1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * This code is derived from the VIA reference driver (copyright message 4 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 5 * addition to the Linux kernel. 6 * 7 * The code has been merged into one source file, cleaned up to follow 8 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 9 * for 64bit hardware platforms. 10 * 11 * TODO 12 * rx_copybreak/alignment 13 * More testing 14 * 15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 16 * Additional fixes and clean up: Francois Romieu 17 * 18 * This source has not been verified for use in safety critical systems. 19 * 20 * Please direct queries about the revamped driver to the linux-kernel 21 * list not VIA. 22 * 23 * Original code: 24 * 25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 26 * All rights reserved. 27 * 28 * Author: Chuang Liang-Shing, AJ Jiang 29 * 30 * Date: Jan 24, 2003 31 * 32 * MODULE_LICENSE("GPL"); 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/bitops.h> 40 #include <linux/init.h> 41 #include <linux/dma-mapping.h> 42 #include <linux/mm.h> 43 #include <linux/errno.h> 44 #include <linux/ioport.h> 45 #include <linux/pci.h> 46 #include <linux/kernel.h> 47 #include <linux/netdevice.h> 48 #include <linux/etherdevice.h> 49 #include <linux/skbuff.h> 50 #include <linux/delay.h> 51 #include <linux/timer.h> 52 #include <linux/slab.h> 53 #include <linux/interrupt.h> 54 #include <linux/string.h> 55 #include <linux/wait.h> 56 #include <linux/io.h> 57 #include <linux/if.h> 58 #include <linux/uaccess.h> 59 #include <linux/proc_fs.h> 60 #include <linux/of_address.h> 61 #include <linux/of_device.h> 62 #include <linux/of_irq.h> 63 #include <linux/inetdevice.h> 64 #include <linux/platform_device.h> 65 #include <linux/reboot.h> 66 #include <linux/ethtool.h> 67 #include <linux/mii.h> 68 #include <linux/in.h> 69 #include <linux/if_arp.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ip.h> 72 #include <linux/tcp.h> 73 #include <linux/udp.h> 74 #include <linux/crc-ccitt.h> 75 #include <linux/crc32.h> 76 77 #include "via-velocity.h" 78 79 enum velocity_bus_type { 80 BUS_PCI, 81 BUS_PLATFORM, 82 }; 83 84 static int velocity_nics; 85 86 static void velocity_set_power_state(struct velocity_info *vptr, char state) 87 { 88 void *addr = vptr->mac_regs; 89 90 if (vptr->pdev) 91 pci_set_power_state(vptr->pdev, state); 92 else 93 writeb(state, addr + 0x154); 94 } 95 96 /** 97 * mac_get_cam_mask - Read a CAM mask 98 * @regs: register block for this velocity 99 * @mask: buffer to store mask 100 * 101 * Fetch the mask bits of the selected CAM and store them into the 102 * provided mask buffer. 103 */ 104 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 105 { 106 int i; 107 108 /* Select CAM mask */ 109 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 110 111 writeb(0, ®s->CAMADDR); 112 113 /* read mask */ 114 for (i = 0; i < 8; i++) 115 *mask++ = readb(&(regs->MARCAM[i])); 116 117 /* disable CAMEN */ 118 writeb(0, ®s->CAMADDR); 119 120 /* Select mar */ 121 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 122 } 123 124 /** 125 * mac_set_cam_mask - Set a CAM mask 126 * @regs: register block for this velocity 127 * @mask: CAM mask to load 128 * 129 * Store a new mask into a CAM 130 */ 131 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 132 { 133 int i; 134 /* Select CAM mask */ 135 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 136 137 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 138 139 for (i = 0; i < 8; i++) 140 writeb(*mask++, &(regs->MARCAM[i])); 141 142 /* disable CAMEN */ 143 writeb(0, ®s->CAMADDR); 144 145 /* Select mar */ 146 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 147 } 148 149 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 150 { 151 int i; 152 /* Select CAM mask */ 153 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 154 155 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 156 157 for (i = 0; i < 8; i++) 158 writeb(*mask++, &(regs->MARCAM[i])); 159 160 /* disable CAMEN */ 161 writeb(0, ®s->CAMADDR); 162 163 /* Select mar */ 164 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 165 } 166 167 /** 168 * mac_set_cam - set CAM data 169 * @regs: register block of this velocity 170 * @idx: Cam index 171 * @addr: 2 or 6 bytes of CAM data 172 * 173 * Load an address or vlan tag into a CAM 174 */ 175 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 176 { 177 int i; 178 179 /* Select CAM mask */ 180 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 181 182 idx &= (64 - 1); 183 184 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 185 186 for (i = 0; i < 6; i++) 187 writeb(*addr++, &(regs->MARCAM[i])); 188 189 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 190 191 udelay(10); 192 193 writeb(0, ®s->CAMADDR); 194 195 /* Select mar */ 196 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 197 } 198 199 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 200 const u8 *addr) 201 { 202 203 /* Select CAM mask */ 204 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 205 206 idx &= (64 - 1); 207 208 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 209 writew(*((u16 *) addr), ®s->MARCAM[0]); 210 211 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 212 213 udelay(10); 214 215 writeb(0, ®s->CAMADDR); 216 217 /* Select mar */ 218 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 219 } 220 221 222 /** 223 * mac_wol_reset - reset WOL after exiting low power 224 * @regs: register block of this velocity 225 * 226 * Called after we drop out of wake on lan mode in order to 227 * reset the Wake on lan features. This function doesn't restore 228 * the rest of the logic from the result of sleep/wakeup 229 */ 230 static void mac_wol_reset(struct mac_regs __iomem *regs) 231 { 232 233 /* Turn off SWPTAG right after leaving power mode */ 234 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 235 /* clear sticky bits */ 236 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 237 238 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 239 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 240 /* disable force PME-enable */ 241 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 242 /* disable power-event config bit */ 243 writew(0xFFFF, ®s->WOLCRClr); 244 /* clear power status */ 245 writew(0xFFFF, ®s->WOLSRClr); 246 } 247 248 static const struct ethtool_ops velocity_ethtool_ops; 249 250 /* 251 Define module options 252 */ 253 254 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 255 MODULE_LICENSE("GPL"); 256 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 257 258 #define VELOCITY_PARAM(N, D) \ 259 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 260 module_param_array(N, int, NULL, 0); \ 261 MODULE_PARM_DESC(N, D); 262 263 #define RX_DESC_MIN 64 264 #define RX_DESC_MAX 255 265 #define RX_DESC_DEF 64 266 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 267 268 #define TX_DESC_MIN 16 269 #define TX_DESC_MAX 256 270 #define TX_DESC_DEF 64 271 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 272 273 #define RX_THRESH_MIN 0 274 #define RX_THRESH_MAX 3 275 #define RX_THRESH_DEF 0 276 /* rx_thresh[] is used for controlling the receive fifo threshold. 277 0: indicate the rxfifo threshold is 128 bytes. 278 1: indicate the rxfifo threshold is 512 bytes. 279 2: indicate the rxfifo threshold is 1024 bytes. 280 3: indicate the rxfifo threshold is store & forward. 281 */ 282 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 283 284 #define DMA_LENGTH_MIN 0 285 #define DMA_LENGTH_MAX 7 286 #define DMA_LENGTH_DEF 6 287 288 /* DMA_length[] is used for controlling the DMA length 289 0: 8 DWORDs 290 1: 16 DWORDs 291 2: 32 DWORDs 292 3: 64 DWORDs 293 4: 128 DWORDs 294 5: 256 DWORDs 295 6: SF(flush till emply) 296 7: SF(flush till emply) 297 */ 298 VELOCITY_PARAM(DMA_length, "DMA length"); 299 300 #define IP_ALIG_DEF 0 301 /* IP_byte_align[] is used for IP header DWORD byte aligned 302 0: indicate the IP header won't be DWORD byte aligned.(Default) . 303 1: indicate the IP header will be DWORD byte aligned. 304 In some environment, the IP header should be DWORD byte aligned, 305 or the packet will be droped when we receive it. (eg: IPVS) 306 */ 307 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 308 309 #define FLOW_CNTL_DEF 1 310 #define FLOW_CNTL_MIN 1 311 #define FLOW_CNTL_MAX 5 312 313 /* flow_control[] is used for setting the flow control ability of NIC. 314 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 315 2: enable TX flow control. 316 3: enable RX flow control. 317 4: enable RX/TX flow control. 318 5: disable 319 */ 320 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 321 322 #define MED_LNK_DEF 0 323 #define MED_LNK_MIN 0 324 #define MED_LNK_MAX 5 325 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 326 0: indicate autonegotiation for both speed and duplex mode 327 1: indicate 100Mbps half duplex mode 328 2: indicate 100Mbps full duplex mode 329 3: indicate 10Mbps half duplex mode 330 4: indicate 10Mbps full duplex mode 331 5: indicate 1000Mbps full duplex mode 332 333 Note: 334 if EEPROM have been set to the force mode, this option is ignored 335 by driver. 336 */ 337 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 338 339 #define WOL_OPT_DEF 0 340 #define WOL_OPT_MIN 0 341 #define WOL_OPT_MAX 7 342 /* wol_opts[] is used for controlling wake on lan behavior. 343 0: Wake up if recevied a magic packet. (Default) 344 1: Wake up if link status is on/off. 345 2: Wake up if recevied an arp packet. 346 4: Wake up if recevied any unicast packet. 347 Those value can be sumed up to support more than one option. 348 */ 349 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 350 351 static int rx_copybreak = 200; 352 module_param(rx_copybreak, int, 0644); 353 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 354 355 /* 356 * Internal board variants. At the moment we have only one 357 */ 358 static struct velocity_info_tbl chip_info_table[] = { 359 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 360 { } 361 }; 362 363 /* 364 * Describe the PCI device identifiers that we support in this 365 * device driver. Used for hotplug autoloading. 366 */ 367 368 static const struct pci_device_id velocity_pci_id_table[] = { 369 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 370 { } 371 }; 372 373 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 374 375 /* 376 * Describe the OF device identifiers that we support in this 377 * device driver. Used for devicetree nodes. 378 */ 379 static const struct of_device_id velocity_of_ids[] = { 380 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 381 { /* Sentinel */ }, 382 }; 383 MODULE_DEVICE_TABLE(of, velocity_of_ids); 384 385 /** 386 * get_chip_name - identifier to name 387 * @chip_id: chip identifier 388 * 389 * Given a chip identifier return a suitable description. Returns 390 * a pointer a static string valid while the driver is loaded. 391 */ 392 static const char *get_chip_name(enum chip_type chip_id) 393 { 394 int i; 395 for (i = 0; chip_info_table[i].name != NULL; i++) 396 if (chip_info_table[i].chip_id == chip_id) 397 break; 398 return chip_info_table[i].name; 399 } 400 401 /** 402 * velocity_set_int_opt - parser for integer options 403 * @opt: pointer to option value 404 * @val: value the user requested (or -1 for default) 405 * @min: lowest value allowed 406 * @max: highest value allowed 407 * @def: default value 408 * @name: property name 409 * 410 * Set an integer property in the module options. This function does 411 * all the verification and checking as well as reporting so that 412 * we don't duplicate code for each option. 413 */ 414 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 415 char *name) 416 { 417 if (val == -1) 418 *opt = def; 419 else if (val < min || val > max) { 420 pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n", 421 name, min, max); 422 *opt = def; 423 } else { 424 pr_info("set value of parameter %s to %d\n", name, val); 425 *opt = val; 426 } 427 } 428 429 /** 430 * velocity_set_bool_opt - parser for boolean options 431 * @opt: pointer to option value 432 * @val: value the user requested (or -1 for default) 433 * @def: default value (yes/no) 434 * @flag: numeric value to set for true. 435 * @name: property name 436 * 437 * Set a boolean property in the module options. This function does 438 * all the verification and checking as well as reporting so that 439 * we don't duplicate code for each option. 440 */ 441 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 442 char *name) 443 { 444 (*opt) &= (~flag); 445 if (val == -1) 446 *opt |= (def ? flag : 0); 447 else if (val < 0 || val > 1) { 448 pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n", 449 name, 0, 1); 450 *opt |= (def ? flag : 0); 451 } else { 452 pr_info("set parameter %s to %s\n", 453 name, val ? "TRUE" : "FALSE"); 454 *opt |= (val ? flag : 0); 455 } 456 } 457 458 /** 459 * velocity_get_options - set options on device 460 * @opts: option structure for the device 461 * @index: index of option to use in module options array 462 * 463 * Turn the module and command options into a single structure 464 * for the current device 465 */ 466 static void velocity_get_options(struct velocity_opt *opts, int index) 467 { 468 469 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], 470 RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, 471 "rx_thresh"); 472 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], 473 DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, 474 "DMA_length"); 475 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], 476 RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, 477 "RxDescriptors"); 478 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], 479 TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, 480 "TxDescriptors"); 481 482 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], 483 FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, 484 "flow_control"); 485 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], 486 IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, 487 "IP_byte_align"); 488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], 489 MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, 490 "Media link mode"); 491 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], 492 WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, 493 "Wake On Lan options"); 494 opts->numrx = (opts->numrx & ~3); 495 } 496 497 /** 498 * velocity_init_cam_filter - initialise CAM 499 * @vptr: velocity to program 500 * 501 * Initialize the content addressable memory used for filters. Load 502 * appropriately according to the presence of VLAN 503 */ 504 static void velocity_init_cam_filter(struct velocity_info *vptr) 505 { 506 struct mac_regs __iomem *regs = vptr->mac_regs; 507 unsigned int vid, i = 0; 508 509 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 510 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 511 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 512 513 /* Disable all CAMs */ 514 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 515 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 516 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 517 mac_set_cam_mask(regs, vptr->mCAMmask); 518 519 /* Enable VCAMs */ 520 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 521 mac_set_vlan_cam(regs, i, (u8 *) &vid); 522 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 523 if (++i >= VCAM_SIZE) 524 break; 525 } 526 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 527 } 528 529 static int velocity_vlan_rx_add_vid(struct net_device *dev, 530 __be16 proto, u16 vid) 531 { 532 struct velocity_info *vptr = netdev_priv(dev); 533 534 spin_lock_irq(&vptr->lock); 535 set_bit(vid, vptr->active_vlans); 536 velocity_init_cam_filter(vptr); 537 spin_unlock_irq(&vptr->lock); 538 return 0; 539 } 540 541 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 542 __be16 proto, u16 vid) 543 { 544 struct velocity_info *vptr = netdev_priv(dev); 545 546 spin_lock_irq(&vptr->lock); 547 clear_bit(vid, vptr->active_vlans); 548 velocity_init_cam_filter(vptr); 549 spin_unlock_irq(&vptr->lock); 550 return 0; 551 } 552 553 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 554 { 555 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 556 } 557 558 /** 559 * velocity_rx_reset - handle a receive reset 560 * @vptr: velocity we are resetting 561 * 562 * Reset the ownership and status for the receive ring side. 563 * Hand all the receive queue to the NIC. 564 */ 565 static void velocity_rx_reset(struct velocity_info *vptr) 566 { 567 568 struct mac_regs __iomem *regs = vptr->mac_regs; 569 int i; 570 571 velocity_init_rx_ring_indexes(vptr); 572 573 /* 574 * Init state, all RD entries belong to the NIC 575 */ 576 for (i = 0; i < vptr->options.numrx; ++i) 577 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 578 579 writew(vptr->options.numrx, ®s->RBRDU); 580 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 581 writew(0, ®s->RDIdx); 582 writew(vptr->options.numrx - 1, ®s->RDCSize); 583 } 584 585 /** 586 * velocity_get_opt_media_mode - get media selection 587 * @vptr: velocity adapter 588 * 589 * Get the media mode stored in EEPROM or module options and load 590 * mii_status accordingly. The requested link state information 591 * is also returned. 592 */ 593 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 594 { 595 u32 status = 0; 596 597 switch (vptr->options.spd_dpx) { 598 case SPD_DPX_AUTO: 599 status = VELOCITY_AUTONEG_ENABLE; 600 break; 601 case SPD_DPX_100_FULL: 602 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 603 break; 604 case SPD_DPX_10_FULL: 605 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 606 break; 607 case SPD_DPX_100_HALF: 608 status = VELOCITY_SPEED_100; 609 break; 610 case SPD_DPX_10_HALF: 611 status = VELOCITY_SPEED_10; 612 break; 613 case SPD_DPX_1000_FULL: 614 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 615 break; 616 } 617 vptr->mii_status = status; 618 return status; 619 } 620 621 /** 622 * safe_disable_mii_autopoll - autopoll off 623 * @regs: velocity registers 624 * 625 * Turn off the autopoll and wait for it to disable on the chip 626 */ 627 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 628 { 629 u16 ww; 630 631 /* turn off MAUTO */ 632 writeb(0, ®s->MIICR); 633 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 634 udelay(1); 635 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 636 break; 637 } 638 } 639 640 /** 641 * enable_mii_autopoll - turn on autopolling 642 * @regs: velocity registers 643 * 644 * Enable the MII link status autopoll feature on the Velocity 645 * hardware. Wait for it to enable. 646 */ 647 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 648 { 649 int ii; 650 651 writeb(0, &(regs->MIICR)); 652 writeb(MIIADR_SWMPL, ®s->MIIADR); 653 654 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 655 udelay(1); 656 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 657 break; 658 } 659 660 writeb(MIICR_MAUTO, ®s->MIICR); 661 662 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 663 udelay(1); 664 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 665 break; 666 } 667 668 } 669 670 /** 671 * velocity_mii_read - read MII data 672 * @regs: velocity registers 673 * @index: MII register index 674 * @data: buffer for received data 675 * 676 * Perform a single read of an MII 16bit register. Returns zero 677 * on success or -ETIMEDOUT if the PHY did not respond. 678 */ 679 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 680 { 681 u16 ww; 682 683 /* 684 * Disable MIICR_MAUTO, so that mii addr can be set normally 685 */ 686 safe_disable_mii_autopoll(regs); 687 688 writeb(index, ®s->MIIADR); 689 690 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 691 692 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 693 if (!(readb(®s->MIICR) & MIICR_RCMD)) 694 break; 695 } 696 697 *data = readw(®s->MIIDATA); 698 699 enable_mii_autopoll(regs); 700 if (ww == W_MAX_TIMEOUT) 701 return -ETIMEDOUT; 702 return 0; 703 } 704 705 /** 706 * mii_check_media_mode - check media state 707 * @regs: velocity registers 708 * 709 * Check the current MII status and determine the link status 710 * accordingly 711 */ 712 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 713 { 714 u32 status = 0; 715 u16 ANAR; 716 717 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 718 status |= VELOCITY_LINK_FAIL; 719 720 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 721 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 722 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 723 status |= (VELOCITY_SPEED_1000); 724 else { 725 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 726 if (ANAR & ADVERTISE_100FULL) 727 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 728 else if (ANAR & ADVERTISE_100HALF) 729 status |= VELOCITY_SPEED_100; 730 else if (ANAR & ADVERTISE_10FULL) 731 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 732 else 733 status |= (VELOCITY_SPEED_10); 734 } 735 736 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 737 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 738 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 739 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 740 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 741 status |= VELOCITY_AUTONEG_ENABLE; 742 } 743 } 744 745 return status; 746 } 747 748 /** 749 * velocity_mii_write - write MII data 750 * @regs: velocity registers 751 * @mii_addr: MII register index 752 * @data: 16bit data for the MII register 753 * 754 * Perform a single write to an MII 16bit register. Returns zero 755 * on success or -ETIMEDOUT if the PHY did not respond. 756 */ 757 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 758 { 759 u16 ww; 760 761 /* 762 * Disable MIICR_MAUTO, so that mii addr can be set normally 763 */ 764 safe_disable_mii_autopoll(regs); 765 766 /* MII reg offset */ 767 writeb(mii_addr, ®s->MIIADR); 768 /* set MII data */ 769 writew(data, ®s->MIIDATA); 770 771 /* turn on MIICR_WCMD */ 772 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 773 774 /* W_MAX_TIMEOUT is the timeout period */ 775 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 776 udelay(5); 777 if (!(readb(®s->MIICR) & MIICR_WCMD)) 778 break; 779 } 780 enable_mii_autopoll(regs); 781 782 if (ww == W_MAX_TIMEOUT) 783 return -ETIMEDOUT; 784 return 0; 785 } 786 787 /** 788 * set_mii_flow_control - flow control setup 789 * @vptr: velocity interface 790 * 791 * Set up the flow control on this interface according to 792 * the supplied user/eeprom options. 793 */ 794 static void set_mii_flow_control(struct velocity_info *vptr) 795 { 796 /*Enable or Disable PAUSE in ANAR */ 797 switch (vptr->options.flow_cntl) { 798 case FLOW_CNTL_TX: 799 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 800 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 801 break; 802 803 case FLOW_CNTL_RX: 804 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 805 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 806 break; 807 808 case FLOW_CNTL_TX_RX: 809 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 810 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 811 break; 812 813 case FLOW_CNTL_DISABLE: 814 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 815 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 816 break; 817 default: 818 break; 819 } 820 } 821 822 /** 823 * mii_set_auto_on - autonegotiate on 824 * @vptr: velocity 825 * 826 * Enable autonegotation on this interface 827 */ 828 static void mii_set_auto_on(struct velocity_info *vptr) 829 { 830 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 831 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 832 else 833 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 834 } 835 836 static u32 check_connection_type(struct mac_regs __iomem *regs) 837 { 838 u32 status = 0; 839 u8 PHYSR0; 840 u16 ANAR; 841 PHYSR0 = readb(®s->PHYSR0); 842 843 /* 844 if (!(PHYSR0 & PHYSR0_LINKGD)) 845 status|=VELOCITY_LINK_FAIL; 846 */ 847 848 if (PHYSR0 & PHYSR0_FDPX) 849 status |= VELOCITY_DUPLEX_FULL; 850 851 if (PHYSR0 & PHYSR0_SPDG) 852 status |= VELOCITY_SPEED_1000; 853 else if (PHYSR0 & PHYSR0_SPD10) 854 status |= VELOCITY_SPEED_10; 855 else 856 status |= VELOCITY_SPEED_100; 857 858 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 859 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 860 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 861 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 862 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 863 status |= VELOCITY_AUTONEG_ENABLE; 864 } 865 } 866 867 return status; 868 } 869 870 /** 871 * velocity_set_media_mode - set media mode 872 * @vptr: velocity adapter 873 * @mii_status: old MII link state 874 * 875 * Check the media link state and configure the flow control 876 * PHY and also velocity hardware setup accordingly. In particular 877 * we need to set up CD polling and frame bursting. 878 */ 879 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 880 { 881 struct mac_regs __iomem *regs = vptr->mac_regs; 882 883 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 884 885 /* Set mii link status */ 886 set_mii_flow_control(vptr); 887 888 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 889 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 890 891 /* 892 * If connection type is AUTO 893 */ 894 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 895 netdev_info(vptr->netdev, "Velocity is in AUTO mode\n"); 896 /* clear force MAC mode bit */ 897 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 898 /* set duplex mode of MAC according to duplex mode of MII */ 899 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 900 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 901 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 902 903 /* enable AUTO-NEGO mode */ 904 mii_set_auto_on(vptr); 905 } else { 906 u16 CTRL1000; 907 u16 ANAR; 908 u8 CHIPGCR; 909 910 /* 911 * 1. if it's 3119, disable frame bursting in halfduplex mode 912 * and enable it in fullduplex mode 913 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 914 * 3. only enable CD heart beat counter in 10HD mode 915 */ 916 917 /* set force MAC mode bit */ 918 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 919 920 CHIPGCR = readb(®s->CHIPGCR); 921 922 if (mii_status & VELOCITY_SPEED_1000) 923 CHIPGCR |= CHIPGCR_FCGMII; 924 else 925 CHIPGCR &= ~CHIPGCR_FCGMII; 926 927 if (mii_status & VELOCITY_DUPLEX_FULL) { 928 CHIPGCR |= CHIPGCR_FCFDX; 929 writeb(CHIPGCR, ®s->CHIPGCR); 930 netdev_info(vptr->netdev, 931 "set Velocity to forced full mode\n"); 932 if (vptr->rev_id < REV_ID_VT3216_A0) 933 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 934 } else { 935 CHIPGCR &= ~CHIPGCR_FCFDX; 936 netdev_info(vptr->netdev, 937 "set Velocity to forced half mode\n"); 938 writeb(CHIPGCR, ®s->CHIPGCR); 939 if (vptr->rev_id < REV_ID_VT3216_A0) 940 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 941 } 942 943 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 944 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 945 if ((mii_status & VELOCITY_SPEED_1000) && 946 (mii_status & VELOCITY_DUPLEX_FULL)) { 947 CTRL1000 |= ADVERTISE_1000FULL; 948 } 949 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 950 951 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 952 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 953 else 954 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 955 956 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 957 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 958 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 959 if (mii_status & VELOCITY_SPEED_100) { 960 if (mii_status & VELOCITY_DUPLEX_FULL) 961 ANAR |= ADVERTISE_100FULL; 962 else 963 ANAR |= ADVERTISE_100HALF; 964 } else if (mii_status & VELOCITY_SPEED_10) { 965 if (mii_status & VELOCITY_DUPLEX_FULL) 966 ANAR |= ADVERTISE_10FULL; 967 else 968 ANAR |= ADVERTISE_10HALF; 969 } 970 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 971 /* enable AUTO-NEGO mode */ 972 mii_set_auto_on(vptr); 973 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 974 } 975 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 976 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 977 return VELOCITY_LINK_CHANGE; 978 } 979 980 /** 981 * velocity_print_link_status - link status reporting 982 * @vptr: velocity to report on 983 * 984 * Turn the link status of the velocity card into a kernel log 985 * description of the new link state, detailing speed and duplex 986 * status 987 */ 988 static void velocity_print_link_status(struct velocity_info *vptr) 989 { 990 const char *link; 991 const char *speed; 992 const char *duplex; 993 994 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 995 netdev_notice(vptr->netdev, "failed to detect cable link\n"); 996 return; 997 } 998 999 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1000 link = "auto-negotiation"; 1001 1002 if (vptr->mii_status & VELOCITY_SPEED_1000) 1003 speed = "1000"; 1004 else if (vptr->mii_status & VELOCITY_SPEED_100) 1005 speed = "100"; 1006 else 1007 speed = "10"; 1008 1009 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1010 duplex = "full"; 1011 else 1012 duplex = "half"; 1013 } else { 1014 link = "forced"; 1015 1016 switch (vptr->options.spd_dpx) { 1017 case SPD_DPX_1000_FULL: 1018 speed = "1000"; 1019 duplex = "full"; 1020 break; 1021 case SPD_DPX_100_HALF: 1022 speed = "100"; 1023 duplex = "half"; 1024 break; 1025 case SPD_DPX_100_FULL: 1026 speed = "100"; 1027 duplex = "full"; 1028 break; 1029 case SPD_DPX_10_HALF: 1030 speed = "10"; 1031 duplex = "half"; 1032 break; 1033 case SPD_DPX_10_FULL: 1034 speed = "10"; 1035 duplex = "full"; 1036 break; 1037 default: 1038 speed = "unknown"; 1039 duplex = "unknown"; 1040 break; 1041 } 1042 } 1043 netdev_notice(vptr->netdev, "Link %s speed %sM bps %s duplex\n", 1044 link, speed, duplex); 1045 } 1046 1047 /** 1048 * enable_flow_control_ability - flow control 1049 * @vptr: veloity to configure 1050 * 1051 * Set up flow control according to the flow control options 1052 * determined by the eeprom/configuration. 1053 */ 1054 static void enable_flow_control_ability(struct velocity_info *vptr) 1055 { 1056 1057 struct mac_regs __iomem *regs = vptr->mac_regs; 1058 1059 switch (vptr->options.flow_cntl) { 1060 1061 case FLOW_CNTL_DEFAULT: 1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1063 writel(CR0_FDXRFCEN, ®s->CR0Set); 1064 else 1065 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1066 1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1068 writel(CR0_FDXTFCEN, ®s->CR0Set); 1069 else 1070 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1071 break; 1072 1073 case FLOW_CNTL_TX: 1074 writel(CR0_FDXTFCEN, ®s->CR0Set); 1075 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1076 break; 1077 1078 case FLOW_CNTL_RX: 1079 writel(CR0_FDXRFCEN, ®s->CR0Set); 1080 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1081 break; 1082 1083 case FLOW_CNTL_TX_RX: 1084 writel(CR0_FDXTFCEN, ®s->CR0Set); 1085 writel(CR0_FDXRFCEN, ®s->CR0Set); 1086 break; 1087 1088 case FLOW_CNTL_DISABLE: 1089 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1090 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 1097 } 1098 1099 /** 1100 * velocity_soft_reset - soft reset 1101 * @vptr: velocity to reset 1102 * 1103 * Kick off a soft reset of the velocity adapter and then poll 1104 * until the reset sequence has completed before returning. 1105 */ 1106 static int velocity_soft_reset(struct velocity_info *vptr) 1107 { 1108 struct mac_regs __iomem *regs = vptr->mac_regs; 1109 int i = 0; 1110 1111 writel(CR0_SFRST, ®s->CR0Set); 1112 1113 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1114 udelay(5); 1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1116 break; 1117 } 1118 1119 if (i == W_MAX_TIMEOUT) { 1120 writel(CR0_FORSRST, ®s->CR0Set); 1121 /* FIXME: PCI POSTING */ 1122 /* delay 2ms */ 1123 mdelay(2); 1124 } 1125 return 0; 1126 } 1127 1128 /** 1129 * velocity_set_multi - filter list change callback 1130 * @dev: network device 1131 * 1132 * Called by the network layer when the filter lists need to change 1133 * for a velocity adapter. Reload the CAMs with the new address 1134 * filter ruleset. 1135 */ 1136 static void velocity_set_multi(struct net_device *dev) 1137 { 1138 struct velocity_info *vptr = netdev_priv(dev); 1139 struct mac_regs __iomem *regs = vptr->mac_regs; 1140 u8 rx_mode; 1141 int i; 1142 struct netdev_hw_addr *ha; 1143 1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1145 writel(0xffffffff, ®s->MARCAM[0]); 1146 writel(0xffffffff, ®s->MARCAM[4]); 1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1149 (dev->flags & IFF_ALLMULTI)) { 1150 writel(0xffffffff, ®s->MARCAM[0]); 1151 writel(0xffffffff, ®s->MARCAM[4]); 1152 rx_mode = (RCR_AM | RCR_AB); 1153 } else { 1154 int offset = MCAM_SIZE - vptr->multicast_limit; 1155 mac_get_cam_mask(regs, vptr->mCAMmask); 1156 1157 i = 0; 1158 netdev_for_each_mc_addr(ha, dev) { 1159 mac_set_cam(regs, i + offset, ha->addr); 1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1161 i++; 1162 } 1163 1164 mac_set_cam_mask(regs, vptr->mCAMmask); 1165 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1166 } 1167 if (dev->mtu > 1500) 1168 rx_mode |= RCR_AL; 1169 1170 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1171 1172 } 1173 1174 /* 1175 * MII access , media link mode setting functions 1176 */ 1177 1178 /** 1179 * mii_init - set up MII 1180 * @vptr: velocity adapter 1181 * @mii_status: links tatus 1182 * 1183 * Set up the PHY for the current link state. 1184 */ 1185 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1186 { 1187 u16 BMCR; 1188 1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1190 case PHYID_ICPLUS_IP101A: 1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1192 MII_ADVERTISE, vptr->mac_regs); 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1195 vptr->mac_regs); 1196 else 1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1198 vptr->mac_regs); 1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1200 break; 1201 case PHYID_CICADA_CS8201: 1202 /* 1203 * Reset to hardware default 1204 */ 1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1206 /* 1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1208 * off it in NWay-forced half mode for NWay-forced v.s. 1209 * legacy-forced issue. 1210 */ 1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1213 else 1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 /* 1216 * Turn on Link/Activity LED enable bit for CIS8201 1217 */ 1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1219 break; 1220 case PHYID_VT3216_32BIT: 1221 case PHYID_VT3216_64BIT: 1222 /* 1223 * Reset to hardware default 1224 */ 1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1226 /* 1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1228 * off it in NWay-forced half mode for NWay-forced v.s. 1229 * legacy-forced issue 1230 */ 1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1233 else 1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1235 break; 1236 1237 case PHYID_MARVELL_1000: 1238 case PHYID_MARVELL_1000S: 1239 /* 1240 * Assert CRS on Transmit 1241 */ 1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1243 /* 1244 * Reset to hardware default 1245 */ 1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1247 break; 1248 default: 1249 ; 1250 } 1251 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1252 if (BMCR & BMCR_ISOLATE) { 1253 BMCR &= ~BMCR_ISOLATE; 1254 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1255 } 1256 } 1257 1258 /** 1259 * setup_queue_timers - Setup interrupt timers 1260 * @vptr: velocity adapter 1261 * 1262 * Setup interrupt frequency during suppression (timeout if the frame 1263 * count isn't filled). 1264 */ 1265 static void setup_queue_timers(struct velocity_info *vptr) 1266 { 1267 /* Only for newer revisions */ 1268 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1269 u8 txqueue_timer = 0; 1270 u8 rxqueue_timer = 0; 1271 1272 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1273 VELOCITY_SPEED_100)) { 1274 txqueue_timer = vptr->options.txqueue_timer; 1275 rxqueue_timer = vptr->options.rxqueue_timer; 1276 } 1277 1278 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1279 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1280 } 1281 } 1282 1283 /** 1284 * setup_adaptive_interrupts - Setup interrupt suppression 1285 * @vptr: velocity adapter 1286 * 1287 * The velocity is able to suppress interrupt during high interrupt load. 1288 * This function turns on that feature. 1289 */ 1290 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1291 { 1292 struct mac_regs __iomem *regs = vptr->mac_regs; 1293 u16 tx_intsup = vptr->options.tx_intsup; 1294 u16 rx_intsup = vptr->options.rx_intsup; 1295 1296 /* Setup default interrupt mask (will be changed below) */ 1297 vptr->int_mask = INT_MASK_DEF; 1298 1299 /* Set Tx Interrupt Suppression Threshold */ 1300 writeb(CAMCR_PS0, ®s->CAMCR); 1301 if (tx_intsup != 0) { 1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1303 ISR_PTX2I | ISR_PTX3I); 1304 writew(tx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1307 1308 /* Set Rx Interrupt Suppression Threshold */ 1309 writeb(CAMCR_PS1, ®s->CAMCR); 1310 if (rx_intsup != 0) { 1311 vptr->int_mask &= ~ISR_PRXI; 1312 writew(rx_intsup, ®s->ISRCTL); 1313 } else 1314 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1315 1316 /* Select page to interrupt hold timer */ 1317 writeb(0, ®s->CAMCR); 1318 } 1319 1320 /** 1321 * velocity_init_registers - initialise MAC registers 1322 * @vptr: velocity to init 1323 * @type: type of initialisation (hot or cold) 1324 * 1325 * Initialise the MAC on a reset or on first set up on the 1326 * hardware. 1327 */ 1328 static void velocity_init_registers(struct velocity_info *vptr, 1329 enum velocity_init_type type) 1330 { 1331 struct mac_regs __iomem *regs = vptr->mac_regs; 1332 struct net_device *netdev = vptr->netdev; 1333 int i, mii_status; 1334 1335 mac_wol_reset(regs); 1336 1337 switch (type) { 1338 case VELOCITY_INIT_RESET: 1339 case VELOCITY_INIT_WOL: 1340 1341 netif_stop_queue(netdev); 1342 1343 /* 1344 * Reset RX to prevent RX pointer not on the 4X location 1345 */ 1346 velocity_rx_reset(vptr); 1347 mac_rx_queue_run(regs); 1348 mac_rx_queue_wake(regs); 1349 1350 mii_status = velocity_get_opt_media_mode(vptr); 1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1352 velocity_print_link_status(vptr); 1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1354 netif_wake_queue(netdev); 1355 } 1356 1357 enable_flow_control_ability(vptr); 1358 1359 mac_clear_isr(regs); 1360 writel(CR0_STOP, ®s->CR0Clr); 1361 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1362 ®s->CR0Set); 1363 1364 break; 1365 1366 case VELOCITY_INIT_COLD: 1367 default: 1368 /* 1369 * Do reset 1370 */ 1371 velocity_soft_reset(vptr); 1372 mdelay(5); 1373 1374 if (!vptr->no_eeprom) { 1375 mac_eeprom_reload(regs); 1376 for (i = 0; i < 6; i++) 1377 writeb(netdev->dev_addr[i], regs->PAR + i); 1378 } 1379 1380 /* 1381 * clear Pre_ACPI bit. 1382 */ 1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1385 mac_set_dma_length(regs, vptr->options.DMA_length); 1386 1387 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1388 /* 1389 * Back off algorithm use original IEEE standard 1390 */ 1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1392 1393 /* 1394 * Init CAM filter 1395 */ 1396 velocity_init_cam_filter(vptr); 1397 1398 /* 1399 * Set packet filter: Receive directed and broadcast address 1400 */ 1401 velocity_set_multi(netdev); 1402 1403 /* 1404 * Enable MII auto-polling 1405 */ 1406 enable_mii_autopoll(regs); 1407 1408 setup_adaptive_interrupts(vptr); 1409 1410 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1411 writew(vptr->options.numrx - 1, ®s->RDCSize); 1412 mac_rx_queue_run(regs); 1413 mac_rx_queue_wake(regs); 1414 1415 writew(vptr->options.numtx - 1, ®s->TDCSize); 1416 1417 for (i = 0; i < vptr->tx.numq; i++) { 1418 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1419 mac_tx_queue_run(regs, i); 1420 } 1421 1422 init_flow_control_register(vptr); 1423 1424 writel(CR0_STOP, ®s->CR0Clr); 1425 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1426 1427 mii_status = velocity_get_opt_media_mode(vptr); 1428 netif_stop_queue(netdev); 1429 1430 mii_init(vptr, mii_status); 1431 1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1433 velocity_print_link_status(vptr); 1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1435 netif_wake_queue(netdev); 1436 } 1437 1438 enable_flow_control_ability(vptr); 1439 mac_hw_mibs_init(regs); 1440 mac_write_int_mask(vptr->int_mask, regs); 1441 mac_clear_isr(regs); 1442 1443 } 1444 } 1445 1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1447 { 1448 struct mac_regs __iomem *regs = vptr->mac_regs; 1449 int avail, dirty, unusable; 1450 1451 /* 1452 * RD number must be equal to 4X per hardware spec 1453 * (programming guide rev 1.20, p.13) 1454 */ 1455 if (vptr->rx.filled < 4) 1456 return; 1457 1458 wmb(); 1459 1460 unusable = vptr->rx.filled & 0x0003; 1461 dirty = vptr->rx.dirty - unusable; 1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1465 } 1466 1467 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1468 vptr->rx.filled = unusable; 1469 } 1470 1471 /** 1472 * velocity_init_dma_rings - set up DMA rings 1473 * @vptr: Velocity to set up 1474 * 1475 * Allocate PCI mapped DMA rings for the receive and transmit layer 1476 * to use. 1477 */ 1478 static int velocity_init_dma_rings(struct velocity_info *vptr) 1479 { 1480 struct velocity_opt *opt = &vptr->options; 1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1483 dma_addr_t pool_dma; 1484 void *pool; 1485 unsigned int i; 1486 1487 /* 1488 * Allocate all RD/TD rings a single pool. 1489 * 1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1491 * alignment 1492 */ 1493 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1494 rx_ring_size, &pool_dma, GFP_ATOMIC); 1495 if (!pool) { 1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1497 vptr->netdev->name); 1498 return -ENOMEM; 1499 } 1500 1501 vptr->rx.ring = pool; 1502 vptr->rx.pool_dma = pool_dma; 1503 1504 pool += rx_ring_size; 1505 pool_dma += rx_ring_size; 1506 1507 for (i = 0; i < vptr->tx.numq; i++) { 1508 vptr->tx.rings[i] = pool; 1509 vptr->tx.pool_dma[i] = pool_dma; 1510 pool += tx_ring_size; 1511 pool_dma += tx_ring_size; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1518 { 1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1520 } 1521 1522 /** 1523 * velocity_alloc_rx_buf - allocate aligned receive buffer 1524 * @vptr: velocity 1525 * @idx: ring index 1526 * 1527 * Allocate a new full sized buffer for the reception of a frame and 1528 * map it into PCI space for the hardware to use. The hardware 1529 * requires *64* byte alignment of the buffer which makes life 1530 * less fun than would be ideal. 1531 */ 1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1533 { 1534 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1536 1537 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1538 if (rd_info->skb == NULL) 1539 return -ENOMEM; 1540 1541 /* 1542 * Do the gymnastics to get the buffer head for data at 1543 * 64byte alignment. 1544 */ 1545 skb_reserve(rd_info->skb, 1546 64 - ((unsigned long) rd_info->skb->data & 63)); 1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1548 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1549 1550 /* 1551 * Fill in the descriptor to match 1552 */ 1553 1554 *((u32 *) & (rd->rdesc0)) = 0; 1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1557 rd->pa_high = 0; 1558 return 0; 1559 } 1560 1561 1562 static int velocity_rx_refill(struct velocity_info *vptr) 1563 { 1564 int dirty = vptr->rx.dirty, done = 0; 1565 1566 do { 1567 struct rx_desc *rd = vptr->rx.ring + dirty; 1568 1569 /* Fine for an all zero Rx desc at init time as well */ 1570 if (rd->rdesc0.len & OWNED_BY_NIC) 1571 break; 1572 1573 if (!vptr->rx.info[dirty].skb) { 1574 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1575 break; 1576 } 1577 done++; 1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1579 } while (dirty != vptr->rx.curr); 1580 1581 if (done) { 1582 vptr->rx.dirty = dirty; 1583 vptr->rx.filled += done; 1584 } 1585 1586 return done; 1587 } 1588 1589 /** 1590 * velocity_free_rd_ring - free receive ring 1591 * @vptr: velocity to clean up 1592 * 1593 * Free the receive buffers for each ring slot and any 1594 * attached socket buffers that need to go away. 1595 */ 1596 static void velocity_free_rd_ring(struct velocity_info *vptr) 1597 { 1598 int i; 1599 1600 if (vptr->rx.info == NULL) 1601 return; 1602 1603 for (i = 0; i < vptr->options.numrx; i++) { 1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1605 struct rx_desc *rd = vptr->rx.ring + i; 1606 1607 memset(rd, 0, sizeof(*rd)); 1608 1609 if (!rd_info->skb) 1610 continue; 1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1612 DMA_FROM_DEVICE); 1613 rd_info->skb_dma = 0; 1614 1615 dev_kfree_skb(rd_info->skb); 1616 rd_info->skb = NULL; 1617 } 1618 1619 kfree(vptr->rx.info); 1620 vptr->rx.info = NULL; 1621 } 1622 1623 /** 1624 * velocity_init_rd_ring - set up receive ring 1625 * @vptr: velocity to configure 1626 * 1627 * Allocate and set up the receive buffers for each ring slot and 1628 * assign them to the network adapter. 1629 */ 1630 static int velocity_init_rd_ring(struct velocity_info *vptr) 1631 { 1632 int ret = -ENOMEM; 1633 1634 vptr->rx.info = kcalloc(vptr->options.numrx, 1635 sizeof(struct velocity_rd_info), GFP_KERNEL); 1636 if (!vptr->rx.info) 1637 goto out; 1638 1639 velocity_init_rx_ring_indexes(vptr); 1640 1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1642 netdev_err(vptr->netdev, "failed to allocate RX buffer\n"); 1643 velocity_free_rd_ring(vptr); 1644 goto out; 1645 } 1646 1647 ret = 0; 1648 out: 1649 return ret; 1650 } 1651 1652 /** 1653 * velocity_init_td_ring - set up transmit ring 1654 * @vptr: velocity 1655 * 1656 * Set up the transmit ring and chain the ring pointers together. 1657 * Returns zero on success or a negative posix errno code for 1658 * failure. 1659 */ 1660 static int velocity_init_td_ring(struct velocity_info *vptr) 1661 { 1662 int j; 1663 1664 /* Init the TD ring entries */ 1665 for (j = 0; j < vptr->tx.numq; j++) { 1666 1667 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1668 sizeof(struct velocity_td_info), 1669 GFP_KERNEL); 1670 if (!vptr->tx.infos[j]) { 1671 while (--j >= 0) 1672 kfree(vptr->tx.infos[j]); 1673 return -ENOMEM; 1674 } 1675 1676 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1677 } 1678 return 0; 1679 } 1680 1681 /** 1682 * velocity_free_dma_rings - free PCI ring pointers 1683 * @vptr: Velocity to free from 1684 * 1685 * Clean up the PCI ring buffers allocated to this velocity. 1686 */ 1687 static void velocity_free_dma_rings(struct velocity_info *vptr) 1688 { 1689 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1690 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1691 1692 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1693 } 1694 1695 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1696 { 1697 int ret; 1698 1699 velocity_set_rxbufsize(vptr, mtu); 1700 1701 ret = velocity_init_dma_rings(vptr); 1702 if (ret < 0) 1703 goto out; 1704 1705 ret = velocity_init_rd_ring(vptr); 1706 if (ret < 0) 1707 goto err_free_dma_rings_0; 1708 1709 ret = velocity_init_td_ring(vptr); 1710 if (ret < 0) 1711 goto err_free_rd_ring_1; 1712 out: 1713 return ret; 1714 1715 err_free_rd_ring_1: 1716 velocity_free_rd_ring(vptr); 1717 err_free_dma_rings_0: 1718 velocity_free_dma_rings(vptr); 1719 goto out; 1720 } 1721 1722 /** 1723 * velocity_free_tx_buf - free transmit buffer 1724 * @vptr: velocity 1725 * @tdinfo: buffer 1726 * @td: transmit descriptor to free 1727 * 1728 * Release an transmit buffer. If the buffer was preallocated then 1729 * recycle it, if not then unmap the buffer. 1730 */ 1731 static void velocity_free_tx_buf(struct velocity_info *vptr, 1732 struct velocity_td_info *tdinfo, struct tx_desc *td) 1733 { 1734 struct sk_buff *skb = tdinfo->skb; 1735 int i; 1736 1737 /* 1738 * Don't unmap the pre-allocated tx_bufs 1739 */ 1740 for (i = 0; i < tdinfo->nskb_dma; i++) { 1741 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1742 1743 /* For scatter-gather */ 1744 if (skb_shinfo(skb)->nr_frags > 0) 1745 pktlen = max_t(size_t, pktlen, 1746 td->td_buf[i].size & ~TD_QUEUE); 1747 1748 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1749 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1750 } 1751 dev_consume_skb_irq(skb); 1752 tdinfo->skb = NULL; 1753 } 1754 1755 /* 1756 * FIXME: could we merge this with velocity_free_tx_buf ? 1757 */ 1758 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1759 int q, int n) 1760 { 1761 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1762 int i; 1763 1764 if (td_info == NULL) 1765 return; 1766 1767 if (td_info->skb) { 1768 for (i = 0; i < td_info->nskb_dma; i++) { 1769 if (td_info->skb_dma[i]) { 1770 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1771 td_info->skb->len, DMA_TO_DEVICE); 1772 td_info->skb_dma[i] = 0; 1773 } 1774 } 1775 dev_kfree_skb(td_info->skb); 1776 td_info->skb = NULL; 1777 } 1778 } 1779 1780 /** 1781 * velocity_free_td_ring - free td ring 1782 * @vptr: velocity 1783 * 1784 * Free up the transmit ring for this particular velocity adapter. 1785 * We free the ring contents but not the ring itself. 1786 */ 1787 static void velocity_free_td_ring(struct velocity_info *vptr) 1788 { 1789 int i, j; 1790 1791 for (j = 0; j < vptr->tx.numq; j++) { 1792 if (vptr->tx.infos[j] == NULL) 1793 continue; 1794 for (i = 0; i < vptr->options.numtx; i++) 1795 velocity_free_td_ring_entry(vptr, j, i); 1796 1797 kfree(vptr->tx.infos[j]); 1798 vptr->tx.infos[j] = NULL; 1799 } 1800 } 1801 1802 static void velocity_free_rings(struct velocity_info *vptr) 1803 { 1804 velocity_free_td_ring(vptr); 1805 velocity_free_rd_ring(vptr); 1806 velocity_free_dma_rings(vptr); 1807 } 1808 1809 /** 1810 * velocity_error - handle error from controller 1811 * @vptr: velocity 1812 * @status: card status 1813 * 1814 * Process an error report from the hardware and attempt to recover 1815 * the card itself. At the moment we cannot recover from some 1816 * theoretically impossible errors but this could be fixed using 1817 * the pci_device_failed logic to bounce the hardware 1818 * 1819 */ 1820 static void velocity_error(struct velocity_info *vptr, int status) 1821 { 1822 1823 if (status & ISR_TXSTLI) { 1824 struct mac_regs __iomem *regs = vptr->mac_regs; 1825 1826 netdev_err(vptr->netdev, "TD structure error TDindex=%hx\n", 1827 readw(®s->TDIdx[0])); 1828 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1829 writew(TRDCSR_RUN, ®s->TDCSRClr); 1830 netif_stop_queue(vptr->netdev); 1831 1832 /* FIXME: port over the pci_device_failed code and use it 1833 here */ 1834 } 1835 1836 if (status & ISR_SRCI) { 1837 struct mac_regs __iomem *regs = vptr->mac_regs; 1838 int linked; 1839 1840 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1841 vptr->mii_status = check_connection_type(regs); 1842 1843 /* 1844 * If it is a 3119, disable frame bursting in 1845 * halfduplex mode and enable it in fullduplex 1846 * mode 1847 */ 1848 if (vptr->rev_id < REV_ID_VT3216_A0) { 1849 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1850 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1851 else 1852 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1853 } 1854 /* 1855 * Only enable CD heart beat counter in 10HD mode 1856 */ 1857 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1858 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1859 else 1860 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1861 1862 setup_queue_timers(vptr); 1863 } 1864 /* 1865 * Get link status from PHYSR0 1866 */ 1867 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1868 1869 if (linked) { 1870 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1871 netif_carrier_on(vptr->netdev); 1872 } else { 1873 vptr->mii_status |= VELOCITY_LINK_FAIL; 1874 netif_carrier_off(vptr->netdev); 1875 } 1876 1877 velocity_print_link_status(vptr); 1878 enable_flow_control_ability(vptr); 1879 1880 /* 1881 * Re-enable auto-polling because SRCI will disable 1882 * auto-polling 1883 */ 1884 1885 enable_mii_autopoll(regs); 1886 1887 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1888 netif_stop_queue(vptr->netdev); 1889 else 1890 netif_wake_queue(vptr->netdev); 1891 1892 } 1893 if (status & ISR_MIBFI) 1894 velocity_update_hw_mibs(vptr); 1895 if (status & ISR_LSTEI) 1896 mac_rx_queue_wake(vptr->mac_regs); 1897 } 1898 1899 /** 1900 * velocity_tx_srv - transmit interrupt service 1901 * @vptr: Velocity 1902 * 1903 * Scan the queues looking for transmitted packets that 1904 * we can complete and clean up. Update any statistics as 1905 * necessary/ 1906 */ 1907 static int velocity_tx_srv(struct velocity_info *vptr) 1908 { 1909 struct tx_desc *td; 1910 int qnum; 1911 int full = 0; 1912 int idx; 1913 int works = 0; 1914 struct velocity_td_info *tdinfo; 1915 struct net_device_stats *stats = &vptr->netdev->stats; 1916 1917 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1918 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1919 idx = (idx + 1) % vptr->options.numtx) { 1920 1921 /* 1922 * Get Tx Descriptor 1923 */ 1924 td = &(vptr->tx.rings[qnum][idx]); 1925 tdinfo = &(vptr->tx.infos[qnum][idx]); 1926 1927 if (td->tdesc0.len & OWNED_BY_NIC) 1928 break; 1929 1930 if ((works++ > 15)) 1931 break; 1932 1933 if (td->tdesc0.TSR & TSR0_TERR) { 1934 stats->tx_errors++; 1935 stats->tx_dropped++; 1936 if (td->tdesc0.TSR & TSR0_CDH) 1937 stats->tx_heartbeat_errors++; 1938 if (td->tdesc0.TSR & TSR0_CRS) 1939 stats->tx_carrier_errors++; 1940 if (td->tdesc0.TSR & TSR0_ABT) 1941 stats->tx_aborted_errors++; 1942 if (td->tdesc0.TSR & TSR0_OWC) 1943 stats->tx_window_errors++; 1944 } else { 1945 stats->tx_packets++; 1946 stats->tx_bytes += tdinfo->skb->len; 1947 } 1948 velocity_free_tx_buf(vptr, tdinfo, td); 1949 vptr->tx.used[qnum]--; 1950 } 1951 vptr->tx.tail[qnum] = idx; 1952 1953 if (AVAIL_TD(vptr, qnum) < 1) 1954 full = 1; 1955 } 1956 /* 1957 * Look to see if we should kick the transmit network 1958 * layer for more work. 1959 */ 1960 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1961 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1962 netif_wake_queue(vptr->netdev); 1963 } 1964 return works; 1965 } 1966 1967 /** 1968 * velocity_rx_csum - checksum process 1969 * @rd: receive packet descriptor 1970 * @skb: network layer packet buffer 1971 * 1972 * Process the status bits for the received packet and determine 1973 * if the checksum was computed and verified by the hardware 1974 */ 1975 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1976 { 1977 skb_checksum_none_assert(skb); 1978 1979 if (rd->rdesc1.CSM & CSM_IPKT) { 1980 if (rd->rdesc1.CSM & CSM_IPOK) { 1981 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1982 (rd->rdesc1.CSM & CSM_UDPKT)) { 1983 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1984 return; 1985 } 1986 skb->ip_summed = CHECKSUM_UNNECESSARY; 1987 } 1988 } 1989 } 1990 1991 /** 1992 * velocity_rx_copy - in place Rx copy for small packets 1993 * @rx_skb: network layer packet buffer candidate 1994 * @pkt_size: received data size 1995 * @vptr: velocity adapter 1996 * 1997 * Replace the current skb that is scheduled for Rx processing by a 1998 * shorter, immediately allocated skb, if the received packet is small 1999 * enough. This function returns a negative value if the received 2000 * packet is too big or if memory is exhausted. 2001 */ 2002 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 2003 struct velocity_info *vptr) 2004 { 2005 int ret = -1; 2006 if (pkt_size < rx_copybreak) { 2007 struct sk_buff *new_skb; 2008 2009 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2010 if (new_skb) { 2011 new_skb->ip_summed = rx_skb[0]->ip_summed; 2012 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2013 *rx_skb = new_skb; 2014 ret = 0; 2015 } 2016 2017 } 2018 return ret; 2019 } 2020 2021 /** 2022 * velocity_iph_realign - IP header alignment 2023 * @vptr: velocity we are handling 2024 * @skb: network layer packet buffer 2025 * @pkt_size: received data size 2026 * 2027 * Align IP header on a 2 bytes boundary. This behavior can be 2028 * configured by the user. 2029 */ 2030 static inline void velocity_iph_realign(struct velocity_info *vptr, 2031 struct sk_buff *skb, int pkt_size) 2032 { 2033 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2034 memmove(skb->data + 2, skb->data, pkt_size); 2035 skb_reserve(skb, 2); 2036 } 2037 } 2038 2039 /** 2040 * velocity_receive_frame - received packet processor 2041 * @vptr: velocity we are handling 2042 * @idx: ring index 2043 * 2044 * A packet has arrived. We process the packet and if appropriate 2045 * pass the frame up the network stack 2046 */ 2047 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2048 { 2049 struct net_device_stats *stats = &vptr->netdev->stats; 2050 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2051 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2052 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2053 struct sk_buff *skb; 2054 2055 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) { 2056 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) 2057 netdev_err(vptr->netdev, "received frame spans multiple RDs\n"); 2058 stats->rx_length_errors++; 2059 return -EINVAL; 2060 } 2061 2062 if (rd->rdesc0.RSR & RSR_MAR) 2063 stats->multicast++; 2064 2065 skb = rd_info->skb; 2066 2067 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2068 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2069 2070 velocity_rx_csum(rd, skb); 2071 2072 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2073 velocity_iph_realign(vptr, skb, pkt_len); 2074 rd_info->skb = NULL; 2075 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2076 DMA_FROM_DEVICE); 2077 } else { 2078 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2079 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2080 } 2081 2082 skb_put(skb, pkt_len - 4); 2083 skb->protocol = eth_type_trans(skb, vptr->netdev); 2084 2085 if (rd->rdesc0.RSR & RSR_DETAG) { 2086 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2087 2088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2089 } 2090 netif_receive_skb(skb); 2091 2092 stats->rx_bytes += pkt_len; 2093 stats->rx_packets++; 2094 2095 return 0; 2096 } 2097 2098 /** 2099 * velocity_rx_srv - service RX interrupt 2100 * @vptr: velocity 2101 * @budget_left: remaining budget 2102 * 2103 * Walk the receive ring of the velocity adapter and remove 2104 * any received packets from the receive queue. Hand the ring 2105 * slots back to the adapter for reuse. 2106 */ 2107 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2108 { 2109 struct net_device_stats *stats = &vptr->netdev->stats; 2110 int rd_curr = vptr->rx.curr; 2111 int works = 0; 2112 2113 while (works < budget_left) { 2114 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2115 2116 if (!vptr->rx.info[rd_curr].skb) 2117 break; 2118 2119 if (rd->rdesc0.len & OWNED_BY_NIC) 2120 break; 2121 2122 rmb(); 2123 2124 /* 2125 * Don't drop CE or RL error frame although RXOK is off 2126 */ 2127 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2128 if (velocity_receive_frame(vptr, rd_curr) < 0) 2129 stats->rx_dropped++; 2130 } else { 2131 if (rd->rdesc0.RSR & RSR_CRC) 2132 stats->rx_crc_errors++; 2133 if (rd->rdesc0.RSR & RSR_FAE) 2134 stats->rx_frame_errors++; 2135 2136 stats->rx_dropped++; 2137 } 2138 2139 rd->size |= RX_INTEN; 2140 2141 rd_curr++; 2142 if (rd_curr >= vptr->options.numrx) 2143 rd_curr = 0; 2144 works++; 2145 } 2146 2147 vptr->rx.curr = rd_curr; 2148 2149 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2150 velocity_give_many_rx_descs(vptr); 2151 2152 VAR_USED(stats); 2153 return works; 2154 } 2155 2156 static int velocity_poll(struct napi_struct *napi, int budget) 2157 { 2158 struct velocity_info *vptr = container_of(napi, 2159 struct velocity_info, napi); 2160 unsigned int rx_done; 2161 unsigned long flags; 2162 2163 /* 2164 * Do rx and tx twice for performance (taken from the VIA 2165 * out-of-tree driver). 2166 */ 2167 rx_done = velocity_rx_srv(vptr, budget); 2168 spin_lock_irqsave(&vptr->lock, flags); 2169 velocity_tx_srv(vptr); 2170 /* If budget not fully consumed, exit the polling mode */ 2171 if (rx_done < budget) { 2172 napi_complete_done(napi, rx_done); 2173 mac_enable_int(vptr->mac_regs); 2174 } 2175 spin_unlock_irqrestore(&vptr->lock, flags); 2176 2177 return rx_done; 2178 } 2179 2180 /** 2181 * velocity_intr - interrupt callback 2182 * @irq: interrupt number 2183 * @dev_instance: interrupting device 2184 * 2185 * Called whenever an interrupt is generated by the velocity 2186 * adapter IRQ line. We may not be the source of the interrupt 2187 * and need to identify initially if we are, and if not exit as 2188 * efficiently as possible. 2189 */ 2190 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2191 { 2192 struct net_device *dev = dev_instance; 2193 struct velocity_info *vptr = netdev_priv(dev); 2194 u32 isr_status; 2195 2196 spin_lock(&vptr->lock); 2197 isr_status = mac_read_isr(vptr->mac_regs); 2198 2199 /* Not us ? */ 2200 if (isr_status == 0) { 2201 spin_unlock(&vptr->lock); 2202 return IRQ_NONE; 2203 } 2204 2205 /* Ack the interrupt */ 2206 mac_write_isr(vptr->mac_regs, isr_status); 2207 2208 if (likely(napi_schedule_prep(&vptr->napi))) { 2209 mac_disable_int(vptr->mac_regs); 2210 __napi_schedule(&vptr->napi); 2211 } 2212 2213 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2214 velocity_error(vptr, isr_status); 2215 2216 spin_unlock(&vptr->lock); 2217 2218 return IRQ_HANDLED; 2219 } 2220 2221 /** 2222 * velocity_open - interface activation callback 2223 * @dev: network layer device to open 2224 * 2225 * Called when the network layer brings the interface up. Returns 2226 * a negative posix error code on failure, or zero on success. 2227 * 2228 * All the ring allocation and set up is done on open for this 2229 * adapter to minimise memory usage when inactive 2230 */ 2231 static int velocity_open(struct net_device *dev) 2232 { 2233 struct velocity_info *vptr = netdev_priv(dev); 2234 int ret; 2235 2236 ret = velocity_init_rings(vptr, dev->mtu); 2237 if (ret < 0) 2238 goto out; 2239 2240 /* Ensure chip is running */ 2241 velocity_set_power_state(vptr, PCI_D0); 2242 2243 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2244 2245 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2246 dev->name, dev); 2247 if (ret < 0) { 2248 /* Power down the chip */ 2249 velocity_set_power_state(vptr, PCI_D3hot); 2250 velocity_free_rings(vptr); 2251 goto out; 2252 } 2253 2254 velocity_give_many_rx_descs(vptr); 2255 2256 mac_enable_int(vptr->mac_regs); 2257 netif_start_queue(dev); 2258 napi_enable(&vptr->napi); 2259 vptr->flags |= VELOCITY_FLAGS_OPENED; 2260 out: 2261 return ret; 2262 } 2263 2264 /** 2265 * velocity_shutdown - shut down the chip 2266 * @vptr: velocity to deactivate 2267 * 2268 * Shuts down the internal operations of the velocity and 2269 * disables interrupts, autopolling, transmit and receive 2270 */ 2271 static void velocity_shutdown(struct velocity_info *vptr) 2272 { 2273 struct mac_regs __iomem *regs = vptr->mac_regs; 2274 mac_disable_int(regs); 2275 writel(CR0_STOP, ®s->CR0Set); 2276 writew(0xFFFF, ®s->TDCSRClr); 2277 writeb(0xFF, ®s->RDCSRClr); 2278 safe_disable_mii_autopoll(regs); 2279 mac_clear_isr(regs); 2280 } 2281 2282 /** 2283 * velocity_change_mtu - MTU change callback 2284 * @dev: network device 2285 * @new_mtu: desired MTU 2286 * 2287 * Handle requests from the networking layer for MTU change on 2288 * this interface. It gets called on a change by the network layer. 2289 * Return zero for success or negative posix error code. 2290 */ 2291 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2292 { 2293 struct velocity_info *vptr = netdev_priv(dev); 2294 int ret = 0; 2295 2296 if (!netif_running(dev)) { 2297 dev->mtu = new_mtu; 2298 goto out_0; 2299 } 2300 2301 if (dev->mtu != new_mtu) { 2302 struct velocity_info *tmp_vptr; 2303 unsigned long flags; 2304 struct rx_info rx; 2305 struct tx_info tx; 2306 2307 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2308 if (!tmp_vptr) { 2309 ret = -ENOMEM; 2310 goto out_0; 2311 } 2312 2313 tmp_vptr->netdev = dev; 2314 tmp_vptr->pdev = vptr->pdev; 2315 tmp_vptr->dev = vptr->dev; 2316 tmp_vptr->options = vptr->options; 2317 tmp_vptr->tx.numq = vptr->tx.numq; 2318 2319 ret = velocity_init_rings(tmp_vptr, new_mtu); 2320 if (ret < 0) 2321 goto out_free_tmp_vptr_1; 2322 2323 napi_disable(&vptr->napi); 2324 2325 spin_lock_irqsave(&vptr->lock, flags); 2326 2327 netif_stop_queue(dev); 2328 velocity_shutdown(vptr); 2329 2330 rx = vptr->rx; 2331 tx = vptr->tx; 2332 2333 vptr->rx = tmp_vptr->rx; 2334 vptr->tx = tmp_vptr->tx; 2335 2336 tmp_vptr->rx = rx; 2337 tmp_vptr->tx = tx; 2338 2339 dev->mtu = new_mtu; 2340 2341 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2342 2343 velocity_give_many_rx_descs(vptr); 2344 2345 napi_enable(&vptr->napi); 2346 2347 mac_enable_int(vptr->mac_regs); 2348 netif_start_queue(dev); 2349 2350 spin_unlock_irqrestore(&vptr->lock, flags); 2351 2352 velocity_free_rings(tmp_vptr); 2353 2354 out_free_tmp_vptr_1: 2355 kfree(tmp_vptr); 2356 } 2357 out_0: 2358 return ret; 2359 } 2360 2361 #ifdef CONFIG_NET_POLL_CONTROLLER 2362 /** 2363 * velocity_poll_controller - Velocity Poll controller function 2364 * @dev: network device 2365 * 2366 * 2367 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2368 * with interrupts disabled. 2369 */ 2370 static void velocity_poll_controller(struct net_device *dev) 2371 { 2372 disable_irq(dev->irq); 2373 velocity_intr(dev->irq, dev); 2374 enable_irq(dev->irq); 2375 } 2376 #endif 2377 2378 /** 2379 * velocity_mii_ioctl - MII ioctl handler 2380 * @dev: network device 2381 * @ifr: the ifreq block for the ioctl 2382 * @cmd: the command 2383 * 2384 * Process MII requests made via ioctl from the network layer. These 2385 * are used by tools like kudzu to interrogate the link state of the 2386 * hardware 2387 */ 2388 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2389 { 2390 struct velocity_info *vptr = netdev_priv(dev); 2391 struct mac_regs __iomem *regs = vptr->mac_regs; 2392 unsigned long flags; 2393 struct mii_ioctl_data *miidata = if_mii(ifr); 2394 int err; 2395 2396 switch (cmd) { 2397 case SIOCGMIIPHY: 2398 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2399 break; 2400 case SIOCGMIIREG: 2401 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2402 return -ETIMEDOUT; 2403 break; 2404 case SIOCSMIIREG: 2405 spin_lock_irqsave(&vptr->lock, flags); 2406 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2407 spin_unlock_irqrestore(&vptr->lock, flags); 2408 check_connection_type(vptr->mac_regs); 2409 if (err) 2410 return err; 2411 break; 2412 default: 2413 return -EOPNOTSUPP; 2414 } 2415 return 0; 2416 } 2417 2418 /** 2419 * velocity_ioctl - ioctl entry point 2420 * @dev: network device 2421 * @rq: interface request ioctl 2422 * @cmd: command code 2423 * 2424 * Called when the user issues an ioctl request to the network 2425 * device in question. The velocity interface supports MII. 2426 */ 2427 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2428 { 2429 struct velocity_info *vptr = netdev_priv(dev); 2430 int ret; 2431 2432 /* If we are asked for information and the device is power 2433 saving then we need to bring the device back up to talk to it */ 2434 2435 if (!netif_running(dev)) 2436 velocity_set_power_state(vptr, PCI_D0); 2437 2438 switch (cmd) { 2439 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2440 case SIOCGMIIREG: /* Read MII PHY register. */ 2441 case SIOCSMIIREG: /* Write to MII PHY register. */ 2442 ret = velocity_mii_ioctl(dev, rq, cmd); 2443 break; 2444 2445 default: 2446 ret = -EOPNOTSUPP; 2447 } 2448 if (!netif_running(dev)) 2449 velocity_set_power_state(vptr, PCI_D3hot); 2450 2451 2452 return ret; 2453 } 2454 2455 /** 2456 * velocity_get_stats - statistics callback 2457 * @dev: network device 2458 * 2459 * Callback from the network layer to allow driver statistics 2460 * to be resynchronized with hardware collected state. In the 2461 * case of the velocity we need to pull the MIB counters from 2462 * the hardware into the counters before letting the network 2463 * layer display them. 2464 */ 2465 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2466 { 2467 struct velocity_info *vptr = netdev_priv(dev); 2468 2469 /* If the hardware is down, don't touch MII */ 2470 if (!netif_running(dev)) 2471 return &dev->stats; 2472 2473 spin_lock_irq(&vptr->lock); 2474 velocity_update_hw_mibs(vptr); 2475 spin_unlock_irq(&vptr->lock); 2476 2477 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2478 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2479 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2480 2481 // unsigned long rx_dropped; /* no space in linux buffers */ 2482 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2483 /* detailed rx_errors: */ 2484 // unsigned long rx_length_errors; 2485 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2486 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2487 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2488 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2489 // unsigned long rx_missed_errors; /* receiver missed packet */ 2490 2491 /* detailed tx_errors */ 2492 // unsigned long tx_fifo_errors; 2493 2494 return &dev->stats; 2495 } 2496 2497 /** 2498 * velocity_close - close adapter callback 2499 * @dev: network device 2500 * 2501 * Callback from the network layer when the velocity is being 2502 * deactivated by the network layer 2503 */ 2504 static int velocity_close(struct net_device *dev) 2505 { 2506 struct velocity_info *vptr = netdev_priv(dev); 2507 2508 napi_disable(&vptr->napi); 2509 netif_stop_queue(dev); 2510 velocity_shutdown(vptr); 2511 2512 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2513 velocity_get_ip(vptr); 2514 2515 free_irq(dev->irq, dev); 2516 2517 velocity_free_rings(vptr); 2518 2519 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2520 return 0; 2521 } 2522 2523 /** 2524 * velocity_xmit - transmit packet callback 2525 * @skb: buffer to transmit 2526 * @dev: network device 2527 * 2528 * Called by the network layer to request a packet is queued to 2529 * the velocity. Returns zero on success. 2530 */ 2531 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2532 struct net_device *dev) 2533 { 2534 struct velocity_info *vptr = netdev_priv(dev); 2535 int qnum = 0; 2536 struct tx_desc *td_ptr; 2537 struct velocity_td_info *tdinfo; 2538 unsigned long flags; 2539 int pktlen; 2540 int index, prev; 2541 int i = 0; 2542 2543 if (skb_padto(skb, ETH_ZLEN)) 2544 goto out; 2545 2546 /* The hardware can handle at most 7 memory segments, so merge 2547 * the skb if there are more */ 2548 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2549 dev_kfree_skb_any(skb); 2550 return NETDEV_TX_OK; 2551 } 2552 2553 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2554 max_t(unsigned int, skb->len, ETH_ZLEN) : 2555 skb_headlen(skb); 2556 2557 spin_lock_irqsave(&vptr->lock, flags); 2558 2559 index = vptr->tx.curr[qnum]; 2560 td_ptr = &(vptr->tx.rings[qnum][index]); 2561 tdinfo = &(vptr->tx.infos[qnum][index]); 2562 2563 td_ptr->tdesc1.TCR = TCR0_TIC; 2564 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2565 2566 /* 2567 * Map the linear network buffer into PCI space and 2568 * add it to the transmit ring. 2569 */ 2570 tdinfo->skb = skb; 2571 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2572 DMA_TO_DEVICE); 2573 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2574 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2575 td_ptr->td_buf[0].pa_high = 0; 2576 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2577 2578 /* Handle fragments */ 2579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2580 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2581 2582 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2583 frag, 0, 2584 skb_frag_size(frag), 2585 DMA_TO_DEVICE); 2586 2587 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2588 td_ptr->td_buf[i + 1].pa_high = 0; 2589 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2590 } 2591 tdinfo->nskb_dma = i + 1; 2592 2593 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2594 2595 if (skb_vlan_tag_present(skb)) { 2596 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 2597 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2598 } 2599 2600 /* 2601 * Handle hardware checksum 2602 */ 2603 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2604 const struct iphdr *ip = ip_hdr(skb); 2605 if (ip->protocol == IPPROTO_TCP) 2606 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2607 else if (ip->protocol == IPPROTO_UDP) 2608 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2609 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2610 } 2611 2612 prev = index - 1; 2613 if (prev < 0) 2614 prev = vptr->options.numtx - 1; 2615 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2616 vptr->tx.used[qnum]++; 2617 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2618 2619 if (AVAIL_TD(vptr, qnum) < 1) 2620 netif_stop_queue(dev); 2621 2622 td_ptr = &(vptr->tx.rings[qnum][prev]); 2623 td_ptr->td_buf[0].size |= TD_QUEUE; 2624 mac_tx_queue_wake(vptr->mac_regs, qnum); 2625 2626 spin_unlock_irqrestore(&vptr->lock, flags); 2627 out: 2628 return NETDEV_TX_OK; 2629 } 2630 2631 static const struct net_device_ops velocity_netdev_ops = { 2632 .ndo_open = velocity_open, 2633 .ndo_stop = velocity_close, 2634 .ndo_start_xmit = velocity_xmit, 2635 .ndo_get_stats = velocity_get_stats, 2636 .ndo_validate_addr = eth_validate_addr, 2637 .ndo_set_mac_address = eth_mac_addr, 2638 .ndo_set_rx_mode = velocity_set_multi, 2639 .ndo_change_mtu = velocity_change_mtu, 2640 .ndo_eth_ioctl = velocity_ioctl, 2641 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2642 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2643 #ifdef CONFIG_NET_POLL_CONTROLLER 2644 .ndo_poll_controller = velocity_poll_controller, 2645 #endif 2646 }; 2647 2648 /** 2649 * velocity_init_info - init private data 2650 * @vptr: Velocity info 2651 * @info: Board type 2652 * 2653 * Set up the initial velocity_info struct for the device that has been 2654 * discovered. 2655 */ 2656 static void velocity_init_info(struct velocity_info *vptr, 2657 const struct velocity_info_tbl *info) 2658 { 2659 vptr->chip_id = info->chip_id; 2660 vptr->tx.numq = info->txqueue; 2661 vptr->multicast_limit = MCAM_SIZE; 2662 spin_lock_init(&vptr->lock); 2663 } 2664 2665 /** 2666 * velocity_get_pci_info - retrieve PCI info for device 2667 * @vptr: velocity device 2668 * 2669 * Retrieve the PCI configuration space data that interests us from 2670 * the kernel PCI layer 2671 */ 2672 static int velocity_get_pci_info(struct velocity_info *vptr) 2673 { 2674 struct pci_dev *pdev = vptr->pdev; 2675 2676 pci_set_master(pdev); 2677 2678 vptr->ioaddr = pci_resource_start(pdev, 0); 2679 vptr->memaddr = pci_resource_start(pdev, 1); 2680 2681 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2682 dev_err(&pdev->dev, 2683 "region #0 is not an I/O resource, aborting.\n"); 2684 return -EINVAL; 2685 } 2686 2687 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2688 dev_err(&pdev->dev, 2689 "region #1 is an I/O resource, aborting.\n"); 2690 return -EINVAL; 2691 } 2692 2693 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2694 dev_err(&pdev->dev, "region #1 is too small.\n"); 2695 return -EINVAL; 2696 } 2697 2698 return 0; 2699 } 2700 2701 /** 2702 * velocity_get_platform_info - retrieve platform info for device 2703 * @vptr: velocity device 2704 * 2705 * Retrieve the Platform configuration data that interests us 2706 */ 2707 static int velocity_get_platform_info(struct velocity_info *vptr) 2708 { 2709 struct resource res; 2710 int ret; 2711 2712 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2713 vptr->no_eeprom = 1; 2714 2715 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2716 if (ret) { 2717 dev_err(vptr->dev, "unable to find memory address\n"); 2718 return ret; 2719 } 2720 2721 vptr->memaddr = res.start; 2722 2723 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2724 dev_err(vptr->dev, "memory region is too small.\n"); 2725 return -EINVAL; 2726 } 2727 2728 return 0; 2729 } 2730 2731 /** 2732 * velocity_print_info - per driver data 2733 * @vptr: velocity 2734 * 2735 * Print per driver data as the kernel driver finds Velocity 2736 * hardware 2737 */ 2738 static void velocity_print_info(struct velocity_info *vptr) 2739 { 2740 netdev_info(vptr->netdev, "%s - Ethernet Address: %pM\n", 2741 get_chip_name(vptr->chip_id), vptr->netdev->dev_addr); 2742 } 2743 2744 static u32 velocity_get_link(struct net_device *dev) 2745 { 2746 struct velocity_info *vptr = netdev_priv(dev); 2747 struct mac_regs __iomem *regs = vptr->mac_regs; 2748 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2749 } 2750 2751 /** 2752 * velocity_probe - set up discovered velocity device 2753 * @dev: PCI device 2754 * @info: table of match 2755 * @irq: interrupt info 2756 * @bustype: bus that device is connected to 2757 * 2758 * Configure a discovered adapter from scratch. Return a negative 2759 * errno error code on failure paths. 2760 */ 2761 static int velocity_probe(struct device *dev, int irq, 2762 const struct velocity_info_tbl *info, 2763 enum velocity_bus_type bustype) 2764 { 2765 struct net_device *netdev; 2766 int i; 2767 struct velocity_info *vptr; 2768 struct mac_regs __iomem *regs; 2769 int ret = -ENOMEM; 2770 2771 /* FIXME: this driver, like almost all other ethernet drivers, 2772 * can support more than MAX_UNITS. 2773 */ 2774 if (velocity_nics >= MAX_UNITS) { 2775 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2776 return -ENODEV; 2777 } 2778 2779 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2780 if (!netdev) 2781 goto out; 2782 2783 /* Chain it all together */ 2784 2785 SET_NETDEV_DEV(netdev, dev); 2786 vptr = netdev_priv(netdev); 2787 2788 pr_info_once("%s Ver. %s\n", VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2789 pr_info_once("Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2790 pr_info_once("Copyright (c) 2004 Red Hat Inc.\n"); 2791 2792 netdev->irq = irq; 2793 vptr->netdev = netdev; 2794 vptr->dev = dev; 2795 2796 velocity_init_info(vptr, info); 2797 2798 if (bustype == BUS_PCI) { 2799 vptr->pdev = to_pci_dev(dev); 2800 2801 ret = velocity_get_pci_info(vptr); 2802 if (ret < 0) 2803 goto err_free_dev; 2804 } else { 2805 vptr->pdev = NULL; 2806 ret = velocity_get_platform_info(vptr); 2807 if (ret < 0) 2808 goto err_free_dev; 2809 } 2810 2811 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2812 if (regs == NULL) { 2813 ret = -EIO; 2814 goto err_free_dev; 2815 } 2816 2817 vptr->mac_regs = regs; 2818 vptr->rev_id = readb(®s->rev_id); 2819 2820 mac_wol_reset(regs); 2821 2822 for (i = 0; i < 6; i++) 2823 netdev->dev_addr[i] = readb(®s->PAR[i]); 2824 2825 2826 velocity_get_options(&vptr->options, velocity_nics); 2827 2828 /* 2829 * Mask out the options cannot be set to the chip 2830 */ 2831 2832 vptr->options.flags &= info->flags; 2833 2834 /* 2835 * Enable the chip specified capbilities 2836 */ 2837 2838 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2839 2840 vptr->wol_opts = vptr->options.wol_opts; 2841 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2842 2843 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2844 2845 netdev->netdev_ops = &velocity_netdev_ops; 2846 netdev->ethtool_ops = &velocity_ethtool_ops; 2847 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2848 VELOCITY_NAPI_WEIGHT); 2849 2850 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2851 NETIF_F_HW_VLAN_CTAG_TX; 2852 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2853 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2854 NETIF_F_IP_CSUM; 2855 2856 /* MTU range: 64 - 9000 */ 2857 netdev->min_mtu = VELOCITY_MIN_MTU; 2858 netdev->max_mtu = VELOCITY_MAX_MTU; 2859 2860 ret = register_netdev(netdev); 2861 if (ret < 0) 2862 goto err_iounmap; 2863 2864 if (!velocity_get_link(netdev)) { 2865 netif_carrier_off(netdev); 2866 vptr->mii_status |= VELOCITY_LINK_FAIL; 2867 } 2868 2869 velocity_print_info(vptr); 2870 dev_set_drvdata(vptr->dev, netdev); 2871 2872 /* and leave the chip powered down */ 2873 2874 velocity_set_power_state(vptr, PCI_D3hot); 2875 velocity_nics++; 2876 out: 2877 return ret; 2878 2879 err_iounmap: 2880 netif_napi_del(&vptr->napi); 2881 iounmap(regs); 2882 err_free_dev: 2883 free_netdev(netdev); 2884 goto out; 2885 } 2886 2887 /** 2888 * velocity_remove - device unplug 2889 * @dev: device being removed 2890 * 2891 * Device unload callback. Called on an unplug or on module 2892 * unload for each active device that is present. Disconnects 2893 * the device from the network layer and frees all the resources 2894 */ 2895 static int velocity_remove(struct device *dev) 2896 { 2897 struct net_device *netdev = dev_get_drvdata(dev); 2898 struct velocity_info *vptr = netdev_priv(netdev); 2899 2900 unregister_netdev(netdev); 2901 netif_napi_del(&vptr->napi); 2902 iounmap(vptr->mac_regs); 2903 free_netdev(netdev); 2904 velocity_nics--; 2905 2906 return 0; 2907 } 2908 2909 static int velocity_pci_probe(struct pci_dev *pdev, 2910 const struct pci_device_id *ent) 2911 { 2912 const struct velocity_info_tbl *info = 2913 &chip_info_table[ent->driver_data]; 2914 int ret; 2915 2916 ret = pci_enable_device(pdev); 2917 if (ret < 0) 2918 return ret; 2919 2920 ret = pci_request_regions(pdev, VELOCITY_NAME); 2921 if (ret < 0) { 2922 dev_err(&pdev->dev, "No PCI resources.\n"); 2923 goto fail1; 2924 } 2925 2926 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2927 if (ret == 0) 2928 return 0; 2929 2930 pci_release_regions(pdev); 2931 fail1: 2932 pci_disable_device(pdev); 2933 return ret; 2934 } 2935 2936 static void velocity_pci_remove(struct pci_dev *pdev) 2937 { 2938 velocity_remove(&pdev->dev); 2939 2940 pci_release_regions(pdev); 2941 pci_disable_device(pdev); 2942 } 2943 2944 static int velocity_platform_probe(struct platform_device *pdev) 2945 { 2946 const struct velocity_info_tbl *info; 2947 int irq; 2948 2949 info = of_device_get_match_data(&pdev->dev); 2950 if (!info) 2951 return -EINVAL; 2952 2953 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2954 if (!irq) 2955 return -EINVAL; 2956 2957 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2958 } 2959 2960 static int velocity_platform_remove(struct platform_device *pdev) 2961 { 2962 velocity_remove(&pdev->dev); 2963 2964 return 0; 2965 } 2966 2967 #ifdef CONFIG_PM_SLEEP 2968 /** 2969 * wol_calc_crc - WOL CRC 2970 * @size: size of the wake mask 2971 * @pattern: data pattern 2972 * @mask_pattern: mask 2973 * 2974 * Compute the wake on lan crc hashes for the packet header 2975 * we are interested in. 2976 */ 2977 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2978 { 2979 u16 crc = 0xFFFF; 2980 u8 mask; 2981 int i, j; 2982 2983 for (i = 0; i < size; i++) { 2984 mask = mask_pattern[i]; 2985 2986 /* Skip this loop if the mask equals to zero */ 2987 if (mask == 0x00) 2988 continue; 2989 2990 for (j = 0; j < 8; j++) { 2991 if ((mask & 0x01) == 0) { 2992 mask >>= 1; 2993 continue; 2994 } 2995 mask >>= 1; 2996 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 2997 } 2998 } 2999 /* Finally, invert the result once to get the correct data */ 3000 crc = ~crc; 3001 return bitrev32(crc) >> 16; 3002 } 3003 3004 /** 3005 * velocity_set_wol - set up for wake on lan 3006 * @vptr: velocity to set WOL status on 3007 * 3008 * Set a card up for wake on lan either by unicast or by 3009 * ARP packet. 3010 * 3011 * FIXME: check static buffer is safe here 3012 */ 3013 static int velocity_set_wol(struct velocity_info *vptr) 3014 { 3015 struct mac_regs __iomem *regs = vptr->mac_regs; 3016 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3017 static u8 buf[256]; 3018 int i; 3019 3020 static u32 mask_pattern[2][4] = { 3021 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3022 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3023 }; 3024 3025 writew(0xFFFF, ®s->WOLCRClr); 3026 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3027 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3028 3029 /* 3030 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3031 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3032 */ 3033 3034 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3035 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3036 3037 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3038 struct arp_packet *arp = (struct arp_packet *) buf; 3039 u16 crc; 3040 memset(buf, 0, sizeof(struct arp_packet) + 7); 3041 3042 for (i = 0; i < 4; i++) 3043 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3044 3045 arp->type = htons(ETH_P_ARP); 3046 arp->ar_op = htons(1); 3047 3048 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3049 3050 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3051 (u8 *) & mask_pattern[0][0]); 3052 3053 writew(crc, ®s->PatternCRC[0]); 3054 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3055 } 3056 3057 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3058 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3059 3060 writew(0x0FFF, ®s->WOLSRClr); 3061 3062 if (spd_dpx == SPD_DPX_1000_FULL) 3063 goto mac_done; 3064 3065 if (spd_dpx != SPD_DPX_AUTO) 3066 goto advertise_done; 3067 3068 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3069 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3070 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3071 3072 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3073 } 3074 3075 if (vptr->mii_status & VELOCITY_SPEED_1000) 3076 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3077 3078 advertise_done: 3079 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3080 3081 { 3082 u8 GCR; 3083 GCR = readb(®s->CHIPGCR); 3084 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3085 writeb(GCR, ®s->CHIPGCR); 3086 } 3087 3088 mac_done: 3089 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3090 /* Turn on SWPTAG just before entering power mode */ 3091 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3092 /* Go to bed ..... */ 3093 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3094 3095 return 0; 3096 } 3097 3098 /** 3099 * velocity_save_context - save registers 3100 * @vptr: velocity 3101 * @context: buffer for stored context 3102 * 3103 * Retrieve the current configuration from the velocity hardware 3104 * and stash it in the context structure, for use by the context 3105 * restore functions. This allows us to save things we need across 3106 * power down states 3107 */ 3108 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3109 { 3110 struct mac_regs __iomem *regs = vptr->mac_regs; 3111 u16 i; 3112 u8 __iomem *ptr = (u8 __iomem *)regs; 3113 3114 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3115 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3116 3117 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3118 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3119 3120 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3121 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3122 3123 } 3124 3125 static int velocity_suspend(struct device *dev) 3126 { 3127 struct net_device *netdev = dev_get_drvdata(dev); 3128 struct velocity_info *vptr = netdev_priv(netdev); 3129 unsigned long flags; 3130 3131 if (!netif_running(vptr->netdev)) 3132 return 0; 3133 3134 netif_device_detach(vptr->netdev); 3135 3136 spin_lock_irqsave(&vptr->lock, flags); 3137 if (vptr->pdev) 3138 pci_save_state(vptr->pdev); 3139 3140 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3141 velocity_get_ip(vptr); 3142 velocity_save_context(vptr, &vptr->context); 3143 velocity_shutdown(vptr); 3144 velocity_set_wol(vptr); 3145 if (vptr->pdev) 3146 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3147 velocity_set_power_state(vptr, PCI_D3hot); 3148 } else { 3149 velocity_save_context(vptr, &vptr->context); 3150 velocity_shutdown(vptr); 3151 if (vptr->pdev) 3152 pci_disable_device(vptr->pdev); 3153 velocity_set_power_state(vptr, PCI_D3hot); 3154 } 3155 3156 spin_unlock_irqrestore(&vptr->lock, flags); 3157 return 0; 3158 } 3159 3160 /** 3161 * velocity_restore_context - restore registers 3162 * @vptr: velocity 3163 * @context: buffer for stored context 3164 * 3165 * Reload the register configuration from the velocity context 3166 * created by velocity_save_context. 3167 */ 3168 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3169 { 3170 struct mac_regs __iomem *regs = vptr->mac_regs; 3171 int i; 3172 u8 __iomem *ptr = (u8 __iomem *)regs; 3173 3174 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3175 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3176 3177 /* Just skip cr0 */ 3178 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3179 /* Clear */ 3180 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3181 /* Set */ 3182 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3183 } 3184 3185 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3186 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3187 3188 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3189 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3190 3191 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3192 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3193 } 3194 3195 static int velocity_resume(struct device *dev) 3196 { 3197 struct net_device *netdev = dev_get_drvdata(dev); 3198 struct velocity_info *vptr = netdev_priv(netdev); 3199 unsigned long flags; 3200 int i; 3201 3202 if (!netif_running(vptr->netdev)) 3203 return 0; 3204 3205 velocity_set_power_state(vptr, PCI_D0); 3206 3207 if (vptr->pdev) { 3208 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3209 pci_restore_state(vptr->pdev); 3210 } 3211 3212 mac_wol_reset(vptr->mac_regs); 3213 3214 spin_lock_irqsave(&vptr->lock, flags); 3215 velocity_restore_context(vptr, &vptr->context); 3216 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3217 mac_disable_int(vptr->mac_regs); 3218 3219 velocity_tx_srv(vptr); 3220 3221 for (i = 0; i < vptr->tx.numq; i++) { 3222 if (vptr->tx.used[i]) 3223 mac_tx_queue_wake(vptr->mac_regs, i); 3224 } 3225 3226 mac_enable_int(vptr->mac_regs); 3227 spin_unlock_irqrestore(&vptr->lock, flags); 3228 netif_device_attach(vptr->netdev); 3229 3230 return 0; 3231 } 3232 #endif /* CONFIG_PM_SLEEP */ 3233 3234 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3235 3236 /* 3237 * Definition for our device driver. The PCI layer interface 3238 * uses this to handle all our card discover and plugging 3239 */ 3240 static struct pci_driver velocity_pci_driver = { 3241 .name = VELOCITY_NAME, 3242 .id_table = velocity_pci_id_table, 3243 .probe = velocity_pci_probe, 3244 .remove = velocity_pci_remove, 3245 .driver = { 3246 .pm = &velocity_pm_ops, 3247 }, 3248 }; 3249 3250 static struct platform_driver velocity_platform_driver = { 3251 .probe = velocity_platform_probe, 3252 .remove = velocity_platform_remove, 3253 .driver = { 3254 .name = "via-velocity", 3255 .of_match_table = velocity_of_ids, 3256 .pm = &velocity_pm_ops, 3257 }, 3258 }; 3259 3260 /** 3261 * velocity_ethtool_up - pre hook for ethtool 3262 * @dev: network device 3263 * 3264 * Called before an ethtool operation. We need to make sure the 3265 * chip is out of D3 state before we poke at it. In case of ethtool 3266 * ops nesting, only wake the device up in the outermost block. 3267 */ 3268 static int velocity_ethtool_up(struct net_device *dev) 3269 { 3270 struct velocity_info *vptr = netdev_priv(dev); 3271 3272 if (vptr->ethtool_ops_nesting == U32_MAX) 3273 return -EBUSY; 3274 if (!vptr->ethtool_ops_nesting++ && !netif_running(dev)) 3275 velocity_set_power_state(vptr, PCI_D0); 3276 return 0; 3277 } 3278 3279 /** 3280 * velocity_ethtool_down - post hook for ethtool 3281 * @dev: network device 3282 * 3283 * Called after an ethtool operation. Restore the chip back to D3 3284 * state if it isn't running. In case of ethtool ops nesting, only 3285 * put the device to sleep in the outermost block. 3286 */ 3287 static void velocity_ethtool_down(struct net_device *dev) 3288 { 3289 struct velocity_info *vptr = netdev_priv(dev); 3290 3291 if (!--vptr->ethtool_ops_nesting && !netif_running(dev)) 3292 velocity_set_power_state(vptr, PCI_D3hot); 3293 } 3294 3295 static int velocity_get_link_ksettings(struct net_device *dev, 3296 struct ethtool_link_ksettings *cmd) 3297 { 3298 struct velocity_info *vptr = netdev_priv(dev); 3299 struct mac_regs __iomem *regs = vptr->mac_regs; 3300 u32 status; 3301 u32 supported, advertising; 3302 3303 status = check_connection_type(vptr->mac_regs); 3304 3305 supported = SUPPORTED_TP | 3306 SUPPORTED_Autoneg | 3307 SUPPORTED_10baseT_Half | 3308 SUPPORTED_10baseT_Full | 3309 SUPPORTED_100baseT_Half | 3310 SUPPORTED_100baseT_Full | 3311 SUPPORTED_1000baseT_Half | 3312 SUPPORTED_1000baseT_Full; 3313 3314 advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3315 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3316 advertising |= 3317 ADVERTISED_10baseT_Half | 3318 ADVERTISED_10baseT_Full | 3319 ADVERTISED_100baseT_Half | 3320 ADVERTISED_100baseT_Full | 3321 ADVERTISED_1000baseT_Half | 3322 ADVERTISED_1000baseT_Full; 3323 } else { 3324 switch (vptr->options.spd_dpx) { 3325 case SPD_DPX_1000_FULL: 3326 advertising |= ADVERTISED_1000baseT_Full; 3327 break; 3328 case SPD_DPX_100_HALF: 3329 advertising |= ADVERTISED_100baseT_Half; 3330 break; 3331 case SPD_DPX_100_FULL: 3332 advertising |= ADVERTISED_100baseT_Full; 3333 break; 3334 case SPD_DPX_10_HALF: 3335 advertising |= ADVERTISED_10baseT_Half; 3336 break; 3337 case SPD_DPX_10_FULL: 3338 advertising |= ADVERTISED_10baseT_Full; 3339 break; 3340 default: 3341 break; 3342 } 3343 } 3344 3345 if (status & VELOCITY_SPEED_1000) 3346 cmd->base.speed = SPEED_1000; 3347 else if (status & VELOCITY_SPEED_100) 3348 cmd->base.speed = SPEED_100; 3349 else 3350 cmd->base.speed = SPEED_10; 3351 3352 cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? 3353 AUTONEG_ENABLE : AUTONEG_DISABLE; 3354 cmd->base.port = PORT_TP; 3355 cmd->base.phy_address = readb(®s->MIIADR) & 0x1F; 3356 3357 if (status & VELOCITY_DUPLEX_FULL) 3358 cmd->base.duplex = DUPLEX_FULL; 3359 else 3360 cmd->base.duplex = DUPLEX_HALF; 3361 3362 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 3363 supported); 3364 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 3365 advertising); 3366 3367 return 0; 3368 } 3369 3370 static int velocity_set_link_ksettings(struct net_device *dev, 3371 const struct ethtool_link_ksettings *cmd) 3372 { 3373 struct velocity_info *vptr = netdev_priv(dev); 3374 u32 speed = cmd->base.speed; 3375 u32 curr_status; 3376 u32 new_status = 0; 3377 int ret = 0; 3378 3379 curr_status = check_connection_type(vptr->mac_regs); 3380 curr_status &= (~VELOCITY_LINK_FAIL); 3381 3382 new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3383 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3384 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3385 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3386 new_status |= ((cmd->base.duplex == DUPLEX_FULL) ? 3387 VELOCITY_DUPLEX_FULL : 0); 3388 3389 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3390 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3391 ret = -EINVAL; 3392 } else { 3393 enum speed_opt spd_dpx; 3394 3395 if (new_status & VELOCITY_AUTONEG_ENABLE) 3396 spd_dpx = SPD_DPX_AUTO; 3397 else if ((new_status & VELOCITY_SPEED_1000) && 3398 (new_status & VELOCITY_DUPLEX_FULL)) { 3399 spd_dpx = SPD_DPX_1000_FULL; 3400 } else if (new_status & VELOCITY_SPEED_100) 3401 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3402 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3403 else if (new_status & VELOCITY_SPEED_10) 3404 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3405 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3406 else 3407 return -EOPNOTSUPP; 3408 3409 vptr->options.spd_dpx = spd_dpx; 3410 3411 velocity_set_media_mode(vptr, new_status); 3412 } 3413 3414 return ret; 3415 } 3416 3417 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3418 { 3419 struct velocity_info *vptr = netdev_priv(dev); 3420 3421 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3422 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3423 if (vptr->pdev) 3424 strlcpy(info->bus_info, pci_name(vptr->pdev), 3425 sizeof(info->bus_info)); 3426 else 3427 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3428 } 3429 3430 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3431 { 3432 struct velocity_info *vptr = netdev_priv(dev); 3433 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3434 wol->wolopts |= WAKE_MAGIC; 3435 /* 3436 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3437 wol.wolopts|=WAKE_PHY; 3438 */ 3439 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3440 wol->wolopts |= WAKE_UCAST; 3441 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3442 wol->wolopts |= WAKE_ARP; 3443 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3444 } 3445 3446 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3447 { 3448 struct velocity_info *vptr = netdev_priv(dev); 3449 3450 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3451 return -EFAULT; 3452 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3453 3454 /* 3455 if (wol.wolopts & WAKE_PHY) { 3456 vptr->wol_opts|=VELOCITY_WOL_PHY; 3457 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3458 } 3459 */ 3460 3461 if (wol->wolopts & WAKE_MAGIC) { 3462 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3463 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3464 } 3465 if (wol->wolopts & WAKE_UCAST) { 3466 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3467 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3468 } 3469 if (wol->wolopts & WAKE_ARP) { 3470 vptr->wol_opts |= VELOCITY_WOL_ARP; 3471 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3472 } 3473 memcpy(vptr->wol_passwd, wol->sopass, 6); 3474 return 0; 3475 } 3476 3477 static int get_pending_timer_val(int val) 3478 { 3479 int mult_bits = val >> 6; 3480 int mult = 1; 3481 3482 switch (mult_bits) 3483 { 3484 case 1: 3485 mult = 4; break; 3486 case 2: 3487 mult = 16; break; 3488 case 3: 3489 mult = 64; break; 3490 case 0: 3491 default: 3492 break; 3493 } 3494 3495 return (val & 0x3f) * mult; 3496 } 3497 3498 static void set_pending_timer_val(int *val, u32 us) 3499 { 3500 u8 mult = 0; 3501 u8 shift = 0; 3502 3503 if (us >= 0x3f) { 3504 mult = 1; /* mult with 4 */ 3505 shift = 2; 3506 } 3507 if (us >= 0x3f * 4) { 3508 mult = 2; /* mult with 16 */ 3509 shift = 4; 3510 } 3511 if (us >= 0x3f * 16) { 3512 mult = 3; /* mult with 64 */ 3513 shift = 6; 3514 } 3515 3516 *val = (mult << 6) | ((us >> shift) & 0x3f); 3517 } 3518 3519 3520 static int velocity_get_coalesce(struct net_device *dev, 3521 struct ethtool_coalesce *ecmd, 3522 struct kernel_ethtool_coalesce *kernel_coal, 3523 struct netlink_ext_ack *extack) 3524 { 3525 struct velocity_info *vptr = netdev_priv(dev); 3526 3527 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3528 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3529 3530 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3531 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3532 3533 return 0; 3534 } 3535 3536 static int velocity_set_coalesce(struct net_device *dev, 3537 struct ethtool_coalesce *ecmd, 3538 struct kernel_ethtool_coalesce *kernel_coal, 3539 struct netlink_ext_ack *extack) 3540 { 3541 struct velocity_info *vptr = netdev_priv(dev); 3542 int max_us = 0x3f * 64; 3543 unsigned long flags; 3544 3545 /* 6 bits of */ 3546 if (ecmd->tx_coalesce_usecs > max_us) 3547 return -EINVAL; 3548 if (ecmd->rx_coalesce_usecs > max_us) 3549 return -EINVAL; 3550 3551 if (ecmd->tx_max_coalesced_frames > 0xff) 3552 return -EINVAL; 3553 if (ecmd->rx_max_coalesced_frames > 0xff) 3554 return -EINVAL; 3555 3556 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3557 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3558 3559 set_pending_timer_val(&vptr->options.rxqueue_timer, 3560 ecmd->rx_coalesce_usecs); 3561 set_pending_timer_val(&vptr->options.txqueue_timer, 3562 ecmd->tx_coalesce_usecs); 3563 3564 /* Setup the interrupt suppression and queue timers */ 3565 spin_lock_irqsave(&vptr->lock, flags); 3566 mac_disable_int(vptr->mac_regs); 3567 setup_adaptive_interrupts(vptr); 3568 setup_queue_timers(vptr); 3569 3570 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3571 mac_clear_isr(vptr->mac_regs); 3572 mac_enable_int(vptr->mac_regs); 3573 spin_unlock_irqrestore(&vptr->lock, flags); 3574 3575 return 0; 3576 } 3577 3578 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3579 "rx_all", 3580 "rx_ok", 3581 "tx_ok", 3582 "rx_error", 3583 "rx_runt_ok", 3584 "rx_runt_err", 3585 "rx_64", 3586 "tx_64", 3587 "rx_65_to_127", 3588 "tx_65_to_127", 3589 "rx_128_to_255", 3590 "tx_128_to_255", 3591 "rx_256_to_511", 3592 "tx_256_to_511", 3593 "rx_512_to_1023", 3594 "tx_512_to_1023", 3595 "rx_1024_to_1518", 3596 "tx_1024_to_1518", 3597 "tx_ether_collisions", 3598 "rx_crc_errors", 3599 "rx_jumbo", 3600 "tx_jumbo", 3601 "rx_mac_control_frames", 3602 "tx_mac_control_frames", 3603 "rx_frame_alignment_errors", 3604 "rx_long_ok", 3605 "rx_long_err", 3606 "tx_sqe_errors", 3607 "rx_no_buf", 3608 "rx_symbol_errors", 3609 "in_range_length_errors", 3610 "late_collisions" 3611 }; 3612 3613 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3614 { 3615 switch (sset) { 3616 case ETH_SS_STATS: 3617 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3618 break; 3619 } 3620 } 3621 3622 static int velocity_get_sset_count(struct net_device *dev, int sset) 3623 { 3624 switch (sset) { 3625 case ETH_SS_STATS: 3626 return ARRAY_SIZE(velocity_gstrings); 3627 default: 3628 return -EOPNOTSUPP; 3629 } 3630 } 3631 3632 static void velocity_get_ethtool_stats(struct net_device *dev, 3633 struct ethtool_stats *stats, u64 *data) 3634 { 3635 if (netif_running(dev)) { 3636 struct velocity_info *vptr = netdev_priv(dev); 3637 u32 *p = vptr->mib_counter; 3638 int i; 3639 3640 spin_lock_irq(&vptr->lock); 3641 velocity_update_hw_mibs(vptr); 3642 spin_unlock_irq(&vptr->lock); 3643 3644 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3645 *data++ = *p++; 3646 } 3647 } 3648 3649 static const struct ethtool_ops velocity_ethtool_ops = { 3650 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3651 ETHTOOL_COALESCE_MAX_FRAMES, 3652 .get_drvinfo = velocity_get_drvinfo, 3653 .get_wol = velocity_ethtool_get_wol, 3654 .set_wol = velocity_ethtool_set_wol, 3655 .get_link = velocity_get_link, 3656 .get_strings = velocity_get_strings, 3657 .get_sset_count = velocity_get_sset_count, 3658 .get_ethtool_stats = velocity_get_ethtool_stats, 3659 .get_coalesce = velocity_get_coalesce, 3660 .set_coalesce = velocity_set_coalesce, 3661 .begin = velocity_ethtool_up, 3662 .complete = velocity_ethtool_down, 3663 .get_link_ksettings = velocity_get_link_ksettings, 3664 .set_link_ksettings = velocity_set_link_ksettings, 3665 }; 3666 3667 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3668 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3669 { 3670 struct in_ifaddr *ifa = ptr; 3671 struct net_device *dev = ifa->ifa_dev->dev; 3672 3673 if (dev_net(dev) == &init_net && 3674 dev->netdev_ops == &velocity_netdev_ops) 3675 velocity_get_ip(netdev_priv(dev)); 3676 3677 return NOTIFY_DONE; 3678 } 3679 3680 static struct notifier_block velocity_inetaddr_notifier = { 3681 .notifier_call = velocity_netdev_event, 3682 }; 3683 3684 static void velocity_register_notifier(void) 3685 { 3686 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3687 } 3688 3689 static void velocity_unregister_notifier(void) 3690 { 3691 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3692 } 3693 3694 #else 3695 3696 #define velocity_register_notifier() do {} while (0) 3697 #define velocity_unregister_notifier() do {} while (0) 3698 3699 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3700 3701 /** 3702 * velocity_init_module - load time function 3703 * 3704 * Called when the velocity module is loaded. The PCI driver 3705 * is registered with the PCI layer, and in turn will call 3706 * the probe functions for each velocity adapter installed 3707 * in the system. 3708 */ 3709 static int __init velocity_init_module(void) 3710 { 3711 int ret_pci, ret_platform; 3712 3713 velocity_register_notifier(); 3714 3715 ret_pci = pci_register_driver(&velocity_pci_driver); 3716 ret_platform = platform_driver_register(&velocity_platform_driver); 3717 3718 /* if both_registers failed, remove the notifier */ 3719 if ((ret_pci < 0) && (ret_platform < 0)) { 3720 velocity_unregister_notifier(); 3721 return ret_pci; 3722 } 3723 3724 return 0; 3725 } 3726 3727 /** 3728 * velocity_cleanup_module - module unload 3729 * 3730 * When the velocity hardware is unloaded this function is called. 3731 * It will clean up the notifiers and the unregister the PCI 3732 * driver interface for this hardware. This in turn cleans up 3733 * all discovered interfaces before returning from the function 3734 */ 3735 static void __exit velocity_cleanup_module(void) 3736 { 3737 velocity_unregister_notifier(); 3738 3739 pci_unregister_driver(&velocity_pci_driver); 3740 platform_driver_unregister(&velocity_platform_driver); 3741 } 3742 3743 module_init(velocity_init_module); 3744 module_exit(velocity_cleanup_module); 3745