[j]);
1673 			return -ENOMEM;
1674 		}
1675 
1676 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1677 	}
1678 	return 0;
1679 }
1680 
1681 /**
1682  *	velocity_free_dma_rings	-	free PCI ring pointers
1683  *	@vptr: Velocity to free from
1684  *
1685  *	Clean up the PCI ring buffers allocated to this velocity.
1686  */
1687 static void velocity_free_dma_rings(struct velocity_info *vptr)
1688 {
1689 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1690 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1691 
1692 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1693 }
1694 
1695 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1696 {
1697 	int ret;
1698 
1699 	velocity_set_rxbufsize(vptr, mtu);
1700 
1701 	ret = velocity_init_dma_rings(vptr);
1702 	if (ret < 0)
1703 		goto out;
1704 
1705 	ret = velocity_init_rd_ring(vptr);
1706 	if (ret < 0)
1707 		goto err_free_dma_rings_0;
1708 
1709 	ret = velocity_init_td_ring(vptr);
1710 	if (ret < 0)
1711 		goto err_free_rd_ring_1;
1712 out:
1713 	return ret;
1714 
1715 err_free_rd_ring_1:
1716 	velocity_free_rd_ring(vptr);
1717 err_free_dma_rings_0:
1718 	velocity_free_dma_rings(vptr);
1719 	goto out;
1720 }
1721 
1722 /**
1723  *	velocity_free_tx_buf	-	free transmit buffer
1724  *	@vptr: velocity
1725  *	@tdinfo: buffer
1726  *	@td: transmit descriptor to free
1727  *
1728  *	Release an transmit buffer. If the buffer was preallocated then
1729  *	recycle it, if not then unmap the buffer.
1730  */
1731 static void velocity_free_tx_buf(struct velocity_info *vptr,
1732 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1733 {
1734 	struct sk_buff *skb = tdinfo->skb;
1735 	int i;
1736 
1737 	/*
1738 	 *	Don't unmap the pre-allocated tx_bufs
1739 	 */
1740 	for (i = 0; i < tdinfo->nskb_dma; i++) {
1741 		size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1742 
1743 		/* For scatter-gather */
1744 		if (skb_shinfo(skb)->nr_frags > 0)
1745 			pktlen = max_t(size_t, pktlen,
1746 				       td->td_buf[i].size & ~TD_QUEUE);
1747 
1748 		dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1749 				 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1750 	}
1751 	dev_consume_skb_irq(skb);
1752 	tdinfo->skb = NULL;
1753 }
1754 
1755 /*
1756  *	FIXME: could we merge this with velocity_free_tx_buf ?
1757  */
1758 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1759 							 int q, int n)
1760 {
1761 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1762 	int i;
1763 
1764 	if (td_info == NULL)
1765 		return;
1766 
1767 	if (td_info->skb) {
1768 		for (i = 0; i < td_info->nskb_dma; i++) {
1769 			if (td_info->skb_dma[i]) {
1770 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1771 					td_info->skb->len, DMA_TO_DEVICE);
1772 				td_info->skb_dma[i] = 0;
1773 			}
1774 		}
1775 		dev_kfree_skb(td_info->skb);
1776 		td_info->skb = NULL;
1777 	}
1778 }
1779 
1780 /**
1781  *	velocity_free_td_ring	-	free td ring
1782  *	@vptr: velocity
1783  *
1784  *	Free up the transmit ring for this particular velocity adapter.
1785  *	We free the ring contents but not the ring itself.
1786  */
1787 static void velocity_free_td_ring(struct velocity_info *vptr)
1788 {
1789 	int i, j;
1790 
1791 	for (j = 0; j < vptr->tx.numq; j++) {
1792 		if (vptr->tx.infos[j] == NULL)
1793 			continue;
1794 		for (i = 0; i < vptr->options.numtx; i++)
1795 			velocity_free_td_ring_entry(vptr, j, i);
1796 
1797 		kfree(vptr->tx.infos[j]);
1798 		vptr->tx.infos[j] = NULL;
1799 	}
1800 }
1801 
1802 static void velocity_free_rings(struct velocity_info *vptr)
1803 {
1804 	velocity_free_td_ring(vptr);
1805 	velocity_free_rd_ring(vptr);
1806 	velocity_free_dma_rings(vptr);
1807 }
1808 
1809 /**
1810  *	velocity_error	-	handle error from controller
1811  *	@vptr: velocity
1812  *	@status: card status
1813  *
1814  *	Process an error report from the hardware and attempt to recover
1815  *	the card itself. At the moment we cannot recover from some
1816  *	theoretically impossible errors but this could be fixed using
1817  *	the pci_device_failed logic to bounce the hardware
1818  *
1819  */
1820 static void velocity_error(struct velocity_info *vptr, int status)
1821 {
1822 
1823 	if (status & ISR_TXSTLI) {
1824 		struct mac_regs __iomem *regs = vptr->mac_regs;
1825 
1826 		netdev_err(vptr->netdev, "TD structure error TDindex=%hx\n",
1827 			   readw(&regs->TDIdx[0]));
1828 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1829 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1830 		netif_stop_queue(vptr->netdev);
1831 
1832 		/* FIXME: port over the pci_device_failed code and use it
1833 		   here */
1834 	}
1835 
1836 	if (status & ISR_SRCI) {
1837 		struct mac_regs __iomem *regs = vptr->mac_regs;
1838 		int linked;
1839 
1840 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1841 			vptr->mii_status = check_connection_type(regs);
1842 
1843 			/*
1844 			 *	If it is a 3119, disable frame bursting in
1845 			 *	halfduplex mode and enable it in fullduplex
1846 			 *	 mode
1847 			 */
1848 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1849 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1850 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1851 				else
1852 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1853 			}
1854 			/*
1855 			 *	Only enable CD heart beat counter in 10HD mode
1856 			 */
1857 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1858 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1859 			else
1860 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1861 
1862 			setup_queue_timers(vptr);
1863 		}
1864 		/*
1865 		 *	Get link status from PHYSR0
1866 		 */
1867 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1868 
1869 		if (linked) {
1870 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1871 			netif_carrier_on(vptr->netdev);
1872 		} else {
1873 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1874 			netif_carrier_off(vptr->netdev);
1875 		}
1876 
1877 		velocity_print_link_status(vptr);
1878 		enable_flow_control_ability(vptr);
1879 
1880 		/*
1881 		 *	Re-enable auto-polling because SRCI will disable
1882 		 *	auto-polling
1883 		 */
1884 
1885 		enable_mii_autopoll(regs);
1886 
1887 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1888 			netif_stop_queue(vptr->netdev);
1889 		else
1890 			netif_wake_queue(vptr->netdev);
1891 
1892 	}
1893 	if (status & ISR_MIBFI)
1894 		velocity_update_hw_mibs(vptr);
1895 	if (status & ISR_LSTEI)
1896 		mac_rx_queue_wake(vptr->mac_regs);
1897 }
1898 
1899 /**
1900  *	tx_srv		-	transmit interrupt service
1901  *	@vptr: Velocity
1902  *
1903  *	Scan the queues looking for transmitted packets that
1904  *	we can complete and clean up. Update any statistics as
1905  *	necessary/
1906  */
1907 static int velocity_tx_srv(struct velocity_info *vptr)
1908 {
1909 	struct tx_desc *td;
1910 	int qnum;
1911 	int full = 0;
1912 	int idx;
1913 	int works = 0;
1914 	struct velocity_td_info *tdinfo;
1915 	struct net_device_stats *stats = &vptr->netdev->stats;
1916 
1917 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1918 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1919 			idx = (idx + 1) % vptr->options.numtx) {
1920 
1921 			/*
1922 			 *	Get Tx Descriptor
1923 			 */
1924 			td = &(vptr->tx.rings[qnum][idx]);
1925 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1926 
1927 			if (td->tdesc0.len & OWNED_BY_NIC)
1928 				break;
1929 
1930 			if ((works++ > 15))
1931 				break;
1932 
1933 			if (td->tdesc0.TSR & TSR0_TERR) {
1934 				stats->tx_errors++;
1935 				stats->tx_dropped++;
1936 				if (td->tdesc0.TSR & TSR0_CDH)
1937 					stats->tx_heartbeat_errors++;
1938 				if (td->tdesc0.TSR & TSR0_CRS)
1939 					stats->tx_carrier_errors++;
1940 				if (td->tdesc0.TSR & TSR0_ABT)
1941 					stats->tx_aborted_errors++;
1942 				if (td->tdesc0.TSR & TSR0_OWC)
1943 					stats->tx_window_errors++;
1944 			} else {
1945 				stats->tx_packets++;
1946 				stats->tx_bytes += tdinfo->skb->len;
1947 			}
1948 			velocity_free_tx_buf(vptr, tdinfo, td);
1949 			vptr->tx.used[qnum]--;
1950 		}
1951 		vptr->tx.tail[qnum] = idx;
1952 
1953 		if (AVAIL_TD(vptr, qnum) < 1)
1954 			full = 1;
1955 	}
1956 	/*
1957 	 *	Look to see if we should kick the transmit network
1958 	 *	layer for more work.
1959 	 */
1960 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1961 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1962 		netif_wake_queue(vptr->netdev);
1963 	}
1964 	return works;
1965 }
1966 
1967 /**
1968  *	velocity_rx_csum	-	checksum process
1969  *	@rd: receive packet descriptor
1970  *	@skb: network layer packet buffer
1971  *
1972  *	Process the status bits for the received packet and determine
1973  *	if the checksum was computed and verified by the hardware
1974  */
1975 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1976 {
1977 	skb_checksum_none_assert(skb);
1978 
1979 	if (rd->rdesc1.CSM & CSM_IPKT) {
1980 		if (rd->rdesc1.CSM & CSM_IPOK) {
1981 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1982 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1983 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1984 					return;
1985 			}
1986 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1987 		}
1988 	}
1989 }
1990 
1991 /**
1992  *	velocity_rx_copy	-	in place Rx copy for small packets
1993  *	@rx_skb: network layer packet buffer candidate
1994  *	@pkt_size: received data size
1995  *	@vptr: velocity adapter
1996  *
1997  *	Replace the current skb that is scheduled for Rx processing by a
1998  *	shorter, immediately allocated skb, if the received packet is small
1999  *	enough. This function returns a negative value if the received
2000  *	packet is too big or if memory is exhausted.
2001  */
2002 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2003 			    struct velocity_info *vptr)
2004 {
2005 	int ret = -1;
2006 	if (pkt_size < rx_copybreak) {
2007 		struct sk_buff *new_skb;
2008 
2009 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2010 		if (new_skb) {
2011 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2012 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2013 			*rx_skb = new_skb;
2014 			ret = 0;
2015 		}
2016 
2017 	}
2018 	return ret;
2019 }
2020 
2021 /**
2022  *	velocity_iph_realign	-	IP header alignment
2023  *	@vptr: velocity we are handling
2024  *	@skb: network layer packet buffer
2025  *	@pkt_size: received data size
2026  *
2027  *	Align IP header on a 2 bytes boundary. This behavior can be
2028  *	configured by the user.
2029  */
2030 static inline void velocity_iph_realign(struct velocity_info *vptr,
2031 					struct sk_buff *skb, int pkt_size)
2032 {
2033 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2034 		memmove(skb->data + 2, skb->data, pkt_size);
2035 		skb_reserve(skb, 2);
2036 	}
2037 }
2038 
2039 /**
2040  *	velocity_receive_frame	-	received packet processor
2041  *	@vptr: velocity we are handling
2042  *	@idx: ring index
2043  *
2044  *	A packet has arrived. We process the packet and if appropriate
2045  *	pass the frame up the network stack
2046  */
2047 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2048 {
2049 	struct net_device_stats *stats = &vptr->netdev->stats;
2050 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2051 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2052 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2053 	struct sk_buff *skb;
2054 
2055 	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2056 		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2057 			netdev_err(vptr->netdev, "received frame spans multiple RDs\n");
2058 		stats->rx_length_errors++;
2059 		return -EINVAL;
2060 	}
2061 
2062 	if (rd->rdesc0.RSR & RSR_MAR)
2063 		stats->multicast++;
2064 
2065 	skb = rd_info->skb;
2066 
2067 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2068 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2069 
2070 	velocity_rx_csum(rd, skb);
2071 
2072 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2073 		velocity_iph_realign(vptr, skb, pkt_len);
2074 		rd_info->skb = NULL;
2075 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2076 				 DMA_FROM_DEVICE);
2077 	} else {
2078 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2079 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2080 	}
2081 
2082 	skb_put(skb, pkt_len - 4);
2083 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2084 
2085 	if (rd->rdesc0.RSR & RSR_DETAG) {
2086 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2087 
2088 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2089 	}
2090 	netif_receive_skb(skb);
2091 
2092 	stats->rx_bytes += pkt_len;
2093 	stats->rx_packets++;
2094 
2095 	return 0;
2096 }
2097 
2098 /**
2099  *	velocity_rx_srv		-	service RX interrupt
2100  *	@vptr: velocity
2101  *	@budget_left: remaining budget
2102  *
2103  *	Walk the receive ring of the velocity adapter and remove
2104  *	any received packets from the receive queue. Hand the ring
2105  *	slots back to the adapter for reuse.
2106  */
2107 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2108 {
2109 	struct net_device_stats *stats = &vptr->netdev->stats;
2110 	int rd_curr = vptr->rx.curr;
2111 	int works = 0;
2112 
2113 	while (works < budget_left) {
2114 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2115 
2116 		if (!vptr->rx.info[rd_curr].skb)
2117 			break;
2118 
2119 		if (rd->rdesc0.len & OWNED_BY_NIC)
2120 			break;
2121 
2122 		rmb();
2123 
2124 		/*
2125 		 *	Don't drop CE or RL error frame although RXOK is off
2126 		 */
2127 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2128 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2129 				stats->rx_dropped++;
2130 		} else {
2131 			if (rd->rdesc0.RSR & RSR_CRC)
2132 				stats->rx_crc_errors++;
2133 			if (rd->rdesc0.RSR & RSR_FAE)
2134 				stats->rx_frame_errors++;
2135 
2136 			stats->rx_dropped++;
2137 		}
2138 
2139 		rd->size |= RX_INTEN;
2140 
2141 		rd_curr++;
2142 		if (rd_curr >= vptr->options.numrx)
2143 			rd_curr = 0;
2144 		works++;
2145 	}
2146 
2147 	vptr->rx.curr = rd_curr;
2148 
2149 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2150 		velocity_give_many_rx_descs(vptr);
2151 
2152 	VAR_USED(stats);
2153 	return works;
2154 }
2155 
2156 static int velocity_poll(struct napi_struct *napi, int budget)
2157 {
2158 	struct velocity_info *vptr = container_of(napi,
2159 			struct velocity_info, napi);
2160 	unsigned int rx_done;
2161 	unsigned long flags;
2162 
2163 	/*
2164 	 * Do rx and tx twice for performance (taken from the VIA
2165 	 * out-of-tree driver).
2166 	 */
2167 	rx_done = velocity_rx_srv(vptr, budget);
2168 	spin_lock_irqsave(&vptr->lock, flags);
2169 	velocity_tx_srv(vptr);
2170 	/* If budget not fully consumed, exit the polling mode */
2171 	if (rx_done < budget) {
2172 		napi_complete_done(napi, rx_done);
2173 		mac_enable_int(vptr->mac_regs);
2174 	}
2175 	spin_unlock_irqrestore(&vptr->lock, flags);
2176 
2177 	return rx_done;
2178 }
2179 
2180 /**
2181  *	velocity_intr		-	interrupt callback
2182  *	@irq: interrupt number
2183  *	@dev_instance: interrupting device
2184  *
2185  *	Called whenever an interrupt is generated by the velocity
2186  *	adapter IRQ line. We may not be the source of the interrupt
2187  *	and need to identify initially if we are, and if not exit as
2188  *	efficiently as possible.
2189  */
2190 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2191 {
2192 	struct net_device *dev = dev_instance;
2193 	struct velocity_info *vptr = netdev_priv(dev);
2194 	u32 isr_status;
2195 
2196 	spin_lock(&vptr->lock);
2197 	isr_status = mac_read_isr(vptr->mac_regs);
2198 
2199 	/* Not us ? */
2200 	if (isr_status == 0) {
2201 		spin_unlock(&vptr->lock);
2202 		return IRQ_NONE;
2203 	}
2204 
2205 	/* Ack the interrupt */
2206 	mac_write_isr(vptr->mac_regs, isr_status);
2207 
2208 	if (likely(napi_schedule_prep(&vptr->napi))) {
2209 		mac_disable_int(vptr->mac_regs);
2210 		__napi_schedule(&vptr->napi);
2211 	}
2212 
2213 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2214 		velocity_error(vptr, isr_status);
2215 
2216 	spin_unlock(&vptr->lock);
2217 
2218 	return IRQ_HANDLED;
2219 }
2220 
2221 /**
2222  *	velocity_open		-	interface activation callback
2223  *	@dev: network layer device to open
2224  *
2225  *	Called when the network layer brings the interface up. Returns
2226  *	a negative posix error code on failure, or zero on success.
2227  *
2228  *	All the ring allocation and set up is done on open for this
2229  *	adapter to minimise memory usage when inactive
2230  */
2231 static int velocity_open(struct net_device *dev)
2232 {
2233 	struct velocity_info *vptr = netdev_priv(dev);
2234 	int ret;
2235 
2236 	ret = velocity_init_rings(vptr, dev->mtu);
2237 	if (ret < 0)
2238 		goto out;
2239 
2240 	/* Ensure chip is running */
2241 	velocity_set_power_state(vptr, PCI_D0);
2242 
2243 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2244 
2245 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2246 			  dev->name, dev);
2247 	if (ret < 0) {
2248 		/* Power down the chip */
2249 		velocity_set_power_state(vptr, PCI_D3hot);
2250 		velocity_free_rings(vptr);
2251 		goto out;
2252 	}
2253 
2254 	velocity_give_many_rx_descs(vptr);
2255 
2256 	mac_enable_int(vptr->mac_regs);
2257 	netif_start_queue(dev);
2258 	napi_enable(&vptr->napi);
2259 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2260 out:
2261 	return ret;
2262 }
2263 
2264 /**
2265  *	velocity_shutdown	-	shut down the chip
2266  *	@vptr: velocity to deactivate
2267  *
2268  *	Shuts down the internal operations of the velocity and
2269  *	disables interrupts, autopolling, transmit and receive
2270  */
2271 static void velocity_shutdown(struct velocity_info *vptr)
2272 {
2273 	struct mac_regs __iomem *regs = vptr->mac_regs;
2274 	mac_disable_int(regs);
2275 	writel(CR0_STOP, &regs->CR0Set);
2276 	writew(0xFFFF, &regs->TDCSRClr);
2277 	writeb(0xFF, &regs->RDCSRClr);
2278 	safe_disable_mii_autopoll(regs);
2279 	mac_clear_isr(regs);
2280 }
2281 
2282 /**
2283  *	velocity_change_mtu	-	MTU change callback
2284  *	@dev: network device
2285  *	@new_mtu: desired MTU
2286  *
2287  *	Handle requests from the networking layer for MTU change on
2288  *	this interface. It gets called on a change by the network layer.
2289  *	Return zero for success or negative posix error code.
2290  */
2291 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2292 {
2293 	struct velocity_info *vptr = netdev_priv(dev);
2294 	int ret = 0;
2295 
2296 	if (!netif_running(dev)) {
2297 		dev->mtu = new_mtu;
2298 		goto out_0;
2299 	}
2300 
2301 	if (dev->mtu != new_mtu) {
2302 		struct velocity_info *tmp_vptr;
2303 		unsigned long flags;
2304 		struct rx_info rx;
2305 		struct tx_info tx;
2306 
2307 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2308 		if (!tmp_vptr) {
2309 			ret = -ENOMEM;
2310 			goto out_0;
2311 		}
2312 
2313 		tmp_vptr->netdev = dev;
2314 		tmp_vptr->pdev = vptr->pdev;
2315 		tmp_vptr->dev = vptr->dev;
2316 		tmp_vptr->options = vptr->options;
2317 		tmp_vptr->tx.numq = vptr->tx.numq;
2318 
2319 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2320 		if (ret < 0)
2321 			goto out_free_tmp_vptr_1;
2322 
2323 		napi_disable(&vptr->napi);
2324 
2325 		spin_lock_irqsave(&vptr->lock, flags);
2326 
2327 		netif_stop_queue(dev);
2328 		velocity_shutdown(vptr);
2329 
2330 		rx = vptr->rx;
2331 		tx = vptr->tx;
2332 
2333 		vptr->rx = tmp_vptr->rx;
2334 		vptr->tx = tmp_vptr->tx;
2335 
2336 		tmp_vptr->rx = rx;
2337 		tmp_vptr->tx = tx;
2338 
2339 		dev->mtu = new_mtu;
2340 
2341 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2342 
2343 		velocity_give_many_rx_descs(vptr);
2344 
2345 		napi_enable(&vptr->napi);
2346 
2347 		mac_enable_int(vptr->mac_regs);
2348 		netif_start_queue(dev);
2349 
2350 		spin_unlock_irqrestore(&vptr->lock, flags);
2351 
2352 		velocity_free_rings(tmp_vptr);
2353 
2354 out_free_tmp_vptr_1:
2355 		kfree(tmp_vptr);
2356 	}
2357 out_0:
2358 	return ret;
2359 }
2360 
2361 #ifdef CONFIG_NET_POLL_CONTROLLER
2362 /**
2363  *  velocity_poll_controller		-	Velocity Poll controller function
2364  *  @dev: network device
2365  *
2366  *
2367  *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2368  *  with interrupts disabled.
2369  */
2370 static void velocity_poll_controller(struct net_device *dev)
2371 {
2372 	disable_irq(dev->irq);
2373 	velocity_intr(dev->irq, dev);
2374 	enable_irq(dev->irq);
2375 }
2376 #endif
2377 
2378 /**
2379  *	velocity_mii_ioctl		-	MII ioctl handler
2380  *	@dev: network device
2381  *	@ifr: the ifreq block for the ioctl
2382  *	@cmd: the command
2383  *
2384  *	Process MII requests made via ioctl from the network layer. These
2385  *	are used by tools like kudzu to interrogate the link state of the
2386  *	hardware
2387  */
2388 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2389 {
2390 	struct velocity_info *vptr = netdev_priv(dev);
2391 	struct mac_regs __iomem *regs = vptr->mac_regs;
2392 	unsigned long flags;
2393 	struct mii_ioctl_data *miidata = if_mii(ifr);
2394 	int err;
2395 
2396 	switch (cmd) {
2397 	case SIOCGMIIPHY:
2398 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2399 		break;
2400 	case SIOCGMIIREG:
2401 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2402 			return -ETIMEDOUT;
2403 		break;
2404 	case SIOCSMIIREG:
2405 		spin_lock_irqsave(&vptr->lock, flags);
2406 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2407 		spin_unlock_irqrestore(&vptr->lock, flags);
2408 		check_connection_type(vptr->mac_regs);
2409 		if (err)
2410 			return err;
2411 		break;
2412 	default:
2413 		return -EOPNOTSUPP;
2414 	}
2415 	return 0;
2416 }
2417 
2418 /**
2419  *	velocity_ioctl		-	ioctl entry point
2420  *	@dev: network device
2421  *	@rq: interface request ioctl
2422  *	@cmd: command code
2423  *
2424  *	Called when the user issues an ioctl request to the network
2425  *	device in question. The velocity interface supports MII.
2426  */
2427 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2428 {
2429 	struct velocity_info *vptr = netdev_priv(dev);
2430 	int ret;
2431 
2432 	/* If we are asked for information and the device is power
2433 	   saving then we need to bring the device back up to talk to it */
2434 
2435 	if (!netif_running(dev))
2436 		velocity_set_power_state(vptr, PCI_D0);
2437 
2438 	switch (cmd) {
2439 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2440 	case SIOCGMIIREG:	/* Read MII PHY register. */
2441 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2442 		ret = velocity_mii_ioctl(dev, rq, cmd);
2443 		break;
2444 
2445 	default:
2446 		ret = -EOPNOTSUPP;
2447 	}
2448 	if (!netif_running(dev))
2449 		velocity_set_power_state(vptr, PCI_D3hot);
2450 
2451 
2452 	return ret;
2453 }
2454 
2455 /**
2456  *	velocity_get_status	-	statistics callback
2457  *	@dev: network device
2458  *
2459  *	Callback from the network layer to allow driver statistics
2460  *	to be resynchronized with hardware collected state. In the
2461  *	case of the velocity we need to pull the MIB counters from
2462  *	the hardware into the counters before letting the network
2463  *	layer display them.
2464  */
2465 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2466 {
2467 	struct velocity_info *vptr = netdev_priv(dev);
2468 
2469 	/* If the hardware is down, don't touch MII */
2470 	if (!netif_running(dev))
2471 		return &dev->stats;
2472 
2473 	spin_lock_irq(&vptr->lock);
2474 	velocity_update_hw_mibs(vptr);
2475 	spin_unlock_irq(&vptr->lock);
2476 
2477 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2478 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2479 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2480 
2481 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2482 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2483 	/* detailed rx_errors: */
2484 //  unsigned long   rx_length_errors;
2485 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2486 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2487 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2488 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2489 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2490 
2491 	/* detailed tx_errors */
2492 //  unsigned long   tx_fifo_errors;
2493 
2494 	return &dev->stats;
2495 }
2496 
2497 /**
2498  *	velocity_close		-	close adapter callback
2499  *	@dev: network device
2500  *
2501  *	Callback from the network layer when the velocity is being
2502  *	deactivated by the network layer
2503  */
2504 static int velocity_close(struct net_device *dev)
2505 {
2506 	struct velocity_info *vptr = netdev_priv(dev);
2507 
2508 	napi_disable(&vptr->napi);
2509 	netif_stop_queue(dev);
2510 	velocity_shutdown(vptr);
2511 
2512 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2513 		velocity_get_ip(vptr);
2514 
2515 	free_irq(dev->irq, dev);
2516 
2517 	velocity_free_rings(vptr);
2518 
2519 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2520 	return 0;
2521 }
2522 
2523 /**
2524  *	velocity_xmit		-	transmit packet callback
2525  *	@skb: buffer to transmit
2526  *	@dev: network device
2527  *
2528  *	Called by the networ layer to request a packet is queued to
2529  *	the velocity. Returns zero on success.
2530  */
2531 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2532 				 struct net_device *dev)
2533 {
2534 	struct velocity_info *vptr = netdev_priv(dev);
2535 	int qnum = 0;
2536 	struct tx_desc *td_ptr;
2537 	struct velocity_td_info *tdinfo;
2538 	unsigned long flags;
2539 	int pktlen;
2540 	int index, prev;
2541 	int i = 0;
2542 
2543 	if (skb_padto(skb, ETH_ZLEN))
2544 		goto out;
2545 
2546 	/* The hardware can handle at most 7 memory segments, so merge
2547 	 * the skb if there are more */
2548 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2549 		dev_kfree_skb_any(skb);
2550 		return NETDEV_TX_OK;
2551 	}
2552 
2553 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2554 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2555 				skb_headlen(skb);
2556 
2557 	spin_lock_irqsave(&vptr->lock, flags);
2558 
2559 	index = vptr->tx.curr[qnum];
2560 	td_ptr = &(vptr->tx.rings[qnum][index]);
2561 	tdinfo = &(vptr->tx.infos[qnum][index]);
2562 
2563 	td_ptr->tdesc1.TCR = TCR0_TIC;
2564 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2565 
2566 	/*
2567 	 *	Map the linear network buffer into PCI space and
2568 	 *	add it to the transmit ring.
2569 	 */
2570 	tdinfo->skb = skb;
2571 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2572 								DMA_TO_DEVICE);
2573 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2574 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2575 	td_ptr->td_buf[0].pa_high = 0;
2576 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2577 
2578 	/* Handle fragments */
2579 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2581 
2582 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2583 							  frag, 0,
2584 							  skb_frag_size(frag),
2585 							  DMA_TO_DEVICE);
2586 
2587 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2588 		td_ptr->td_buf[i + 1].pa_high = 0;
2589 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2590 	}
2591 	tdinfo->nskb_dma = i + 1;
2592 
2593 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2594 
2595 	if (skb_vlan_tag_present(skb)) {
2596 		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2597 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2598 	}
2599 
2600 	/*
2601 	 *	Handle hardware checksum
2602 	 */
2603 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2604 		const struct iphdr *ip = ip_hdr(skb);
2605 		if (ip->protocol == IPPROTO_TCP)
2606 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2607 		else if (ip->protocol == IPPROTO_UDP)
2608 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2609 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2610 	}
2611 
2612 	prev = index - 1;
2613 	if (prev < 0)
2614 		prev = vptr->options.numtx - 1;
2615 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2616 	vptr->tx.used[qnum]++;
2617 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2618 
2619 	if (AVAIL_TD(vptr, qnum) < 1)
2620 		netif_stop_queue(dev);
2621 
2622 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2623 	td_ptr->td_buf[0].size |= TD_QUEUE;
2624 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2625 
2626 	spin_unlock_irqrestore(&vptr->lock, flags);
2627 out:
2628 	return NETDEV_TX_OK;
2629 }
2630 
2631 static const struct net_device_ops velocity_netdev_ops = {
2632 	.ndo_open		= velocity_open,
2633 	.ndo_stop		= velocity_close,
2634 	.ndo_start_xmit		= velocity_xmit,
2635 	.ndo_get_stats		= velocity_get_stats,
2636 	.ndo_validate_addr	= eth_validate_addr,
2637 	.ndo_set_mac_address	= eth_mac_addr,
2638 	.ndo_set_rx_mode	= velocity_set_multi,
2639 	.ndo_change_mtu		= velocity_change_mtu,
2640 	.ndo_do_ioctl		= velocity_ioctl,
2641 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2642 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2643 #ifdef CONFIG_NET_POLL_CONTROLLER
2644 	.ndo_poll_controller = velocity_poll_controller,
2645 #endif
2646 };
2647 
2648 /**
2649  *	velocity_init_info	-	init private data
2650  *	@vptr: Velocity info
2651  *	@info: Board type
2652  *
2653  *	Set up the initial velocity_info struct for the device that has been
2654  *	discovered.
2655  */
2656 static void velocity_init_info(struct velocity_info *vptr,
2657 				const struct velocity_info_tbl *info)
2658 {
2659 	vptr->chip_id = info->chip_id;
2660 	vptr->tx.numq = info->txqueue;
2661 	vptr->multicast_limit = MCAM_SIZE;
2662 	spin_lock_init(&vptr->lock);
2663 }
2664 
2665 /**
2666  *	velocity_get_pci_info	-	retrieve PCI info for device
2667  *	@vptr: velocity device
2668  *
2669  *	Retrieve the PCI configuration space data that interests us from
2670  *	the kernel PCI layer
2671  */
2672 static int velocity_get_pci_info(struct velocity_info *vptr)
2673 {
2674 	struct pci_dev *pdev = vptr->pdev;
2675 
2676 	pci_set_master(pdev);
2677 
2678 	vptr->ioaddr = pci_resource_start(pdev, 0);
2679 	vptr->memaddr = pci_resource_start(pdev, 1);
2680 
2681 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 		dev_err(&pdev->dev,
2683 			   "region #0 is not an I/O resource, aborting.\n");
2684 		return -EINVAL;
2685 	}
2686 
2687 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 		dev_err(&pdev->dev,
2689 			   "region #1 is an I/O resource, aborting.\n");
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 		dev_err(&pdev->dev, "region #1 is too small.\n");
2695 		return -EINVAL;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  *	velocity_get_platform_info - retrieve platform info for device
2703  *	@vptr: velocity device
2704  *
2705  *	Retrieve the Platform configuration data that interests us
2706  */
2707 static int velocity_get_platform_info(struct velocity_info *vptr)
2708 {
2709 	struct resource res;
2710 	int ret;
2711 
2712 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2713 		vptr->no_eeprom = 1;
2714 
2715 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2716 	if (ret) {
2717 		dev_err(vptr->dev, "unable to find memory address\n");
2718 		return ret;
2719 	}
2720 
2721 	vptr->memaddr = res.start;
2722 
2723 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2724 		dev_err(vptr->dev, "memory region is too small.\n");
2725 		return -EINVAL;
2726 	}
2727 
2728 	return 0;
2729 }
2730 
2731 /**
2732  *	velocity_print_info	-	per driver data
2733  *	@vptr: velocity
2734  *
2735  *	Print per driver data as the kernel driver finds Velocity
2736  *	hardware
2737  */
2738 static void velocity_print_info(struct velocity_info *vptr)
2739 {
2740 	netdev_info(vptr->netdev, "%s - Ethernet Address: %pM\n",
2741 		    get_chip_name(vptr->chip_id), vptr->netdev->dev_addr);
2742 }
2743 
2744 static u32 velocity_get_link(struct net_device *dev)
2745 {
2746 	struct velocity_info *vptr = netdev_priv(dev);
2747 	struct mac_regs __iomem *regs = vptr->mac_regs;
2748 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2749 }
2750 
2751 /**
2752  *	velocity_probe - set up discovered velocity device
2753  *	@dev: PCI device
2754  *	@info: table of match
2755  *	@irq: interrupt info
2756  *	@bustype: bus that device is connected to
2757  *
2758  *	Configure a discovered adapter from scratch. Return a negative
2759  *	errno error code on failure paths.
2760  */
2761 static int velocity_probe(struct device *dev, int irq,
2762 			   const struct velocity_info_tbl *info,
2763 			   enum velocity_bus_type bustype)
2764 {
2765 	struct net_device *netdev;
2766 	int i;
2767 	struct velocity_info *vptr;
2768 	struct mac_regs __iomem *regs;
2769 	int ret = -ENOMEM;
2770 
2771 	/* FIXME: this driver, like almost all other ethernet drivers,
2772 	 * can support more than MAX_UNITS.
2773 	 */
2774 	if (velocity_nics >= MAX_UNITS) {
2775 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2776 		return -ENODEV;
2777 	}
2778 
2779 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2780 	if (!netdev)
2781 		goto out;
2782 
2783 	/* Chain it all together */
2784 
2785 	SET_NETDEV_DEV(netdev, dev);
2786 	vptr = netdev_priv(netdev);
2787 
2788 	pr_info_once("%s Ver. %s\n", VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2789 	pr_info_once("Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2790 	pr_info_once("Copyright (c) 2004 Red Hat Inc.\n");
2791 
2792 	netdev->irq = irq;
2793 	vptr->netdev = netdev;
2794 	vptr->dev = dev;
2795 
2796 	velocity_init_info(vptr, info);
2797 
2798 	if (bustype == BUS_PCI) {
2799 		vptr->pdev = to_pci_dev(dev);
2800 
2801 		ret = velocity_get_pci_info(vptr);
2802 		if (ret < 0)
2803 			goto err_free_dev;
2804 	} else {
2805 		vptr->pdev = NULL;
2806 		ret = velocity_get_platform_info(vptr);
2807 		if (ret < 0)
2808 			goto err_free_dev;
2809 	}
2810 
2811 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2812 	if (regs == NULL) {
2813 		ret = -EIO;
2814 		goto err_free_dev;
2815 	}
2816 
2817 	vptr->mac_regs = regs;
2818 	vptr->rev_id = readb(&regs->rev_id);
2819 
2820 	mac_wol_reset(regs);
2821 
2822 	for (i = 0; i < 6; i++)
2823 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2824 
2825 
2826 	velocity_get_options(&vptr->options, velocity_nics);
2827 
2828 	/*
2829 	 *	Mask out the options cannot be set to the chip
2830 	 */
2831 
2832 	vptr->options.flags &= info->flags;
2833 
2834 	/*
2835 	 *	Enable the chip specified capbilities
2836 	 */
2837 
2838 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2839 
2840 	vptr->wol_opts = vptr->options.wol_opts;
2841 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2842 
2843 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2844 
2845 	netdev->netdev_ops = &velocity_netdev_ops;
2846 	netdev->ethtool_ops = &velocity_ethtool_ops;
2847 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2848 							VELOCITY_NAPI_WEIGHT);
2849 
2850 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2851 			   NETIF_F_HW_VLAN_CTAG_TX;
2852 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2853 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2854 			NETIF_F_IP_CSUM;
2855 
2856 	/* MTU range: 64 - 9000 */
2857 	netdev->min_mtu = VELOCITY_MIN_MTU;
2858 	netdev->max_mtu = VELOCITY_MAX_MTU;
2859 
2860 	ret = register_netdev(netdev);
2861 	if (ret < 0)
2862 		goto err_iounmap;
2863 
2864 	if (!velocity_get_link(netdev)) {
2865 		netif_carrier_off(netdev);
2866 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2867 	}
2868 
2869 	velocity_print_info(vptr);
2870 	dev_set_drvdata(vptr->dev, netdev);
2871 
2872 	/* and leave the chip powered down */
2873 
2874 	velocity_set_power_state(vptr, PCI_D3hot);
2875 	velocity_nics++;
2876 out:
2877 	return ret;
2878 
2879 err_iounmap:
2880 	netif_napi_del(&vptr->napi);
2881 	iounmap(regs);
2882 err_free_dev:
2883 	free_netdev(netdev);
2884 	goto out;
2885 }
2886 
2887 /**
2888  *	velocity_remove	- device unplug
2889  *	@dev: device being removed
2890  *
2891  *	Device unload callback. Called on an unplug or on module
2892  *	unload for each active device that is present. Disconnects
2893  *	the device from the network layer and frees all the resources
2894  */
2895 static int velocity_remove(struct device *dev)
2896 {
2897 	struct net_device *netdev = dev_get_drvdata(dev);
2898 	struct velocity_info *vptr = netdev_priv(netdev);
2899 
2900 	unregister_netdev(netdev);
2901 	netif_napi_del(&vptr->napi);
2902 	iounmap(vptr->mac_regs);
2903 	free_netdev(netdev);
2904 	velocity_nics--;
2905 
2906 	return 0;
2907 }
2908 
2909 static int velocity_pci_probe(struct pci_dev *pdev,
2910 			       const struct pci_device_id *ent)
2911 {
2912 	const struct velocity_info_tbl *info =
2913 					&chip_info_table[ent->driver_data];
2914 	int ret;
2915 
2916 	ret = pci_enable_device(pdev);
2917 	if (ret < 0)
2918 		return ret;
2919 
2920 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2921 	if (ret < 0) {
2922 		dev_err(&pdev->dev, "No PCI resources.\n");
2923 		goto fail1;
2924 	}
2925 
2926 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2927 	if (ret == 0)
2928 		return 0;
2929 
2930 	pci_release_regions(pdev);
2931 fail1:
2932 	pci_disable_device(pdev);
2933 	return ret;
2934 }
2935 
2936 static void velocity_pci_remove(struct pci_dev *pdev)
2937 {
2938 	velocity_remove(&pdev->dev);
2939 
2940 	pci_release_regions(pdev);
2941 	pci_disable_device(pdev);
2942 }
2943 
2944 static int velocity_platform_probe(struct platform_device *pdev)
2945 {
2946 	const struct of_device_id *of_id;
2947 	const struct velocity_info_tbl *info;
2948 	int irq;
2949 
2950 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2951 	if (!of_id)
2952 		return -EINVAL;
2953 	info = of_id->data;
2954 
2955 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2956 	if (!irq)
2957 		return -EINVAL;
2958 
2959 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2960 }
2961 
2962 static int velocity_platform_remove(struct platform_device *pdev)
2963 {
2964 	velocity_remove(&pdev->dev);
2965 
2966 	return 0;
2967 }
2968 
2969 #ifdef CONFIG_PM_SLEEP
2970 /**
2971  *	wol_calc_crc		-	WOL CRC
2972  *	@size: size of the wake mask
2973  *	@pattern: data pattern
2974  *	@mask_pattern: mask
2975  *
2976  *	Compute the wake on lan crc hashes for the packet header
2977  *	we are interested in.
2978  */
2979 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2980 {
2981 	u16 crc = 0xFFFF;
2982 	u8 mask;
2983 	int i, j;
2984 
2985 	for (i = 0; i < size; i++) {
2986 		mask = mask_pattern[i];
2987 
2988 		/* Skip this loop if the mask equals to zero */
2989 		if (mask == 0x00)
2990 			continue;
2991 
2992 		for (j = 0; j < 8; j++) {
2993 			if ((mask & 0x01) == 0) {
2994 				mask >>= 1;
2995 				continue;
2996 			}
2997 			mask >>= 1;
2998 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2999 		}
3000 	}
3001 	/*	Finally, invert the result once to get the correct data */
3002 	crc = ~crc;
3003 	return bitrev32(crc) >> 16;
3004 }
3005 
3006 /**
3007  *	velocity_set_wol	-	set up for wake on lan
3008  *	@vptr: velocity to set WOL status on
3009  *
3010  *	Set a card up for wake on lan either by unicast or by
3011  *	ARP packet.
3012  *
3013  *	FIXME: check static buffer is safe here
3014  */
3015 static int velocity_set_wol(struct velocity_info *vptr)
3016 {
3017 	struct mac_regs __iomem *regs = vptr->mac_regs;
3018 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3019 	static u8 buf[256];
3020 	int i;
3021 
3022 	static u32 mask_pattern[2][4] = {
3023 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3024 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3025 	};
3026 
3027 	writew(0xFFFF, &regs->WOLCRClr);
3028 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3029 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3030 
3031 	/*
3032 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3033 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3034 	 */
3035 
3036 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3037 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3038 
3039 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3040 		struct arp_packet *arp = (struct arp_packet *) buf;
3041 		u16 crc;
3042 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3043 
3044 		for (i = 0; i < 4; i++)
3045 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3046 
3047 		arp->type = htons(ETH_P_ARP);
3048 		arp->ar_op = htons(1);
3049 
3050 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3051 
3052 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3053 				(u8 *) & mask_pattern[0][0]);
3054 
3055 		writew(crc, &regs->PatternCRC[0]);
3056 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3057 	}
3058 
3059 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3060 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3061 
3062 	writew(0x0FFF, &regs->WOLSRClr);
3063 
3064 	if (spd_dpx == SPD_DPX_1000_FULL)
3065 		goto mac_done;
3066 
3067 	if (spd_dpx != SPD_DPX_AUTO)
3068 		goto advertise_done;
3069 
3070 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3071 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3072 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3073 
3074 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3075 	}
3076 
3077 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3078 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3079 
3080 advertise_done:
3081 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3082 
3083 	{
3084 		u8 GCR;
3085 		GCR = readb(&regs->CHIPGCR);
3086 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3087 		writeb(GCR, &regs->CHIPGCR);
3088 	}
3089 
3090 mac_done:
3091 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3092 	/* Turn on SWPTAG just before entering power mode */
3093 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3094 	/* Go to bed ..... */
3095 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3096 
3097 	return 0;
3098 }
3099 
3100 /**
3101  *	velocity_save_context	-	save registers
3102  *	@vptr: velocity
3103  *	@context: buffer for stored context
3104  *
3105  *	Retrieve the current configuration from the velocity hardware
3106  *	and stash it in the context structure, for use by the context
3107  *	restore functions. This allows us to save things we need across
3108  *	power down states
3109  */
3110 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3111 {
3112 	struct mac_regs __iomem *regs = vptr->mac_regs;
3113 	u16 i;
3114 	u8 __iomem *ptr = (u8 __iomem *)regs;
3115 
3116 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3117 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3118 
3119 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3120 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3121 
3122 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3123 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124 
3125 }
3126 
3127 static int velocity_suspend(struct device *dev)
3128 {
3129 	struct net_device *netdev = dev_get_drvdata(dev);
3130 	struct velocity_info *vptr = netdev_priv(netdev);
3131 	unsigned long flags;
3132 
3133 	if (!netif_running(vptr->netdev))
3134 		return 0;
3135 
3136 	netif_device_detach(vptr->netdev);
3137 
3138 	spin_lock_irqsave(&vptr->lock, flags);
3139 	if (vptr->pdev)
3140 		pci_save_state(vptr->pdev);
3141 
3142 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3143 		velocity_get_ip(vptr);
3144 		velocity_save_context(vptr, &vptr->context);
3145 		velocity_shutdown(vptr);
3146 		velocity_set_wol(vptr);
3147 		if (vptr->pdev)
3148 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3149 		velocity_set_power_state(vptr, PCI_D3hot);
3150 	} else {
3151 		velocity_save_context(vptr, &vptr->context);
3152 		velocity_shutdown(vptr);
3153 		if (vptr->pdev)
3154 			pci_disable_device(vptr->pdev);
3155 		velocity_set_power_state(vptr, PCI_D3hot);
3156 	}
3157 
3158 	spin_unlock_irqrestore(&vptr->lock, flags);
3159 	return 0;
3160 }
3161 
3162 /**
3163  *	velocity_restore_context	-	restore registers
3164  *	@vptr: velocity
3165  *	@context: buffer for stored context
3166  *
3167  *	Reload the register configuration from the velocity context
3168  *	created by velocity_save_context.
3169  */
3170 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3171 {
3172 	struct mac_regs __iomem *regs = vptr->mac_regs;
3173 	int i;
3174 	u8 __iomem *ptr = (u8 __iomem *)regs;
3175 
3176 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3177 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3178 
3179 	/* Just skip cr0 */
3180 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3181 		/* Clear */
3182 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3183 		/* Set */
3184 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3185 	}
3186 
3187 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3188 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3189 
3190 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3191 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3192 
3193 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3194 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3195 }
3196 
3197 static int velocity_resume(struct device *dev)
3198 {
3199 	struct net_device *netdev = dev_get_drvdata(dev);
3200 	struct velocity_info *vptr = netdev_priv(netdev);
3201 	unsigned long flags;
3202 	int i;
3203 
3204 	if (!netif_running(vptr->netdev))
3205 		return 0;
3206 
3207 	velocity_set_power_state(vptr, PCI_D0);
3208 
3209 	if (vptr->pdev) {
3210 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3211 		pci_restore_state(vptr->pdev);
3212 	}
3213 
3214 	mac_wol_reset(vptr->mac_regs);
3215 
3216 	spin_lock_irqsave(&vptr->lock, flags);
3217 	velocity_restore_context(vptr, &vptr->context);
3218 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3219 	mac_disable_int(vptr->mac_regs);
3220 
3221 	velocity_tx_srv(vptr);
3222 
3223 	for (i = 0; i < vptr->tx.numq; i++) {
3224 		if (vptr->tx.used[i])
3225 			mac_tx_queue_wake(vptr->mac_regs, i);
3226 	}
3227 
3228 	mac_enable_int(vptr->mac_regs);
3229 	spin_unlock_irqrestore(&vptr->lock, flags);
3230 	netif_device_attach(vptr->netdev);
3231 
3232 	return 0;
3233 }
3234 #endif	/* CONFIG_PM_SLEEP */
3235 
3236 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3237 
3238 /*
3239  *	Definition for our device driver. The PCI layer interface
3240  *	uses this to handle all our card discover and plugging
3241  */
3242 static struct pci_driver velocity_pci_driver = {
3243 	.name		= VELOCITY_NAME,
3244 	.id_table	= velocity_pci_id_table,
3245 	.probe		= velocity_pci_probe,
3246 	.remove		= velocity_pci_remove,
3247 	.driver = {
3248 		.pm = &velocity_pm_ops,
3249 	},
3250 };
3251 
3252 static struct platform_driver velocity_platform_driver = {
3253 	.probe		= velocity_platform_probe,
3254 	.remove		= velocity_platform_remove,
3255 	.driver = {
3256 		.name = "via-velocity",
3257 		.of_match_table = velocity_of_ids,
3258 		.pm = &velocity_pm_ops,
3259 	},
3260 };
3261 
3262 /**
3263  *	velocity_ethtool_up	-	pre hook for ethtool
3264  *	@dev: network device
3265  *
3266  *	Called before an ethtool operation. We need to make sure the
3267  *	chip is out of D3 state before we poke at it. In case of ethtool
3268  *	ops nesting, only wake the device up in the outermost block.
3269  */
3270 static int velocity_ethtool_up(struct net_device *dev)
3271 {
3272 	struct velocity_info *vptr = netdev_priv(dev);
3273 
3274 	if (vptr->ethtool_ops_nesting == U32_MAX)
3275 		return -EBUSY;
3276 	if (!vptr->ethtool_ops_nesting++ && !netif_running(dev))
3277 		velocity_set_power_state(vptr, PCI_D0);
3278 	return 0;
3279 }
3280 
3281 /**
3282  *	velocity_ethtool_down	-	post hook for ethtool
3283  *	@dev: network device
3284  *
3285  *	Called after an ethtool operation. Restore the chip back to D3
3286  *	state if it isn't running. In case of ethtool ops nesting, only
3287  *	put the device to sleep in the outermost block.
3288  */
3289 static void velocity_ethtool_down(struct net_device *dev)
3290 {
3291 	struct velocity_info *vptr = netdev_priv(dev);
3292 
3293 	if (!--vptr->ethtool_ops_nesting && !netif_running(dev))
3294 		velocity_set_power_state(vptr, PCI_D3hot);
3295 }
3296 
3297 static int velocity_get_link_ksettings(struct net_device *dev,
3298 				       struct ethtool_link_ksettings *cmd)
3299 {
3300 	struct velocity_info *vptr = netdev_priv(dev);
3301 	struct mac_regs __iomem *regs = vptr->mac_regs;
3302 	u32 status;
3303 	u32 supported, advertising;
3304 
3305 	status = check_connection_type(vptr->mac_regs);
3306 
3307 	supported = SUPPORTED_TP |
3308 			SUPPORTED_Autoneg |
3309 			SUPPORTED_10baseT_Half |
3310 			SUPPORTED_10baseT_Full |
3311 			SUPPORTED_100baseT_Half |
3312 			SUPPORTED_100baseT_Full |
3313 			SUPPORTED_1000baseT_Half |
3314 			SUPPORTED_1000baseT_Full;
3315 
3316 	advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3317 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3318 		advertising |=
3319 			ADVERTISED_10baseT_Half |
3320 			ADVERTISED_10baseT_Full |
3321 			ADVERTISED_100baseT_Half |
3322 			ADVERTISED_100baseT_Full |
3323 			ADVERTISED_1000baseT_Half |
3324 			ADVERTISED_1000baseT_Full;
3325 	} else {
3326 		switch (vptr->options.spd_dpx) {
3327 		case SPD_DPX_1000_FULL:
3328 			advertising |= ADVERTISED_1000baseT_Full;
3329 			break;
3330 		case SPD_DPX_100_HALF:
3331 			advertising |= ADVERTISED_100baseT_Half;
3332 			break;
3333 		case SPD_DPX_100_FULL:
3334 			advertising |= ADVERTISED_100baseT_Full;
3335 			break;
3336 		case SPD_DPX_10_HALF:
3337 			advertising |= ADVERTISED_10baseT_Half;
3338 			break;
3339 		case SPD_DPX_10_FULL:
3340 			advertising |= ADVERTISED_10baseT_Full;
3341 			break;
3342 		default:
3343 			break;
3344 		}
3345 	}
3346 
3347 	if (status & VELOCITY_SPEED_1000)
3348 		cmd->base.speed = SPEED_1000;
3349 	else if (status & VELOCITY_SPEED_100)
3350 		cmd->base.speed = SPEED_100;
3351 	else
3352 		cmd->base.speed = SPEED_10;
3353 
3354 	cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ?
3355 		AUTONEG_ENABLE : AUTONEG_DISABLE;
3356 	cmd->base.port = PORT_TP;
3357 	cmd->base.phy_address = readb(&regs->MIIADR) & 0x1F;
3358 
3359 	if (status & VELOCITY_DUPLEX_FULL)
3360 		cmd->base.duplex = DUPLEX_FULL;
3361 	else
3362 		cmd->base.duplex = DUPLEX_HALF;
3363 
3364 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3365 						supported);
3366 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3367 						advertising);
3368 
3369 	return 0;
3370 }
3371 
3372 static int velocity_set_link_ksettings(struct net_device *dev,
3373 				       const struct ethtool_link_ksettings *cmd)
3374 {
3375 	struct velocity_info *vptr = netdev_priv(dev);
3376 	u32 speed = cmd->base.speed;
3377 	u32 curr_status;
3378 	u32 new_status = 0;
3379 	int ret = 0;
3380 
3381 	curr_status = check_connection_type(vptr->mac_regs);
3382 	curr_status &= (~VELOCITY_LINK_FAIL);
3383 
3384 	new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3385 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3386 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3387 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3388 	new_status |= ((cmd->base.duplex == DUPLEX_FULL) ?
3389 		       VELOCITY_DUPLEX_FULL : 0);
3390 
3391 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3392 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3393 		ret = -EINVAL;
3394 	} else {
3395 		enum speed_opt spd_dpx;
3396 
3397 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3398 			spd_dpx = SPD_DPX_AUTO;
3399 		else if ((new_status & VELOCITY_SPEED_1000) &&
3400 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3401 			spd_dpx = SPD_DPX_1000_FULL;
3402 		} else if (new_status & VELOCITY_SPEED_100)
3403 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3404 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3405 		else if (new_status & VELOCITY_SPEED_10)
3406 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3407 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3408 		else
3409 			return -EOPNOTSUPP;
3410 
3411 		vptr->options.spd_dpx = spd_dpx;
3412 
3413 		velocity_set_media_mode(vptr, new_status);
3414 	}
3415 
3416 	return ret;
3417 }
3418 
3419 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3420 {
3421 	struct velocity_info *vptr = netdev_priv(dev);
3422 
3423 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3424 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3425 	if (vptr->pdev)
3426 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3427 						sizeof(info->bus_info));
3428 	else
3429 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3430 }
3431 
3432 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3433 {
3434 	struct velocity_info *vptr = netdev_priv(dev);
3435 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3436 	wol->wolopts |= WAKE_MAGIC;
3437 	/*
3438 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3439 		   wol.wolopts|=WAKE_PHY;
3440 			 */
3441 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3442 		wol->wolopts |= WAKE_UCAST;
3443 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3444 		wol->wolopts |= WAKE_ARP;
3445 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3446 }
3447 
3448 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3449 {
3450 	struct velocity_info *vptr = netdev_priv(dev);
3451 
3452 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3453 		return -EFAULT;
3454 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3455 
3456 	/*
3457 	   if (wol.wolopts & WAKE_PHY) {
3458 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3459 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3460 	   }
3461 	 */
3462 
3463 	if (wol->wolopts & WAKE_MAGIC) {
3464 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3465 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3466 	}
3467 	if (wol->wolopts & WAKE_UCAST) {
3468 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3469 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3470 	}
3471 	if (wol->wolopts & WAKE_ARP) {
3472 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3473 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3474 	}
3475 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3476 	return 0;
3477 }
3478 
3479 static int get_pending_timer_val(int val)
3480 {
3481 	int mult_bits = val >> 6;
3482 	int mult = 1;
3483 
3484 	switch (mult_bits)
3485 	{
3486 	case 1:
3487 		mult = 4; break;
3488 	case 2:
3489 		mult = 16; break;
3490 	case 3:
3491 		mult = 64; break;
3492 	case 0:
3493 	default:
3494 		break;
3495 	}
3496 
3497 	return (val & 0x3f) * mult;
3498 }
3499 
3500 static void set_pending_timer_val(int *val, u32 us)
3501 {
3502 	u8 mult = 0;
3503 	u8 shift = 0;
3504 
3505 	if (us >= 0x3f) {
3506 		mult = 1; /* mult with 4 */
3507 		shift = 2;
3508 	}
3509 	if (us >= 0x3f * 4) {
3510 		mult = 2; /* mult with 16 */
3511 		shift = 4;
3512 	}
3513 	if (us >= 0x3f * 16) {
3514 		mult = 3; /* mult with 64 */
3515 		shift = 6;
3516 	}
3517 
3518 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3519 }
3520 
3521 
3522 static int velocity_get_coalesce(struct net_device *dev,
3523 		struct ethtool_coalesce *ecmd)
3524 {
3525 	struct velocity_info *vptr = netdev_priv(dev);
3526 
3527 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3528 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3529 
3530 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3531 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3532 
3533 	return 0;
3534 }
3535 
3536 static int velocity_set_coalesce(struct net_device *dev,
3537 		struct ethtool_coalesce *ecmd)
3538 {
3539 	struct velocity_info *vptr = netdev_priv(dev);
3540 	int max_us = 0x3f * 64;
3541 	unsigned long flags;
3542 
3543 	/* 6 bits of  */
3544 	if (ecmd->tx_coalesce_usecs > max_us)
3545 		return -EINVAL;
3546 	if (ecmd->rx_coalesce_usecs > max_us)
3547 		return -EINVAL;
3548 
3549 	if (ecmd->tx_max_coalesced_frames > 0xff)
3550 		return -EINVAL;
3551 	if (ecmd->rx_max_coalesced_frames > 0xff)
3552 		return -EINVAL;
3553 
3554 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3555 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3556 
3557 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3558 			ecmd->rx_coalesce_usecs);
3559 	set_pending_timer_val(&vptr->options.txqueue_timer,
3560 			ecmd->tx_coalesce_usecs);
3561 
3562 	/* Setup the interrupt suppression and queue timers */
3563 	spin_lock_irqsave(&vptr->lock, flags);
3564 	mac_disable_int(vptr->mac_regs);
3565 	setup_adaptive_interrupts(vptr);
3566 	setup_queue_timers(vptr);
3567 
3568 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3569 	mac_clear_isr(vptr->mac_regs);
3570 	mac_enable_int(vptr->mac_regs);
3571 	spin_unlock_irqrestore(&vptr->lock, flags);
3572 
3573 	return 0;
3574 }
3575 
3576 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3577 	"rx_all",
3578 	"rx_ok",
3579 	"tx_ok",
3580 	"rx_error",
3581 	"rx_runt_ok",
3582 	"rx_runt_err",
3583 	"rx_64",
3584 	"tx_64",
3585 	"rx_65_to_127",
3586 	"tx_65_to_127",
3587 	"rx_128_to_255",
3588 	"tx_128_to_255",
3589 	"rx_256_to_511",
3590 	"tx_256_to_511",
3591 	"rx_512_to_1023",
3592 	"tx_512_to_1023",
3593 	"rx_1024_to_1518",
3594 	"tx_1024_to_1518",
3595 	"tx_ether_collisions",
3596 	"rx_crc_errors",
3597 	"rx_jumbo",
3598 	"tx_jumbo",
3599 	"rx_mac_control_frames",
3600 	"tx_mac_control_frames",
3601 	"rx_frame_alignment_errors",
3602 	"rx_long_ok",
3603 	"rx_long_err",
3604 	"tx_sqe_errors",
3605 	"rx_no_buf",
3606 	"rx_symbol_errors",
3607 	"in_range_length_errors",
3608 	"late_collisions"
3609 };
3610 
3611 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3612 {
3613 	switch (sset) {
3614 	case ETH_SS_STATS:
3615 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3616 		break;
3617 	}
3618 }
3619 
3620 static int velocity_get_sset_count(struct net_device *dev, int sset)
3621 {
3622 	switch (sset) {
3623 	case ETH_SS_STATS:
3624 		return ARRAY_SIZE(velocity_gstrings);
3625 	default:
3626 		return -EOPNOTSUPP;
3627 	}
3628 }
3629 
3630 static void velocity_get_ethtool_stats(struct net_device *dev,
3631 				       struct ethtool_stats *stats, u64 *data)
3632 {
3633 	if (netif_running(dev)) {
3634 		struct velocity_info *vptr = netdev_priv(dev);
3635 		u32 *p = vptr->mib_counter;
3636 		int i;
3637 
3638 		spin_lock_irq(&vptr->lock);
3639 		velocity_update_hw_mibs(vptr);
3640 		spin_unlock_irq(&vptr->lock);
3641 
3642 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3643 			*data++ = *p++;
3644 	}
3645 }
3646 
3647 static const struct ethtool_ops velocity_ethtool_ops = {
3648 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3649 				     ETHTOOL_COALESCE_MAX_FRAMES,
3650 	.get_drvinfo		= velocity_get_drvinfo,
3651 	.get_wol		= velocity_ethtool_get_wol,
3652 	.set_wol		= velocity_ethtool_set_wol,
3653 	.get_link		= velocity_get_link,
3654 	.get_strings		= velocity_get_strings,
3655 	.get_sset_count		= velocity_get_sset_count,
3656 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3657 	.get_coalesce		= velocity_get_coalesce,
3658 	.set_coalesce		= velocity_set_coalesce,
3659 	.begin			= velocity_ethtool_up,
3660 	.complete		= velocity_ethtool_down,
3661 	.get_link_ksettings	= velocity_get_link_ksettings,
3662 	.set_link_ksettings	= velocity_set_link_ksettings,
3663 };
3664 
3665 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3666 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3667 {
3668 	struct in_ifaddr *ifa = ptr;
3669 	struct net_device *dev = ifa->ifa_dev->dev;
3670 
3671 	if (dev_net(dev) == &init_net &&
3672 	    dev->netdev_ops == &velocity_netdev_ops)
3673 		velocity_get_ip(netdev_priv(dev));
3674 
3675 	return NOTIFY_DONE;
3676 }
3677 
3678 static struct notifier_block velocity_inetaddr_notifier = {
3679 	.notifier_call	= velocity_netdev_event,
3680 };
3681 
3682 static void velocity_register_notifier(void)
3683 {
3684 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3685 }
3686 
3687 static void velocity_unregister_notifier(void)
3688 {
3689 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3690 }
3691 
3692 #else
3693 
3694 #define velocity_register_notifier()	do {} while (0)
3695 #define velocity_unregister_notifier()	do {} while (0)
3696 
3697 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3698 
3699 /**
3700  *	velocity_init_module	-	load time function
3701  *
3702  *	Called when the velocity module is loaded. The PCI driver
3703  *	is registered with the PCI layer, and in turn will call
3704  *	the probe functions for each velocity adapter installed
3705  *	in the system.
3706  */
3707 static int __init velocity_init_module(void)
3708 {
3709 	int ret_pci, ret_platform;
3710 
3711 	velocity_register_notifier();
3712 
3713 	ret_pci = pci_register_driver(&velocity_pci_driver);
3714 	ret_platform = platform_driver_register(&velocity_platform_driver);
3715 
3716 	/* if both_registers failed, remove the notifier */
3717 	if ((ret_pci < 0) && (ret_platform < 0)) {
3718 		velocity_unregister_notifier();
3719 		return ret_pci;
3720 	}
3721 
3722 	return 0;
3723 }
3724 
3725 /**
3726  *	velocity_cleanup	-	module unload
3727  *
3728  *	When the velocity hardware is unloaded this function is called.
3729  *	It will clean up the notifiers and the unregister the PCI
3730  *	driver interface for this hardware. This in turn cleans up
3731  *	all discovered interfaces before returning from the function
3732  */
3733 static void __exit velocity_cleanup_module(void)
3734 {
3735 	velocity_unregister_notifier();
3736 
3737 	pci_unregister_driver(&velocity_pci_driver);
3738 	platform_driver_unregister(&velocity_platform_driver);
3739 }
3740 
3741 module_init(velocity_init_module);
3742 module_exit(velocity_cleanup_module);
3743