1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/mm.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/pci.h> 54 #include <linux/kernel.h> 55 #include <linux/netdevice.h> 56 #include <linux/etherdevice.h> 57 #include <linux/skbuff.h> 58 #include <linux/delay.h> 59 #include <linux/timer.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/string.h> 63 #include <linux/wait.h> 64 #include <linux/io.h> 65 #include <linux/if.h> 66 #include <linux/uaccess.h> 67 #include <linux/proc_fs.h> 68 #include <linux/of_address.h> 69 #include <linux/of_device.h> 70 #include <linux/of_irq.h> 71 #include <linux/inetdevice.h> 72 #include <linux/platform_device.h> 73 #include <linux/reboot.h> 74 #include <linux/ethtool.h> 75 #include <linux/mii.h> 76 #include <linux/in.h> 77 #include <linux/if_arp.h> 78 #include <linux/if_vlan.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/crc-ccitt.h> 83 #include <linux/crc32.h> 84 85 #include "via-velocity.h" 86 87 enum velocity_bus_type { 88 BUS_PCI, 89 BUS_PLATFORM, 90 }; 91 92 static int velocity_nics; 93 static int msglevel = MSG_LEVEL_INFO; 94 95 static void velocity_set_power_state(struct velocity_info *vptr, char state) 96 { 97 void *addr = vptr->mac_regs; 98 99 if (vptr->pdev) 100 pci_set_power_state(vptr->pdev, state); 101 else 102 writeb(state, addr + 0x154); 103 } 104 105 /** 106 * mac_get_cam_mask - Read a CAM mask 107 * @regs: register block for this velocity 108 * @mask: buffer to store mask 109 * 110 * Fetch the mask bits of the selected CAM and store them into the 111 * provided mask buffer. 112 */ 113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 114 { 115 int i; 116 117 /* Select CAM mask */ 118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 119 120 writeb(0, ®s->CAMADDR); 121 122 /* read mask */ 123 for (i = 0; i < 8; i++) 124 *mask++ = readb(&(regs->MARCAM[i])); 125 126 /* disable CAMEN */ 127 writeb(0, ®s->CAMADDR); 128 129 /* Select mar */ 130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 131 } 132 133 /** 134 * mac_set_cam_mask - Set a CAM mask 135 * @regs: register block for this velocity 136 * @mask: CAM mask to load 137 * 138 * Store a new mask into a CAM 139 */ 140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 141 { 142 int i; 143 /* Select CAM mask */ 144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 145 146 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 147 148 for (i = 0; i < 8; i++) 149 writeb(*mask++, &(regs->MARCAM[i])); 150 151 /* disable CAMEN */ 152 writeb(0, ®s->CAMADDR); 153 154 /* Select mar */ 155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 156 } 157 158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 159 { 160 int i; 161 /* Select CAM mask */ 162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 163 164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 165 166 for (i = 0; i < 8; i++) 167 writeb(*mask++, &(regs->MARCAM[i])); 168 169 /* disable CAMEN */ 170 writeb(0, ®s->CAMADDR); 171 172 /* Select mar */ 173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 174 } 175 176 /** 177 * mac_set_cam - set CAM data 178 * @regs: register block of this velocity 179 * @idx: Cam index 180 * @addr: 2 or 6 bytes of CAM data 181 * 182 * Load an address or vlan tag into a CAM 183 */ 184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 185 { 186 int i; 187 188 /* Select CAM mask */ 189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 190 191 idx &= (64 - 1); 192 193 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 194 195 for (i = 0; i < 6; i++) 196 writeb(*addr++, &(regs->MARCAM[i])); 197 198 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 199 200 udelay(10); 201 202 writeb(0, ®s->CAMADDR); 203 204 /* Select mar */ 205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 206 } 207 208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 209 const u8 *addr) 210 { 211 212 /* Select CAM mask */ 213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 214 215 idx &= (64 - 1); 216 217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 218 writew(*((u16 *) addr), ®s->MARCAM[0]); 219 220 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 221 222 udelay(10); 223 224 writeb(0, ®s->CAMADDR); 225 226 /* Select mar */ 227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 228 } 229 230 231 /** 232 * mac_wol_reset - reset WOL after exiting low power 233 * @regs: register block of this velocity 234 * 235 * Called after we drop out of wake on lan mode in order to 236 * reset the Wake on lan features. This function doesn't restore 237 * the rest of the logic from the result of sleep/wakeup 238 */ 239 static void mac_wol_reset(struct mac_regs __iomem *regs) 240 { 241 242 /* Turn off SWPTAG right after leaving power mode */ 243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 244 /* clear sticky bits */ 245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 246 247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 249 /* disable force PME-enable */ 250 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 251 /* disable power-event config bit */ 252 writew(0xFFFF, ®s->WOLCRClr); 253 /* clear power status */ 254 writew(0xFFFF, ®s->WOLSRClr); 255 } 256 257 static const struct ethtool_ops velocity_ethtool_ops; 258 259 /* 260 Define module options 261 */ 262 263 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 264 MODULE_LICENSE("GPL"); 265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 266 267 #define VELOCITY_PARAM(N, D) \ 268 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 269 module_param_array(N, int, NULL, 0); \ 270 MODULE_PARM_DESC(N, D); 271 272 #define RX_DESC_MIN 64 273 #define RX_DESC_MAX 255 274 #define RX_DESC_DEF 64 275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 276 277 #define TX_DESC_MIN 16 278 #define TX_DESC_MAX 256 279 #define TX_DESC_DEF 64 280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 281 282 #define RX_THRESH_MIN 0 283 #define RX_THRESH_MAX 3 284 #define RX_THRESH_DEF 0 285 /* rx_thresh[] is used for controlling the receive fifo threshold. 286 0: indicate the rxfifo threshold is 128 bytes. 287 1: indicate the rxfifo threshold is 512 bytes. 288 2: indicate the rxfifo threshold is 1024 bytes. 289 3: indicate the rxfifo threshold is store & forward. 290 */ 291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 292 293 #define DMA_LENGTH_MIN 0 294 #define DMA_LENGTH_MAX 7 295 #define DMA_LENGTH_DEF 6 296 297 /* DMA_length[] is used for controlling the DMA length 298 0: 8 DWORDs 299 1: 16 DWORDs 300 2: 32 DWORDs 301 3: 64 DWORDs 302 4: 128 DWORDs 303 5: 256 DWORDs 304 6: SF(flush till emply) 305 7: SF(flush till emply) 306 */ 307 VELOCITY_PARAM(DMA_length, "DMA length"); 308 309 #define IP_ALIG_DEF 0 310 /* IP_byte_align[] is used for IP header DWORD byte aligned 311 0: indicate the IP header won't be DWORD byte aligned.(Default) . 312 1: indicate the IP header will be DWORD byte aligned. 313 In some environment, the IP header should be DWORD byte aligned, 314 or the packet will be droped when we receive it. (eg: IPVS) 315 */ 316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 317 318 #define FLOW_CNTL_DEF 1 319 #define FLOW_CNTL_MIN 1 320 #define FLOW_CNTL_MAX 5 321 322 /* flow_control[] is used for setting the flow control ability of NIC. 323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 324 2: enable TX flow control. 325 3: enable RX flow control. 326 4: enable RX/TX flow control. 327 5: disable 328 */ 329 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 330 331 #define MED_LNK_DEF 0 332 #define MED_LNK_MIN 0 333 #define MED_LNK_MAX 5 334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 335 0: indicate autonegotiation for both speed and duplex mode 336 1: indicate 100Mbps half duplex mode 337 2: indicate 100Mbps full duplex mode 338 3: indicate 10Mbps half duplex mode 339 4: indicate 10Mbps full duplex mode 340 5: indicate 1000Mbps full duplex mode 341 342 Note: 343 if EEPROM have been set to the force mode, this option is ignored 344 by driver. 345 */ 346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 347 348 #define VAL_PKT_LEN_DEF 0 349 /* ValPktLen[] is used for setting the checksum offload ability of NIC. 350 0: Receive frame with invalid layer 2 length (Default) 351 1: Drop frame with invalid layer 2 length 352 */ 353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame"); 354 355 #define WOL_OPT_DEF 0 356 #define WOL_OPT_MIN 0 357 #define WOL_OPT_MAX 7 358 /* wol_opts[] is used for controlling wake on lan behavior. 359 0: Wake up if recevied a magic packet. (Default) 360 1: Wake up if link status is on/off. 361 2: Wake up if recevied an arp packet. 362 4: Wake up if recevied any unicast packet. 363 Those value can be sumed up to support more than one option. 364 */ 365 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 366 367 static int rx_copybreak = 200; 368 module_param(rx_copybreak, int, 0644); 369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 370 371 /* 372 * Internal board variants. At the moment we have only one 373 */ 374 static struct velocity_info_tbl chip_info_table[] = { 375 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 376 { } 377 }; 378 379 /* 380 * Describe the PCI device identifiers that we support in this 381 * device driver. Used for hotplug autoloading. 382 */ 383 384 static DEFINE_PCI_DEVICE_TABLE(velocity_pci_id_table) = { 385 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 386 { } 387 }; 388 389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 390 391 /** 392 * Describe the OF device identifiers that we support in this 393 * device driver. Used for devicetree nodes. 394 */ 395 static struct of_device_id velocity_of_ids[] = { 396 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 397 { /* Sentinel */ }, 398 }; 399 MODULE_DEVICE_TABLE(of, velocity_of_ids); 400 401 /** 402 * get_chip_name - identifier to name 403 * @id: chip identifier 404 * 405 * Given a chip identifier return a suitable description. Returns 406 * a pointer a static string valid while the driver is loaded. 407 */ 408 static const char *get_chip_name(enum chip_type chip_id) 409 { 410 int i; 411 for (i = 0; chip_info_table[i].name != NULL; i++) 412 if (chip_info_table[i].chip_id == chip_id) 413 break; 414 return chip_info_table[i].name; 415 } 416 417 /** 418 * velocity_set_int_opt - parser for integer options 419 * @opt: pointer to option value 420 * @val: value the user requested (or -1 for default) 421 * @min: lowest value allowed 422 * @max: highest value allowed 423 * @def: default value 424 * @name: property name 425 * @dev: device name 426 * 427 * Set an integer property in the module options. This function does 428 * all the verification and checking as well as reporting so that 429 * we don't duplicate code for each option. 430 */ 431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 432 char *name, const char *devname) 433 { 434 if (val == -1) 435 *opt = def; 436 else if (val < min || val > max) { 437 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 438 devname, name, min, max); 439 *opt = def; 440 } else { 441 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 442 devname, name, val); 443 *opt = val; 444 } 445 } 446 447 /** 448 * velocity_set_bool_opt - parser for boolean options 449 * @opt: pointer to option value 450 * @val: value the user requested (or -1 for default) 451 * @def: default value (yes/no) 452 * @flag: numeric value to set for true. 453 * @name: property name 454 * @dev: device name 455 * 456 * Set a boolean property in the module options. This function does 457 * all the verification and checking as well as reporting so that 458 * we don't duplicate code for each option. 459 */ 460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 461 char *name, const char *devname) 462 { 463 (*opt) &= (~flag); 464 if (val == -1) 465 *opt |= (def ? flag : 0); 466 else if (val < 0 || val > 1) { 467 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 468 devname, name); 469 *opt |= (def ? flag : 0); 470 } else { 471 printk(KERN_INFO "%s: set parameter %s to %s\n", 472 devname, name, val ? "TRUE" : "FALSE"); 473 *opt |= (val ? flag : 0); 474 } 475 } 476 477 /** 478 * velocity_get_options - set options on device 479 * @opts: option structure for the device 480 * @index: index of option to use in module options array 481 * @devname: device name 482 * 483 * Turn the module and command options into a single structure 484 * for the current device 485 */ 486 static void velocity_get_options(struct velocity_opt *opts, int index, 487 const char *devname) 488 { 489 490 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 491 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 492 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 493 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 494 495 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 496 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 497 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname); 498 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 499 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 500 opts->numrx = (opts->numrx & ~3); 501 } 502 503 /** 504 * velocity_init_cam_filter - initialise CAM 505 * @vptr: velocity to program 506 * 507 * Initialize the content addressable memory used for filters. Load 508 * appropriately according to the presence of VLAN 509 */ 510 static void velocity_init_cam_filter(struct velocity_info *vptr) 511 { 512 struct mac_regs __iomem *regs = vptr->mac_regs; 513 unsigned int vid, i = 0; 514 515 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 516 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 517 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 518 519 /* Disable all CAMs */ 520 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 521 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 523 mac_set_cam_mask(regs, vptr->mCAMmask); 524 525 /* Enable VCAMs */ 526 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 527 mac_set_vlan_cam(regs, i, (u8 *) &vid); 528 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 529 if (++i >= VCAM_SIZE) 530 break; 531 } 532 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 533 } 534 535 static int velocity_vlan_rx_add_vid(struct net_device *dev, 536 __be16 proto, u16 vid) 537 { 538 struct velocity_info *vptr = netdev_priv(dev); 539 540 spin_lock_irq(&vptr->lock); 541 set_bit(vid, vptr->active_vlans); 542 velocity_init_cam_filter(vptr); 543 spin_unlock_irq(&vptr->lock); 544 return 0; 545 } 546 547 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 548 __be16 proto, u16 vid) 549 { 550 struct velocity_info *vptr = netdev_priv(dev); 551 552 spin_lock_irq(&vptr->lock); 553 clear_bit(vid, vptr->active_vlans); 554 velocity_init_cam_filter(vptr); 555 spin_unlock_irq(&vptr->lock); 556 return 0; 557 } 558 559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 560 { 561 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 562 } 563 564 /** 565 * velocity_rx_reset - handle a receive reset 566 * @vptr: velocity we are resetting 567 * 568 * Reset the ownership and status for the receive ring side. 569 * Hand all the receive queue to the NIC. 570 */ 571 static void velocity_rx_reset(struct velocity_info *vptr) 572 { 573 574 struct mac_regs __iomem *regs = vptr->mac_regs; 575 int i; 576 577 velocity_init_rx_ring_indexes(vptr); 578 579 /* 580 * Init state, all RD entries belong to the NIC 581 */ 582 for (i = 0; i < vptr->options.numrx; ++i) 583 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 584 585 writew(vptr->options.numrx, ®s->RBRDU); 586 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 587 writew(0, ®s->RDIdx); 588 writew(vptr->options.numrx - 1, ®s->RDCSize); 589 } 590 591 /** 592 * velocity_get_opt_media_mode - get media selection 593 * @vptr: velocity adapter 594 * 595 * Get the media mode stored in EEPROM or module options and load 596 * mii_status accordingly. The requested link state information 597 * is also returned. 598 */ 599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 600 { 601 u32 status = 0; 602 603 switch (vptr->options.spd_dpx) { 604 case SPD_DPX_AUTO: 605 status = VELOCITY_AUTONEG_ENABLE; 606 break; 607 case SPD_DPX_100_FULL: 608 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 609 break; 610 case SPD_DPX_10_FULL: 611 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 612 break; 613 case SPD_DPX_100_HALF: 614 status = VELOCITY_SPEED_100; 615 break; 616 case SPD_DPX_10_HALF: 617 status = VELOCITY_SPEED_10; 618 break; 619 case SPD_DPX_1000_FULL: 620 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 621 break; 622 } 623 vptr->mii_status = status; 624 return status; 625 } 626 627 /** 628 * safe_disable_mii_autopoll - autopoll off 629 * @regs: velocity registers 630 * 631 * Turn off the autopoll and wait for it to disable on the chip 632 */ 633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 634 { 635 u16 ww; 636 637 /* turn off MAUTO */ 638 writeb(0, ®s->MIICR); 639 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 640 udelay(1); 641 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 642 break; 643 } 644 } 645 646 /** 647 * enable_mii_autopoll - turn on autopolling 648 * @regs: velocity registers 649 * 650 * Enable the MII link status autopoll feature on the Velocity 651 * hardware. Wait for it to enable. 652 */ 653 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 654 { 655 int ii; 656 657 writeb(0, &(regs->MIICR)); 658 writeb(MIIADR_SWMPL, ®s->MIIADR); 659 660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 661 udelay(1); 662 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 663 break; 664 } 665 666 writeb(MIICR_MAUTO, ®s->MIICR); 667 668 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 669 udelay(1); 670 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 671 break; 672 } 673 674 } 675 676 /** 677 * velocity_mii_read - read MII data 678 * @regs: velocity registers 679 * @index: MII register index 680 * @data: buffer for received data 681 * 682 * Perform a single read of an MII 16bit register. Returns zero 683 * on success or -ETIMEDOUT if the PHY did not respond. 684 */ 685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 686 { 687 u16 ww; 688 689 /* 690 * Disable MIICR_MAUTO, so that mii addr can be set normally 691 */ 692 safe_disable_mii_autopoll(regs); 693 694 writeb(index, ®s->MIIADR); 695 696 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 697 698 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 699 if (!(readb(®s->MIICR) & MIICR_RCMD)) 700 break; 701 } 702 703 *data = readw(®s->MIIDATA); 704 705 enable_mii_autopoll(regs); 706 if (ww == W_MAX_TIMEOUT) 707 return -ETIMEDOUT; 708 return 0; 709 } 710 711 /** 712 * mii_check_media_mode - check media state 713 * @regs: velocity registers 714 * 715 * Check the current MII status and determine the link status 716 * accordingly 717 */ 718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 719 { 720 u32 status = 0; 721 u16 ANAR; 722 723 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 724 status |= VELOCITY_LINK_FAIL; 725 726 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 727 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 728 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 729 status |= (VELOCITY_SPEED_1000); 730 else { 731 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 732 if (ANAR & ADVERTISE_100FULL) 733 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 734 else if (ANAR & ADVERTISE_100HALF) 735 status |= VELOCITY_SPEED_100; 736 else if (ANAR & ADVERTISE_10FULL) 737 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 738 else 739 status |= (VELOCITY_SPEED_10); 740 } 741 742 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 743 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 744 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 745 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 746 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 747 status |= VELOCITY_AUTONEG_ENABLE; 748 } 749 } 750 751 return status; 752 } 753 754 /** 755 * velocity_mii_write - write MII data 756 * @regs: velocity registers 757 * @index: MII register index 758 * @data: 16bit data for the MII register 759 * 760 * Perform a single write to an MII 16bit register. Returns zero 761 * on success or -ETIMEDOUT if the PHY did not respond. 762 */ 763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 764 { 765 u16 ww; 766 767 /* 768 * Disable MIICR_MAUTO, so that mii addr can be set normally 769 */ 770 safe_disable_mii_autopoll(regs); 771 772 /* MII reg offset */ 773 writeb(mii_addr, ®s->MIIADR); 774 /* set MII data */ 775 writew(data, ®s->MIIDATA); 776 777 /* turn on MIICR_WCMD */ 778 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 779 780 /* W_MAX_TIMEOUT is the timeout period */ 781 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 782 udelay(5); 783 if (!(readb(®s->MIICR) & MIICR_WCMD)) 784 break; 785 } 786 enable_mii_autopoll(regs); 787 788 if (ww == W_MAX_TIMEOUT) 789 return -ETIMEDOUT; 790 return 0; 791 } 792 793 /** 794 * set_mii_flow_control - flow control setup 795 * @vptr: velocity interface 796 * 797 * Set up the flow control on this interface according to 798 * the supplied user/eeprom options. 799 */ 800 static void set_mii_flow_control(struct velocity_info *vptr) 801 { 802 /*Enable or Disable PAUSE in ANAR */ 803 switch (vptr->options.flow_cntl) { 804 case FLOW_CNTL_TX: 805 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 806 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 807 break; 808 809 case FLOW_CNTL_RX: 810 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 811 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 812 break; 813 814 case FLOW_CNTL_TX_RX: 815 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 816 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 817 break; 818 819 case FLOW_CNTL_DISABLE: 820 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 821 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 822 break; 823 default: 824 break; 825 } 826 } 827 828 /** 829 * mii_set_auto_on - autonegotiate on 830 * @vptr: velocity 831 * 832 * Enable autonegotation on this interface 833 */ 834 static void mii_set_auto_on(struct velocity_info *vptr) 835 { 836 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 837 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 838 else 839 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 840 } 841 842 static u32 check_connection_type(struct mac_regs __iomem *regs) 843 { 844 u32 status = 0; 845 u8 PHYSR0; 846 u16 ANAR; 847 PHYSR0 = readb(®s->PHYSR0); 848 849 /* 850 if (!(PHYSR0 & PHYSR0_LINKGD)) 851 status|=VELOCITY_LINK_FAIL; 852 */ 853 854 if (PHYSR0 & PHYSR0_FDPX) 855 status |= VELOCITY_DUPLEX_FULL; 856 857 if (PHYSR0 & PHYSR0_SPDG) 858 status |= VELOCITY_SPEED_1000; 859 else if (PHYSR0 & PHYSR0_SPD10) 860 status |= VELOCITY_SPEED_10; 861 else 862 status |= VELOCITY_SPEED_100; 863 864 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 865 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 866 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 867 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 868 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 869 status |= VELOCITY_AUTONEG_ENABLE; 870 } 871 } 872 873 return status; 874 } 875 876 /** 877 * velocity_set_media_mode - set media mode 878 * @mii_status: old MII link state 879 * 880 * Check the media link state and configure the flow control 881 * PHY and also velocity hardware setup accordingly. In particular 882 * we need to set up CD polling and frame bursting. 883 */ 884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 885 { 886 u32 curr_status; 887 struct mac_regs __iomem *regs = vptr->mac_regs; 888 889 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 890 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 891 892 /* Set mii link status */ 893 set_mii_flow_control(vptr); 894 895 /* 896 Check if new status is consistent with current status 897 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 898 (mii_status==curr_status)) { 899 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 900 vptr->mii_status=check_connection_type(vptr->mac_regs); 901 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 902 return 0; 903 } 904 */ 905 906 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 907 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 908 909 /* 910 * If connection type is AUTO 911 */ 912 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 913 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 914 /* clear force MAC mode bit */ 915 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 916 /* set duplex mode of MAC according to duplex mode of MII */ 917 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 918 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 919 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 920 921 /* enable AUTO-NEGO mode */ 922 mii_set_auto_on(vptr); 923 } else { 924 u16 CTRL1000; 925 u16 ANAR; 926 u8 CHIPGCR; 927 928 /* 929 * 1. if it's 3119, disable frame bursting in halfduplex mode 930 * and enable it in fullduplex mode 931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 932 * 3. only enable CD heart beat counter in 10HD mode 933 */ 934 935 /* set force MAC mode bit */ 936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 937 938 CHIPGCR = readb(®s->CHIPGCR); 939 940 if (mii_status & VELOCITY_SPEED_1000) 941 CHIPGCR |= CHIPGCR_FCGMII; 942 else 943 CHIPGCR &= ~CHIPGCR_FCGMII; 944 945 if (mii_status & VELOCITY_DUPLEX_FULL) { 946 CHIPGCR |= CHIPGCR_FCFDX; 947 writeb(CHIPGCR, ®s->CHIPGCR); 948 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 949 if (vptr->rev_id < REV_ID_VT3216_A0) 950 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 951 } else { 952 CHIPGCR &= ~CHIPGCR_FCFDX; 953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 954 writeb(CHIPGCR, ®s->CHIPGCR); 955 if (vptr->rev_id < REV_ID_VT3216_A0) 956 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 957 } 958 959 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 960 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 961 if ((mii_status & VELOCITY_SPEED_1000) && 962 (mii_status & VELOCITY_DUPLEX_FULL)) { 963 CTRL1000 |= ADVERTISE_1000FULL; 964 } 965 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 966 967 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 968 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 969 else 970 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 971 972 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 973 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 974 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 975 if (mii_status & VELOCITY_SPEED_100) { 976 if (mii_status & VELOCITY_DUPLEX_FULL) 977 ANAR |= ADVERTISE_100FULL; 978 else 979 ANAR |= ADVERTISE_100HALF; 980 } else if (mii_status & VELOCITY_SPEED_10) { 981 if (mii_status & VELOCITY_DUPLEX_FULL) 982 ANAR |= ADVERTISE_10FULL; 983 else 984 ANAR |= ADVERTISE_10HALF; 985 } 986 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 987 /* enable AUTO-NEGO mode */ 988 mii_set_auto_on(vptr); 989 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 990 } 991 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 992 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 993 return VELOCITY_LINK_CHANGE; 994 } 995 996 /** 997 * velocity_print_link_status - link status reporting 998 * @vptr: velocity to report on 999 * 1000 * Turn the link status of the velocity card into a kernel log 1001 * description of the new link state, detailing speed and duplex 1002 * status 1003 */ 1004 static void velocity_print_link_status(struct velocity_info *vptr) 1005 { 1006 1007 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1008 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 1009 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1010 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 1011 1012 if (vptr->mii_status & VELOCITY_SPEED_1000) 1013 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1014 else if (vptr->mii_status & VELOCITY_SPEED_100) 1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1016 else 1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1018 1019 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1020 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1021 else 1022 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1023 } else { 1024 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1025 switch (vptr->options.spd_dpx) { 1026 case SPD_DPX_1000_FULL: 1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1028 break; 1029 case SPD_DPX_100_HALF: 1030 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1031 break; 1032 case SPD_DPX_100_FULL: 1033 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1034 break; 1035 case SPD_DPX_10_HALF: 1036 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1037 break; 1038 case SPD_DPX_10_FULL: 1039 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1040 break; 1041 default: 1042 break; 1043 } 1044 } 1045 } 1046 1047 /** 1048 * enable_flow_control_ability - flow control 1049 * @vptr: veloity to configure 1050 * 1051 * Set up flow control according to the flow control options 1052 * determined by the eeprom/configuration. 1053 */ 1054 static void enable_flow_control_ability(struct velocity_info *vptr) 1055 { 1056 1057 struct mac_regs __iomem *regs = vptr->mac_regs; 1058 1059 switch (vptr->options.flow_cntl) { 1060 1061 case FLOW_CNTL_DEFAULT: 1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1063 writel(CR0_FDXRFCEN, ®s->CR0Set); 1064 else 1065 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1066 1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1068 writel(CR0_FDXTFCEN, ®s->CR0Set); 1069 else 1070 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1071 break; 1072 1073 case FLOW_CNTL_TX: 1074 writel(CR0_FDXTFCEN, ®s->CR0Set); 1075 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1076 break; 1077 1078 case FLOW_CNTL_RX: 1079 writel(CR0_FDXRFCEN, ®s->CR0Set); 1080 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1081 break; 1082 1083 case FLOW_CNTL_TX_RX: 1084 writel(CR0_FDXTFCEN, ®s->CR0Set); 1085 writel(CR0_FDXRFCEN, ®s->CR0Set); 1086 break; 1087 1088 case FLOW_CNTL_DISABLE: 1089 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1090 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 1097 } 1098 1099 /** 1100 * velocity_soft_reset - soft reset 1101 * @vptr: velocity to reset 1102 * 1103 * Kick off a soft reset of the velocity adapter and then poll 1104 * until the reset sequence has completed before returning. 1105 */ 1106 static int velocity_soft_reset(struct velocity_info *vptr) 1107 { 1108 struct mac_regs __iomem *regs = vptr->mac_regs; 1109 int i = 0; 1110 1111 writel(CR0_SFRST, ®s->CR0Set); 1112 1113 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1114 udelay(5); 1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1116 break; 1117 } 1118 1119 if (i == W_MAX_TIMEOUT) { 1120 writel(CR0_FORSRST, ®s->CR0Set); 1121 /* FIXME: PCI POSTING */ 1122 /* delay 2ms */ 1123 mdelay(2); 1124 } 1125 return 0; 1126 } 1127 1128 /** 1129 * velocity_set_multi - filter list change callback 1130 * @dev: network device 1131 * 1132 * Called by the network layer when the filter lists need to change 1133 * for a velocity adapter. Reload the CAMs with the new address 1134 * filter ruleset. 1135 */ 1136 static void velocity_set_multi(struct net_device *dev) 1137 { 1138 struct velocity_info *vptr = netdev_priv(dev); 1139 struct mac_regs __iomem *regs = vptr->mac_regs; 1140 u8 rx_mode; 1141 int i; 1142 struct netdev_hw_addr *ha; 1143 1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1145 writel(0xffffffff, ®s->MARCAM[0]); 1146 writel(0xffffffff, ®s->MARCAM[4]); 1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1149 (dev->flags & IFF_ALLMULTI)) { 1150 writel(0xffffffff, ®s->MARCAM[0]); 1151 writel(0xffffffff, ®s->MARCAM[4]); 1152 rx_mode = (RCR_AM | RCR_AB); 1153 } else { 1154 int offset = MCAM_SIZE - vptr->multicast_limit; 1155 mac_get_cam_mask(regs, vptr->mCAMmask); 1156 1157 i = 0; 1158 netdev_for_each_mc_addr(ha, dev) { 1159 mac_set_cam(regs, i + offset, ha->addr); 1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1161 i++; 1162 } 1163 1164 mac_set_cam_mask(regs, vptr->mCAMmask); 1165 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1166 } 1167 if (dev->mtu > 1500) 1168 rx_mode |= RCR_AL; 1169 1170 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1171 1172 } 1173 1174 /* 1175 * MII access , media link mode setting functions 1176 */ 1177 1178 /** 1179 * mii_init - set up MII 1180 * @vptr: velocity adapter 1181 * @mii_status: links tatus 1182 * 1183 * Set up the PHY for the current link state. 1184 */ 1185 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1186 { 1187 u16 BMCR; 1188 1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1190 case PHYID_ICPLUS_IP101A: 1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1192 MII_ADVERTISE, vptr->mac_regs); 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1195 vptr->mac_regs); 1196 else 1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1198 vptr->mac_regs); 1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1200 break; 1201 case PHYID_CICADA_CS8201: 1202 /* 1203 * Reset to hardware default 1204 */ 1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1206 /* 1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1208 * off it in NWay-forced half mode for NWay-forced v.s. 1209 * legacy-forced issue. 1210 */ 1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1213 else 1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 /* 1216 * Turn on Link/Activity LED enable bit for CIS8201 1217 */ 1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1219 break; 1220 case PHYID_VT3216_32BIT: 1221 case PHYID_VT3216_64BIT: 1222 /* 1223 * Reset to hardware default 1224 */ 1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1226 /* 1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1228 * off it in NWay-forced half mode for NWay-forced v.s. 1229 * legacy-forced issue 1230 */ 1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1233 else 1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1235 break; 1236 1237 case PHYID_MARVELL_1000: 1238 case PHYID_MARVELL_1000S: 1239 /* 1240 * Assert CRS on Transmit 1241 */ 1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1243 /* 1244 * Reset to hardware default 1245 */ 1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1247 break; 1248 default: 1249 ; 1250 } 1251 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1252 if (BMCR & BMCR_ISOLATE) { 1253 BMCR &= ~BMCR_ISOLATE; 1254 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1255 } 1256 } 1257 1258 /** 1259 * setup_queue_timers - Setup interrupt timers 1260 * 1261 * Setup interrupt frequency during suppression (timeout if the frame 1262 * count isn't filled). 1263 */ 1264 static void setup_queue_timers(struct velocity_info *vptr) 1265 { 1266 /* Only for newer revisions */ 1267 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1268 u8 txqueue_timer = 0; 1269 u8 rxqueue_timer = 0; 1270 1271 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1272 VELOCITY_SPEED_100)) { 1273 txqueue_timer = vptr->options.txqueue_timer; 1274 rxqueue_timer = vptr->options.rxqueue_timer; 1275 } 1276 1277 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1278 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1279 } 1280 } 1281 1282 /** 1283 * setup_adaptive_interrupts - Setup interrupt suppression 1284 * 1285 * @vptr velocity adapter 1286 * 1287 * The velocity is able to suppress interrupt during high interrupt load. 1288 * This function turns on that feature. 1289 */ 1290 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1291 { 1292 struct mac_regs __iomem *regs = vptr->mac_regs; 1293 u16 tx_intsup = vptr->options.tx_intsup; 1294 u16 rx_intsup = vptr->options.rx_intsup; 1295 1296 /* Setup default interrupt mask (will be changed below) */ 1297 vptr->int_mask = INT_MASK_DEF; 1298 1299 /* Set Tx Interrupt Suppression Threshold */ 1300 writeb(CAMCR_PS0, ®s->CAMCR); 1301 if (tx_intsup != 0) { 1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1303 ISR_PTX2I | ISR_PTX3I); 1304 writew(tx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1307 1308 /* Set Rx Interrupt Suppression Threshold */ 1309 writeb(CAMCR_PS1, ®s->CAMCR); 1310 if (rx_intsup != 0) { 1311 vptr->int_mask &= ~ISR_PRXI; 1312 writew(rx_intsup, ®s->ISRCTL); 1313 } else 1314 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1315 1316 /* Select page to interrupt hold timer */ 1317 writeb(0, ®s->CAMCR); 1318 } 1319 1320 /** 1321 * velocity_init_registers - initialise MAC registers 1322 * @vptr: velocity to init 1323 * @type: type of initialisation (hot or cold) 1324 * 1325 * Initialise the MAC on a reset or on first set up on the 1326 * hardware. 1327 */ 1328 static void velocity_init_registers(struct velocity_info *vptr, 1329 enum velocity_init_type type) 1330 { 1331 struct mac_regs __iomem *regs = vptr->mac_regs; 1332 struct net_device *netdev = vptr->netdev; 1333 int i, mii_status; 1334 1335 mac_wol_reset(regs); 1336 1337 switch (type) { 1338 case VELOCITY_INIT_RESET: 1339 case VELOCITY_INIT_WOL: 1340 1341 netif_stop_queue(netdev); 1342 1343 /* 1344 * Reset RX to prevent RX pointer not on the 4X location 1345 */ 1346 velocity_rx_reset(vptr); 1347 mac_rx_queue_run(regs); 1348 mac_rx_queue_wake(regs); 1349 1350 mii_status = velocity_get_opt_media_mode(vptr); 1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1352 velocity_print_link_status(vptr); 1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1354 netif_wake_queue(netdev); 1355 } 1356 1357 enable_flow_control_ability(vptr); 1358 1359 mac_clear_isr(regs); 1360 writel(CR0_STOP, ®s->CR0Clr); 1361 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1362 ®s->CR0Set); 1363 1364 break; 1365 1366 case VELOCITY_INIT_COLD: 1367 default: 1368 /* 1369 * Do reset 1370 */ 1371 velocity_soft_reset(vptr); 1372 mdelay(5); 1373 1374 if (!vptr->no_eeprom) { 1375 mac_eeprom_reload(regs); 1376 for (i = 0; i < 6; i++) 1377 writeb(netdev->dev_addr[i], regs->PAR + i); 1378 } 1379 1380 /* 1381 * clear Pre_ACPI bit. 1382 */ 1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1385 mac_set_dma_length(regs, vptr->options.DMA_length); 1386 1387 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1388 /* 1389 * Back off algorithm use original IEEE standard 1390 */ 1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1392 1393 /* 1394 * Init CAM filter 1395 */ 1396 velocity_init_cam_filter(vptr); 1397 1398 /* 1399 * Set packet filter: Receive directed and broadcast address 1400 */ 1401 velocity_set_multi(netdev); 1402 1403 /* 1404 * Enable MII auto-polling 1405 */ 1406 enable_mii_autopoll(regs); 1407 1408 setup_adaptive_interrupts(vptr); 1409 1410 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1411 writew(vptr->options.numrx - 1, ®s->RDCSize); 1412 mac_rx_queue_run(regs); 1413 mac_rx_queue_wake(regs); 1414 1415 writew(vptr->options.numtx - 1, ®s->TDCSize); 1416 1417 for (i = 0; i < vptr->tx.numq; i++) { 1418 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1419 mac_tx_queue_run(regs, i); 1420 } 1421 1422 init_flow_control_register(vptr); 1423 1424 writel(CR0_STOP, ®s->CR0Clr); 1425 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1426 1427 mii_status = velocity_get_opt_media_mode(vptr); 1428 netif_stop_queue(netdev); 1429 1430 mii_init(vptr, mii_status); 1431 1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1433 velocity_print_link_status(vptr); 1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1435 netif_wake_queue(netdev); 1436 } 1437 1438 enable_flow_control_ability(vptr); 1439 mac_hw_mibs_init(regs); 1440 mac_write_int_mask(vptr->int_mask, regs); 1441 mac_clear_isr(regs); 1442 1443 } 1444 } 1445 1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1447 { 1448 struct mac_regs __iomem *regs = vptr->mac_regs; 1449 int avail, dirty, unusable; 1450 1451 /* 1452 * RD number must be equal to 4X per hardware spec 1453 * (programming guide rev 1.20, p.13) 1454 */ 1455 if (vptr->rx.filled < 4) 1456 return; 1457 1458 wmb(); 1459 1460 unusable = vptr->rx.filled & 0x0003; 1461 dirty = vptr->rx.dirty - unusable; 1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1465 } 1466 1467 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1468 vptr->rx.filled = unusable; 1469 } 1470 1471 /** 1472 * velocity_init_dma_rings - set up DMA rings 1473 * @vptr: Velocity to set up 1474 * 1475 * Allocate PCI mapped DMA rings for the receive and transmit layer 1476 * to use. 1477 */ 1478 static int velocity_init_dma_rings(struct velocity_info *vptr) 1479 { 1480 struct velocity_opt *opt = &vptr->options; 1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1483 dma_addr_t pool_dma; 1484 void *pool; 1485 unsigned int i; 1486 1487 /* 1488 * Allocate all RD/TD rings a single pool. 1489 * 1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1491 * alignment 1492 */ 1493 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1494 rx_ring_size, &pool_dma, GFP_ATOMIC); 1495 if (!pool) { 1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1497 vptr->netdev->name); 1498 return -ENOMEM; 1499 } 1500 1501 vptr->rx.ring = pool; 1502 vptr->rx.pool_dma = pool_dma; 1503 1504 pool += rx_ring_size; 1505 pool_dma += rx_ring_size; 1506 1507 for (i = 0; i < vptr->tx.numq; i++) { 1508 vptr->tx.rings[i] = pool; 1509 vptr->tx.pool_dma[i] = pool_dma; 1510 pool += tx_ring_size; 1511 pool_dma += tx_ring_size; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1518 { 1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1520 } 1521 1522 /** 1523 * velocity_alloc_rx_buf - allocate aligned receive buffer 1524 * @vptr: velocity 1525 * @idx: ring index 1526 * 1527 * Allocate a new full sized buffer for the reception of a frame and 1528 * map it into PCI space for the hardware to use. The hardware 1529 * requires *64* byte alignment of the buffer which makes life 1530 * less fun than would be ideal. 1531 */ 1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1533 { 1534 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1536 1537 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1538 if (rd_info->skb == NULL) 1539 return -ENOMEM; 1540 1541 /* 1542 * Do the gymnastics to get the buffer head for data at 1543 * 64byte alignment. 1544 */ 1545 skb_reserve(rd_info->skb, 1546 64 - ((unsigned long) rd_info->skb->data & 63)); 1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1548 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1549 1550 /* 1551 * Fill in the descriptor to match 1552 */ 1553 1554 *((u32 *) & (rd->rdesc0)) = 0; 1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1557 rd->pa_high = 0; 1558 return 0; 1559 } 1560 1561 1562 static int velocity_rx_refill(struct velocity_info *vptr) 1563 { 1564 int dirty = vptr->rx.dirty, done = 0; 1565 1566 do { 1567 struct rx_desc *rd = vptr->rx.ring + dirty; 1568 1569 /* Fine for an all zero Rx desc at init time as well */ 1570 if (rd->rdesc0.len & OWNED_BY_NIC) 1571 break; 1572 1573 if (!vptr->rx.info[dirty].skb) { 1574 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1575 break; 1576 } 1577 done++; 1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1579 } while (dirty != vptr->rx.curr); 1580 1581 if (done) { 1582 vptr->rx.dirty = dirty; 1583 vptr->rx.filled += done; 1584 } 1585 1586 return done; 1587 } 1588 1589 /** 1590 * velocity_free_rd_ring - free receive ring 1591 * @vptr: velocity to clean up 1592 * 1593 * Free the receive buffers for each ring slot and any 1594 * attached socket buffers that need to go away. 1595 */ 1596 static void velocity_free_rd_ring(struct velocity_info *vptr) 1597 { 1598 int i; 1599 1600 if (vptr->rx.info == NULL) 1601 return; 1602 1603 for (i = 0; i < vptr->options.numrx; i++) { 1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1605 struct rx_desc *rd = vptr->rx.ring + i; 1606 1607 memset(rd, 0, sizeof(*rd)); 1608 1609 if (!rd_info->skb) 1610 continue; 1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1612 DMA_FROM_DEVICE); 1613 rd_info->skb_dma = 0; 1614 1615 dev_kfree_skb(rd_info->skb); 1616 rd_info->skb = NULL; 1617 } 1618 1619 kfree(vptr->rx.info); 1620 vptr->rx.info = NULL; 1621 } 1622 1623 /** 1624 * velocity_init_rd_ring - set up receive ring 1625 * @vptr: velocity to configure 1626 * 1627 * Allocate and set up the receive buffers for each ring slot and 1628 * assign them to the network adapter. 1629 */ 1630 static int velocity_init_rd_ring(struct velocity_info *vptr) 1631 { 1632 int ret = -ENOMEM; 1633 1634 vptr->rx.info = kcalloc(vptr->options.numrx, 1635 sizeof(struct velocity_rd_info), GFP_KERNEL); 1636 if (!vptr->rx.info) 1637 goto out; 1638 1639 velocity_init_rx_ring_indexes(vptr); 1640 1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1642 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1643 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1644 velocity_free_rd_ring(vptr); 1645 goto out; 1646 } 1647 1648 ret = 0; 1649 out: 1650 return ret; 1651 } 1652 1653 /** 1654 * velocity_init_td_ring - set up transmit ring 1655 * @vptr: velocity 1656 * 1657 * Set up the transmit ring and chain the ring pointers together. 1658 * Returns zero on success or a negative posix errno code for 1659 * failure. 1660 */ 1661 static int velocity_init_td_ring(struct velocity_info *vptr) 1662 { 1663 int j; 1664 1665 /* Init the TD ring entries */ 1666 for (j = 0; j < vptr->tx.numq; j++) { 1667 1668 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1669 sizeof(struct velocity_td_info), 1670 GFP_KERNEL); 1671 if (!vptr->tx.infos[j]) { 1672 while (--j >= 0) 1673 kfree(vptr->tx.infos[j]); 1674 return -ENOMEM; 1675 } 1676 1677 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1678 } 1679 return 0; 1680 } 1681 1682 /** 1683 * velocity_free_dma_rings - free PCI ring pointers 1684 * @vptr: Velocity to free from 1685 * 1686 * Clean up the PCI ring buffers allocated to this velocity. 1687 */ 1688 static void velocity_free_dma_rings(struct velocity_info *vptr) 1689 { 1690 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1691 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1692 1693 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1694 } 1695 1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1697 { 1698 int ret; 1699 1700 velocity_set_rxbufsize(vptr, mtu); 1701 1702 ret = velocity_init_dma_rings(vptr); 1703 if (ret < 0) 1704 goto out; 1705 1706 ret = velocity_init_rd_ring(vptr); 1707 if (ret < 0) 1708 goto err_free_dma_rings_0; 1709 1710 ret = velocity_init_td_ring(vptr); 1711 if (ret < 0) 1712 goto err_free_rd_ring_1; 1713 out: 1714 return ret; 1715 1716 err_free_rd_ring_1: 1717 velocity_free_rd_ring(vptr); 1718 err_free_dma_rings_0: 1719 velocity_free_dma_rings(vptr); 1720 goto out; 1721 } 1722 1723 /** 1724 * velocity_free_tx_buf - free transmit buffer 1725 * @vptr: velocity 1726 * @tdinfo: buffer 1727 * 1728 * Release an transmit buffer. If the buffer was preallocated then 1729 * recycle it, if not then unmap the buffer. 1730 */ 1731 static void velocity_free_tx_buf(struct velocity_info *vptr, 1732 struct velocity_td_info *tdinfo, struct tx_desc *td) 1733 { 1734 struct sk_buff *skb = tdinfo->skb; 1735 1736 /* 1737 * Don't unmap the pre-allocated tx_bufs 1738 */ 1739 if (tdinfo->skb_dma) { 1740 int i; 1741 1742 for (i = 0; i < tdinfo->nskb_dma; i++) { 1743 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1744 1745 /* For scatter-gather */ 1746 if (skb_shinfo(skb)->nr_frags > 0) 1747 pktlen = max_t(size_t, pktlen, 1748 td->td_buf[i].size & ~TD_QUEUE); 1749 1750 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1751 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1752 } 1753 } 1754 dev_kfree_skb_irq(skb); 1755 tdinfo->skb = NULL; 1756 } 1757 1758 /* 1759 * FIXME: could we merge this with velocity_free_tx_buf ? 1760 */ 1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1762 int q, int n) 1763 { 1764 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1765 int i; 1766 1767 if (td_info == NULL) 1768 return; 1769 1770 if (td_info->skb) { 1771 for (i = 0; i < td_info->nskb_dma; i++) { 1772 if (td_info->skb_dma[i]) { 1773 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1774 td_info->skb->len, DMA_TO_DEVICE); 1775 td_info->skb_dma[i] = 0; 1776 } 1777 } 1778 dev_kfree_skb(td_info->skb); 1779 td_info->skb = NULL; 1780 } 1781 } 1782 1783 /** 1784 * velocity_free_td_ring - free td ring 1785 * @vptr: velocity 1786 * 1787 * Free up the transmit ring for this particular velocity adapter. 1788 * We free the ring contents but not the ring itself. 1789 */ 1790 static void velocity_free_td_ring(struct velocity_info *vptr) 1791 { 1792 int i, j; 1793 1794 for (j = 0; j < vptr->tx.numq; j++) { 1795 if (vptr->tx.infos[j] == NULL) 1796 continue; 1797 for (i = 0; i < vptr->options.numtx; i++) 1798 velocity_free_td_ring_entry(vptr, j, i); 1799 1800 kfree(vptr->tx.infos[j]); 1801 vptr->tx.infos[j] = NULL; 1802 } 1803 } 1804 1805 static void velocity_free_rings(struct velocity_info *vptr) 1806 { 1807 velocity_free_td_ring(vptr); 1808 velocity_free_rd_ring(vptr); 1809 velocity_free_dma_rings(vptr); 1810 } 1811 1812 /** 1813 * velocity_error - handle error from controller 1814 * @vptr: velocity 1815 * @status: card status 1816 * 1817 * Process an error report from the hardware and attempt to recover 1818 * the card itself. At the moment we cannot recover from some 1819 * theoretically impossible errors but this could be fixed using 1820 * the pci_device_failed logic to bounce the hardware 1821 * 1822 */ 1823 static void velocity_error(struct velocity_info *vptr, int status) 1824 { 1825 1826 if (status & ISR_TXSTLI) { 1827 struct mac_regs __iomem *regs = vptr->mac_regs; 1828 1829 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1830 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1831 writew(TRDCSR_RUN, ®s->TDCSRClr); 1832 netif_stop_queue(vptr->netdev); 1833 1834 /* FIXME: port over the pci_device_failed code and use it 1835 here */ 1836 } 1837 1838 if (status & ISR_SRCI) { 1839 struct mac_regs __iomem *regs = vptr->mac_regs; 1840 int linked; 1841 1842 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1843 vptr->mii_status = check_connection_type(regs); 1844 1845 /* 1846 * If it is a 3119, disable frame bursting in 1847 * halfduplex mode and enable it in fullduplex 1848 * mode 1849 */ 1850 if (vptr->rev_id < REV_ID_VT3216_A0) { 1851 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1852 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1853 else 1854 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1855 } 1856 /* 1857 * Only enable CD heart beat counter in 10HD mode 1858 */ 1859 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1860 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1861 else 1862 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1863 1864 setup_queue_timers(vptr); 1865 } 1866 /* 1867 * Get link status from PHYSR0 1868 */ 1869 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1870 1871 if (linked) { 1872 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1873 netif_carrier_on(vptr->netdev); 1874 } else { 1875 vptr->mii_status |= VELOCITY_LINK_FAIL; 1876 netif_carrier_off(vptr->netdev); 1877 } 1878 1879 velocity_print_link_status(vptr); 1880 enable_flow_control_ability(vptr); 1881 1882 /* 1883 * Re-enable auto-polling because SRCI will disable 1884 * auto-polling 1885 */ 1886 1887 enable_mii_autopoll(regs); 1888 1889 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1890 netif_stop_queue(vptr->netdev); 1891 else 1892 netif_wake_queue(vptr->netdev); 1893 1894 } 1895 if (status & ISR_MIBFI) 1896 velocity_update_hw_mibs(vptr); 1897 if (status & ISR_LSTEI) 1898 mac_rx_queue_wake(vptr->mac_regs); 1899 } 1900 1901 /** 1902 * tx_srv - transmit interrupt service 1903 * @vptr; Velocity 1904 * 1905 * Scan the queues looking for transmitted packets that 1906 * we can complete and clean up. Update any statistics as 1907 * necessary/ 1908 */ 1909 static int velocity_tx_srv(struct velocity_info *vptr) 1910 { 1911 struct tx_desc *td; 1912 int qnum; 1913 int full = 0; 1914 int idx; 1915 int works = 0; 1916 struct velocity_td_info *tdinfo; 1917 struct net_device_stats *stats = &vptr->netdev->stats; 1918 1919 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1920 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1921 idx = (idx + 1) % vptr->options.numtx) { 1922 1923 /* 1924 * Get Tx Descriptor 1925 */ 1926 td = &(vptr->tx.rings[qnum][idx]); 1927 tdinfo = &(vptr->tx.infos[qnum][idx]); 1928 1929 if (td->tdesc0.len & OWNED_BY_NIC) 1930 break; 1931 1932 if ((works++ > 15)) 1933 break; 1934 1935 if (td->tdesc0.TSR & TSR0_TERR) { 1936 stats->tx_errors++; 1937 stats->tx_dropped++; 1938 if (td->tdesc0.TSR & TSR0_CDH) 1939 stats->tx_heartbeat_errors++; 1940 if (td->tdesc0.TSR & TSR0_CRS) 1941 stats->tx_carrier_errors++; 1942 if (td->tdesc0.TSR & TSR0_ABT) 1943 stats->tx_aborted_errors++; 1944 if (td->tdesc0.TSR & TSR0_OWC) 1945 stats->tx_window_errors++; 1946 } else { 1947 stats->tx_packets++; 1948 stats->tx_bytes += tdinfo->skb->len; 1949 } 1950 velocity_free_tx_buf(vptr, tdinfo, td); 1951 vptr->tx.used[qnum]--; 1952 } 1953 vptr->tx.tail[qnum] = idx; 1954 1955 if (AVAIL_TD(vptr, qnum) < 1) 1956 full = 1; 1957 } 1958 /* 1959 * Look to see if we should kick the transmit network 1960 * layer for more work. 1961 */ 1962 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1963 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1964 netif_wake_queue(vptr->netdev); 1965 } 1966 return works; 1967 } 1968 1969 /** 1970 * velocity_rx_csum - checksum process 1971 * @rd: receive packet descriptor 1972 * @skb: network layer packet buffer 1973 * 1974 * Process the status bits for the received packet and determine 1975 * if the checksum was computed and verified by the hardware 1976 */ 1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1978 { 1979 skb_checksum_none_assert(skb); 1980 1981 if (rd->rdesc1.CSM & CSM_IPKT) { 1982 if (rd->rdesc1.CSM & CSM_IPOK) { 1983 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1984 (rd->rdesc1.CSM & CSM_UDPKT)) { 1985 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1986 return; 1987 } 1988 skb->ip_summed = CHECKSUM_UNNECESSARY; 1989 } 1990 } 1991 } 1992 1993 /** 1994 * velocity_rx_copy - in place Rx copy for small packets 1995 * @rx_skb: network layer packet buffer candidate 1996 * @pkt_size: received data size 1997 * @rd: receive packet descriptor 1998 * @dev: network device 1999 * 2000 * Replace the current skb that is scheduled for Rx processing by a 2001 * shorter, immediately allocated skb, if the received packet is small 2002 * enough. This function returns a negative value if the received 2003 * packet is too big or if memory is exhausted. 2004 */ 2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 2006 struct velocity_info *vptr) 2007 { 2008 int ret = -1; 2009 if (pkt_size < rx_copybreak) { 2010 struct sk_buff *new_skb; 2011 2012 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2013 if (new_skb) { 2014 new_skb->ip_summed = rx_skb[0]->ip_summed; 2015 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2016 *rx_skb = new_skb; 2017 ret = 0; 2018 } 2019 2020 } 2021 return ret; 2022 } 2023 2024 /** 2025 * velocity_iph_realign - IP header alignment 2026 * @vptr: velocity we are handling 2027 * @skb: network layer packet buffer 2028 * @pkt_size: received data size 2029 * 2030 * Align IP header on a 2 bytes boundary. This behavior can be 2031 * configured by the user. 2032 */ 2033 static inline void velocity_iph_realign(struct velocity_info *vptr, 2034 struct sk_buff *skb, int pkt_size) 2035 { 2036 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2037 memmove(skb->data + 2, skb->data, pkt_size); 2038 skb_reserve(skb, 2); 2039 } 2040 } 2041 2042 /** 2043 * velocity_receive_frame - received packet processor 2044 * @vptr: velocity we are handling 2045 * @idx: ring index 2046 * 2047 * A packet has arrived. We process the packet and if appropriate 2048 * pass the frame up the network stack 2049 */ 2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2051 { 2052 struct net_device_stats *stats = &vptr->netdev->stats; 2053 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2054 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2055 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2056 struct sk_buff *skb; 2057 2058 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) { 2059 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->netdev->name); 2060 stats->rx_length_errors++; 2061 return -EINVAL; 2062 } 2063 2064 if (rd->rdesc0.RSR & RSR_MAR) 2065 stats->multicast++; 2066 2067 skb = rd_info->skb; 2068 2069 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2070 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2071 2072 /* 2073 * Drop frame not meeting IEEE 802.3 2074 */ 2075 2076 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) { 2077 if (rd->rdesc0.RSR & RSR_RL) { 2078 stats->rx_length_errors++; 2079 return -EINVAL; 2080 } 2081 } 2082 2083 velocity_rx_csum(rd, skb); 2084 2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2086 velocity_iph_realign(vptr, skb, pkt_len); 2087 rd_info->skb = NULL; 2088 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2089 DMA_FROM_DEVICE); 2090 } else { 2091 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2092 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2093 } 2094 2095 skb_put(skb, pkt_len - 4); 2096 skb->protocol = eth_type_trans(skb, vptr->netdev); 2097 2098 if (rd->rdesc0.RSR & RSR_DETAG) { 2099 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2100 2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2102 } 2103 netif_receive_skb(skb); 2104 2105 stats->rx_bytes += pkt_len; 2106 stats->rx_packets++; 2107 2108 return 0; 2109 } 2110 2111 /** 2112 * velocity_rx_srv - service RX interrupt 2113 * @vptr: velocity 2114 * 2115 * Walk the receive ring of the velocity adapter and remove 2116 * any received packets from the receive queue. Hand the ring 2117 * slots back to the adapter for reuse. 2118 */ 2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2120 { 2121 struct net_device_stats *stats = &vptr->netdev->stats; 2122 int rd_curr = vptr->rx.curr; 2123 int works = 0; 2124 2125 while (works < budget_left) { 2126 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2127 2128 if (!vptr->rx.info[rd_curr].skb) 2129 break; 2130 2131 if (rd->rdesc0.len & OWNED_BY_NIC) 2132 break; 2133 2134 rmb(); 2135 2136 /* 2137 * Don't drop CE or RL error frame although RXOK is off 2138 */ 2139 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2140 if (velocity_receive_frame(vptr, rd_curr) < 0) 2141 stats->rx_dropped++; 2142 } else { 2143 if (rd->rdesc0.RSR & RSR_CRC) 2144 stats->rx_crc_errors++; 2145 if (rd->rdesc0.RSR & RSR_FAE) 2146 stats->rx_frame_errors++; 2147 2148 stats->rx_dropped++; 2149 } 2150 2151 rd->size |= RX_INTEN; 2152 2153 rd_curr++; 2154 if (rd_curr >= vptr->options.numrx) 2155 rd_curr = 0; 2156 works++; 2157 } 2158 2159 vptr->rx.curr = rd_curr; 2160 2161 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2162 velocity_give_many_rx_descs(vptr); 2163 2164 VAR_USED(stats); 2165 return works; 2166 } 2167 2168 static int velocity_poll(struct napi_struct *napi, int budget) 2169 { 2170 struct velocity_info *vptr = container_of(napi, 2171 struct velocity_info, napi); 2172 unsigned int rx_done; 2173 unsigned long flags; 2174 2175 spin_lock_irqsave(&vptr->lock, flags); 2176 /* 2177 * Do rx and tx twice for performance (taken from the VIA 2178 * out-of-tree driver). 2179 */ 2180 rx_done = velocity_rx_srv(vptr, budget / 2); 2181 velocity_tx_srv(vptr); 2182 rx_done += velocity_rx_srv(vptr, budget - rx_done); 2183 velocity_tx_srv(vptr); 2184 2185 /* If budget not fully consumed, exit the polling mode */ 2186 if (rx_done < budget) { 2187 napi_complete(napi); 2188 mac_enable_int(vptr->mac_regs); 2189 } 2190 spin_unlock_irqrestore(&vptr->lock, flags); 2191 2192 return rx_done; 2193 } 2194 2195 /** 2196 * velocity_intr - interrupt callback 2197 * @irq: interrupt number 2198 * @dev_instance: interrupting device 2199 * 2200 * Called whenever an interrupt is generated by the velocity 2201 * adapter IRQ line. We may not be the source of the interrupt 2202 * and need to identify initially if we are, and if not exit as 2203 * efficiently as possible. 2204 */ 2205 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2206 { 2207 struct net_device *dev = dev_instance; 2208 struct velocity_info *vptr = netdev_priv(dev); 2209 u32 isr_status; 2210 2211 spin_lock(&vptr->lock); 2212 isr_status = mac_read_isr(vptr->mac_regs); 2213 2214 /* Not us ? */ 2215 if (isr_status == 0) { 2216 spin_unlock(&vptr->lock); 2217 return IRQ_NONE; 2218 } 2219 2220 /* Ack the interrupt */ 2221 mac_write_isr(vptr->mac_regs, isr_status); 2222 2223 if (likely(napi_schedule_prep(&vptr->napi))) { 2224 mac_disable_int(vptr->mac_regs); 2225 __napi_schedule(&vptr->napi); 2226 } 2227 2228 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2229 velocity_error(vptr, isr_status); 2230 2231 spin_unlock(&vptr->lock); 2232 2233 return IRQ_HANDLED; 2234 } 2235 2236 /** 2237 * velocity_open - interface activation callback 2238 * @dev: network layer device to open 2239 * 2240 * Called when the network layer brings the interface up. Returns 2241 * a negative posix error code on failure, or zero on success. 2242 * 2243 * All the ring allocation and set up is done on open for this 2244 * adapter to minimise memory usage when inactive 2245 */ 2246 static int velocity_open(struct net_device *dev) 2247 { 2248 struct velocity_info *vptr = netdev_priv(dev); 2249 int ret; 2250 2251 ret = velocity_init_rings(vptr, dev->mtu); 2252 if (ret < 0) 2253 goto out; 2254 2255 /* Ensure chip is running */ 2256 velocity_set_power_state(vptr, PCI_D0); 2257 2258 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2259 2260 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2261 dev->name, dev); 2262 if (ret < 0) { 2263 /* Power down the chip */ 2264 velocity_set_power_state(vptr, PCI_D3hot); 2265 velocity_free_rings(vptr); 2266 goto out; 2267 } 2268 2269 velocity_give_many_rx_descs(vptr); 2270 2271 mac_enable_int(vptr->mac_regs); 2272 netif_start_queue(dev); 2273 napi_enable(&vptr->napi); 2274 vptr->flags |= VELOCITY_FLAGS_OPENED; 2275 out: 2276 return ret; 2277 } 2278 2279 /** 2280 * velocity_shutdown - shut down the chip 2281 * @vptr: velocity to deactivate 2282 * 2283 * Shuts down the internal operations of the velocity and 2284 * disables interrupts, autopolling, transmit and receive 2285 */ 2286 static void velocity_shutdown(struct velocity_info *vptr) 2287 { 2288 struct mac_regs __iomem *regs = vptr->mac_regs; 2289 mac_disable_int(regs); 2290 writel(CR0_STOP, ®s->CR0Set); 2291 writew(0xFFFF, ®s->TDCSRClr); 2292 writeb(0xFF, ®s->RDCSRClr); 2293 safe_disable_mii_autopoll(regs); 2294 mac_clear_isr(regs); 2295 } 2296 2297 /** 2298 * velocity_change_mtu - MTU change callback 2299 * @dev: network device 2300 * @new_mtu: desired MTU 2301 * 2302 * Handle requests from the networking layer for MTU change on 2303 * this interface. It gets called on a change by the network layer. 2304 * Return zero for success or negative posix error code. 2305 */ 2306 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2307 { 2308 struct velocity_info *vptr = netdev_priv(dev); 2309 int ret = 0; 2310 2311 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) { 2312 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n", 2313 vptr->netdev->name); 2314 ret = -EINVAL; 2315 goto out_0; 2316 } 2317 2318 if (!netif_running(dev)) { 2319 dev->mtu = new_mtu; 2320 goto out_0; 2321 } 2322 2323 if (dev->mtu != new_mtu) { 2324 struct velocity_info *tmp_vptr; 2325 unsigned long flags; 2326 struct rx_info rx; 2327 struct tx_info tx; 2328 2329 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2330 if (!tmp_vptr) { 2331 ret = -ENOMEM; 2332 goto out_0; 2333 } 2334 2335 tmp_vptr->netdev = dev; 2336 tmp_vptr->pdev = vptr->pdev; 2337 tmp_vptr->dev = vptr->dev; 2338 tmp_vptr->options = vptr->options; 2339 tmp_vptr->tx.numq = vptr->tx.numq; 2340 2341 ret = velocity_init_rings(tmp_vptr, new_mtu); 2342 if (ret < 0) 2343 goto out_free_tmp_vptr_1; 2344 2345 spin_lock_irqsave(&vptr->lock, flags); 2346 2347 netif_stop_queue(dev); 2348 velocity_shutdown(vptr); 2349 2350 rx = vptr->rx; 2351 tx = vptr->tx; 2352 2353 vptr->rx = tmp_vptr->rx; 2354 vptr->tx = tmp_vptr->tx; 2355 2356 tmp_vptr->rx = rx; 2357 tmp_vptr->tx = tx; 2358 2359 dev->mtu = new_mtu; 2360 2361 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2362 2363 velocity_give_many_rx_descs(vptr); 2364 2365 mac_enable_int(vptr->mac_regs); 2366 netif_start_queue(dev); 2367 2368 spin_unlock_irqrestore(&vptr->lock, flags); 2369 2370 velocity_free_rings(tmp_vptr); 2371 2372 out_free_tmp_vptr_1: 2373 kfree(tmp_vptr); 2374 } 2375 out_0: 2376 return ret; 2377 } 2378 2379 #ifdef CONFIG_NET_POLL_CONTROLLER 2380 /** 2381 * velocity_poll_controller - Velocity Poll controller function 2382 * @dev: network device 2383 * 2384 * 2385 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2386 * with interrupts disabled. 2387 */ 2388 static void velocity_poll_controller(struct net_device *dev) 2389 { 2390 disable_irq(dev->irq); 2391 velocity_intr(dev->irq, dev); 2392 enable_irq(dev->irq); 2393 } 2394 #endif 2395 2396 /** 2397 * velocity_mii_ioctl - MII ioctl handler 2398 * @dev: network device 2399 * @ifr: the ifreq block for the ioctl 2400 * @cmd: the command 2401 * 2402 * Process MII requests made via ioctl from the network layer. These 2403 * are used by tools like kudzu to interrogate the link state of the 2404 * hardware 2405 */ 2406 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2407 { 2408 struct velocity_info *vptr = netdev_priv(dev); 2409 struct mac_regs __iomem *regs = vptr->mac_regs; 2410 unsigned long flags; 2411 struct mii_ioctl_data *miidata = if_mii(ifr); 2412 int err; 2413 2414 switch (cmd) { 2415 case SIOCGMIIPHY: 2416 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2417 break; 2418 case SIOCGMIIREG: 2419 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2420 return -ETIMEDOUT; 2421 break; 2422 case SIOCSMIIREG: 2423 spin_lock_irqsave(&vptr->lock, flags); 2424 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2425 spin_unlock_irqrestore(&vptr->lock, flags); 2426 check_connection_type(vptr->mac_regs); 2427 if (err) 2428 return err; 2429 break; 2430 default: 2431 return -EOPNOTSUPP; 2432 } 2433 return 0; 2434 } 2435 2436 /** 2437 * velocity_ioctl - ioctl entry point 2438 * @dev: network device 2439 * @rq: interface request ioctl 2440 * @cmd: command code 2441 * 2442 * Called when the user issues an ioctl request to the network 2443 * device in question. The velocity interface supports MII. 2444 */ 2445 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2446 { 2447 struct velocity_info *vptr = netdev_priv(dev); 2448 int ret; 2449 2450 /* If we are asked for information and the device is power 2451 saving then we need to bring the device back up to talk to it */ 2452 2453 if (!netif_running(dev)) 2454 velocity_set_power_state(vptr, PCI_D0); 2455 2456 switch (cmd) { 2457 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2458 case SIOCGMIIREG: /* Read MII PHY register. */ 2459 case SIOCSMIIREG: /* Write to MII PHY register. */ 2460 ret = velocity_mii_ioctl(dev, rq, cmd); 2461 break; 2462 2463 default: 2464 ret = -EOPNOTSUPP; 2465 } 2466 if (!netif_running(dev)) 2467 velocity_set_power_state(vptr, PCI_D3hot); 2468 2469 2470 return ret; 2471 } 2472 2473 /** 2474 * velocity_get_status - statistics callback 2475 * @dev: network device 2476 * 2477 * Callback from the network layer to allow driver statistics 2478 * to be resynchronized with hardware collected state. In the 2479 * case of the velocity we need to pull the MIB counters from 2480 * the hardware into the counters before letting the network 2481 * layer display them. 2482 */ 2483 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2484 { 2485 struct velocity_info *vptr = netdev_priv(dev); 2486 2487 /* If the hardware is down, don't touch MII */ 2488 if (!netif_running(dev)) 2489 return &dev->stats; 2490 2491 spin_lock_irq(&vptr->lock); 2492 velocity_update_hw_mibs(vptr); 2493 spin_unlock_irq(&vptr->lock); 2494 2495 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2496 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2497 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2498 2499 // unsigned long rx_dropped; /* no space in linux buffers */ 2500 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2501 /* detailed rx_errors: */ 2502 // unsigned long rx_length_errors; 2503 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2504 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2505 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2506 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2507 // unsigned long rx_missed_errors; /* receiver missed packet */ 2508 2509 /* detailed tx_errors */ 2510 // unsigned long tx_fifo_errors; 2511 2512 return &dev->stats; 2513 } 2514 2515 /** 2516 * velocity_close - close adapter callback 2517 * @dev: network device 2518 * 2519 * Callback from the network layer when the velocity is being 2520 * deactivated by the network layer 2521 */ 2522 static int velocity_close(struct net_device *dev) 2523 { 2524 struct velocity_info *vptr = netdev_priv(dev); 2525 2526 napi_disable(&vptr->napi); 2527 netif_stop_queue(dev); 2528 velocity_shutdown(vptr); 2529 2530 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2531 velocity_get_ip(vptr); 2532 2533 free_irq(dev->irq, dev); 2534 2535 velocity_free_rings(vptr); 2536 2537 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2538 return 0; 2539 } 2540 2541 /** 2542 * velocity_xmit - transmit packet callback 2543 * @skb: buffer to transmit 2544 * @dev: network device 2545 * 2546 * Called by the networ layer to request a packet is queued to 2547 * the velocity. Returns zero on success. 2548 */ 2549 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2550 struct net_device *dev) 2551 { 2552 struct velocity_info *vptr = netdev_priv(dev); 2553 int qnum = 0; 2554 struct tx_desc *td_ptr; 2555 struct velocity_td_info *tdinfo; 2556 unsigned long flags; 2557 int pktlen; 2558 int index, prev; 2559 int i = 0; 2560 2561 if (skb_padto(skb, ETH_ZLEN)) 2562 goto out; 2563 2564 /* The hardware can handle at most 7 memory segments, so merge 2565 * the skb if there are more */ 2566 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2567 kfree_skb(skb); 2568 return NETDEV_TX_OK; 2569 } 2570 2571 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2572 max_t(unsigned int, skb->len, ETH_ZLEN) : 2573 skb_headlen(skb); 2574 2575 spin_lock_irqsave(&vptr->lock, flags); 2576 2577 index = vptr->tx.curr[qnum]; 2578 td_ptr = &(vptr->tx.rings[qnum][index]); 2579 tdinfo = &(vptr->tx.infos[qnum][index]); 2580 2581 td_ptr->tdesc1.TCR = TCR0_TIC; 2582 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2583 2584 /* 2585 * Map the linear network buffer into PCI space and 2586 * add it to the transmit ring. 2587 */ 2588 tdinfo->skb = skb; 2589 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2590 DMA_TO_DEVICE); 2591 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2592 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2593 td_ptr->td_buf[0].pa_high = 0; 2594 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2595 2596 /* Handle fragments */ 2597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2598 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2599 2600 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2601 frag, 0, 2602 skb_frag_size(frag), 2603 DMA_TO_DEVICE); 2604 2605 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2606 td_ptr->td_buf[i + 1].pa_high = 0; 2607 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2608 } 2609 tdinfo->nskb_dma = i + 1; 2610 2611 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2612 2613 if (vlan_tx_tag_present(skb)) { 2614 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb)); 2615 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2616 } 2617 2618 /* 2619 * Handle hardware checksum 2620 */ 2621 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2622 const struct iphdr *ip = ip_hdr(skb); 2623 if (ip->protocol == IPPROTO_TCP) 2624 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2625 else if (ip->protocol == IPPROTO_UDP) 2626 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2627 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2628 } 2629 2630 prev = index - 1; 2631 if (prev < 0) 2632 prev = vptr->options.numtx - 1; 2633 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2634 vptr->tx.used[qnum]++; 2635 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2636 2637 if (AVAIL_TD(vptr, qnum) < 1) 2638 netif_stop_queue(dev); 2639 2640 td_ptr = &(vptr->tx.rings[qnum][prev]); 2641 td_ptr->td_buf[0].size |= TD_QUEUE; 2642 mac_tx_queue_wake(vptr->mac_regs, qnum); 2643 2644 spin_unlock_irqrestore(&vptr->lock, flags); 2645 out: 2646 return NETDEV_TX_OK; 2647 } 2648 2649 static const struct net_device_ops velocity_netdev_ops = { 2650 .ndo_open = velocity_open, 2651 .ndo_stop = velocity_close, 2652 .ndo_start_xmit = velocity_xmit, 2653 .ndo_get_stats = velocity_get_stats, 2654 .ndo_validate_addr = eth_validate_addr, 2655 .ndo_set_mac_address = eth_mac_addr, 2656 .ndo_set_rx_mode = velocity_set_multi, 2657 .ndo_change_mtu = velocity_change_mtu, 2658 .ndo_do_ioctl = velocity_ioctl, 2659 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2660 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2661 #ifdef CONFIG_NET_POLL_CONTROLLER 2662 .ndo_poll_controller = velocity_poll_controller, 2663 #endif 2664 }; 2665 2666 /** 2667 * velocity_init_info - init private data 2668 * @pdev: PCI device 2669 * @vptr: Velocity info 2670 * @info: Board type 2671 * 2672 * Set up the initial velocity_info struct for the device that has been 2673 * discovered. 2674 */ 2675 static void velocity_init_info(struct velocity_info *vptr, 2676 const struct velocity_info_tbl *info) 2677 { 2678 vptr->chip_id = info->chip_id; 2679 vptr->tx.numq = info->txqueue; 2680 vptr->multicast_limit = MCAM_SIZE; 2681 spin_lock_init(&vptr->lock); 2682 } 2683 2684 /** 2685 * velocity_get_pci_info - retrieve PCI info for device 2686 * @vptr: velocity device 2687 * @pdev: PCI device it matches 2688 * 2689 * Retrieve the PCI configuration space data that interests us from 2690 * the kernel PCI layer 2691 */ 2692 static int velocity_get_pci_info(struct velocity_info *vptr) 2693 { 2694 struct pci_dev *pdev = vptr->pdev; 2695 2696 pci_set_master(pdev); 2697 2698 vptr->ioaddr = pci_resource_start(pdev, 0); 2699 vptr->memaddr = pci_resource_start(pdev, 1); 2700 2701 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2702 dev_err(&pdev->dev, 2703 "region #0 is not an I/O resource, aborting.\n"); 2704 return -EINVAL; 2705 } 2706 2707 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2708 dev_err(&pdev->dev, 2709 "region #1 is an I/O resource, aborting.\n"); 2710 return -EINVAL; 2711 } 2712 2713 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2714 dev_err(&pdev->dev, "region #1 is too small.\n"); 2715 return -EINVAL; 2716 } 2717 2718 return 0; 2719 } 2720 2721 /** 2722 * velocity_get_platform_info - retrieve platform info for device 2723 * @vptr: velocity device 2724 * @pdev: platform device it matches 2725 * 2726 * Retrieve the Platform configuration data that interests us 2727 */ 2728 static int velocity_get_platform_info(struct velocity_info *vptr) 2729 { 2730 struct resource res; 2731 int ret; 2732 2733 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2734 vptr->no_eeprom = 1; 2735 2736 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2737 if (ret) { 2738 dev_err(vptr->dev, "unable to find memory address\n"); 2739 return ret; 2740 } 2741 2742 vptr->memaddr = res.start; 2743 2744 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2745 dev_err(vptr->dev, "memory region is too small.\n"); 2746 return -EINVAL; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /** 2753 * velocity_print_info - per driver data 2754 * @vptr: velocity 2755 * 2756 * Print per driver data as the kernel driver finds Velocity 2757 * hardware 2758 */ 2759 static void velocity_print_info(struct velocity_info *vptr) 2760 { 2761 struct net_device *dev = vptr->netdev; 2762 2763 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2764 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2765 dev->name, dev->dev_addr); 2766 } 2767 2768 static u32 velocity_get_link(struct net_device *dev) 2769 { 2770 struct velocity_info *vptr = netdev_priv(dev); 2771 struct mac_regs __iomem *regs = vptr->mac_regs; 2772 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2773 } 2774 2775 /** 2776 * velocity_probe - set up discovered velocity device 2777 * @pdev: PCI device 2778 * @ent: PCI device table entry that matched 2779 * @bustype: bus that device is connected to 2780 * 2781 * Configure a discovered adapter from scratch. Return a negative 2782 * errno error code on failure paths. 2783 */ 2784 static int velocity_probe(struct device *dev, int irq, 2785 const struct velocity_info_tbl *info, 2786 enum velocity_bus_type bustype) 2787 { 2788 static int first = 1; 2789 struct net_device *netdev; 2790 int i; 2791 const char *drv_string; 2792 struct velocity_info *vptr; 2793 struct mac_regs __iomem *regs; 2794 int ret = -ENOMEM; 2795 2796 /* FIXME: this driver, like almost all other ethernet drivers, 2797 * can support more than MAX_UNITS. 2798 */ 2799 if (velocity_nics >= MAX_UNITS) { 2800 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2801 return -ENODEV; 2802 } 2803 2804 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2805 if (!netdev) 2806 goto out; 2807 2808 /* Chain it all together */ 2809 2810 SET_NETDEV_DEV(netdev, dev); 2811 vptr = netdev_priv(netdev); 2812 2813 if (first) { 2814 printk(KERN_INFO "%s Ver. %s\n", 2815 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2816 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2817 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2818 first = 0; 2819 } 2820 2821 netdev->irq = irq; 2822 vptr->netdev = netdev; 2823 vptr->dev = dev; 2824 2825 velocity_init_info(vptr, info); 2826 2827 if (bustype == BUS_PCI) { 2828 vptr->pdev = to_pci_dev(dev); 2829 2830 ret = velocity_get_pci_info(vptr); 2831 if (ret < 0) 2832 goto err_free_dev; 2833 } else { 2834 vptr->pdev = NULL; 2835 ret = velocity_get_platform_info(vptr); 2836 if (ret < 0) 2837 goto err_free_dev; 2838 } 2839 2840 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2841 if (regs == NULL) { 2842 ret = -EIO; 2843 goto err_free_dev; 2844 } 2845 2846 vptr->mac_regs = regs; 2847 vptr->rev_id = readb(®s->rev_id); 2848 2849 mac_wol_reset(regs); 2850 2851 for (i = 0; i < 6; i++) 2852 netdev->dev_addr[i] = readb(®s->PAR[i]); 2853 2854 2855 drv_string = dev_driver_string(dev); 2856 2857 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2858 2859 /* 2860 * Mask out the options cannot be set to the chip 2861 */ 2862 2863 vptr->options.flags &= info->flags; 2864 2865 /* 2866 * Enable the chip specified capbilities 2867 */ 2868 2869 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2870 2871 vptr->wol_opts = vptr->options.wol_opts; 2872 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2873 2874 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2875 2876 netdev->netdev_ops = &velocity_netdev_ops; 2877 netdev->ethtool_ops = &velocity_ethtool_ops; 2878 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2879 VELOCITY_NAPI_WEIGHT); 2880 2881 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2882 NETIF_F_HW_VLAN_CTAG_TX; 2883 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2884 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2885 NETIF_F_IP_CSUM; 2886 2887 ret = register_netdev(netdev); 2888 if (ret < 0) 2889 goto err_iounmap; 2890 2891 if (!velocity_get_link(netdev)) { 2892 netif_carrier_off(netdev); 2893 vptr->mii_status |= VELOCITY_LINK_FAIL; 2894 } 2895 2896 velocity_print_info(vptr); 2897 dev_set_drvdata(vptr->dev, netdev); 2898 2899 /* and leave the chip powered down */ 2900 2901 velocity_set_power_state(vptr, PCI_D3hot); 2902 velocity_nics++; 2903 out: 2904 return ret; 2905 2906 err_iounmap: 2907 netif_napi_del(&vptr->napi); 2908 iounmap(regs); 2909 err_free_dev: 2910 free_netdev(netdev); 2911 goto out; 2912 } 2913 2914 /** 2915 * velocity_remove - device unplug 2916 * @dev: device being removed 2917 * 2918 * Device unload callback. Called on an unplug or on module 2919 * unload for each active device that is present. Disconnects 2920 * the device from the network layer and frees all the resources 2921 */ 2922 static int velocity_remove(struct device *dev) 2923 { 2924 struct net_device *netdev = dev_get_drvdata(dev); 2925 struct velocity_info *vptr = netdev_priv(netdev); 2926 2927 unregister_netdev(netdev); 2928 netif_napi_del(&vptr->napi); 2929 iounmap(vptr->mac_regs); 2930 free_netdev(netdev); 2931 velocity_nics--; 2932 2933 return 0; 2934 } 2935 2936 static int velocity_pci_probe(struct pci_dev *pdev, 2937 const struct pci_device_id *ent) 2938 { 2939 const struct velocity_info_tbl *info = 2940 &chip_info_table[ent->driver_data]; 2941 int ret; 2942 2943 ret = pci_enable_device(pdev); 2944 if (ret < 0) 2945 return ret; 2946 2947 ret = pci_request_regions(pdev, VELOCITY_NAME); 2948 if (ret < 0) { 2949 dev_err(&pdev->dev, "No PCI resources.\n"); 2950 goto fail1; 2951 } 2952 2953 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2954 if (ret == 0) 2955 return 0; 2956 2957 pci_release_regions(pdev); 2958 fail1: 2959 pci_disable_device(pdev); 2960 return ret; 2961 } 2962 2963 static void velocity_pci_remove(struct pci_dev *pdev) 2964 { 2965 velocity_remove(&pdev->dev); 2966 2967 pci_release_regions(pdev); 2968 pci_disable_device(pdev); 2969 } 2970 2971 static int velocity_platform_probe(struct platform_device *pdev) 2972 { 2973 const struct of_device_id *of_id; 2974 const struct velocity_info_tbl *info; 2975 int irq; 2976 2977 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2978 if (!of_id) 2979 return -EINVAL; 2980 info = of_id->data; 2981 2982 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2983 if (!irq) 2984 return -EINVAL; 2985 2986 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2987 } 2988 2989 static int velocity_platform_remove(struct platform_device *pdev) 2990 { 2991 velocity_remove(&pdev->dev); 2992 2993 return 0; 2994 } 2995 2996 #ifdef CONFIG_PM_SLEEP 2997 /** 2998 * wol_calc_crc - WOL CRC 2999 * @pattern: data pattern 3000 * @mask_pattern: mask 3001 * 3002 * Compute the wake on lan crc hashes for the packet header 3003 * we are interested in. 3004 */ 3005 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 3006 { 3007 u16 crc = 0xFFFF; 3008 u8 mask; 3009 int i, j; 3010 3011 for (i = 0; i < size; i++) { 3012 mask = mask_pattern[i]; 3013 3014 /* Skip this loop if the mask equals to zero */ 3015 if (mask == 0x00) 3016 continue; 3017 3018 for (j = 0; j < 8; j++) { 3019 if ((mask & 0x01) == 0) { 3020 mask >>= 1; 3021 continue; 3022 } 3023 mask >>= 1; 3024 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 3025 } 3026 } 3027 /* Finally, invert the result once to get the correct data */ 3028 crc = ~crc; 3029 return bitrev32(crc) >> 16; 3030 } 3031 3032 /** 3033 * velocity_set_wol - set up for wake on lan 3034 * @vptr: velocity to set WOL status on 3035 * 3036 * Set a card up for wake on lan either by unicast or by 3037 * ARP packet. 3038 * 3039 * FIXME: check static buffer is safe here 3040 */ 3041 static int velocity_set_wol(struct velocity_info *vptr) 3042 { 3043 struct mac_regs __iomem *regs = vptr->mac_regs; 3044 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3045 static u8 buf[256]; 3046 int i; 3047 3048 static u32 mask_pattern[2][4] = { 3049 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3050 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3051 }; 3052 3053 writew(0xFFFF, ®s->WOLCRClr); 3054 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3055 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3056 3057 /* 3058 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3059 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3060 */ 3061 3062 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3063 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3064 3065 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3066 struct arp_packet *arp = (struct arp_packet *) buf; 3067 u16 crc; 3068 memset(buf, 0, sizeof(struct arp_packet) + 7); 3069 3070 for (i = 0; i < 4; i++) 3071 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3072 3073 arp->type = htons(ETH_P_ARP); 3074 arp->ar_op = htons(1); 3075 3076 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3077 3078 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3079 (u8 *) & mask_pattern[0][0]); 3080 3081 writew(crc, ®s->PatternCRC[0]); 3082 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3083 } 3084 3085 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3086 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3087 3088 writew(0x0FFF, ®s->WOLSRClr); 3089 3090 if (spd_dpx == SPD_DPX_1000_FULL) 3091 goto mac_done; 3092 3093 if (spd_dpx != SPD_DPX_AUTO) 3094 goto advertise_done; 3095 3096 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3097 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3098 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3099 3100 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3101 } 3102 3103 if (vptr->mii_status & VELOCITY_SPEED_1000) 3104 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3105 3106 advertise_done: 3107 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3108 3109 { 3110 u8 GCR; 3111 GCR = readb(®s->CHIPGCR); 3112 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3113 writeb(GCR, ®s->CHIPGCR); 3114 } 3115 3116 mac_done: 3117 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3118 /* Turn on SWPTAG just before entering power mode */ 3119 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3120 /* Go to bed ..... */ 3121 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3122 3123 return 0; 3124 } 3125 3126 /** 3127 * velocity_save_context - save registers 3128 * @vptr: velocity 3129 * @context: buffer for stored context 3130 * 3131 * Retrieve the current configuration from the velocity hardware 3132 * and stash it in the context structure, for use by the context 3133 * restore functions. This allows us to save things we need across 3134 * power down states 3135 */ 3136 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3137 { 3138 struct mac_regs __iomem *regs = vptr->mac_regs; 3139 u16 i; 3140 u8 __iomem *ptr = (u8 __iomem *)regs; 3141 3142 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3143 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3144 3145 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3146 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3147 3148 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3149 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3150 3151 } 3152 3153 static int velocity_suspend(struct device *dev) 3154 { 3155 struct net_device *netdev = dev_get_drvdata(dev); 3156 struct velocity_info *vptr = netdev_priv(netdev); 3157 unsigned long flags; 3158 3159 if (!netif_running(vptr->netdev)) 3160 return 0; 3161 3162 netif_device_detach(vptr->netdev); 3163 3164 spin_lock_irqsave(&vptr->lock, flags); 3165 if (vptr->pdev) 3166 pci_save_state(vptr->pdev); 3167 3168 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3169 velocity_get_ip(vptr); 3170 velocity_save_context(vptr, &vptr->context); 3171 velocity_shutdown(vptr); 3172 velocity_set_wol(vptr); 3173 if (vptr->pdev) 3174 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3175 velocity_set_power_state(vptr, PCI_D3hot); 3176 } else { 3177 velocity_save_context(vptr, &vptr->context); 3178 velocity_shutdown(vptr); 3179 if (vptr->pdev) 3180 pci_disable_device(vptr->pdev); 3181 velocity_set_power_state(vptr, PCI_D3hot); 3182 } 3183 3184 spin_unlock_irqrestore(&vptr->lock, flags); 3185 return 0; 3186 } 3187 3188 /** 3189 * velocity_restore_context - restore registers 3190 * @vptr: velocity 3191 * @context: buffer for stored context 3192 * 3193 * Reload the register configuration from the velocity context 3194 * created by velocity_save_context. 3195 */ 3196 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3197 { 3198 struct mac_regs __iomem *regs = vptr->mac_regs; 3199 int i; 3200 u8 __iomem *ptr = (u8 __iomem *)regs; 3201 3202 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3203 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3204 3205 /* Just skip cr0 */ 3206 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3207 /* Clear */ 3208 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3209 /* Set */ 3210 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3211 } 3212 3213 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3214 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3215 3216 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3217 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3218 3219 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3220 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3221 } 3222 3223 static int velocity_resume(struct device *dev) 3224 { 3225 struct net_device *netdev = dev_get_drvdata(dev); 3226 struct velocity_info *vptr = netdev_priv(netdev); 3227 unsigned long flags; 3228 int i; 3229 3230 if (!netif_running(vptr->netdev)) 3231 return 0; 3232 3233 velocity_set_power_state(vptr, PCI_D0); 3234 3235 if (vptr->pdev) { 3236 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3237 pci_restore_state(vptr->pdev); 3238 } 3239 3240 mac_wol_reset(vptr->mac_regs); 3241 3242 spin_lock_irqsave(&vptr->lock, flags); 3243 velocity_restore_context(vptr, &vptr->context); 3244 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3245 mac_disable_int(vptr->mac_regs); 3246 3247 velocity_tx_srv(vptr); 3248 3249 for (i = 0; i < vptr->tx.numq; i++) { 3250 if (vptr->tx.used[i]) 3251 mac_tx_queue_wake(vptr->mac_regs, i); 3252 } 3253 3254 mac_enable_int(vptr->mac_regs); 3255 spin_unlock_irqrestore(&vptr->lock, flags); 3256 netif_device_attach(vptr->netdev); 3257 3258 return 0; 3259 } 3260 #endif /* CONFIG_PM_SLEEP */ 3261 3262 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3263 3264 /* 3265 * Definition for our device driver. The PCI layer interface 3266 * uses this to handle all our card discover and plugging 3267 */ 3268 static struct pci_driver velocity_pci_driver = { 3269 .name = VELOCITY_NAME, 3270 .id_table = velocity_pci_id_table, 3271 .probe = velocity_pci_probe, 3272 .remove = velocity_pci_remove, 3273 .driver = { 3274 .pm = &velocity_pm_ops, 3275 }, 3276 }; 3277 3278 static struct platform_driver velocity_platform_driver = { 3279 .probe = velocity_platform_probe, 3280 .remove = velocity_platform_remove, 3281 .driver = { 3282 .name = "via-velocity", 3283 .owner = THIS_MODULE, 3284 .of_match_table = velocity_of_ids, 3285 .pm = &velocity_pm_ops, 3286 }, 3287 }; 3288 3289 /** 3290 * velocity_ethtool_up - pre hook for ethtool 3291 * @dev: network device 3292 * 3293 * Called before an ethtool operation. We need to make sure the 3294 * chip is out of D3 state before we poke at it. 3295 */ 3296 static int velocity_ethtool_up(struct net_device *dev) 3297 { 3298 struct velocity_info *vptr = netdev_priv(dev); 3299 if (!netif_running(dev)) 3300 velocity_set_power_state(vptr, PCI_D0); 3301 return 0; 3302 } 3303 3304 /** 3305 * velocity_ethtool_down - post hook for ethtool 3306 * @dev: network device 3307 * 3308 * Called after an ethtool operation. Restore the chip back to D3 3309 * state if it isn't running. 3310 */ 3311 static void velocity_ethtool_down(struct net_device *dev) 3312 { 3313 struct velocity_info *vptr = netdev_priv(dev); 3314 if (!netif_running(dev)) 3315 velocity_set_power_state(vptr, PCI_D3hot); 3316 } 3317 3318 static int velocity_get_settings(struct net_device *dev, 3319 struct ethtool_cmd *cmd) 3320 { 3321 struct velocity_info *vptr = netdev_priv(dev); 3322 struct mac_regs __iomem *regs = vptr->mac_regs; 3323 u32 status; 3324 status = check_connection_type(vptr->mac_regs); 3325 3326 cmd->supported = SUPPORTED_TP | 3327 SUPPORTED_Autoneg | 3328 SUPPORTED_10baseT_Half | 3329 SUPPORTED_10baseT_Full | 3330 SUPPORTED_100baseT_Half | 3331 SUPPORTED_100baseT_Full | 3332 SUPPORTED_1000baseT_Half | 3333 SUPPORTED_1000baseT_Full; 3334 3335 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3336 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3337 cmd->advertising |= 3338 ADVERTISED_10baseT_Half | 3339 ADVERTISED_10baseT_Full | 3340 ADVERTISED_100baseT_Half | 3341 ADVERTISED_100baseT_Full | 3342 ADVERTISED_1000baseT_Half | 3343 ADVERTISED_1000baseT_Full; 3344 } else { 3345 switch (vptr->options.spd_dpx) { 3346 case SPD_DPX_1000_FULL: 3347 cmd->advertising |= ADVERTISED_1000baseT_Full; 3348 break; 3349 case SPD_DPX_100_HALF: 3350 cmd->advertising |= ADVERTISED_100baseT_Half; 3351 break; 3352 case SPD_DPX_100_FULL: 3353 cmd->advertising |= ADVERTISED_100baseT_Full; 3354 break; 3355 case SPD_DPX_10_HALF: 3356 cmd->advertising |= ADVERTISED_10baseT_Half; 3357 break; 3358 case SPD_DPX_10_FULL: 3359 cmd->advertising |= ADVERTISED_10baseT_Full; 3360 break; 3361 default: 3362 break; 3363 } 3364 } 3365 3366 if (status & VELOCITY_SPEED_1000) 3367 ethtool_cmd_speed_set(cmd, SPEED_1000); 3368 else if (status & VELOCITY_SPEED_100) 3369 ethtool_cmd_speed_set(cmd, SPEED_100); 3370 else 3371 ethtool_cmd_speed_set(cmd, SPEED_10); 3372 3373 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3374 cmd->port = PORT_TP; 3375 cmd->transceiver = XCVR_INTERNAL; 3376 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3377 3378 if (status & VELOCITY_DUPLEX_FULL) 3379 cmd->duplex = DUPLEX_FULL; 3380 else 3381 cmd->duplex = DUPLEX_HALF; 3382 3383 return 0; 3384 } 3385 3386 static int velocity_set_settings(struct net_device *dev, 3387 struct ethtool_cmd *cmd) 3388 { 3389 struct velocity_info *vptr = netdev_priv(dev); 3390 u32 speed = ethtool_cmd_speed(cmd); 3391 u32 curr_status; 3392 u32 new_status = 0; 3393 int ret = 0; 3394 3395 curr_status = check_connection_type(vptr->mac_regs); 3396 curr_status &= (~VELOCITY_LINK_FAIL); 3397 3398 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3399 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3400 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3401 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3402 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3403 3404 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3405 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3406 ret = -EINVAL; 3407 } else { 3408 enum speed_opt spd_dpx; 3409 3410 if (new_status & VELOCITY_AUTONEG_ENABLE) 3411 spd_dpx = SPD_DPX_AUTO; 3412 else if ((new_status & VELOCITY_SPEED_1000) && 3413 (new_status & VELOCITY_DUPLEX_FULL)) { 3414 spd_dpx = SPD_DPX_1000_FULL; 3415 } else if (new_status & VELOCITY_SPEED_100) 3416 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3417 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3418 else if (new_status & VELOCITY_SPEED_10) 3419 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3420 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3421 else 3422 return -EOPNOTSUPP; 3423 3424 vptr->options.spd_dpx = spd_dpx; 3425 3426 velocity_set_media_mode(vptr, new_status); 3427 } 3428 3429 return ret; 3430 } 3431 3432 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3433 { 3434 struct velocity_info *vptr = netdev_priv(dev); 3435 3436 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3437 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3438 if (vptr->pdev) 3439 strlcpy(info->bus_info, pci_name(vptr->pdev), 3440 sizeof(info->bus_info)); 3441 else 3442 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3443 } 3444 3445 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3446 { 3447 struct velocity_info *vptr = netdev_priv(dev); 3448 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3449 wol->wolopts |= WAKE_MAGIC; 3450 /* 3451 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3452 wol.wolopts|=WAKE_PHY; 3453 */ 3454 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3455 wol->wolopts |= WAKE_UCAST; 3456 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3457 wol->wolopts |= WAKE_ARP; 3458 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3459 } 3460 3461 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3462 { 3463 struct velocity_info *vptr = netdev_priv(dev); 3464 3465 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3466 return -EFAULT; 3467 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3468 3469 /* 3470 if (wol.wolopts & WAKE_PHY) { 3471 vptr->wol_opts|=VELOCITY_WOL_PHY; 3472 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3473 } 3474 */ 3475 3476 if (wol->wolopts & WAKE_MAGIC) { 3477 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3478 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3479 } 3480 if (wol->wolopts & WAKE_UCAST) { 3481 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3482 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3483 } 3484 if (wol->wolopts & WAKE_ARP) { 3485 vptr->wol_opts |= VELOCITY_WOL_ARP; 3486 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3487 } 3488 memcpy(vptr->wol_passwd, wol->sopass, 6); 3489 return 0; 3490 } 3491 3492 static u32 velocity_get_msglevel(struct net_device *dev) 3493 { 3494 return msglevel; 3495 } 3496 3497 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3498 { 3499 msglevel = value; 3500 } 3501 3502 static int get_pending_timer_val(int val) 3503 { 3504 int mult_bits = val >> 6; 3505 int mult = 1; 3506 3507 switch (mult_bits) 3508 { 3509 case 1: 3510 mult = 4; break; 3511 case 2: 3512 mult = 16; break; 3513 case 3: 3514 mult = 64; break; 3515 case 0: 3516 default: 3517 break; 3518 } 3519 3520 return (val & 0x3f) * mult; 3521 } 3522 3523 static void set_pending_timer_val(int *val, u32 us) 3524 { 3525 u8 mult = 0; 3526 u8 shift = 0; 3527 3528 if (us >= 0x3f) { 3529 mult = 1; /* mult with 4 */ 3530 shift = 2; 3531 } 3532 if (us >= 0x3f * 4) { 3533 mult = 2; /* mult with 16 */ 3534 shift = 4; 3535 } 3536 if (us >= 0x3f * 16) { 3537 mult = 3; /* mult with 64 */ 3538 shift = 6; 3539 } 3540 3541 *val = (mult << 6) | ((us >> shift) & 0x3f); 3542 } 3543 3544 3545 static int velocity_get_coalesce(struct net_device *dev, 3546 struct ethtool_coalesce *ecmd) 3547 { 3548 struct velocity_info *vptr = netdev_priv(dev); 3549 3550 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3551 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3552 3553 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3554 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3555 3556 return 0; 3557 } 3558 3559 static int velocity_set_coalesce(struct net_device *dev, 3560 struct ethtool_coalesce *ecmd) 3561 { 3562 struct velocity_info *vptr = netdev_priv(dev); 3563 int max_us = 0x3f * 64; 3564 unsigned long flags; 3565 3566 /* 6 bits of */ 3567 if (ecmd->tx_coalesce_usecs > max_us) 3568 return -EINVAL; 3569 if (ecmd->rx_coalesce_usecs > max_us) 3570 return -EINVAL; 3571 3572 if (ecmd->tx_max_coalesced_frames > 0xff) 3573 return -EINVAL; 3574 if (ecmd->rx_max_coalesced_frames > 0xff) 3575 return -EINVAL; 3576 3577 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3578 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3579 3580 set_pending_timer_val(&vptr->options.rxqueue_timer, 3581 ecmd->rx_coalesce_usecs); 3582 set_pending_timer_val(&vptr->options.txqueue_timer, 3583 ecmd->tx_coalesce_usecs); 3584 3585 /* Setup the interrupt suppression and queue timers */ 3586 spin_lock_irqsave(&vptr->lock, flags); 3587 mac_disable_int(vptr->mac_regs); 3588 setup_adaptive_interrupts(vptr); 3589 setup_queue_timers(vptr); 3590 3591 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3592 mac_clear_isr(vptr->mac_regs); 3593 mac_enable_int(vptr->mac_regs); 3594 spin_unlock_irqrestore(&vptr->lock, flags); 3595 3596 return 0; 3597 } 3598 3599 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3600 "rx_all", 3601 "rx_ok", 3602 "tx_ok", 3603 "rx_error", 3604 "rx_runt_ok", 3605 "rx_runt_err", 3606 "rx_64", 3607 "tx_64", 3608 "rx_65_to_127", 3609 "tx_65_to_127", 3610 "rx_128_to_255", 3611 "tx_128_to_255", 3612 "rx_256_to_511", 3613 "tx_256_to_511", 3614 "rx_512_to_1023", 3615 "tx_512_to_1023", 3616 "rx_1024_to_1518", 3617 "tx_1024_to_1518", 3618 "tx_ether_collisions", 3619 "rx_crc_errors", 3620 "rx_jumbo", 3621 "tx_jumbo", 3622 "rx_mac_control_frames", 3623 "tx_mac_control_frames", 3624 "rx_frame_alignement_errors", 3625 "rx_long_ok", 3626 "rx_long_err", 3627 "tx_sqe_errors", 3628 "rx_no_buf", 3629 "rx_symbol_errors", 3630 "in_range_length_errors", 3631 "late_collisions" 3632 }; 3633 3634 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3635 { 3636 switch (sset) { 3637 case ETH_SS_STATS: 3638 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3639 break; 3640 } 3641 } 3642 3643 static int velocity_get_sset_count(struct net_device *dev, int sset) 3644 { 3645 switch (sset) { 3646 case ETH_SS_STATS: 3647 return ARRAY_SIZE(velocity_gstrings); 3648 default: 3649 return -EOPNOTSUPP; 3650 } 3651 } 3652 3653 static void velocity_get_ethtool_stats(struct net_device *dev, 3654 struct ethtool_stats *stats, u64 *data) 3655 { 3656 if (netif_running(dev)) { 3657 struct velocity_info *vptr = netdev_priv(dev); 3658 u32 *p = vptr->mib_counter; 3659 int i; 3660 3661 spin_lock_irq(&vptr->lock); 3662 velocity_update_hw_mibs(vptr); 3663 spin_unlock_irq(&vptr->lock); 3664 3665 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3666 *data++ = *p++; 3667 } 3668 } 3669 3670 static const struct ethtool_ops velocity_ethtool_ops = { 3671 .get_settings = velocity_get_settings, 3672 .set_settings = velocity_set_settings, 3673 .get_drvinfo = velocity_get_drvinfo, 3674 .get_wol = velocity_ethtool_get_wol, 3675 .set_wol = velocity_ethtool_set_wol, 3676 .get_msglevel = velocity_get_msglevel, 3677 .set_msglevel = velocity_set_msglevel, 3678 .get_link = velocity_get_link, 3679 .get_strings = velocity_get_strings, 3680 .get_sset_count = velocity_get_sset_count, 3681 .get_ethtool_stats = velocity_get_ethtool_stats, 3682 .get_coalesce = velocity_get_coalesce, 3683 .set_coalesce = velocity_set_coalesce, 3684 .begin = velocity_ethtool_up, 3685 .complete = velocity_ethtool_down 3686 }; 3687 3688 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3689 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3690 { 3691 struct in_ifaddr *ifa = ptr; 3692 struct net_device *dev = ifa->ifa_dev->dev; 3693 3694 if (dev_net(dev) == &init_net && 3695 dev->netdev_ops == &velocity_netdev_ops) 3696 velocity_get_ip(netdev_priv(dev)); 3697 3698 return NOTIFY_DONE; 3699 } 3700 3701 static struct notifier_block velocity_inetaddr_notifier = { 3702 .notifier_call = velocity_netdev_event, 3703 }; 3704 3705 static void velocity_register_notifier(void) 3706 { 3707 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3708 } 3709 3710 static void velocity_unregister_notifier(void) 3711 { 3712 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3713 } 3714 3715 #else 3716 3717 #define velocity_register_notifier() do {} while (0) 3718 #define velocity_unregister_notifier() do {} while (0) 3719 3720 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3721 3722 /** 3723 * velocity_init_module - load time function 3724 * 3725 * Called when the velocity module is loaded. The PCI driver 3726 * is registered with the PCI layer, and in turn will call 3727 * the probe functions for each velocity adapter installed 3728 * in the system. 3729 */ 3730 static int __init velocity_init_module(void) 3731 { 3732 int ret_pci, ret_platform; 3733 3734 velocity_register_notifier(); 3735 3736 ret_pci = pci_register_driver(&velocity_pci_driver); 3737 ret_platform = platform_driver_register(&velocity_platform_driver); 3738 3739 /* if both_registers failed, remove the notifier */ 3740 if ((ret_pci < 0) && (ret_platform < 0)) { 3741 velocity_unregister_notifier(); 3742 return ret_pci; 3743 } 3744 3745 return 0; 3746 } 3747 3748 /** 3749 * velocity_cleanup - module unload 3750 * 3751 * When the velocity hardware is unloaded this function is called. 3752 * It will clean up the notifiers and the unregister the PCI 3753 * driver interface for this hardware. This in turn cleans up 3754 * all discovered interfaces before returning from the function 3755 */ 3756 static void __exit velocity_cleanup_module(void) 3757 { 3758 velocity_unregister_notifier(); 3759 3760 pci_unregister_driver(&velocity_pci_driver); 3761 platform_driver_unregister(&velocity_platform_driver); 3762 } 3763 3764 module_init(velocity_init_module); 3765 module_exit(velocity_cleanup_module); 3766