1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84 
85 #include "via-velocity.h"
86 
87 enum velocity_bus_type {
88 	BUS_PCI,
89 	BUS_PLATFORM,
90 };
91 
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94 
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 	void *addr = vptr->mac_regs;
98 
99 	if (vptr->pdev)
100 		pci_set_power_state(vptr->pdev, state);
101 	else
102 		writeb(state, addr + 0x154);
103 }
104 
105 /**
106  *	mac_get_cam_mask	-	Read a CAM mask
107  *	@regs: register block for this velocity
108  *	@mask: buffer to store mask
109  *
110  *	Fetch the mask bits of the selected CAM and store them into the
111  *	provided mask buffer.
112  */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 	int i;
116 
117 	/* Select CAM mask */
118 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 
120 	writeb(0, &regs->CAMADDR);
121 
122 	/* read mask */
123 	for (i = 0; i < 8; i++)
124 		*mask++ = readb(&(regs->MARCAM[i]));
125 
126 	/* disable CAMEN */
127 	writeb(0, &regs->CAMADDR);
128 
129 	/* Select mar */
130 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132 
133 /**
134  *	mac_set_cam_mask	-	Set a CAM mask
135  *	@regs: register block for this velocity
136  *	@mask: CAM mask to load
137  *
138  *	Store a new mask into a CAM
139  */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 	int i;
143 	/* Select CAM mask */
144 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 
146 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147 
148 	for (i = 0; i < 8; i++)
149 		writeb(*mask++, &(regs->MARCAM[i]));
150 
151 	/* disable CAMEN */
152 	writeb(0, &regs->CAMADDR);
153 
154 	/* Select mar */
155 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157 
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 	int i;
161 	/* Select CAM mask */
162 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 
164 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165 
166 	for (i = 0; i < 8; i++)
167 		writeb(*mask++, &(regs->MARCAM[i]));
168 
169 	/* disable CAMEN */
170 	writeb(0, &regs->CAMADDR);
171 
172 	/* Select mar */
173 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175 
176 /**
177  *	mac_set_cam	-	set CAM data
178  *	@regs: register block of this velocity
179  *	@idx: Cam index
180  *	@addr: 2 or 6 bytes of CAM data
181  *
182  *	Load an address or vlan tag into a CAM
183  */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 	int i;
187 
188 	/* Select CAM mask */
189 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 
191 	idx &= (64 - 1);
192 
193 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194 
195 	for (i = 0; i < 6; i++)
196 		writeb(*addr++, &(regs->MARCAM[i]));
197 
198 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199 
200 	udelay(10);
201 
202 	writeb(0, &regs->CAMADDR);
203 
204 	/* Select mar */
205 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207 
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 			     const u8 *addr)
210 {
211 
212 	/* Select CAM mask */
213 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 
215 	idx &= (64 - 1);
216 
217 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 	writew(*((u16 *) addr), &regs->MARCAM[0]);
219 
220 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221 
222 	udelay(10);
223 
224 	writeb(0, &regs->CAMADDR);
225 
226 	/* Select mar */
227 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229 
230 
231 /**
232  *	mac_wol_reset	-	reset WOL after exiting low power
233  *	@regs: register block of this velocity
234  *
235  *	Called after we drop out of wake on lan mode in order to
236  *	reset the Wake on lan features. This function doesn't restore
237  *	the rest of the logic from the result of sleep/wakeup
238  */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241 
242 	/* Turn off SWPTAG right after leaving power mode */
243 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 	/* clear sticky bits */
245 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246 
247 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 	/* disable force PME-enable */
250 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 	/* disable power-event config bit */
252 	writew(0xFFFF, &regs->WOLCRClr);
253 	/* clear power status */
254 	writew(0xFFFF, &regs->WOLSRClr);
255 }
256 
257 static const struct ethtool_ops velocity_ethtool_ops;
258 
259 /*
260     Define module options
261 */
262 
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266 
267 #define VELOCITY_PARAM(N, D) \
268 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 	module_param_array(N, int, NULL, 0); \
270 	MODULE_PARM_DESC(N, D);
271 
272 #define RX_DESC_MIN     64
273 #define RX_DESC_MAX     255
274 #define RX_DESC_DEF     64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276 
277 #define TX_DESC_MIN     16
278 #define TX_DESC_MAX     256
279 #define TX_DESC_DEF     64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281 
282 #define RX_THRESH_MIN   0
283 #define RX_THRESH_MAX   3
284 #define RX_THRESH_DEF   0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286    0: indicate the rxfifo threshold is 128 bytes.
287    1: indicate the rxfifo threshold is 512 bytes.
288    2: indicate the rxfifo threshold is 1024 bytes.
289    3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292 
293 #define DMA_LENGTH_MIN  0
294 #define DMA_LENGTH_MAX  7
295 #define DMA_LENGTH_DEF  6
296 
297 /* DMA_length[] is used for controlling the DMA length
298    0: 8 DWORDs
299    1: 16 DWORDs
300    2: 32 DWORDs
301    3: 64 DWORDs
302    4: 128 DWORDs
303    5: 256 DWORDs
304    6: SF(flush till emply)
305    7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308 
309 #define IP_ALIG_DEF     0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311    0: indicate the IP header won't be DWORD byte aligned.(Default) .
312    1: indicate the IP header will be DWORD byte aligned.
313       In some environment, the IP header should be DWORD byte aligned,
314       or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317 
318 #define FLOW_CNTL_DEF   1
319 #define FLOW_CNTL_MIN   1
320 #define FLOW_CNTL_MAX   5
321 
322 /* flow_control[] is used for setting the flow control ability of NIC.
323    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324    2: enable TX flow control.
325    3: enable RX flow control.
326    4: enable RX/TX flow control.
327    5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330 
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335    0: indicate autonegotiation for both speed and duplex mode
336    1: indicate 100Mbps half duplex mode
337    2: indicate 100Mbps full duplex mode
338    3: indicate 10Mbps half duplex mode
339    4: indicate 10Mbps full duplex mode
340    5: indicate 1000Mbps full duplex mode
341 
342    Note:
343    if EEPROM have been set to the force mode, this option is ignored
344    by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347 
348 #define VAL_PKT_LEN_DEF     0
349 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
350    0: Receive frame with invalid layer 2 length (Default)
351    1: Drop frame with invalid layer 2 length
352 */
353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
354 
355 #define WOL_OPT_DEF     0
356 #define WOL_OPT_MIN     0
357 #define WOL_OPT_MAX     7
358 /* wol_opts[] is used for controlling wake on lan behavior.
359    0: Wake up if recevied a magic packet. (Default)
360    1: Wake up if link status is on/off.
361    2: Wake up if recevied an arp packet.
362    4: Wake up if recevied any unicast packet.
363    Those value can be sumed up to support more than one option.
364 */
365 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
366 
367 static int rx_copybreak = 200;
368 module_param(rx_copybreak, int, 0644);
369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
370 
371 /*
372  *	Internal board variants. At the moment we have only one
373  */
374 static struct velocity_info_tbl chip_info_table[] = {
375 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
376 	{ }
377 };
378 
379 /*
380  *	Describe the PCI device identifiers that we support in this
381  *	device driver. Used for hotplug autoloading.
382  */
383 
384 static const struct pci_device_id velocity_pci_id_table[] = {
385 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
386 	{ }
387 };
388 
389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
390 
391 /**
392  *	Describe the OF device identifiers that we support in this
393  *	device driver. Used for devicetree nodes.
394  */
395 static struct of_device_id velocity_of_ids[] = {
396 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
397 	{ /* Sentinel */ },
398 };
399 MODULE_DEVICE_TABLE(of, velocity_of_ids);
400 
401 /**
402  *	get_chip_name	- 	identifier to name
403  *	@id: chip identifier
404  *
405  *	Given a chip identifier return a suitable description. Returns
406  *	a pointer a static string valid while the driver is loaded.
407  */
408 static const char *get_chip_name(enum chip_type chip_id)
409 {
410 	int i;
411 	for (i = 0; chip_info_table[i].name != NULL; i++)
412 		if (chip_info_table[i].chip_id == chip_id)
413 			break;
414 	return chip_info_table[i].name;
415 }
416 
417 /**
418  *	velocity_set_int_opt	-	parser for integer options
419  *	@opt: pointer to option value
420  *	@val: value the user requested (or -1 for default)
421  *	@min: lowest value allowed
422  *	@max: highest value allowed
423  *	@def: default value
424  *	@name: property name
425  *	@dev: device name
426  *
427  *	Set an integer property in the module options. This function does
428  *	all the verification and checking as well as reporting so that
429  *	we don't duplicate code for each option.
430  */
431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
432 				 char *name, const char *devname)
433 {
434 	if (val == -1)
435 		*opt = def;
436 	else if (val < min || val > max) {
437 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
438 					devname, name, min, max);
439 		*opt = def;
440 	} else {
441 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
442 					devname, name, val);
443 		*opt = val;
444 	}
445 }
446 
447 /**
448  *	velocity_set_bool_opt	-	parser for boolean options
449  *	@opt: pointer to option value
450  *	@val: value the user requested (or -1 for default)
451  *	@def: default value (yes/no)
452  *	@flag: numeric value to set for true.
453  *	@name: property name
454  *	@dev: device name
455  *
456  *	Set a boolean property in the module options. This function does
457  *	all the verification and checking as well as reporting so that
458  *	we don't duplicate code for each option.
459  */
460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
461 				  char *name, const char *devname)
462 {
463 	(*opt) &= (~flag);
464 	if (val == -1)
465 		*opt |= (def ? flag : 0);
466 	else if (val < 0 || val > 1) {
467 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
468 			devname, name);
469 		*opt |= (def ? flag : 0);
470 	} else {
471 		printk(KERN_INFO "%s: set parameter %s to %s\n",
472 			devname, name, val ? "TRUE" : "FALSE");
473 		*opt |= (val ? flag : 0);
474 	}
475 }
476 
477 /**
478  *	velocity_get_options	-	set options on device
479  *	@opts: option structure for the device
480  *	@index: index of option to use in module options array
481  *	@devname: device name
482  *
483  *	Turn the module and command options into a single structure
484  *	for the current device
485  */
486 static void velocity_get_options(struct velocity_opt *opts, int index,
487 				 const char *devname)
488 {
489 
490 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
491 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
492 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
493 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
494 
495 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
496 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
497 	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
498 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
499 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
500 	opts->numrx = (opts->numrx & ~3);
501 }
502 
503 /**
504  *	velocity_init_cam_filter	-	initialise CAM
505  *	@vptr: velocity to program
506  *
507  *	Initialize the content addressable memory used for filters. Load
508  *	appropriately according to the presence of VLAN
509  */
510 static void velocity_init_cam_filter(struct velocity_info *vptr)
511 {
512 	struct mac_regs __iomem *regs = vptr->mac_regs;
513 	unsigned int vid, i = 0;
514 
515 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
516 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
517 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
518 
519 	/* Disable all CAMs */
520 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
521 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
522 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523 	mac_set_cam_mask(regs, vptr->mCAMmask);
524 
525 	/* Enable VCAMs */
526 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
527 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
528 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
529 		if (++i >= VCAM_SIZE)
530 			break;
531 	}
532 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
533 }
534 
535 static int velocity_vlan_rx_add_vid(struct net_device *dev,
536 				    __be16 proto, u16 vid)
537 {
538 	struct velocity_info *vptr = netdev_priv(dev);
539 
540 	spin_lock_irq(&vptr->lock);
541 	set_bit(vid, vptr->active_vlans);
542 	velocity_init_cam_filter(vptr);
543 	spin_unlock_irq(&vptr->lock);
544 	return 0;
545 }
546 
547 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
548 				     __be16 proto, u16 vid)
549 {
550 	struct velocity_info *vptr = netdev_priv(dev);
551 
552 	spin_lock_irq(&vptr->lock);
553 	clear_bit(vid, vptr->active_vlans);
554 	velocity_init_cam_filter(vptr);
555 	spin_unlock_irq(&vptr->lock);
556 	return 0;
557 }
558 
559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
560 {
561 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
562 }
563 
564 /**
565  *	velocity_rx_reset	-	handle a receive reset
566  *	@vptr: velocity we are resetting
567  *
568  *	Reset the ownership and status for the receive ring side.
569  *	Hand all the receive queue to the NIC.
570  */
571 static void velocity_rx_reset(struct velocity_info *vptr)
572 {
573 
574 	struct mac_regs __iomem *regs = vptr->mac_regs;
575 	int i;
576 
577 	velocity_init_rx_ring_indexes(vptr);
578 
579 	/*
580 	 *	Init state, all RD entries belong to the NIC
581 	 */
582 	for (i = 0; i < vptr->options.numrx; ++i)
583 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
584 
585 	writew(vptr->options.numrx, &regs->RBRDU);
586 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
587 	writew(0, &regs->RDIdx);
588 	writew(vptr->options.numrx - 1, &regs->RDCSize);
589 }
590 
591 /**
592  *	velocity_get_opt_media_mode	-	get media selection
593  *	@vptr: velocity adapter
594  *
595  *	Get the media mode stored in EEPROM or module options and load
596  *	mii_status accordingly. The requested link state information
597  *	is also returned.
598  */
599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
600 {
601 	u32 status = 0;
602 
603 	switch (vptr->options.spd_dpx) {
604 	case SPD_DPX_AUTO:
605 		status = VELOCITY_AUTONEG_ENABLE;
606 		break;
607 	case SPD_DPX_100_FULL:
608 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
609 		break;
610 	case SPD_DPX_10_FULL:
611 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
612 		break;
613 	case SPD_DPX_100_HALF:
614 		status = VELOCITY_SPEED_100;
615 		break;
616 	case SPD_DPX_10_HALF:
617 		status = VELOCITY_SPEED_10;
618 		break;
619 	case SPD_DPX_1000_FULL:
620 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
621 		break;
622 	}
623 	vptr->mii_status = status;
624 	return status;
625 }
626 
627 /**
628  *	safe_disable_mii_autopoll	-	autopoll off
629  *	@regs: velocity registers
630  *
631  *	Turn off the autopoll and wait for it to disable on the chip
632  */
633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
634 {
635 	u16 ww;
636 
637 	/*  turn off MAUTO */
638 	writeb(0, &regs->MIICR);
639 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
640 		udelay(1);
641 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
642 			break;
643 	}
644 }
645 
646 /**
647  *	enable_mii_autopoll	-	turn on autopolling
648  *	@regs: velocity registers
649  *
650  *	Enable the MII link status autopoll feature on the Velocity
651  *	hardware. Wait for it to enable.
652  */
653 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
654 {
655 	int ii;
656 
657 	writeb(0, &(regs->MIICR));
658 	writeb(MIIADR_SWMPL, &regs->MIIADR);
659 
660 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 		udelay(1);
662 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 			break;
664 	}
665 
666 	writeb(MIICR_MAUTO, &regs->MIICR);
667 
668 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
669 		udelay(1);
670 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
671 			break;
672 	}
673 
674 }
675 
676 /**
677  *	velocity_mii_read	-	read MII data
678  *	@regs: velocity registers
679  *	@index: MII register index
680  *	@data: buffer for received data
681  *
682  *	Perform a single read of an MII 16bit register. Returns zero
683  *	on success or -ETIMEDOUT if the PHY did not respond.
684  */
685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
686 {
687 	u16 ww;
688 
689 	/*
690 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
691 	 */
692 	safe_disable_mii_autopoll(regs);
693 
694 	writeb(index, &regs->MIIADR);
695 
696 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
697 
698 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
699 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
700 			break;
701 	}
702 
703 	*data = readw(&regs->MIIDATA);
704 
705 	enable_mii_autopoll(regs);
706 	if (ww == W_MAX_TIMEOUT)
707 		return -ETIMEDOUT;
708 	return 0;
709 }
710 
711 /**
712  *	mii_check_media_mode	-	check media state
713  *	@regs: velocity registers
714  *
715  *	Check the current MII status and determine the link status
716  *	accordingly
717  */
718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
719 {
720 	u32 status = 0;
721 	u16 ANAR;
722 
723 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
724 		status |= VELOCITY_LINK_FAIL;
725 
726 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
727 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
728 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
729 		status |= (VELOCITY_SPEED_1000);
730 	else {
731 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732 		if (ANAR & ADVERTISE_100FULL)
733 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
734 		else if (ANAR & ADVERTISE_100HALF)
735 			status |= VELOCITY_SPEED_100;
736 		else if (ANAR & ADVERTISE_10FULL)
737 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
738 		else
739 			status |= (VELOCITY_SPEED_10);
740 	}
741 
742 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
743 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
744 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
745 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
746 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
747 				status |= VELOCITY_AUTONEG_ENABLE;
748 		}
749 	}
750 
751 	return status;
752 }
753 
754 /**
755  *	velocity_mii_write	-	write MII data
756  *	@regs: velocity registers
757  *	@index: MII register index
758  *	@data: 16bit data for the MII register
759  *
760  *	Perform a single write to an MII 16bit register. Returns zero
761  *	on success or -ETIMEDOUT if the PHY did not respond.
762  */
763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
764 {
765 	u16 ww;
766 
767 	/*
768 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
769 	 */
770 	safe_disable_mii_autopoll(regs);
771 
772 	/* MII reg offset */
773 	writeb(mii_addr, &regs->MIIADR);
774 	/* set MII data */
775 	writew(data, &regs->MIIDATA);
776 
777 	/* turn on MIICR_WCMD */
778 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
779 
780 	/* W_MAX_TIMEOUT is the timeout period */
781 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
782 		udelay(5);
783 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
784 			break;
785 	}
786 	enable_mii_autopoll(regs);
787 
788 	if (ww == W_MAX_TIMEOUT)
789 		return -ETIMEDOUT;
790 	return 0;
791 }
792 
793 /**
794  *	set_mii_flow_control	-	flow control setup
795  *	@vptr: velocity interface
796  *
797  *	Set up the flow control on this interface according to
798  *	the supplied user/eeprom options.
799  */
800 static void set_mii_flow_control(struct velocity_info *vptr)
801 {
802 	/*Enable or Disable PAUSE in ANAR */
803 	switch (vptr->options.flow_cntl) {
804 	case FLOW_CNTL_TX:
805 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
806 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
807 		break;
808 
809 	case FLOW_CNTL_RX:
810 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
811 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
812 		break;
813 
814 	case FLOW_CNTL_TX_RX:
815 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
816 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
817 		break;
818 
819 	case FLOW_CNTL_DISABLE:
820 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
821 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
822 		break;
823 	default:
824 		break;
825 	}
826 }
827 
828 /**
829  *	mii_set_auto_on		-	autonegotiate on
830  *	@vptr: velocity
831  *
832  *	Enable autonegotation on this interface
833  */
834 static void mii_set_auto_on(struct velocity_info *vptr)
835 {
836 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
837 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
838 	else
839 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
840 }
841 
842 static u32 check_connection_type(struct mac_regs __iomem *regs)
843 {
844 	u32 status = 0;
845 	u8 PHYSR0;
846 	u16 ANAR;
847 	PHYSR0 = readb(&regs->PHYSR0);
848 
849 	/*
850 	   if (!(PHYSR0 & PHYSR0_LINKGD))
851 	   status|=VELOCITY_LINK_FAIL;
852 	 */
853 
854 	if (PHYSR0 & PHYSR0_FDPX)
855 		status |= VELOCITY_DUPLEX_FULL;
856 
857 	if (PHYSR0 & PHYSR0_SPDG)
858 		status |= VELOCITY_SPEED_1000;
859 	else if (PHYSR0 & PHYSR0_SPD10)
860 		status |= VELOCITY_SPEED_10;
861 	else
862 		status |= VELOCITY_SPEED_100;
863 
864 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
865 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
866 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
867 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
868 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
869 				status |= VELOCITY_AUTONEG_ENABLE;
870 		}
871 	}
872 
873 	return status;
874 }
875 
876 /**
877  *	velocity_set_media_mode		-	set media mode
878  *	@mii_status: old MII link state
879  *
880  *	Check the media link state and configure the flow control
881  *	PHY and also velocity hardware setup accordingly. In particular
882  *	we need to set up CD polling and frame bursting.
883  */
884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
885 {
886 	u32 curr_status;
887 	struct mac_regs __iomem *regs = vptr->mac_regs;
888 
889 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
890 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
891 
892 	/* Set mii link status */
893 	set_mii_flow_control(vptr);
894 
895 	/*
896 	   Check if new status is consistent with current status
897 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
898 	       (mii_status==curr_status)) {
899 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
900 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
901 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
902 	   return 0;
903 	   }
904 	 */
905 
906 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
907 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
908 
909 	/*
910 	 *	If connection type is AUTO
911 	 */
912 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
913 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
914 		/* clear force MAC mode bit */
915 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
916 		/* set duplex mode of MAC according to duplex mode of MII */
917 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
918 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
919 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
920 
921 		/* enable AUTO-NEGO mode */
922 		mii_set_auto_on(vptr);
923 	} else {
924 		u16 CTRL1000;
925 		u16 ANAR;
926 		u8 CHIPGCR;
927 
928 		/*
929 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
930 		 *    and enable it in fullduplex mode
931 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932 		 * 3. only enable CD heart beat counter in 10HD mode
933 		 */
934 
935 		/* set force MAC mode bit */
936 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
937 
938 		CHIPGCR = readb(&regs->CHIPGCR);
939 
940 		if (mii_status & VELOCITY_SPEED_1000)
941 			CHIPGCR |= CHIPGCR_FCGMII;
942 		else
943 			CHIPGCR &= ~CHIPGCR_FCGMII;
944 
945 		if (mii_status & VELOCITY_DUPLEX_FULL) {
946 			CHIPGCR |= CHIPGCR_FCFDX;
947 			writeb(CHIPGCR, &regs->CHIPGCR);
948 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
949 			if (vptr->rev_id < REV_ID_VT3216_A0)
950 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
951 		} else {
952 			CHIPGCR &= ~CHIPGCR_FCFDX;
953 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
954 			writeb(CHIPGCR, &regs->CHIPGCR);
955 			if (vptr->rev_id < REV_ID_VT3216_A0)
956 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
957 		}
958 
959 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
960 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
961 		if ((mii_status & VELOCITY_SPEED_1000) &&
962 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
963 			CTRL1000 |= ADVERTISE_1000FULL;
964 		}
965 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
966 
967 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
968 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
969 		else
970 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
971 
972 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
973 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
974 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
975 		if (mii_status & VELOCITY_SPEED_100) {
976 			if (mii_status & VELOCITY_DUPLEX_FULL)
977 				ANAR |= ADVERTISE_100FULL;
978 			else
979 				ANAR |= ADVERTISE_100HALF;
980 		} else if (mii_status & VELOCITY_SPEED_10) {
981 			if (mii_status & VELOCITY_DUPLEX_FULL)
982 				ANAR |= ADVERTISE_10FULL;
983 			else
984 				ANAR |= ADVERTISE_10HALF;
985 		}
986 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
987 		/* enable AUTO-NEGO mode */
988 		mii_set_auto_on(vptr);
989 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
990 	}
991 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
992 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
993 	return VELOCITY_LINK_CHANGE;
994 }
995 
996 /**
997  *	velocity_print_link_status	-	link status reporting
998  *	@vptr: velocity to report on
999  *
1000  *	Turn the link status of the velocity card into a kernel log
1001  *	description of the new link state, detailing speed and duplex
1002  *	status
1003  */
1004 static void velocity_print_link_status(struct velocity_info *vptr)
1005 {
1006 
1007 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1008 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1009 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1010 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1011 
1012 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1013 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1014 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1015 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1016 		else
1017 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1018 
1019 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1020 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1021 		else
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1023 	} else {
1024 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1025 		switch (vptr->options.spd_dpx) {
1026 		case SPD_DPX_1000_FULL:
1027 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1028 			break;
1029 		case SPD_DPX_100_HALF:
1030 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1031 			break;
1032 		case SPD_DPX_100_FULL:
1033 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1034 			break;
1035 		case SPD_DPX_10_HALF:
1036 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1037 			break;
1038 		case SPD_DPX_10_FULL:
1039 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1040 			break;
1041 		default:
1042 			break;
1043 		}
1044 	}
1045 }
1046 
1047 /**
1048  *	enable_flow_control_ability	-	flow control
1049  *	@vptr: veloity to configure
1050  *
1051  *	Set up flow control according to the flow control options
1052  *	determined by the eeprom/configuration.
1053  */
1054 static void enable_flow_control_ability(struct velocity_info *vptr)
1055 {
1056 
1057 	struct mac_regs __iomem *regs = vptr->mac_regs;
1058 
1059 	switch (vptr->options.flow_cntl) {
1060 
1061 	case FLOW_CNTL_DEFAULT:
1062 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1064 		else
1065 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066 
1067 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1069 		else
1070 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071 		break;
1072 
1073 	case FLOW_CNTL_TX:
1074 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1075 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 		break;
1077 
1078 	case FLOW_CNTL_RX:
1079 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1080 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081 		break;
1082 
1083 	case FLOW_CNTL_TX_RX:
1084 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1085 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1086 		break;
1087 
1088 	case FLOW_CNTL_DISABLE:
1089 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091 		break;
1092 
1093 	default:
1094 		break;
1095 	}
1096 
1097 }
1098 
1099 /**
1100  *	velocity_soft_reset	-	soft reset
1101  *	@vptr: velocity to reset
1102  *
1103  *	Kick off a soft reset of the velocity adapter and then poll
1104  *	until the reset sequence has completed before returning.
1105  */
1106 static int velocity_soft_reset(struct velocity_info *vptr)
1107 {
1108 	struct mac_regs __iomem *regs = vptr->mac_regs;
1109 	int i = 0;
1110 
1111 	writel(CR0_SFRST, &regs->CR0Set);
1112 
1113 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114 		udelay(5);
1115 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116 			break;
1117 	}
1118 
1119 	if (i == W_MAX_TIMEOUT) {
1120 		writel(CR0_FORSRST, &regs->CR0Set);
1121 		/* FIXME: PCI POSTING */
1122 		/* delay 2ms */
1123 		mdelay(2);
1124 	}
1125 	return 0;
1126 }
1127 
1128 /**
1129  *	velocity_set_multi	-	filter list change callback
1130  *	@dev: network device
1131  *
1132  *	Called by the network layer when the filter lists need to change
1133  *	for a velocity adapter. Reload the CAMs with the new address
1134  *	filter ruleset.
1135  */
1136 static void velocity_set_multi(struct net_device *dev)
1137 {
1138 	struct velocity_info *vptr = netdev_priv(dev);
1139 	struct mac_regs __iomem *regs = vptr->mac_regs;
1140 	u8 rx_mode;
1141 	int i;
1142 	struct netdev_hw_addr *ha;
1143 
1144 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1145 		writel(0xffffffff, &regs->MARCAM[0]);
1146 		writel(0xffffffff, &regs->MARCAM[4]);
1147 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149 		   (dev->flags & IFF_ALLMULTI)) {
1150 		writel(0xffffffff, &regs->MARCAM[0]);
1151 		writel(0xffffffff, &regs->MARCAM[4]);
1152 		rx_mode = (RCR_AM | RCR_AB);
1153 	} else {
1154 		int offset = MCAM_SIZE - vptr->multicast_limit;
1155 		mac_get_cam_mask(regs, vptr->mCAMmask);
1156 
1157 		i = 0;
1158 		netdev_for_each_mc_addr(ha, dev) {
1159 			mac_set_cam(regs, i + offset, ha->addr);
1160 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161 			i++;
1162 		}
1163 
1164 		mac_set_cam_mask(regs, vptr->mCAMmask);
1165 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166 	}
1167 	if (dev->mtu > 1500)
1168 		rx_mode |= RCR_AL;
1169 
1170 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171 
1172 }
1173 
1174 /*
1175  * MII access , media link mode setting functions
1176  */
1177 
1178 /**
1179  *	mii_init	-	set up MII
1180  *	@vptr: velocity adapter
1181  *	@mii_status:  links tatus
1182  *
1183  *	Set up the PHY for the current link state.
1184  */
1185 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186 {
1187 	u16 BMCR;
1188 
1189 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190 	case PHYID_ICPLUS_IP101A:
1191 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192 						MII_ADVERTISE, vptr->mac_regs);
1193 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195 								vptr->mac_regs);
1196 		else
1197 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198 								vptr->mac_regs);
1199 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200 		break;
1201 	case PHYID_CICADA_CS8201:
1202 		/*
1203 		 *	Reset to hardware default
1204 		 */
1205 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 		/*
1207 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1209 		 *	legacy-forced issue.
1210 		 */
1211 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 		else
1214 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 		/*
1216 		 *	Turn on Link/Activity LED enable bit for CIS8201
1217 		 */
1218 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219 		break;
1220 	case PHYID_VT3216_32BIT:
1221 	case PHYID_VT3216_64BIT:
1222 		/*
1223 		 *	Reset to hardware default
1224 		 */
1225 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 		/*
1227 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1228 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1229 		 *	legacy-forced issue
1230 		 */
1231 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233 		else
1234 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235 		break;
1236 
1237 	case PHYID_MARVELL_1000:
1238 	case PHYID_MARVELL_1000S:
1239 		/*
1240 		 *	Assert CRS on Transmit
1241 		 */
1242 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243 		/*
1244 		 *	Reset to hardware default
1245 		 */
1246 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247 		break;
1248 	default:
1249 		;
1250 	}
1251 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252 	if (BMCR & BMCR_ISOLATE) {
1253 		BMCR &= ~BMCR_ISOLATE;
1254 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255 	}
1256 }
1257 
1258 /**
1259  * setup_queue_timers	-	Setup interrupt timers
1260  *
1261  * Setup interrupt frequency during suppression (timeout if the frame
1262  * count isn't filled).
1263  */
1264 static void setup_queue_timers(struct velocity_info *vptr)
1265 {
1266 	/* Only for newer revisions */
1267 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1268 		u8 txqueue_timer = 0;
1269 		u8 rxqueue_timer = 0;
1270 
1271 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1272 				VELOCITY_SPEED_100)) {
1273 			txqueue_timer = vptr->options.txqueue_timer;
1274 			rxqueue_timer = vptr->options.rxqueue_timer;
1275 		}
1276 
1277 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1278 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1279 	}
1280 }
1281 
1282 /**
1283  * setup_adaptive_interrupts  -  Setup interrupt suppression
1284  *
1285  * @vptr velocity adapter
1286  *
1287  * The velocity is able to suppress interrupt during high interrupt load.
1288  * This function turns on that feature.
1289  */
1290 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291 {
1292 	struct mac_regs __iomem *regs = vptr->mac_regs;
1293 	u16 tx_intsup = vptr->options.tx_intsup;
1294 	u16 rx_intsup = vptr->options.rx_intsup;
1295 
1296 	/* Setup default interrupt mask (will be changed below) */
1297 	vptr->int_mask = INT_MASK_DEF;
1298 
1299 	/* Set Tx Interrupt Suppression Threshold */
1300 	writeb(CAMCR_PS0, &regs->CAMCR);
1301 	if (tx_intsup != 0) {
1302 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303 				ISR_PTX2I | ISR_PTX3I);
1304 		writew(tx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Set Rx Interrupt Suppression Threshold */
1309 	writeb(CAMCR_PS1, &regs->CAMCR);
1310 	if (rx_intsup != 0) {
1311 		vptr->int_mask &= ~ISR_PRXI;
1312 		writew(rx_intsup, &regs->ISRCTL);
1313 	} else
1314 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315 
1316 	/* Select page to interrupt hold timer */
1317 	writeb(0, &regs->CAMCR);
1318 }
1319 
1320 /**
1321  *	velocity_init_registers	-	initialise MAC registers
1322  *	@vptr: velocity to init
1323  *	@type: type of initialisation (hot or cold)
1324  *
1325  *	Initialise the MAC on a reset or on first set up on the
1326  *	hardware.
1327  */
1328 static void velocity_init_registers(struct velocity_info *vptr,
1329 				    enum velocity_init_type type)
1330 {
1331 	struct mac_regs __iomem *regs = vptr->mac_regs;
1332 	struct net_device *netdev = vptr->netdev;
1333 	int i, mii_status;
1334 
1335 	mac_wol_reset(regs);
1336 
1337 	switch (type) {
1338 	case VELOCITY_INIT_RESET:
1339 	case VELOCITY_INIT_WOL:
1340 
1341 		netif_stop_queue(netdev);
1342 
1343 		/*
1344 		 *	Reset RX to prevent RX pointer not on the 4X location
1345 		 */
1346 		velocity_rx_reset(vptr);
1347 		mac_rx_queue_run(regs);
1348 		mac_rx_queue_wake(regs);
1349 
1350 		mii_status = velocity_get_opt_media_mode(vptr);
1351 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352 			velocity_print_link_status(vptr);
1353 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354 				netif_wake_queue(netdev);
1355 		}
1356 
1357 		enable_flow_control_ability(vptr);
1358 
1359 		mac_clear_isr(regs);
1360 		writel(CR0_STOP, &regs->CR0Clr);
1361 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362 							&regs->CR0Set);
1363 
1364 		break;
1365 
1366 	case VELOCITY_INIT_COLD:
1367 	default:
1368 		/*
1369 		 *	Do reset
1370 		 */
1371 		velocity_soft_reset(vptr);
1372 		mdelay(5);
1373 
1374 		if (!vptr->no_eeprom) {
1375 			mac_eeprom_reload(regs);
1376 			for (i = 0; i < 6; i++)
1377 				writeb(netdev->dev_addr[i], regs->PAR + i);
1378 		}
1379 
1380 		/*
1381 		 *	clear Pre_ACPI bit.
1382 		 */
1383 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385 		mac_set_dma_length(regs, vptr->options.DMA_length);
1386 
1387 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388 		/*
1389 		 *	Back off algorithm use original IEEE standard
1390 		 */
1391 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392 
1393 		/*
1394 		 *	Init CAM filter
1395 		 */
1396 		velocity_init_cam_filter(vptr);
1397 
1398 		/*
1399 		 *	Set packet filter: Receive directed and broadcast address
1400 		 */
1401 		velocity_set_multi(netdev);
1402 
1403 		/*
1404 		 *	Enable MII auto-polling
1405 		 */
1406 		enable_mii_autopoll(regs);
1407 
1408 		setup_adaptive_interrupts(vptr);
1409 
1410 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1412 		mac_rx_queue_run(regs);
1413 		mac_rx_queue_wake(regs);
1414 
1415 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1416 
1417 		for (i = 0; i < vptr->tx.numq; i++) {
1418 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419 			mac_tx_queue_run(regs, i);
1420 		}
1421 
1422 		init_flow_control_register(vptr);
1423 
1424 		writel(CR0_STOP, &regs->CR0Clr);
1425 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426 
1427 		mii_status = velocity_get_opt_media_mode(vptr);
1428 		netif_stop_queue(netdev);
1429 
1430 		mii_init(vptr, mii_status);
1431 
1432 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433 			velocity_print_link_status(vptr);
1434 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435 				netif_wake_queue(netdev);
1436 		}
1437 
1438 		enable_flow_control_ability(vptr);
1439 		mac_hw_mibs_init(regs);
1440 		mac_write_int_mask(vptr->int_mask, regs);
1441 		mac_clear_isr(regs);
1442 
1443 	}
1444 }
1445 
1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447 {
1448 	struct mac_regs __iomem *regs = vptr->mac_regs;
1449 	int avail, dirty, unusable;
1450 
1451 	/*
1452 	 * RD number must be equal to 4X per hardware spec
1453 	 * (programming guide rev 1.20, p.13)
1454 	 */
1455 	if (vptr->rx.filled < 4)
1456 		return;
1457 
1458 	wmb();
1459 
1460 	unusable = vptr->rx.filled & 0x0003;
1461 	dirty = vptr->rx.dirty - unusable;
1462 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465 	}
1466 
1467 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468 	vptr->rx.filled = unusable;
1469 }
1470 
1471 /**
1472  *	velocity_init_dma_rings	-	set up DMA rings
1473  *	@vptr: Velocity to set up
1474  *
1475  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1476  *	to use.
1477  */
1478 static int velocity_init_dma_rings(struct velocity_info *vptr)
1479 {
1480 	struct velocity_opt *opt = &vptr->options;
1481 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483 	dma_addr_t pool_dma;
1484 	void *pool;
1485 	unsigned int i;
1486 
1487 	/*
1488 	 * Allocate all RD/TD rings a single pool.
1489 	 *
1490 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491 	 * alignment
1492 	 */
1493 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1495 	if (!pool) {
1496 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497 			vptr->netdev->name);
1498 		return -ENOMEM;
1499 	}
1500 
1501 	vptr->rx.ring = pool;
1502 	vptr->rx.pool_dma = pool_dma;
1503 
1504 	pool += rx_ring_size;
1505 	pool_dma += rx_ring_size;
1506 
1507 	for (i = 0; i < vptr->tx.numq; i++) {
1508 		vptr->tx.rings[i] = pool;
1509 		vptr->tx.pool_dma[i] = pool_dma;
1510 		pool += tx_ring_size;
1511 		pool_dma += tx_ring_size;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518 {
1519 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520 }
1521 
1522 /**
1523  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1524  *	@vptr: velocity
1525  *	@idx: ring index
1526  *
1527  *	Allocate a new full sized buffer for the reception of a frame and
1528  *	map it into PCI space for the hardware to use. The hardware
1529  *	requires *64* byte alignment of the buffer which makes life
1530  *	less fun than would be ideal.
1531  */
1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533 {
1534 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536 
1537 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538 	if (rd_info->skb == NULL)
1539 		return -ENOMEM;
1540 
1541 	/*
1542 	 *	Do the gymnastics to get the buffer head for data at
1543 	 *	64byte alignment.
1544 	 */
1545 	skb_reserve(rd_info->skb,
1546 			64 - ((unsigned long) rd_info->skb->data & 63));
1547 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549 
1550 	/*
1551 	 *	Fill in the descriptor to match
1552 	 */
1553 
1554 	*((u32 *) & (rd->rdesc0)) = 0;
1555 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557 	rd->pa_high = 0;
1558 	return 0;
1559 }
1560 
1561 
1562 static int velocity_rx_refill(struct velocity_info *vptr)
1563 {
1564 	int dirty = vptr->rx.dirty, done = 0;
1565 
1566 	do {
1567 		struct rx_desc *rd = vptr->rx.ring + dirty;
1568 
1569 		/* Fine for an all zero Rx desc at init time as well */
1570 		if (rd->rdesc0.len & OWNED_BY_NIC)
1571 			break;
1572 
1573 		if (!vptr->rx.info[dirty].skb) {
1574 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575 				break;
1576 		}
1577 		done++;
1578 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579 	} while (dirty != vptr->rx.curr);
1580 
1581 	if (done) {
1582 		vptr->rx.dirty = dirty;
1583 		vptr->rx.filled += done;
1584 	}
1585 
1586 	return done;
1587 }
1588 
1589 /**
1590  *	velocity_free_rd_ring	-	free receive ring
1591  *	@vptr: velocity to clean up
1592  *
1593  *	Free the receive buffers for each ring slot and any
1594  *	attached socket buffers that need to go away.
1595  */
1596 static void velocity_free_rd_ring(struct velocity_info *vptr)
1597 {
1598 	int i;
1599 
1600 	if (vptr->rx.info == NULL)
1601 		return;
1602 
1603 	for (i = 0; i < vptr->options.numrx; i++) {
1604 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605 		struct rx_desc *rd = vptr->rx.ring + i;
1606 
1607 		memset(rd, 0, sizeof(*rd));
1608 
1609 		if (!rd_info->skb)
1610 			continue;
1611 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612 				 DMA_FROM_DEVICE);
1613 		rd_info->skb_dma = 0;
1614 
1615 		dev_kfree_skb(rd_info->skb);
1616 		rd_info->skb = NULL;
1617 	}
1618 
1619 	kfree(vptr->rx.info);
1620 	vptr->rx.info = NULL;
1621 }
1622 
1623 /**
1624  *	velocity_init_rd_ring	-	set up receive ring
1625  *	@vptr: velocity to configure
1626  *
1627  *	Allocate and set up the receive buffers for each ring slot and
1628  *	assign them to the network adapter.
1629  */
1630 static int velocity_init_rd_ring(struct velocity_info *vptr)
1631 {
1632 	int ret = -ENOMEM;
1633 
1634 	vptr->rx.info = kcalloc(vptr->options.numrx,
1635 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1636 	if (!vptr->rx.info)
1637 		goto out;
1638 
1639 	velocity_init_rx_ring_indexes(vptr);
1640 
1641 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1643 			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1644 		velocity_free_rd_ring(vptr);
1645 		goto out;
1646 	}
1647 
1648 	ret = 0;
1649 out:
1650 	return ret;
1651 }
1652 
1653 /**
1654  *	velocity_init_td_ring	-	set up transmit ring
1655  *	@vptr:	velocity
1656  *
1657  *	Set up the transmit ring and chain the ring pointers together.
1658  *	Returns zero on success or a negative posix errno code for
1659  *	failure.
1660  */
1661 static int velocity_init_td_ring(struct velocity_info *vptr)
1662 {
1663 	int j;
1664 
1665 	/* Init the TD ring entries */
1666 	for (j = 0; j < vptr->tx.numq; j++) {
1667 
1668 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1669 					    sizeof(struct velocity_td_info),
1670 					    GFP_KERNEL);
1671 		if (!vptr->tx.infos[j])	{
1672 			while (--j >= 0)
1673 				kfree(vptr->tx.infos[j]);
1674 			return -ENOMEM;
1675 		}
1676 
1677 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1678 	}
1679 	return 0;
1680 }
1681 
1682 /**
1683  *	velocity_free_dma_rings	-	free PCI ring pointers
1684  *	@vptr: Velocity to free from
1685  *
1686  *	Clean up the PCI ring buffers allocated to this velocity.
1687  */
1688 static void velocity_free_dma_rings(struct velocity_info *vptr)
1689 {
1690 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1691 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1692 
1693 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1694 }
1695 
1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1697 {
1698 	int ret;
1699 
1700 	velocity_set_rxbufsize(vptr, mtu);
1701 
1702 	ret = velocity_init_dma_rings(vptr);
1703 	if (ret < 0)
1704 		goto out;
1705 
1706 	ret = velocity_init_rd_ring(vptr);
1707 	if (ret < 0)
1708 		goto err_free_dma_rings_0;
1709 
1710 	ret = velocity_init_td_ring(vptr);
1711 	if (ret < 0)
1712 		goto err_free_rd_ring_1;
1713 out:
1714 	return ret;
1715 
1716 err_free_rd_ring_1:
1717 	velocity_free_rd_ring(vptr);
1718 err_free_dma_rings_0:
1719 	velocity_free_dma_rings(vptr);
1720 	goto out;
1721 }
1722 
1723 /**
1724  *	velocity_free_tx_buf	-	free transmit buffer
1725  *	@vptr: velocity
1726  *	@tdinfo: buffer
1727  *
1728  *	Release an transmit buffer. If the buffer was preallocated then
1729  *	recycle it, if not then unmap the buffer.
1730  */
1731 static void velocity_free_tx_buf(struct velocity_info *vptr,
1732 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1733 {
1734 	struct sk_buff *skb = tdinfo->skb;
1735 
1736 	/*
1737 	 *	Don't unmap the pre-allocated tx_bufs
1738 	 */
1739 	if (tdinfo->skb_dma) {
1740 		int i;
1741 
1742 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1743 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1744 
1745 			/* For scatter-gather */
1746 			if (skb_shinfo(skb)->nr_frags > 0)
1747 				pktlen = max_t(size_t, pktlen,
1748 						td->td_buf[i].size & ~TD_QUEUE);
1749 
1750 			dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1751 					le16_to_cpu(pktlen), DMA_TO_DEVICE);
1752 		}
1753 	}
1754 	dev_kfree_skb_irq(skb);
1755 	tdinfo->skb = NULL;
1756 }
1757 
1758 /*
1759  *	FIXME: could we merge this with velocity_free_tx_buf ?
1760  */
1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1762 							 int q, int n)
1763 {
1764 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1765 	int i;
1766 
1767 	if (td_info == NULL)
1768 		return;
1769 
1770 	if (td_info->skb) {
1771 		for (i = 0; i < td_info->nskb_dma; i++) {
1772 			if (td_info->skb_dma[i]) {
1773 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1774 					td_info->skb->len, DMA_TO_DEVICE);
1775 				td_info->skb_dma[i] = 0;
1776 			}
1777 		}
1778 		dev_kfree_skb(td_info->skb);
1779 		td_info->skb = NULL;
1780 	}
1781 }
1782 
1783 /**
1784  *	velocity_free_td_ring	-	free td ring
1785  *	@vptr: velocity
1786  *
1787  *	Free up the transmit ring for this particular velocity adapter.
1788  *	We free the ring contents but not the ring itself.
1789  */
1790 static void velocity_free_td_ring(struct velocity_info *vptr)
1791 {
1792 	int i, j;
1793 
1794 	for (j = 0; j < vptr->tx.numq; j++) {
1795 		if (vptr->tx.infos[j] == NULL)
1796 			continue;
1797 		for (i = 0; i < vptr->options.numtx; i++)
1798 			velocity_free_td_ring_entry(vptr, j, i);
1799 
1800 		kfree(vptr->tx.infos[j]);
1801 		vptr->tx.infos[j] = NULL;
1802 	}
1803 }
1804 
1805 static void velocity_free_rings(struct velocity_info *vptr)
1806 {
1807 	velocity_free_td_ring(vptr);
1808 	velocity_free_rd_ring(vptr);
1809 	velocity_free_dma_rings(vptr);
1810 }
1811 
1812 /**
1813  *	velocity_error	-	handle error from controller
1814  *	@vptr: velocity
1815  *	@status: card status
1816  *
1817  *	Process an error report from the hardware and attempt to recover
1818  *	the card itself. At the moment we cannot recover from some
1819  *	theoretically impossible errors but this could be fixed using
1820  *	the pci_device_failed logic to bounce the hardware
1821  *
1822  */
1823 static void velocity_error(struct velocity_info *vptr, int status)
1824 {
1825 
1826 	if (status & ISR_TXSTLI) {
1827 		struct mac_regs __iomem *regs = vptr->mac_regs;
1828 
1829 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1830 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1831 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1832 		netif_stop_queue(vptr->netdev);
1833 
1834 		/* FIXME: port over the pci_device_failed code and use it
1835 		   here */
1836 	}
1837 
1838 	if (status & ISR_SRCI) {
1839 		struct mac_regs __iomem *regs = vptr->mac_regs;
1840 		int linked;
1841 
1842 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1843 			vptr->mii_status = check_connection_type(regs);
1844 
1845 			/*
1846 			 *	If it is a 3119, disable frame bursting in
1847 			 *	halfduplex mode and enable it in fullduplex
1848 			 *	 mode
1849 			 */
1850 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1851 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1852 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1853 				else
1854 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1855 			}
1856 			/*
1857 			 *	Only enable CD heart beat counter in 10HD mode
1858 			 */
1859 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1860 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1861 			else
1862 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1863 
1864 			setup_queue_timers(vptr);
1865 		}
1866 		/*
1867 		 *	Get link status from PHYSR0
1868 		 */
1869 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1870 
1871 		if (linked) {
1872 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1873 			netif_carrier_on(vptr->netdev);
1874 		} else {
1875 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1876 			netif_carrier_off(vptr->netdev);
1877 		}
1878 
1879 		velocity_print_link_status(vptr);
1880 		enable_flow_control_ability(vptr);
1881 
1882 		/*
1883 		 *	Re-enable auto-polling because SRCI will disable
1884 		 *	auto-polling
1885 		 */
1886 
1887 		enable_mii_autopoll(regs);
1888 
1889 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1890 			netif_stop_queue(vptr->netdev);
1891 		else
1892 			netif_wake_queue(vptr->netdev);
1893 
1894 	}
1895 	if (status & ISR_MIBFI)
1896 		velocity_update_hw_mibs(vptr);
1897 	if (status & ISR_LSTEI)
1898 		mac_rx_queue_wake(vptr->mac_regs);
1899 }
1900 
1901 /**
1902  *	tx_srv		-	transmit interrupt service
1903  *	@vptr; Velocity
1904  *
1905  *	Scan the queues looking for transmitted packets that
1906  *	we can complete and clean up. Update any statistics as
1907  *	necessary/
1908  */
1909 static int velocity_tx_srv(struct velocity_info *vptr)
1910 {
1911 	struct tx_desc *td;
1912 	int qnum;
1913 	int full = 0;
1914 	int idx;
1915 	int works = 0;
1916 	struct velocity_td_info *tdinfo;
1917 	struct net_device_stats *stats = &vptr->netdev->stats;
1918 
1919 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1920 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1921 			idx = (idx + 1) % vptr->options.numtx) {
1922 
1923 			/*
1924 			 *	Get Tx Descriptor
1925 			 */
1926 			td = &(vptr->tx.rings[qnum][idx]);
1927 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1928 
1929 			if (td->tdesc0.len & OWNED_BY_NIC)
1930 				break;
1931 
1932 			if ((works++ > 15))
1933 				break;
1934 
1935 			if (td->tdesc0.TSR & TSR0_TERR) {
1936 				stats->tx_errors++;
1937 				stats->tx_dropped++;
1938 				if (td->tdesc0.TSR & TSR0_CDH)
1939 					stats->tx_heartbeat_errors++;
1940 				if (td->tdesc0.TSR & TSR0_CRS)
1941 					stats->tx_carrier_errors++;
1942 				if (td->tdesc0.TSR & TSR0_ABT)
1943 					stats->tx_aborted_errors++;
1944 				if (td->tdesc0.TSR & TSR0_OWC)
1945 					stats->tx_window_errors++;
1946 			} else {
1947 				stats->tx_packets++;
1948 				stats->tx_bytes += tdinfo->skb->len;
1949 			}
1950 			velocity_free_tx_buf(vptr, tdinfo, td);
1951 			vptr->tx.used[qnum]--;
1952 		}
1953 		vptr->tx.tail[qnum] = idx;
1954 
1955 		if (AVAIL_TD(vptr, qnum) < 1)
1956 			full = 1;
1957 	}
1958 	/*
1959 	 *	Look to see if we should kick the transmit network
1960 	 *	layer for more work.
1961 	 */
1962 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1963 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1964 		netif_wake_queue(vptr->netdev);
1965 	}
1966 	return works;
1967 }
1968 
1969 /**
1970  *	velocity_rx_csum	-	checksum process
1971  *	@rd: receive packet descriptor
1972  *	@skb: network layer packet buffer
1973  *
1974  *	Process the status bits for the received packet and determine
1975  *	if the checksum was computed and verified by the hardware
1976  */
1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1978 {
1979 	skb_checksum_none_assert(skb);
1980 
1981 	if (rd->rdesc1.CSM & CSM_IPKT) {
1982 		if (rd->rdesc1.CSM & CSM_IPOK) {
1983 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1984 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1985 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1986 					return;
1987 			}
1988 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1989 		}
1990 	}
1991 }
1992 
1993 /**
1994  *	velocity_rx_copy	-	in place Rx copy for small packets
1995  *	@rx_skb: network layer packet buffer candidate
1996  *	@pkt_size: received data size
1997  *	@rd: receive packet descriptor
1998  *	@dev: network device
1999  *
2000  *	Replace the current skb that is scheduled for Rx processing by a
2001  *	shorter, immediately allocated skb, if the received packet is small
2002  *	enough. This function returns a negative value if the received
2003  *	packet is too big or if memory is exhausted.
2004  */
2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2006 			    struct velocity_info *vptr)
2007 {
2008 	int ret = -1;
2009 	if (pkt_size < rx_copybreak) {
2010 		struct sk_buff *new_skb;
2011 
2012 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2013 		if (new_skb) {
2014 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2015 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2016 			*rx_skb = new_skb;
2017 			ret = 0;
2018 		}
2019 
2020 	}
2021 	return ret;
2022 }
2023 
2024 /**
2025  *	velocity_iph_realign	-	IP header alignment
2026  *	@vptr: velocity we are handling
2027  *	@skb: network layer packet buffer
2028  *	@pkt_size: received data size
2029  *
2030  *	Align IP header on a 2 bytes boundary. This behavior can be
2031  *	configured by the user.
2032  */
2033 static inline void velocity_iph_realign(struct velocity_info *vptr,
2034 					struct sk_buff *skb, int pkt_size)
2035 {
2036 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2037 		memmove(skb->data + 2, skb->data, pkt_size);
2038 		skb_reserve(skb, 2);
2039 	}
2040 }
2041 
2042 /**
2043  *	velocity_receive_frame	-	received packet processor
2044  *	@vptr: velocity we are handling
2045  *	@idx: ring index
2046  *
2047  *	A packet has arrived. We process the packet and if appropriate
2048  *	pass the frame up the network stack
2049  */
2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2051 {
2052 	struct net_device_stats *stats = &vptr->netdev->stats;
2053 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2054 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2055 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2056 	struct sk_buff *skb;
2057 
2058 	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2059 		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2060 		stats->rx_length_errors++;
2061 		return -EINVAL;
2062 	}
2063 
2064 	if (rd->rdesc0.RSR & RSR_MAR)
2065 		stats->multicast++;
2066 
2067 	skb = rd_info->skb;
2068 
2069 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2070 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2071 
2072 	/*
2073 	 *	Drop frame not meeting IEEE 802.3
2074 	 */
2075 
2076 	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2077 		if (rd->rdesc0.RSR & RSR_RL) {
2078 			stats->rx_length_errors++;
2079 			return -EINVAL;
2080 		}
2081 	}
2082 
2083 	velocity_rx_csum(rd, skb);
2084 
2085 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086 		velocity_iph_realign(vptr, skb, pkt_len);
2087 		rd_info->skb = NULL;
2088 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2089 				 DMA_FROM_DEVICE);
2090 	} else {
2091 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2092 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2093 	}
2094 
2095 	skb_put(skb, pkt_len - 4);
2096 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2097 
2098 	if (rd->rdesc0.RSR & RSR_DETAG) {
2099 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2100 
2101 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2102 	}
2103 	netif_receive_skb(skb);
2104 
2105 	stats->rx_bytes += pkt_len;
2106 	stats->rx_packets++;
2107 
2108 	return 0;
2109 }
2110 
2111 /**
2112  *	velocity_rx_srv		-	service RX interrupt
2113  *	@vptr: velocity
2114  *
2115  *	Walk the receive ring of the velocity adapter and remove
2116  *	any received packets from the receive queue. Hand the ring
2117  *	slots back to the adapter for reuse.
2118  */
2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2120 {
2121 	struct net_device_stats *stats = &vptr->netdev->stats;
2122 	int rd_curr = vptr->rx.curr;
2123 	int works = 0;
2124 
2125 	while (works < budget_left) {
2126 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2127 
2128 		if (!vptr->rx.info[rd_curr].skb)
2129 			break;
2130 
2131 		if (rd->rdesc0.len & OWNED_BY_NIC)
2132 			break;
2133 
2134 		rmb();
2135 
2136 		/*
2137 		 *	Don't drop CE or RL error frame although RXOK is off
2138 		 */
2139 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2140 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2141 				stats->rx_dropped++;
2142 		} else {
2143 			if (rd->rdesc0.RSR & RSR_CRC)
2144 				stats->rx_crc_errors++;
2145 			if (rd->rdesc0.RSR & RSR_FAE)
2146 				stats->rx_frame_errors++;
2147 
2148 			stats->rx_dropped++;
2149 		}
2150 
2151 		rd->size |= RX_INTEN;
2152 
2153 		rd_curr++;
2154 		if (rd_curr >= vptr->options.numrx)
2155 			rd_curr = 0;
2156 		works++;
2157 	}
2158 
2159 	vptr->rx.curr = rd_curr;
2160 
2161 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2162 		velocity_give_many_rx_descs(vptr);
2163 
2164 	VAR_USED(stats);
2165 	return works;
2166 }
2167 
2168 static int velocity_poll(struct napi_struct *napi, int budget)
2169 {
2170 	struct velocity_info *vptr = container_of(napi,
2171 			struct velocity_info, napi);
2172 	unsigned int rx_done;
2173 	unsigned long flags;
2174 
2175 	/*
2176 	 * Do rx and tx twice for performance (taken from the VIA
2177 	 * out-of-tree driver).
2178 	 */
2179 	rx_done = velocity_rx_srv(vptr, budget);
2180 	spin_lock_irqsave(&vptr->lock, flags);
2181 	velocity_tx_srv(vptr);
2182 	/* If budget not fully consumed, exit the polling mode */
2183 	if (rx_done < budget) {
2184 		napi_complete(napi);
2185 		mac_enable_int(vptr->mac_regs);
2186 	}
2187 	spin_unlock_irqrestore(&vptr->lock, flags);
2188 
2189 	return rx_done;
2190 }
2191 
2192 /**
2193  *	velocity_intr		-	interrupt callback
2194  *	@irq: interrupt number
2195  *	@dev_instance: interrupting device
2196  *
2197  *	Called whenever an interrupt is generated by the velocity
2198  *	adapter IRQ line. We may not be the source of the interrupt
2199  *	and need to identify initially if we are, and if not exit as
2200  *	efficiently as possible.
2201  */
2202 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2203 {
2204 	struct net_device *dev = dev_instance;
2205 	struct velocity_info *vptr = netdev_priv(dev);
2206 	u32 isr_status;
2207 
2208 	spin_lock(&vptr->lock);
2209 	isr_status = mac_read_isr(vptr->mac_regs);
2210 
2211 	/* Not us ? */
2212 	if (isr_status == 0) {
2213 		spin_unlock(&vptr->lock);
2214 		return IRQ_NONE;
2215 	}
2216 
2217 	/* Ack the interrupt */
2218 	mac_write_isr(vptr->mac_regs, isr_status);
2219 
2220 	if (likely(napi_schedule_prep(&vptr->napi))) {
2221 		mac_disable_int(vptr->mac_regs);
2222 		__napi_schedule(&vptr->napi);
2223 	}
2224 
2225 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2226 		velocity_error(vptr, isr_status);
2227 
2228 	spin_unlock(&vptr->lock);
2229 
2230 	return IRQ_HANDLED;
2231 }
2232 
2233 /**
2234  *	velocity_open		-	interface activation callback
2235  *	@dev: network layer device to open
2236  *
2237  *	Called when the network layer brings the interface up. Returns
2238  *	a negative posix error code on failure, or zero on success.
2239  *
2240  *	All the ring allocation and set up is done on open for this
2241  *	adapter to minimise memory usage when inactive
2242  */
2243 static int velocity_open(struct net_device *dev)
2244 {
2245 	struct velocity_info *vptr = netdev_priv(dev);
2246 	int ret;
2247 
2248 	ret = velocity_init_rings(vptr, dev->mtu);
2249 	if (ret < 0)
2250 		goto out;
2251 
2252 	/* Ensure chip is running */
2253 	velocity_set_power_state(vptr, PCI_D0);
2254 
2255 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2256 
2257 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2258 			  dev->name, dev);
2259 	if (ret < 0) {
2260 		/* Power down the chip */
2261 		velocity_set_power_state(vptr, PCI_D3hot);
2262 		velocity_free_rings(vptr);
2263 		goto out;
2264 	}
2265 
2266 	velocity_give_many_rx_descs(vptr);
2267 
2268 	mac_enable_int(vptr->mac_regs);
2269 	netif_start_queue(dev);
2270 	napi_enable(&vptr->napi);
2271 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2272 out:
2273 	return ret;
2274 }
2275 
2276 /**
2277  *	velocity_shutdown	-	shut down the chip
2278  *	@vptr: velocity to deactivate
2279  *
2280  *	Shuts down the internal operations of the velocity and
2281  *	disables interrupts, autopolling, transmit and receive
2282  */
2283 static void velocity_shutdown(struct velocity_info *vptr)
2284 {
2285 	struct mac_regs __iomem *regs = vptr->mac_regs;
2286 	mac_disable_int(regs);
2287 	writel(CR0_STOP, &regs->CR0Set);
2288 	writew(0xFFFF, &regs->TDCSRClr);
2289 	writeb(0xFF, &regs->RDCSRClr);
2290 	safe_disable_mii_autopoll(regs);
2291 	mac_clear_isr(regs);
2292 }
2293 
2294 /**
2295  *	velocity_change_mtu	-	MTU change callback
2296  *	@dev: network device
2297  *	@new_mtu: desired MTU
2298  *
2299  *	Handle requests from the networking layer for MTU change on
2300  *	this interface. It gets called on a change by the network layer.
2301  *	Return zero for success or negative posix error code.
2302  */
2303 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2304 {
2305 	struct velocity_info *vptr = netdev_priv(dev);
2306 	int ret = 0;
2307 
2308 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2309 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2310 				vptr->netdev->name);
2311 		ret = -EINVAL;
2312 		goto out_0;
2313 	}
2314 
2315 	if (!netif_running(dev)) {
2316 		dev->mtu = new_mtu;
2317 		goto out_0;
2318 	}
2319 
2320 	if (dev->mtu != new_mtu) {
2321 		struct velocity_info *tmp_vptr;
2322 		unsigned long flags;
2323 		struct rx_info rx;
2324 		struct tx_info tx;
2325 
2326 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2327 		if (!tmp_vptr) {
2328 			ret = -ENOMEM;
2329 			goto out_0;
2330 		}
2331 
2332 		tmp_vptr->netdev = dev;
2333 		tmp_vptr->pdev = vptr->pdev;
2334 		tmp_vptr->dev = vptr->dev;
2335 		tmp_vptr->options = vptr->options;
2336 		tmp_vptr->tx.numq = vptr->tx.numq;
2337 
2338 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2339 		if (ret < 0)
2340 			goto out_free_tmp_vptr_1;
2341 
2342 		napi_disable(&vptr->napi);
2343 
2344 		spin_lock_irqsave(&vptr->lock, flags);
2345 
2346 		netif_stop_queue(dev);
2347 		velocity_shutdown(vptr);
2348 
2349 		rx = vptr->rx;
2350 		tx = vptr->tx;
2351 
2352 		vptr->rx = tmp_vptr->rx;
2353 		vptr->tx = tmp_vptr->tx;
2354 
2355 		tmp_vptr->rx = rx;
2356 		tmp_vptr->tx = tx;
2357 
2358 		dev->mtu = new_mtu;
2359 
2360 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2361 
2362 		velocity_give_many_rx_descs(vptr);
2363 
2364 		napi_enable(&vptr->napi);
2365 
2366 		mac_enable_int(vptr->mac_regs);
2367 		netif_start_queue(dev);
2368 
2369 		spin_unlock_irqrestore(&vptr->lock, flags);
2370 
2371 		velocity_free_rings(tmp_vptr);
2372 
2373 out_free_tmp_vptr_1:
2374 		kfree(tmp_vptr);
2375 	}
2376 out_0:
2377 	return ret;
2378 }
2379 
2380 #ifdef CONFIG_NET_POLL_CONTROLLER
2381 /**
2382  *  velocity_poll_controller		-	Velocity Poll controller function
2383  *  @dev: network device
2384  *
2385  *
2386  *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2387  *  with interrupts disabled.
2388  */
2389 static void velocity_poll_controller(struct net_device *dev)
2390 {
2391 	disable_irq(dev->irq);
2392 	velocity_intr(dev->irq, dev);
2393 	enable_irq(dev->irq);
2394 }
2395 #endif
2396 
2397 /**
2398  *	velocity_mii_ioctl		-	MII ioctl handler
2399  *	@dev: network device
2400  *	@ifr: the ifreq block for the ioctl
2401  *	@cmd: the command
2402  *
2403  *	Process MII requests made via ioctl from the network layer. These
2404  *	are used by tools like kudzu to interrogate the link state of the
2405  *	hardware
2406  */
2407 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2408 {
2409 	struct velocity_info *vptr = netdev_priv(dev);
2410 	struct mac_regs __iomem *regs = vptr->mac_regs;
2411 	unsigned long flags;
2412 	struct mii_ioctl_data *miidata = if_mii(ifr);
2413 	int err;
2414 
2415 	switch (cmd) {
2416 	case SIOCGMIIPHY:
2417 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2418 		break;
2419 	case SIOCGMIIREG:
2420 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2421 			return -ETIMEDOUT;
2422 		break;
2423 	case SIOCSMIIREG:
2424 		spin_lock_irqsave(&vptr->lock, flags);
2425 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2426 		spin_unlock_irqrestore(&vptr->lock, flags);
2427 		check_connection_type(vptr->mac_regs);
2428 		if (err)
2429 			return err;
2430 		break;
2431 	default:
2432 		return -EOPNOTSUPP;
2433 	}
2434 	return 0;
2435 }
2436 
2437 /**
2438  *	velocity_ioctl		-	ioctl entry point
2439  *	@dev: network device
2440  *	@rq: interface request ioctl
2441  *	@cmd: command code
2442  *
2443  *	Called when the user issues an ioctl request to the network
2444  *	device in question. The velocity interface supports MII.
2445  */
2446 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2447 {
2448 	struct velocity_info *vptr = netdev_priv(dev);
2449 	int ret;
2450 
2451 	/* If we are asked for information and the device is power
2452 	   saving then we need to bring the device back up to talk to it */
2453 
2454 	if (!netif_running(dev))
2455 		velocity_set_power_state(vptr, PCI_D0);
2456 
2457 	switch (cmd) {
2458 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2459 	case SIOCGMIIREG:	/* Read MII PHY register. */
2460 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2461 		ret = velocity_mii_ioctl(dev, rq, cmd);
2462 		break;
2463 
2464 	default:
2465 		ret = -EOPNOTSUPP;
2466 	}
2467 	if (!netif_running(dev))
2468 		velocity_set_power_state(vptr, PCI_D3hot);
2469 
2470 
2471 	return ret;
2472 }
2473 
2474 /**
2475  *	velocity_get_status	-	statistics callback
2476  *	@dev: network device
2477  *
2478  *	Callback from the network layer to allow driver statistics
2479  *	to be resynchronized with hardware collected state. In the
2480  *	case of the velocity we need to pull the MIB counters from
2481  *	the hardware into the counters before letting the network
2482  *	layer display them.
2483  */
2484 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2485 {
2486 	struct velocity_info *vptr = netdev_priv(dev);
2487 
2488 	/* If the hardware is down, don't touch MII */
2489 	if (!netif_running(dev))
2490 		return &dev->stats;
2491 
2492 	spin_lock_irq(&vptr->lock);
2493 	velocity_update_hw_mibs(vptr);
2494 	spin_unlock_irq(&vptr->lock);
2495 
2496 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2497 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2498 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2499 
2500 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2501 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2502 	/* detailed rx_errors: */
2503 //  unsigned long   rx_length_errors;
2504 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2505 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2506 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2507 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2508 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2509 
2510 	/* detailed tx_errors */
2511 //  unsigned long   tx_fifo_errors;
2512 
2513 	return &dev->stats;
2514 }
2515 
2516 /**
2517  *	velocity_close		-	close adapter callback
2518  *	@dev: network device
2519  *
2520  *	Callback from the network layer when the velocity is being
2521  *	deactivated by the network layer
2522  */
2523 static int velocity_close(struct net_device *dev)
2524 {
2525 	struct velocity_info *vptr = netdev_priv(dev);
2526 
2527 	napi_disable(&vptr->napi);
2528 	netif_stop_queue(dev);
2529 	velocity_shutdown(vptr);
2530 
2531 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2532 		velocity_get_ip(vptr);
2533 
2534 	free_irq(dev->irq, dev);
2535 
2536 	velocity_free_rings(vptr);
2537 
2538 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2539 	return 0;
2540 }
2541 
2542 /**
2543  *	velocity_xmit		-	transmit packet callback
2544  *	@skb: buffer to transmit
2545  *	@dev: network device
2546  *
2547  *	Called by the networ layer to request a packet is queued to
2548  *	the velocity. Returns zero on success.
2549  */
2550 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2551 				 struct net_device *dev)
2552 {
2553 	struct velocity_info *vptr = netdev_priv(dev);
2554 	int qnum = 0;
2555 	struct tx_desc *td_ptr;
2556 	struct velocity_td_info *tdinfo;
2557 	unsigned long flags;
2558 	int pktlen;
2559 	int index, prev;
2560 	int i = 0;
2561 
2562 	if (skb_padto(skb, ETH_ZLEN))
2563 		goto out;
2564 
2565 	/* The hardware can handle at most 7 memory segments, so merge
2566 	 * the skb if there are more */
2567 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2568 		dev_kfree_skb_any(skb);
2569 		return NETDEV_TX_OK;
2570 	}
2571 
2572 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2573 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2574 				skb_headlen(skb);
2575 
2576 	spin_lock_irqsave(&vptr->lock, flags);
2577 
2578 	index = vptr->tx.curr[qnum];
2579 	td_ptr = &(vptr->tx.rings[qnum][index]);
2580 	tdinfo = &(vptr->tx.infos[qnum][index]);
2581 
2582 	td_ptr->tdesc1.TCR = TCR0_TIC;
2583 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2584 
2585 	/*
2586 	 *	Map the linear network buffer into PCI space and
2587 	 *	add it to the transmit ring.
2588 	 */
2589 	tdinfo->skb = skb;
2590 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2591 								DMA_TO_DEVICE);
2592 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2593 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2594 	td_ptr->td_buf[0].pa_high = 0;
2595 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2596 
2597 	/* Handle fragments */
2598 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2599 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2600 
2601 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2602 							  frag, 0,
2603 							  skb_frag_size(frag),
2604 							  DMA_TO_DEVICE);
2605 
2606 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2607 		td_ptr->td_buf[i + 1].pa_high = 0;
2608 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2609 	}
2610 	tdinfo->nskb_dma = i + 1;
2611 
2612 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2613 
2614 	if (vlan_tx_tag_present(skb)) {
2615 		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2616 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2617 	}
2618 
2619 	/*
2620 	 *	Handle hardware checksum
2621 	 */
2622 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2623 		const struct iphdr *ip = ip_hdr(skb);
2624 		if (ip->protocol == IPPROTO_TCP)
2625 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2626 		else if (ip->protocol == IPPROTO_UDP)
2627 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2628 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2629 	}
2630 
2631 	prev = index - 1;
2632 	if (prev < 0)
2633 		prev = vptr->options.numtx - 1;
2634 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2635 	vptr->tx.used[qnum]++;
2636 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2637 
2638 	if (AVAIL_TD(vptr, qnum) < 1)
2639 		netif_stop_queue(dev);
2640 
2641 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2642 	td_ptr->td_buf[0].size |= TD_QUEUE;
2643 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2644 
2645 	spin_unlock_irqrestore(&vptr->lock, flags);
2646 out:
2647 	return NETDEV_TX_OK;
2648 }
2649 
2650 static const struct net_device_ops velocity_netdev_ops = {
2651 	.ndo_open		= velocity_open,
2652 	.ndo_stop		= velocity_close,
2653 	.ndo_start_xmit		= velocity_xmit,
2654 	.ndo_get_stats		= velocity_get_stats,
2655 	.ndo_validate_addr	= eth_validate_addr,
2656 	.ndo_set_mac_address	= eth_mac_addr,
2657 	.ndo_set_rx_mode	= velocity_set_multi,
2658 	.ndo_change_mtu		= velocity_change_mtu,
2659 	.ndo_do_ioctl		= velocity_ioctl,
2660 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2661 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2662 #ifdef CONFIG_NET_POLL_CONTROLLER
2663 	.ndo_poll_controller = velocity_poll_controller,
2664 #endif
2665 };
2666 
2667 /**
2668  *	velocity_init_info	-	init private data
2669  *	@pdev: PCI device
2670  *	@vptr: Velocity info
2671  *	@info: Board type
2672  *
2673  *	Set up the initial velocity_info struct for the device that has been
2674  *	discovered.
2675  */
2676 static void velocity_init_info(struct velocity_info *vptr,
2677 				const struct velocity_info_tbl *info)
2678 {
2679 	vptr->chip_id = info->chip_id;
2680 	vptr->tx.numq = info->txqueue;
2681 	vptr->multicast_limit = MCAM_SIZE;
2682 	spin_lock_init(&vptr->lock);
2683 }
2684 
2685 /**
2686  *	velocity_get_pci_info	-	retrieve PCI info for device
2687  *	@vptr: velocity device
2688  *	@pdev: PCI device it matches
2689  *
2690  *	Retrieve the PCI configuration space data that interests us from
2691  *	the kernel PCI layer
2692  */
2693 static int velocity_get_pci_info(struct velocity_info *vptr)
2694 {
2695 	struct pci_dev *pdev = vptr->pdev;
2696 
2697 	pci_set_master(pdev);
2698 
2699 	vptr->ioaddr = pci_resource_start(pdev, 0);
2700 	vptr->memaddr = pci_resource_start(pdev, 1);
2701 
2702 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2703 		dev_err(&pdev->dev,
2704 			   "region #0 is not an I/O resource, aborting.\n");
2705 		return -EINVAL;
2706 	}
2707 
2708 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2709 		dev_err(&pdev->dev,
2710 			   "region #1 is an I/O resource, aborting.\n");
2711 		return -EINVAL;
2712 	}
2713 
2714 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2715 		dev_err(&pdev->dev, "region #1 is too small.\n");
2716 		return -EINVAL;
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 /**
2723  *	velocity_get_platform_info - retrieve platform info for device
2724  *	@vptr: velocity device
2725  *	@pdev: platform device it matches
2726  *
2727  *	Retrieve the Platform configuration data that interests us
2728  */
2729 static int velocity_get_platform_info(struct velocity_info *vptr)
2730 {
2731 	struct resource res;
2732 	int ret;
2733 
2734 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2735 		vptr->no_eeprom = 1;
2736 
2737 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2738 	if (ret) {
2739 		dev_err(vptr->dev, "unable to find memory address\n");
2740 		return ret;
2741 	}
2742 
2743 	vptr->memaddr = res.start;
2744 
2745 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2746 		dev_err(vptr->dev, "memory region is too small.\n");
2747 		return -EINVAL;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 /**
2754  *	velocity_print_info	-	per driver data
2755  *	@vptr: velocity
2756  *
2757  *	Print per driver data as the kernel driver finds Velocity
2758  *	hardware
2759  */
2760 static void velocity_print_info(struct velocity_info *vptr)
2761 {
2762 	struct net_device *dev = vptr->netdev;
2763 
2764 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2765 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2766 		dev->name, dev->dev_addr);
2767 }
2768 
2769 static u32 velocity_get_link(struct net_device *dev)
2770 {
2771 	struct velocity_info *vptr = netdev_priv(dev);
2772 	struct mac_regs __iomem *regs = vptr->mac_regs;
2773 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2774 }
2775 
2776 /**
2777  *	velocity_probe - set up discovered velocity device
2778  *	@pdev: PCI device
2779  *	@ent: PCI device table entry that matched
2780  *	@bustype: bus that device is connected to
2781  *
2782  *	Configure a discovered adapter from scratch. Return a negative
2783  *	errno error code on failure paths.
2784  */
2785 static int velocity_probe(struct device *dev, int irq,
2786 			   const struct velocity_info_tbl *info,
2787 			   enum velocity_bus_type bustype)
2788 {
2789 	static int first = 1;
2790 	struct net_device *netdev;
2791 	int i;
2792 	const char *drv_string;
2793 	struct velocity_info *vptr;
2794 	struct mac_regs __iomem *regs;
2795 	int ret = -ENOMEM;
2796 
2797 	/* FIXME: this driver, like almost all other ethernet drivers,
2798 	 * can support more than MAX_UNITS.
2799 	 */
2800 	if (velocity_nics >= MAX_UNITS) {
2801 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2802 		return -ENODEV;
2803 	}
2804 
2805 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2806 	if (!netdev)
2807 		goto out;
2808 
2809 	/* Chain it all together */
2810 
2811 	SET_NETDEV_DEV(netdev, dev);
2812 	vptr = netdev_priv(netdev);
2813 
2814 	if (first) {
2815 		printk(KERN_INFO "%s Ver. %s\n",
2816 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2817 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2818 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2819 		first = 0;
2820 	}
2821 
2822 	netdev->irq = irq;
2823 	vptr->netdev = netdev;
2824 	vptr->dev = dev;
2825 
2826 	velocity_init_info(vptr, info);
2827 
2828 	if (bustype == BUS_PCI) {
2829 		vptr->pdev = to_pci_dev(dev);
2830 
2831 		ret = velocity_get_pci_info(vptr);
2832 		if (ret < 0)
2833 			goto err_free_dev;
2834 	} else {
2835 		vptr->pdev = NULL;
2836 		ret = velocity_get_platform_info(vptr);
2837 		if (ret < 0)
2838 			goto err_free_dev;
2839 	}
2840 
2841 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2842 	if (regs == NULL) {
2843 		ret = -EIO;
2844 		goto err_free_dev;
2845 	}
2846 
2847 	vptr->mac_regs = regs;
2848 	vptr->rev_id = readb(&regs->rev_id);
2849 
2850 	mac_wol_reset(regs);
2851 
2852 	for (i = 0; i < 6; i++)
2853 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2854 
2855 
2856 	drv_string = dev_driver_string(dev);
2857 
2858 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2859 
2860 	/*
2861 	 *	Mask out the options cannot be set to the chip
2862 	 */
2863 
2864 	vptr->options.flags &= info->flags;
2865 
2866 	/*
2867 	 *	Enable the chip specified capbilities
2868 	 */
2869 
2870 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2871 
2872 	vptr->wol_opts = vptr->options.wol_opts;
2873 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2874 
2875 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2876 
2877 	netdev->netdev_ops = &velocity_netdev_ops;
2878 	netdev->ethtool_ops = &velocity_ethtool_ops;
2879 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2880 							VELOCITY_NAPI_WEIGHT);
2881 
2882 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2883 			   NETIF_F_HW_VLAN_CTAG_TX;
2884 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2885 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2886 			NETIF_F_IP_CSUM;
2887 
2888 	ret = register_netdev(netdev);
2889 	if (ret < 0)
2890 		goto err_iounmap;
2891 
2892 	if (!velocity_get_link(netdev)) {
2893 		netif_carrier_off(netdev);
2894 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2895 	}
2896 
2897 	velocity_print_info(vptr);
2898 	dev_set_drvdata(vptr->dev, netdev);
2899 
2900 	/* and leave the chip powered down */
2901 
2902 	velocity_set_power_state(vptr, PCI_D3hot);
2903 	velocity_nics++;
2904 out:
2905 	return ret;
2906 
2907 err_iounmap:
2908 	netif_napi_del(&vptr->napi);
2909 	iounmap(regs);
2910 err_free_dev:
2911 	free_netdev(netdev);
2912 	goto out;
2913 }
2914 
2915 /**
2916  *	velocity_remove	- device unplug
2917  *	@dev: device being removed
2918  *
2919  *	Device unload callback. Called on an unplug or on module
2920  *	unload for each active device that is present. Disconnects
2921  *	the device from the network layer and frees all the resources
2922  */
2923 static int velocity_remove(struct device *dev)
2924 {
2925 	struct net_device *netdev = dev_get_drvdata(dev);
2926 	struct velocity_info *vptr = netdev_priv(netdev);
2927 
2928 	unregister_netdev(netdev);
2929 	netif_napi_del(&vptr->napi);
2930 	iounmap(vptr->mac_regs);
2931 	free_netdev(netdev);
2932 	velocity_nics--;
2933 
2934 	return 0;
2935 }
2936 
2937 static int velocity_pci_probe(struct pci_dev *pdev,
2938 			       const struct pci_device_id *ent)
2939 {
2940 	const struct velocity_info_tbl *info =
2941 					&chip_info_table[ent->driver_data];
2942 	int ret;
2943 
2944 	ret = pci_enable_device(pdev);
2945 	if (ret < 0)
2946 		return ret;
2947 
2948 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2949 	if (ret < 0) {
2950 		dev_err(&pdev->dev, "No PCI resources.\n");
2951 		goto fail1;
2952 	}
2953 
2954 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2955 	if (ret == 0)
2956 		return 0;
2957 
2958 	pci_release_regions(pdev);
2959 fail1:
2960 	pci_disable_device(pdev);
2961 	return ret;
2962 }
2963 
2964 static void velocity_pci_remove(struct pci_dev *pdev)
2965 {
2966 	velocity_remove(&pdev->dev);
2967 
2968 	pci_release_regions(pdev);
2969 	pci_disable_device(pdev);
2970 }
2971 
2972 static int velocity_platform_probe(struct platform_device *pdev)
2973 {
2974 	const struct of_device_id *of_id;
2975 	const struct velocity_info_tbl *info;
2976 	int irq;
2977 
2978 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2979 	if (!of_id)
2980 		return -EINVAL;
2981 	info = of_id->data;
2982 
2983 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2984 	if (!irq)
2985 		return -EINVAL;
2986 
2987 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2988 }
2989 
2990 static int velocity_platform_remove(struct platform_device *pdev)
2991 {
2992 	velocity_remove(&pdev->dev);
2993 
2994 	return 0;
2995 }
2996 
2997 #ifdef CONFIG_PM_SLEEP
2998 /**
2999  *	wol_calc_crc		-	WOL CRC
3000  *	@pattern: data pattern
3001  *	@mask_pattern: mask
3002  *
3003  *	Compute the wake on lan crc hashes for the packet header
3004  *	we are interested in.
3005  */
3006 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
3007 {
3008 	u16 crc = 0xFFFF;
3009 	u8 mask;
3010 	int i, j;
3011 
3012 	for (i = 0; i < size; i++) {
3013 		mask = mask_pattern[i];
3014 
3015 		/* Skip this loop if the mask equals to zero */
3016 		if (mask == 0x00)
3017 			continue;
3018 
3019 		for (j = 0; j < 8; j++) {
3020 			if ((mask & 0x01) == 0) {
3021 				mask >>= 1;
3022 				continue;
3023 			}
3024 			mask >>= 1;
3025 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3026 		}
3027 	}
3028 	/*	Finally, invert the result once to get the correct data */
3029 	crc = ~crc;
3030 	return bitrev32(crc) >> 16;
3031 }
3032 
3033 /**
3034  *	velocity_set_wol	-	set up for wake on lan
3035  *	@vptr: velocity to set WOL status on
3036  *
3037  *	Set a card up for wake on lan either by unicast or by
3038  *	ARP packet.
3039  *
3040  *	FIXME: check static buffer is safe here
3041  */
3042 static int velocity_set_wol(struct velocity_info *vptr)
3043 {
3044 	struct mac_regs __iomem *regs = vptr->mac_regs;
3045 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3046 	static u8 buf[256];
3047 	int i;
3048 
3049 	static u32 mask_pattern[2][4] = {
3050 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3051 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3052 	};
3053 
3054 	writew(0xFFFF, &regs->WOLCRClr);
3055 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3056 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3057 
3058 	/*
3059 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3060 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3061 	 */
3062 
3063 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3064 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3065 
3066 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3067 		struct arp_packet *arp = (struct arp_packet *) buf;
3068 		u16 crc;
3069 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3070 
3071 		for (i = 0; i < 4; i++)
3072 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3073 
3074 		arp->type = htons(ETH_P_ARP);
3075 		arp->ar_op = htons(1);
3076 
3077 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3078 
3079 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3080 				(u8 *) & mask_pattern[0][0]);
3081 
3082 		writew(crc, &regs->PatternCRC[0]);
3083 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3084 	}
3085 
3086 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3087 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3088 
3089 	writew(0x0FFF, &regs->WOLSRClr);
3090 
3091 	if (spd_dpx == SPD_DPX_1000_FULL)
3092 		goto mac_done;
3093 
3094 	if (spd_dpx != SPD_DPX_AUTO)
3095 		goto advertise_done;
3096 
3097 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3098 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3099 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3100 
3101 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3102 	}
3103 
3104 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3105 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3106 
3107 advertise_done:
3108 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3109 
3110 	{
3111 		u8 GCR;
3112 		GCR = readb(&regs->CHIPGCR);
3113 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3114 		writeb(GCR, &regs->CHIPGCR);
3115 	}
3116 
3117 mac_done:
3118 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3119 	/* Turn on SWPTAG just before entering power mode */
3120 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3121 	/* Go to bed ..... */
3122 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3123 
3124 	return 0;
3125 }
3126 
3127 /**
3128  *	velocity_save_context	-	save registers
3129  *	@vptr: velocity
3130  *	@context: buffer for stored context
3131  *
3132  *	Retrieve the current configuration from the velocity hardware
3133  *	and stash it in the context structure, for use by the context
3134  *	restore functions. This allows us to save things we need across
3135  *	power down states
3136  */
3137 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3138 {
3139 	struct mac_regs __iomem *regs = vptr->mac_regs;
3140 	u16 i;
3141 	u8 __iomem *ptr = (u8 __iomem *)regs;
3142 
3143 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3144 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3145 
3146 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3147 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3148 
3149 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3150 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3151 
3152 }
3153 
3154 static int velocity_suspend(struct device *dev)
3155 {
3156 	struct net_device *netdev = dev_get_drvdata(dev);
3157 	struct velocity_info *vptr = netdev_priv(netdev);
3158 	unsigned long flags;
3159 
3160 	if (!netif_running(vptr->netdev))
3161 		return 0;
3162 
3163 	netif_device_detach(vptr->netdev);
3164 
3165 	spin_lock_irqsave(&vptr->lock, flags);
3166 	if (vptr->pdev)
3167 		pci_save_state(vptr->pdev);
3168 
3169 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3170 		velocity_get_ip(vptr);
3171 		velocity_save_context(vptr, &vptr->context);
3172 		velocity_shutdown(vptr);
3173 		velocity_set_wol(vptr);
3174 		if (vptr->pdev)
3175 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3176 		velocity_set_power_state(vptr, PCI_D3hot);
3177 	} else {
3178 		velocity_save_context(vptr, &vptr->context);
3179 		velocity_shutdown(vptr);
3180 		if (vptr->pdev)
3181 			pci_disable_device(vptr->pdev);
3182 		velocity_set_power_state(vptr, PCI_D3hot);
3183 	}
3184 
3185 	spin_unlock_irqrestore(&vptr->lock, flags);
3186 	return 0;
3187 }
3188 
3189 /**
3190  *	velocity_restore_context	-	restore registers
3191  *	@vptr: velocity
3192  *	@context: buffer for stored context
3193  *
3194  *	Reload the register configuration from the velocity context
3195  *	created by velocity_save_context.
3196  */
3197 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3198 {
3199 	struct mac_regs __iomem *regs = vptr->mac_regs;
3200 	int i;
3201 	u8 __iomem *ptr = (u8 __iomem *)regs;
3202 
3203 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3204 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3205 
3206 	/* Just skip cr0 */
3207 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3208 		/* Clear */
3209 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3210 		/* Set */
3211 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3212 	}
3213 
3214 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3215 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3216 
3217 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3218 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3219 
3220 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3221 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3222 }
3223 
3224 static int velocity_resume(struct device *dev)
3225 {
3226 	struct net_device *netdev = dev_get_drvdata(dev);
3227 	struct velocity_info *vptr = netdev_priv(netdev);
3228 	unsigned long flags;
3229 	int i;
3230 
3231 	if (!netif_running(vptr->netdev))
3232 		return 0;
3233 
3234 	velocity_set_power_state(vptr, PCI_D0);
3235 
3236 	if (vptr->pdev) {
3237 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3238 		pci_restore_state(vptr->pdev);
3239 	}
3240 
3241 	mac_wol_reset(vptr->mac_regs);
3242 
3243 	spin_lock_irqsave(&vptr->lock, flags);
3244 	velocity_restore_context(vptr, &vptr->context);
3245 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3246 	mac_disable_int(vptr->mac_regs);
3247 
3248 	velocity_tx_srv(vptr);
3249 
3250 	for (i = 0; i < vptr->tx.numq; i++) {
3251 		if (vptr->tx.used[i])
3252 			mac_tx_queue_wake(vptr->mac_regs, i);
3253 	}
3254 
3255 	mac_enable_int(vptr->mac_regs);
3256 	spin_unlock_irqrestore(&vptr->lock, flags);
3257 	netif_device_attach(vptr->netdev);
3258 
3259 	return 0;
3260 }
3261 #endif	/* CONFIG_PM_SLEEP */
3262 
3263 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3264 
3265 /*
3266  *	Definition for our device driver. The PCI layer interface
3267  *	uses this to handle all our card discover and plugging
3268  */
3269 static struct pci_driver velocity_pci_driver = {
3270 	.name		= VELOCITY_NAME,
3271 	.id_table	= velocity_pci_id_table,
3272 	.probe		= velocity_pci_probe,
3273 	.remove		= velocity_pci_remove,
3274 	.driver = {
3275 		.pm = &velocity_pm_ops,
3276 	},
3277 };
3278 
3279 static struct platform_driver velocity_platform_driver = {
3280 	.probe		= velocity_platform_probe,
3281 	.remove		= velocity_platform_remove,
3282 	.driver = {
3283 		.name = "via-velocity",
3284 		.of_match_table = velocity_of_ids,
3285 		.pm = &velocity_pm_ops,
3286 	},
3287 };
3288 
3289 /**
3290  *	velocity_ethtool_up	-	pre hook for ethtool
3291  *	@dev: network device
3292  *
3293  *	Called before an ethtool operation. We need to make sure the
3294  *	chip is out of D3 state before we poke at it.
3295  */
3296 static int velocity_ethtool_up(struct net_device *dev)
3297 {
3298 	struct velocity_info *vptr = netdev_priv(dev);
3299 	if (!netif_running(dev))
3300 		velocity_set_power_state(vptr, PCI_D0);
3301 	return 0;
3302 }
3303 
3304 /**
3305  *	velocity_ethtool_down	-	post hook for ethtool
3306  *	@dev: network device
3307  *
3308  *	Called after an ethtool operation. Restore the chip back to D3
3309  *	state if it isn't running.
3310  */
3311 static void velocity_ethtool_down(struct net_device *dev)
3312 {
3313 	struct velocity_info *vptr = netdev_priv(dev);
3314 	if (!netif_running(dev))
3315 		velocity_set_power_state(vptr, PCI_D3hot);
3316 }
3317 
3318 static int velocity_get_settings(struct net_device *dev,
3319 				 struct ethtool_cmd *cmd)
3320 {
3321 	struct velocity_info *vptr = netdev_priv(dev);
3322 	struct mac_regs __iomem *regs = vptr->mac_regs;
3323 	u32 status;
3324 	status = check_connection_type(vptr->mac_regs);
3325 
3326 	cmd->supported = SUPPORTED_TP |
3327 			SUPPORTED_Autoneg |
3328 			SUPPORTED_10baseT_Half |
3329 			SUPPORTED_10baseT_Full |
3330 			SUPPORTED_100baseT_Half |
3331 			SUPPORTED_100baseT_Full |
3332 			SUPPORTED_1000baseT_Half |
3333 			SUPPORTED_1000baseT_Full;
3334 
3335 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3336 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3337 		cmd->advertising |=
3338 			ADVERTISED_10baseT_Half |
3339 			ADVERTISED_10baseT_Full |
3340 			ADVERTISED_100baseT_Half |
3341 			ADVERTISED_100baseT_Full |
3342 			ADVERTISED_1000baseT_Half |
3343 			ADVERTISED_1000baseT_Full;
3344 	} else {
3345 		switch (vptr->options.spd_dpx) {
3346 		case SPD_DPX_1000_FULL:
3347 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3348 			break;
3349 		case SPD_DPX_100_HALF:
3350 			cmd->advertising |= ADVERTISED_100baseT_Half;
3351 			break;
3352 		case SPD_DPX_100_FULL:
3353 			cmd->advertising |= ADVERTISED_100baseT_Full;
3354 			break;
3355 		case SPD_DPX_10_HALF:
3356 			cmd->advertising |= ADVERTISED_10baseT_Half;
3357 			break;
3358 		case SPD_DPX_10_FULL:
3359 			cmd->advertising |= ADVERTISED_10baseT_Full;
3360 			break;
3361 		default:
3362 			break;
3363 		}
3364 	}
3365 
3366 	if (status & VELOCITY_SPEED_1000)
3367 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3368 	else if (status & VELOCITY_SPEED_100)
3369 		ethtool_cmd_speed_set(cmd, SPEED_100);
3370 	else
3371 		ethtool_cmd_speed_set(cmd, SPEED_10);
3372 
3373 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3374 	cmd->port = PORT_TP;
3375 	cmd->transceiver = XCVR_INTERNAL;
3376 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3377 
3378 	if (status & VELOCITY_DUPLEX_FULL)
3379 		cmd->duplex = DUPLEX_FULL;
3380 	else
3381 		cmd->duplex = DUPLEX_HALF;
3382 
3383 	return 0;
3384 }
3385 
3386 static int velocity_set_settings(struct net_device *dev,
3387 				 struct ethtool_cmd *cmd)
3388 {
3389 	struct velocity_info *vptr = netdev_priv(dev);
3390 	u32 speed = ethtool_cmd_speed(cmd);
3391 	u32 curr_status;
3392 	u32 new_status = 0;
3393 	int ret = 0;
3394 
3395 	curr_status = check_connection_type(vptr->mac_regs);
3396 	curr_status &= (~VELOCITY_LINK_FAIL);
3397 
3398 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3399 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3400 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3401 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3402 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3403 
3404 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3405 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3406 		ret = -EINVAL;
3407 	} else {
3408 		enum speed_opt spd_dpx;
3409 
3410 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3411 			spd_dpx = SPD_DPX_AUTO;
3412 		else if ((new_status & VELOCITY_SPEED_1000) &&
3413 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3414 			spd_dpx = SPD_DPX_1000_FULL;
3415 		} else if (new_status & VELOCITY_SPEED_100)
3416 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3417 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3418 		else if (new_status & VELOCITY_SPEED_10)
3419 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3420 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3421 		else
3422 			return -EOPNOTSUPP;
3423 
3424 		vptr->options.spd_dpx = spd_dpx;
3425 
3426 		velocity_set_media_mode(vptr, new_status);
3427 	}
3428 
3429 	return ret;
3430 }
3431 
3432 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3433 {
3434 	struct velocity_info *vptr = netdev_priv(dev);
3435 
3436 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3437 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3438 	if (vptr->pdev)
3439 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3440 						sizeof(info->bus_info));
3441 	else
3442 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3443 }
3444 
3445 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3446 {
3447 	struct velocity_info *vptr = netdev_priv(dev);
3448 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3449 	wol->wolopts |= WAKE_MAGIC;
3450 	/*
3451 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3452 		   wol.wolopts|=WAKE_PHY;
3453 			 */
3454 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3455 		wol->wolopts |= WAKE_UCAST;
3456 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3457 		wol->wolopts |= WAKE_ARP;
3458 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3459 }
3460 
3461 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3462 {
3463 	struct velocity_info *vptr = netdev_priv(dev);
3464 
3465 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3466 		return -EFAULT;
3467 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3468 
3469 	/*
3470 	   if (wol.wolopts & WAKE_PHY) {
3471 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3472 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3473 	   }
3474 	 */
3475 
3476 	if (wol->wolopts & WAKE_MAGIC) {
3477 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3478 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3479 	}
3480 	if (wol->wolopts & WAKE_UCAST) {
3481 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3482 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3483 	}
3484 	if (wol->wolopts & WAKE_ARP) {
3485 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3486 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3487 	}
3488 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3489 	return 0;
3490 }
3491 
3492 static u32 velocity_get_msglevel(struct net_device *dev)
3493 {
3494 	return msglevel;
3495 }
3496 
3497 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3498 {
3499 	 msglevel = value;
3500 }
3501 
3502 static int get_pending_timer_val(int val)
3503 {
3504 	int mult_bits = val >> 6;
3505 	int mult = 1;
3506 
3507 	switch (mult_bits)
3508 	{
3509 	case 1:
3510 		mult = 4; break;
3511 	case 2:
3512 		mult = 16; break;
3513 	case 3:
3514 		mult = 64; break;
3515 	case 0:
3516 	default:
3517 		break;
3518 	}
3519 
3520 	return (val & 0x3f) * mult;
3521 }
3522 
3523 static void set_pending_timer_val(int *val, u32 us)
3524 {
3525 	u8 mult = 0;
3526 	u8 shift = 0;
3527 
3528 	if (us >= 0x3f) {
3529 		mult = 1; /* mult with 4 */
3530 		shift = 2;
3531 	}
3532 	if (us >= 0x3f * 4) {
3533 		mult = 2; /* mult with 16 */
3534 		shift = 4;
3535 	}
3536 	if (us >= 0x3f * 16) {
3537 		mult = 3; /* mult with 64 */
3538 		shift = 6;
3539 	}
3540 
3541 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3542 }
3543 
3544 
3545 static int velocity_get_coalesce(struct net_device *dev,
3546 		struct ethtool_coalesce *ecmd)
3547 {
3548 	struct velocity_info *vptr = netdev_priv(dev);
3549 
3550 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3551 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3552 
3553 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3554 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3555 
3556 	return 0;
3557 }
3558 
3559 static int velocity_set_coalesce(struct net_device *dev,
3560 		struct ethtool_coalesce *ecmd)
3561 {
3562 	struct velocity_info *vptr = netdev_priv(dev);
3563 	int max_us = 0x3f * 64;
3564 	unsigned long flags;
3565 
3566 	/* 6 bits of  */
3567 	if (ecmd->tx_coalesce_usecs > max_us)
3568 		return -EINVAL;
3569 	if (ecmd->rx_coalesce_usecs > max_us)
3570 		return -EINVAL;
3571 
3572 	if (ecmd->tx_max_coalesced_frames > 0xff)
3573 		return -EINVAL;
3574 	if (ecmd->rx_max_coalesced_frames > 0xff)
3575 		return -EINVAL;
3576 
3577 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3578 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3579 
3580 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3581 			ecmd->rx_coalesce_usecs);
3582 	set_pending_timer_val(&vptr->options.txqueue_timer,
3583 			ecmd->tx_coalesce_usecs);
3584 
3585 	/* Setup the interrupt suppression and queue timers */
3586 	spin_lock_irqsave(&vptr->lock, flags);
3587 	mac_disable_int(vptr->mac_regs);
3588 	setup_adaptive_interrupts(vptr);
3589 	setup_queue_timers(vptr);
3590 
3591 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3592 	mac_clear_isr(vptr->mac_regs);
3593 	mac_enable_int(vptr->mac_regs);
3594 	spin_unlock_irqrestore(&vptr->lock, flags);
3595 
3596 	return 0;
3597 }
3598 
3599 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3600 	"rx_all",
3601 	"rx_ok",
3602 	"tx_ok",
3603 	"rx_error",
3604 	"rx_runt_ok",
3605 	"rx_runt_err",
3606 	"rx_64",
3607 	"tx_64",
3608 	"rx_65_to_127",
3609 	"tx_65_to_127",
3610 	"rx_128_to_255",
3611 	"tx_128_to_255",
3612 	"rx_256_to_511",
3613 	"tx_256_to_511",
3614 	"rx_512_to_1023",
3615 	"tx_512_to_1023",
3616 	"rx_1024_to_1518",
3617 	"tx_1024_to_1518",
3618 	"tx_ether_collisions",
3619 	"rx_crc_errors",
3620 	"rx_jumbo",
3621 	"tx_jumbo",
3622 	"rx_mac_control_frames",
3623 	"tx_mac_control_frames",
3624 	"rx_frame_alignement_errors",
3625 	"rx_long_ok",
3626 	"rx_long_err",
3627 	"tx_sqe_errors",
3628 	"rx_no_buf",
3629 	"rx_symbol_errors",
3630 	"in_range_length_errors",
3631 	"late_collisions"
3632 };
3633 
3634 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3635 {
3636 	switch (sset) {
3637 	case ETH_SS_STATS:
3638 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3639 		break;
3640 	}
3641 }
3642 
3643 static int velocity_get_sset_count(struct net_device *dev, int sset)
3644 {
3645 	switch (sset) {
3646 	case ETH_SS_STATS:
3647 		return ARRAY_SIZE(velocity_gstrings);
3648 	default:
3649 		return -EOPNOTSUPP;
3650 	}
3651 }
3652 
3653 static void velocity_get_ethtool_stats(struct net_device *dev,
3654 				       struct ethtool_stats *stats, u64 *data)
3655 {
3656 	if (netif_running(dev)) {
3657 		struct velocity_info *vptr = netdev_priv(dev);
3658 		u32 *p = vptr->mib_counter;
3659 		int i;
3660 
3661 		spin_lock_irq(&vptr->lock);
3662 		velocity_update_hw_mibs(vptr);
3663 		spin_unlock_irq(&vptr->lock);
3664 
3665 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3666 			*data++ = *p++;
3667 	}
3668 }
3669 
3670 static const struct ethtool_ops velocity_ethtool_ops = {
3671 	.get_settings		= velocity_get_settings,
3672 	.set_settings		= velocity_set_settings,
3673 	.get_drvinfo		= velocity_get_drvinfo,
3674 	.get_wol		= velocity_ethtool_get_wol,
3675 	.set_wol		= velocity_ethtool_set_wol,
3676 	.get_msglevel		= velocity_get_msglevel,
3677 	.set_msglevel		= velocity_set_msglevel,
3678 	.get_link		= velocity_get_link,
3679 	.get_strings		= velocity_get_strings,
3680 	.get_sset_count		= velocity_get_sset_count,
3681 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3682 	.get_coalesce		= velocity_get_coalesce,
3683 	.set_coalesce		= velocity_set_coalesce,
3684 	.begin			= velocity_ethtool_up,
3685 	.complete		= velocity_ethtool_down
3686 };
3687 
3688 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3689 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3690 {
3691 	struct in_ifaddr *ifa = ptr;
3692 	struct net_device *dev = ifa->ifa_dev->dev;
3693 
3694 	if (dev_net(dev) == &init_net &&
3695 	    dev->netdev_ops == &velocity_netdev_ops)
3696 		velocity_get_ip(netdev_priv(dev));
3697 
3698 	return NOTIFY_DONE;
3699 }
3700 
3701 static struct notifier_block velocity_inetaddr_notifier = {
3702 	.notifier_call	= velocity_netdev_event,
3703 };
3704 
3705 static void velocity_register_notifier(void)
3706 {
3707 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3708 }
3709 
3710 static void velocity_unregister_notifier(void)
3711 {
3712 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3713 }
3714 
3715 #else
3716 
3717 #define velocity_register_notifier()	do {} while (0)
3718 #define velocity_unregister_notifier()	do {} while (0)
3719 
3720 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3721 
3722 /**
3723  *	velocity_init_module	-	load time function
3724  *
3725  *	Called when the velocity module is loaded. The PCI driver
3726  *	is registered with the PCI layer, and in turn will call
3727  *	the probe functions for each velocity adapter installed
3728  *	in the system.
3729  */
3730 static int __init velocity_init_module(void)
3731 {
3732 	int ret_pci, ret_platform;
3733 
3734 	velocity_register_notifier();
3735 
3736 	ret_pci = pci_register_driver(&velocity_pci_driver);
3737 	ret_platform = platform_driver_register(&velocity_platform_driver);
3738 
3739 	/* if both_registers failed, remove the notifier */
3740 	if ((ret_pci < 0) && (ret_platform < 0)) {
3741 		velocity_unregister_notifier();
3742 		return ret_pci;
3743 	}
3744 
3745 	return 0;
3746 }
3747 
3748 /**
3749  *	velocity_cleanup	-	module unload
3750  *
3751  *	When the velocity hardware is unloaded this function is called.
3752  *	It will clean up the notifiers and the unregister the PCI
3753  *	driver interface for this hardware. This in turn cleans up
3754  *	all discovered interfaces before returning from the function
3755  */
3756 static void __exit velocity_cleanup_module(void)
3757 {
3758 	velocity_unregister_notifier();
3759 
3760 	pci_unregister_driver(&velocity_pci_driver);
3761 	platform_driver_unregister(&velocity_platform_driver);
3762 }
3763 
3764 module_init(velocity_init_module);
3765 module_exit(velocity_cleanup_module);
3766