1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/mm.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/pci.h> 54 #include <linux/kernel.h> 55 #include <linux/netdevice.h> 56 #include <linux/etherdevice.h> 57 #include <linux/skbuff.h> 58 #include <linux/delay.h> 59 #include <linux/timer.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/string.h> 63 #include <linux/wait.h> 64 #include <linux/io.h> 65 #include <linux/if.h> 66 #include <linux/uaccess.h> 67 #include <linux/proc_fs.h> 68 #include <linux/of_address.h> 69 #include <linux/of_device.h> 70 #include <linux/of_irq.h> 71 #include <linux/inetdevice.h> 72 #include <linux/platform_device.h> 73 #include <linux/reboot.h> 74 #include <linux/ethtool.h> 75 #include <linux/mii.h> 76 #include <linux/in.h> 77 #include <linux/if_arp.h> 78 #include <linux/if_vlan.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/crc-ccitt.h> 83 #include <linux/crc32.h> 84 85 #include "via-velocity.h" 86 87 enum velocity_bus_type { 88 BUS_PCI, 89 BUS_PLATFORM, 90 }; 91 92 static int velocity_nics; 93 static int msglevel = MSG_LEVEL_INFO; 94 95 static void velocity_set_power_state(struct velocity_info *vptr, char state) 96 { 97 void *addr = vptr->mac_regs; 98 99 if (vptr->pdev) 100 pci_set_power_state(vptr->pdev, state); 101 else 102 writeb(state, addr + 0x154); 103 } 104 105 /** 106 * mac_get_cam_mask - Read a CAM mask 107 * @regs: register block for this velocity 108 * @mask: buffer to store mask 109 * 110 * Fetch the mask bits of the selected CAM and store them into the 111 * provided mask buffer. 112 */ 113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 114 { 115 int i; 116 117 /* Select CAM mask */ 118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 119 120 writeb(0, ®s->CAMADDR); 121 122 /* read mask */ 123 for (i = 0; i < 8; i++) 124 *mask++ = readb(&(regs->MARCAM[i])); 125 126 /* disable CAMEN */ 127 writeb(0, ®s->CAMADDR); 128 129 /* Select mar */ 130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 131 } 132 133 /** 134 * mac_set_cam_mask - Set a CAM mask 135 * @regs: register block for this velocity 136 * @mask: CAM mask to load 137 * 138 * Store a new mask into a CAM 139 */ 140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 141 { 142 int i; 143 /* Select CAM mask */ 144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 145 146 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 147 148 for (i = 0; i < 8; i++) 149 writeb(*mask++, &(regs->MARCAM[i])); 150 151 /* disable CAMEN */ 152 writeb(0, ®s->CAMADDR); 153 154 /* Select mar */ 155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 156 } 157 158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 159 { 160 int i; 161 /* Select CAM mask */ 162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 163 164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 165 166 for (i = 0; i < 8; i++) 167 writeb(*mask++, &(regs->MARCAM[i])); 168 169 /* disable CAMEN */ 170 writeb(0, ®s->CAMADDR); 171 172 /* Select mar */ 173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 174 } 175 176 /** 177 * mac_set_cam - set CAM data 178 * @regs: register block of this velocity 179 * @idx: Cam index 180 * @addr: 2 or 6 bytes of CAM data 181 * 182 * Load an address or vlan tag into a CAM 183 */ 184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 185 { 186 int i; 187 188 /* Select CAM mask */ 189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 190 191 idx &= (64 - 1); 192 193 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 194 195 for (i = 0; i < 6; i++) 196 writeb(*addr++, &(regs->MARCAM[i])); 197 198 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 199 200 udelay(10); 201 202 writeb(0, ®s->CAMADDR); 203 204 /* Select mar */ 205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 206 } 207 208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 209 const u8 *addr) 210 { 211 212 /* Select CAM mask */ 213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 214 215 idx &= (64 - 1); 216 217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 218 writew(*((u16 *) addr), ®s->MARCAM[0]); 219 220 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 221 222 udelay(10); 223 224 writeb(0, ®s->CAMADDR); 225 226 /* Select mar */ 227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 228 } 229 230 231 /** 232 * mac_wol_reset - reset WOL after exiting low power 233 * @regs: register block of this velocity 234 * 235 * Called after we drop out of wake on lan mode in order to 236 * reset the Wake on lan features. This function doesn't restore 237 * the rest of the logic from the result of sleep/wakeup 238 */ 239 static void mac_wol_reset(struct mac_regs __iomem *regs) 240 { 241 242 /* Turn off SWPTAG right after leaving power mode */ 243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 244 /* clear sticky bits */ 245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 246 247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 249 /* disable force PME-enable */ 250 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 251 /* disable power-event config bit */ 252 writew(0xFFFF, ®s->WOLCRClr); 253 /* clear power status */ 254 writew(0xFFFF, ®s->WOLSRClr); 255 } 256 257 static const struct ethtool_ops velocity_ethtool_ops; 258 259 /* 260 Define module options 261 */ 262 263 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 264 MODULE_LICENSE("GPL"); 265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 266 267 #define VELOCITY_PARAM(N, D) \ 268 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 269 module_param_array(N, int, NULL, 0); \ 270 MODULE_PARM_DESC(N, D); 271 272 #define RX_DESC_MIN 64 273 #define RX_DESC_MAX 255 274 #define RX_DESC_DEF 64 275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 276 277 #define TX_DESC_MIN 16 278 #define TX_DESC_MAX 256 279 #define TX_DESC_DEF 64 280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 281 282 #define RX_THRESH_MIN 0 283 #define RX_THRESH_MAX 3 284 #define RX_THRESH_DEF 0 285 /* rx_thresh[] is used for controlling the receive fifo threshold. 286 0: indicate the rxfifo threshold is 128 bytes. 287 1: indicate the rxfifo threshold is 512 bytes. 288 2: indicate the rxfifo threshold is 1024 bytes. 289 3: indicate the rxfifo threshold is store & forward. 290 */ 291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 292 293 #define DMA_LENGTH_MIN 0 294 #define DMA_LENGTH_MAX 7 295 #define DMA_LENGTH_DEF 6 296 297 /* DMA_length[] is used for controlling the DMA length 298 0: 8 DWORDs 299 1: 16 DWORDs 300 2: 32 DWORDs 301 3: 64 DWORDs 302 4: 128 DWORDs 303 5: 256 DWORDs 304 6: SF(flush till emply) 305 7: SF(flush till emply) 306 */ 307 VELOCITY_PARAM(DMA_length, "DMA length"); 308 309 #define IP_ALIG_DEF 0 310 /* IP_byte_align[] is used for IP header DWORD byte aligned 311 0: indicate the IP header won't be DWORD byte aligned.(Default) . 312 1: indicate the IP header will be DWORD byte aligned. 313 In some environment, the IP header should be DWORD byte aligned, 314 or the packet will be droped when we receive it. (eg: IPVS) 315 */ 316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 317 318 #define FLOW_CNTL_DEF 1 319 #define FLOW_CNTL_MIN 1 320 #define FLOW_CNTL_MAX 5 321 322 /* flow_control[] is used for setting the flow control ability of NIC. 323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 324 2: enable TX flow control. 325 3: enable RX flow control. 326 4: enable RX/TX flow control. 327 5: disable 328 */ 329 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 330 331 #define MED_LNK_DEF 0 332 #define MED_LNK_MIN 0 333 #define MED_LNK_MAX 5 334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 335 0: indicate autonegotiation for both speed and duplex mode 336 1: indicate 100Mbps half duplex mode 337 2: indicate 100Mbps full duplex mode 338 3: indicate 10Mbps half duplex mode 339 4: indicate 10Mbps full duplex mode 340 5: indicate 1000Mbps full duplex mode 341 342 Note: 343 if EEPROM have been set to the force mode, this option is ignored 344 by driver. 345 */ 346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 347 348 #define WOL_OPT_DEF 0 349 #define WOL_OPT_MIN 0 350 #define WOL_OPT_MAX 7 351 /* wol_opts[] is used for controlling wake on lan behavior. 352 0: Wake up if recevied a magic packet. (Default) 353 1: Wake up if link status is on/off. 354 2: Wake up if recevied an arp packet. 355 4: Wake up if recevied any unicast packet. 356 Those value can be sumed up to support more than one option. 357 */ 358 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 359 360 static int rx_copybreak = 200; 361 module_param(rx_copybreak, int, 0644); 362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 363 364 /* 365 * Internal board variants. At the moment we have only one 366 */ 367 static struct velocity_info_tbl chip_info_table[] = { 368 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 369 { } 370 }; 371 372 /* 373 * Describe the PCI device identifiers that we support in this 374 * device driver. Used for hotplug autoloading. 375 */ 376 377 static const struct pci_device_id velocity_pci_id_table[] = { 378 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 379 { } 380 }; 381 382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 383 384 /** 385 * Describe the OF device identifiers that we support in this 386 * device driver. Used for devicetree nodes. 387 */ 388 static const struct of_device_id velocity_of_ids[] = { 389 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 390 { /* Sentinel */ }, 391 }; 392 MODULE_DEVICE_TABLE(of, velocity_of_ids); 393 394 /** 395 * get_chip_name - identifier to name 396 * @id: chip identifier 397 * 398 * Given a chip identifier return a suitable description. Returns 399 * a pointer a static string valid while the driver is loaded. 400 */ 401 static const char *get_chip_name(enum chip_type chip_id) 402 { 403 int i; 404 for (i = 0; chip_info_table[i].name != NULL; i++) 405 if (chip_info_table[i].chip_id == chip_id) 406 break; 407 return chip_info_table[i].name; 408 } 409 410 /** 411 * velocity_set_int_opt - parser for integer options 412 * @opt: pointer to option value 413 * @val: value the user requested (or -1 for default) 414 * @min: lowest value allowed 415 * @max: highest value allowed 416 * @def: default value 417 * @name: property name 418 * @dev: device name 419 * 420 * Set an integer property in the module options. This function does 421 * all the verification and checking as well as reporting so that 422 * we don't duplicate code for each option. 423 */ 424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 425 char *name, const char *devname) 426 { 427 if (val == -1) 428 *opt = def; 429 else if (val < min || val > max) { 430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 431 devname, name, min, max); 432 *opt = def; 433 } else { 434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 435 devname, name, val); 436 *opt = val; 437 } 438 } 439 440 /** 441 * velocity_set_bool_opt - parser for boolean options 442 * @opt: pointer to option value 443 * @val: value the user requested (or -1 for default) 444 * @def: default value (yes/no) 445 * @flag: numeric value to set for true. 446 * @name: property name 447 * @dev: device name 448 * 449 * Set a boolean property in the module options. This function does 450 * all the verification and checking as well as reporting so that 451 * we don't duplicate code for each option. 452 */ 453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 454 char *name, const char *devname) 455 { 456 (*opt) &= (~flag); 457 if (val == -1) 458 *opt |= (def ? flag : 0); 459 else if (val < 0 || val > 1) { 460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 461 devname, name); 462 *opt |= (def ? flag : 0); 463 } else { 464 printk(KERN_INFO "%s: set parameter %s to %s\n", 465 devname, name, val ? "TRUE" : "FALSE"); 466 *opt |= (val ? flag : 0); 467 } 468 } 469 470 /** 471 * velocity_get_options - set options on device 472 * @opts: option structure for the device 473 * @index: index of option to use in module options array 474 * @devname: device name 475 * 476 * Turn the module and command options into a single structure 477 * for the current device 478 */ 479 static void velocity_get_options(struct velocity_opt *opts, int index, 480 const char *devname) 481 { 482 483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 487 488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 490 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 491 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 492 opts->numrx = (opts->numrx & ~3); 493 } 494 495 /** 496 * velocity_init_cam_filter - initialise CAM 497 * @vptr: velocity to program 498 * 499 * Initialize the content addressable memory used for filters. Load 500 * appropriately according to the presence of VLAN 501 */ 502 static void velocity_init_cam_filter(struct velocity_info *vptr) 503 { 504 struct mac_regs __iomem *regs = vptr->mac_regs; 505 unsigned int vid, i = 0; 506 507 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 508 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 509 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 510 511 /* Disable all CAMs */ 512 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 513 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 514 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 515 mac_set_cam_mask(regs, vptr->mCAMmask); 516 517 /* Enable VCAMs */ 518 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 519 mac_set_vlan_cam(regs, i, (u8 *) &vid); 520 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 521 if (++i >= VCAM_SIZE) 522 break; 523 } 524 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 525 } 526 527 static int velocity_vlan_rx_add_vid(struct net_device *dev, 528 __be16 proto, u16 vid) 529 { 530 struct velocity_info *vptr = netdev_priv(dev); 531 532 spin_lock_irq(&vptr->lock); 533 set_bit(vid, vptr->active_vlans); 534 velocity_init_cam_filter(vptr); 535 spin_unlock_irq(&vptr->lock); 536 return 0; 537 } 538 539 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 540 __be16 proto, u16 vid) 541 { 542 struct velocity_info *vptr = netdev_priv(dev); 543 544 spin_lock_irq(&vptr->lock); 545 clear_bit(vid, vptr->active_vlans); 546 velocity_init_cam_filter(vptr); 547 spin_unlock_irq(&vptr->lock); 548 return 0; 549 } 550 551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 552 { 553 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 554 } 555 556 /** 557 * velocity_rx_reset - handle a receive reset 558 * @vptr: velocity we are resetting 559 * 560 * Reset the ownership and status for the receive ring side. 561 * Hand all the receive queue to the NIC. 562 */ 563 static void velocity_rx_reset(struct velocity_info *vptr) 564 { 565 566 struct mac_regs __iomem *regs = vptr->mac_regs; 567 int i; 568 569 velocity_init_rx_ring_indexes(vptr); 570 571 /* 572 * Init state, all RD entries belong to the NIC 573 */ 574 for (i = 0; i < vptr->options.numrx; ++i) 575 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 576 577 writew(vptr->options.numrx, ®s->RBRDU); 578 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 579 writew(0, ®s->RDIdx); 580 writew(vptr->options.numrx - 1, ®s->RDCSize); 581 } 582 583 /** 584 * velocity_get_opt_media_mode - get media selection 585 * @vptr: velocity adapter 586 * 587 * Get the media mode stored in EEPROM or module options and load 588 * mii_status accordingly. The requested link state information 589 * is also returned. 590 */ 591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 592 { 593 u32 status = 0; 594 595 switch (vptr->options.spd_dpx) { 596 case SPD_DPX_AUTO: 597 status = VELOCITY_AUTONEG_ENABLE; 598 break; 599 case SPD_DPX_100_FULL: 600 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 601 break; 602 case SPD_DPX_10_FULL: 603 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 604 break; 605 case SPD_DPX_100_HALF: 606 status = VELOCITY_SPEED_100; 607 break; 608 case SPD_DPX_10_HALF: 609 status = VELOCITY_SPEED_10; 610 break; 611 case SPD_DPX_1000_FULL: 612 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 613 break; 614 } 615 vptr->mii_status = status; 616 return status; 617 } 618 619 /** 620 * safe_disable_mii_autopoll - autopoll off 621 * @regs: velocity registers 622 * 623 * Turn off the autopoll and wait for it to disable on the chip 624 */ 625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 626 { 627 u16 ww; 628 629 /* turn off MAUTO */ 630 writeb(0, ®s->MIICR); 631 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 632 udelay(1); 633 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 634 break; 635 } 636 } 637 638 /** 639 * enable_mii_autopoll - turn on autopolling 640 * @regs: velocity registers 641 * 642 * Enable the MII link status autopoll feature on the Velocity 643 * hardware. Wait for it to enable. 644 */ 645 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 646 { 647 int ii; 648 649 writeb(0, &(regs->MIICR)); 650 writeb(MIIADR_SWMPL, ®s->MIIADR); 651 652 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 653 udelay(1); 654 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 655 break; 656 } 657 658 writeb(MIICR_MAUTO, ®s->MIICR); 659 660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 661 udelay(1); 662 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 663 break; 664 } 665 666 } 667 668 /** 669 * velocity_mii_read - read MII data 670 * @regs: velocity registers 671 * @index: MII register index 672 * @data: buffer for received data 673 * 674 * Perform a single read of an MII 16bit register. Returns zero 675 * on success or -ETIMEDOUT if the PHY did not respond. 676 */ 677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 678 { 679 u16 ww; 680 681 /* 682 * Disable MIICR_MAUTO, so that mii addr can be set normally 683 */ 684 safe_disable_mii_autopoll(regs); 685 686 writeb(index, ®s->MIIADR); 687 688 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 689 690 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 691 if (!(readb(®s->MIICR) & MIICR_RCMD)) 692 break; 693 } 694 695 *data = readw(®s->MIIDATA); 696 697 enable_mii_autopoll(regs); 698 if (ww == W_MAX_TIMEOUT) 699 return -ETIMEDOUT; 700 return 0; 701 } 702 703 /** 704 * mii_check_media_mode - check media state 705 * @regs: velocity registers 706 * 707 * Check the current MII status and determine the link status 708 * accordingly 709 */ 710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 711 { 712 u32 status = 0; 713 u16 ANAR; 714 715 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 716 status |= VELOCITY_LINK_FAIL; 717 718 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 719 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 720 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 721 status |= (VELOCITY_SPEED_1000); 722 else { 723 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 724 if (ANAR & ADVERTISE_100FULL) 725 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 726 else if (ANAR & ADVERTISE_100HALF) 727 status |= VELOCITY_SPEED_100; 728 else if (ANAR & ADVERTISE_10FULL) 729 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 730 else 731 status |= (VELOCITY_SPEED_10); 732 } 733 734 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 735 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 736 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 737 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 738 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 739 status |= VELOCITY_AUTONEG_ENABLE; 740 } 741 } 742 743 return status; 744 } 745 746 /** 747 * velocity_mii_write - write MII data 748 * @regs: velocity registers 749 * @index: MII register index 750 * @data: 16bit data for the MII register 751 * 752 * Perform a single write to an MII 16bit register. Returns zero 753 * on success or -ETIMEDOUT if the PHY did not respond. 754 */ 755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 756 { 757 u16 ww; 758 759 /* 760 * Disable MIICR_MAUTO, so that mii addr can be set normally 761 */ 762 safe_disable_mii_autopoll(regs); 763 764 /* MII reg offset */ 765 writeb(mii_addr, ®s->MIIADR); 766 /* set MII data */ 767 writew(data, ®s->MIIDATA); 768 769 /* turn on MIICR_WCMD */ 770 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 771 772 /* W_MAX_TIMEOUT is the timeout period */ 773 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 774 udelay(5); 775 if (!(readb(®s->MIICR) & MIICR_WCMD)) 776 break; 777 } 778 enable_mii_autopoll(regs); 779 780 if (ww == W_MAX_TIMEOUT) 781 return -ETIMEDOUT; 782 return 0; 783 } 784 785 /** 786 * set_mii_flow_control - flow control setup 787 * @vptr: velocity interface 788 * 789 * Set up the flow control on this interface according to 790 * the supplied user/eeprom options. 791 */ 792 static void set_mii_flow_control(struct velocity_info *vptr) 793 { 794 /*Enable or Disable PAUSE in ANAR */ 795 switch (vptr->options.flow_cntl) { 796 case FLOW_CNTL_TX: 797 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 798 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 799 break; 800 801 case FLOW_CNTL_RX: 802 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 803 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 804 break; 805 806 case FLOW_CNTL_TX_RX: 807 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 809 break; 810 811 case FLOW_CNTL_DISABLE: 812 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 814 break; 815 default: 816 break; 817 } 818 } 819 820 /** 821 * mii_set_auto_on - autonegotiate on 822 * @vptr: velocity 823 * 824 * Enable autonegotation on this interface 825 */ 826 static void mii_set_auto_on(struct velocity_info *vptr) 827 { 828 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 829 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 830 else 831 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 832 } 833 834 static u32 check_connection_type(struct mac_regs __iomem *regs) 835 { 836 u32 status = 0; 837 u8 PHYSR0; 838 u16 ANAR; 839 PHYSR0 = readb(®s->PHYSR0); 840 841 /* 842 if (!(PHYSR0 & PHYSR0_LINKGD)) 843 status|=VELOCITY_LINK_FAIL; 844 */ 845 846 if (PHYSR0 & PHYSR0_FDPX) 847 status |= VELOCITY_DUPLEX_FULL; 848 849 if (PHYSR0 & PHYSR0_SPDG) 850 status |= VELOCITY_SPEED_1000; 851 else if (PHYSR0 & PHYSR0_SPD10) 852 status |= VELOCITY_SPEED_10; 853 else 854 status |= VELOCITY_SPEED_100; 855 856 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 857 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 858 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 859 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 860 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 861 status |= VELOCITY_AUTONEG_ENABLE; 862 } 863 } 864 865 return status; 866 } 867 868 /** 869 * velocity_set_media_mode - set media mode 870 * @mii_status: old MII link state 871 * 872 * Check the media link state and configure the flow control 873 * PHY and also velocity hardware setup accordingly. In particular 874 * we need to set up CD polling and frame bursting. 875 */ 876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 877 { 878 u32 curr_status; 879 struct mac_regs __iomem *regs = vptr->mac_regs; 880 881 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 882 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 883 884 /* Set mii link status */ 885 set_mii_flow_control(vptr); 886 887 /* 888 Check if new status is consistent with current status 889 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 890 (mii_status==curr_status)) { 891 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 892 vptr->mii_status=check_connection_type(vptr->mac_regs); 893 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 894 return 0; 895 } 896 */ 897 898 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 899 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 900 901 /* 902 * If connection type is AUTO 903 */ 904 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 905 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 906 /* clear force MAC mode bit */ 907 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 908 /* set duplex mode of MAC according to duplex mode of MII */ 909 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 910 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 911 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 912 913 /* enable AUTO-NEGO mode */ 914 mii_set_auto_on(vptr); 915 } else { 916 u16 CTRL1000; 917 u16 ANAR; 918 u8 CHIPGCR; 919 920 /* 921 * 1. if it's 3119, disable frame bursting in halfduplex mode 922 * and enable it in fullduplex mode 923 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 924 * 3. only enable CD heart beat counter in 10HD mode 925 */ 926 927 /* set force MAC mode bit */ 928 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 929 930 CHIPGCR = readb(®s->CHIPGCR); 931 932 if (mii_status & VELOCITY_SPEED_1000) 933 CHIPGCR |= CHIPGCR_FCGMII; 934 else 935 CHIPGCR &= ~CHIPGCR_FCGMII; 936 937 if (mii_status & VELOCITY_DUPLEX_FULL) { 938 CHIPGCR |= CHIPGCR_FCFDX; 939 writeb(CHIPGCR, ®s->CHIPGCR); 940 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 941 if (vptr->rev_id < REV_ID_VT3216_A0) 942 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 943 } else { 944 CHIPGCR &= ~CHIPGCR_FCFDX; 945 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 946 writeb(CHIPGCR, ®s->CHIPGCR); 947 if (vptr->rev_id < REV_ID_VT3216_A0) 948 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 949 } 950 951 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 952 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 953 if ((mii_status & VELOCITY_SPEED_1000) && 954 (mii_status & VELOCITY_DUPLEX_FULL)) { 955 CTRL1000 |= ADVERTISE_1000FULL; 956 } 957 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 958 959 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 960 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 961 else 962 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 963 964 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 965 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 966 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 967 if (mii_status & VELOCITY_SPEED_100) { 968 if (mii_status & VELOCITY_DUPLEX_FULL) 969 ANAR |= ADVERTISE_100FULL; 970 else 971 ANAR |= ADVERTISE_100HALF; 972 } else if (mii_status & VELOCITY_SPEED_10) { 973 if (mii_status & VELOCITY_DUPLEX_FULL) 974 ANAR |= ADVERTISE_10FULL; 975 else 976 ANAR |= ADVERTISE_10HALF; 977 } 978 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 979 /* enable AUTO-NEGO mode */ 980 mii_set_auto_on(vptr); 981 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 982 } 983 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 984 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 985 return VELOCITY_LINK_CHANGE; 986 } 987 988 /** 989 * velocity_print_link_status - link status reporting 990 * @vptr: velocity to report on 991 * 992 * Turn the link status of the velocity card into a kernel log 993 * description of the new link state, detailing speed and duplex 994 * status 995 */ 996 static void velocity_print_link_status(struct velocity_info *vptr) 997 { 998 999 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 1001 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1002 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 1003 1004 if (vptr->mii_status & VELOCITY_SPEED_1000) 1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1006 else if (vptr->mii_status & VELOCITY_SPEED_100) 1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1008 else 1009 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1010 1011 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1012 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1013 else 1014 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1015 } else { 1016 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1017 switch (vptr->options.spd_dpx) { 1018 case SPD_DPX_1000_FULL: 1019 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1020 break; 1021 case SPD_DPX_100_HALF: 1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1023 break; 1024 case SPD_DPX_100_FULL: 1025 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1026 break; 1027 case SPD_DPX_10_HALF: 1028 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1029 break; 1030 case SPD_DPX_10_FULL: 1031 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1032 break; 1033 default: 1034 break; 1035 } 1036 } 1037 } 1038 1039 /** 1040 * enable_flow_control_ability - flow control 1041 * @vptr: veloity to configure 1042 * 1043 * Set up flow control according to the flow control options 1044 * determined by the eeprom/configuration. 1045 */ 1046 static void enable_flow_control_ability(struct velocity_info *vptr) 1047 { 1048 1049 struct mac_regs __iomem *regs = vptr->mac_regs; 1050 1051 switch (vptr->options.flow_cntl) { 1052 1053 case FLOW_CNTL_DEFAULT: 1054 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1055 writel(CR0_FDXRFCEN, ®s->CR0Set); 1056 else 1057 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1058 1059 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1060 writel(CR0_FDXTFCEN, ®s->CR0Set); 1061 else 1062 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1063 break; 1064 1065 case FLOW_CNTL_TX: 1066 writel(CR0_FDXTFCEN, ®s->CR0Set); 1067 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1068 break; 1069 1070 case FLOW_CNTL_RX: 1071 writel(CR0_FDXRFCEN, ®s->CR0Set); 1072 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1073 break; 1074 1075 case FLOW_CNTL_TX_RX: 1076 writel(CR0_FDXTFCEN, ®s->CR0Set); 1077 writel(CR0_FDXRFCEN, ®s->CR0Set); 1078 break; 1079 1080 case FLOW_CNTL_DISABLE: 1081 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1082 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1083 break; 1084 1085 default: 1086 break; 1087 } 1088 1089 } 1090 1091 /** 1092 * velocity_soft_reset - soft reset 1093 * @vptr: velocity to reset 1094 * 1095 * Kick off a soft reset of the velocity adapter and then poll 1096 * until the reset sequence has completed before returning. 1097 */ 1098 static int velocity_soft_reset(struct velocity_info *vptr) 1099 { 1100 struct mac_regs __iomem *regs = vptr->mac_regs; 1101 int i = 0; 1102 1103 writel(CR0_SFRST, ®s->CR0Set); 1104 1105 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1106 udelay(5); 1107 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1108 break; 1109 } 1110 1111 if (i == W_MAX_TIMEOUT) { 1112 writel(CR0_FORSRST, ®s->CR0Set); 1113 /* FIXME: PCI POSTING */ 1114 /* delay 2ms */ 1115 mdelay(2); 1116 } 1117 return 0; 1118 } 1119 1120 /** 1121 * velocity_set_multi - filter list change callback 1122 * @dev: network device 1123 * 1124 * Called by the network layer when the filter lists need to change 1125 * for a velocity adapter. Reload the CAMs with the new address 1126 * filter ruleset. 1127 */ 1128 static void velocity_set_multi(struct net_device *dev) 1129 { 1130 struct velocity_info *vptr = netdev_priv(dev); 1131 struct mac_regs __iomem *regs = vptr->mac_regs; 1132 u8 rx_mode; 1133 int i; 1134 struct netdev_hw_addr *ha; 1135 1136 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1137 writel(0xffffffff, ®s->MARCAM[0]); 1138 writel(0xffffffff, ®s->MARCAM[4]); 1139 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1140 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1141 (dev->flags & IFF_ALLMULTI)) { 1142 writel(0xffffffff, ®s->MARCAM[0]); 1143 writel(0xffffffff, ®s->MARCAM[4]); 1144 rx_mode = (RCR_AM | RCR_AB); 1145 } else { 1146 int offset = MCAM_SIZE - vptr->multicast_limit; 1147 mac_get_cam_mask(regs, vptr->mCAMmask); 1148 1149 i = 0; 1150 netdev_for_each_mc_addr(ha, dev) { 1151 mac_set_cam(regs, i + offset, ha->addr); 1152 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1153 i++; 1154 } 1155 1156 mac_set_cam_mask(regs, vptr->mCAMmask); 1157 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1158 } 1159 if (dev->mtu > 1500) 1160 rx_mode |= RCR_AL; 1161 1162 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1163 1164 } 1165 1166 /* 1167 * MII access , media link mode setting functions 1168 */ 1169 1170 /** 1171 * mii_init - set up MII 1172 * @vptr: velocity adapter 1173 * @mii_status: links tatus 1174 * 1175 * Set up the PHY for the current link state. 1176 */ 1177 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1178 { 1179 u16 BMCR; 1180 1181 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1182 case PHYID_ICPLUS_IP101A: 1183 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1184 MII_ADVERTISE, vptr->mac_regs); 1185 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1186 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1187 vptr->mac_regs); 1188 else 1189 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1190 vptr->mac_regs); 1191 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1192 break; 1193 case PHYID_CICADA_CS8201: 1194 /* 1195 * Reset to hardware default 1196 */ 1197 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1198 /* 1199 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1200 * off it in NWay-forced half mode for NWay-forced v.s. 1201 * legacy-forced issue. 1202 */ 1203 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1204 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1205 else 1206 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1207 /* 1208 * Turn on Link/Activity LED enable bit for CIS8201 1209 */ 1210 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1211 break; 1212 case PHYID_VT3216_32BIT: 1213 case PHYID_VT3216_64BIT: 1214 /* 1215 * Reset to hardware default 1216 */ 1217 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1218 /* 1219 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1220 * off it in NWay-forced half mode for NWay-forced v.s. 1221 * legacy-forced issue 1222 */ 1223 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1224 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1225 else 1226 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1227 break; 1228 1229 case PHYID_MARVELL_1000: 1230 case PHYID_MARVELL_1000S: 1231 /* 1232 * Assert CRS on Transmit 1233 */ 1234 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1235 /* 1236 * Reset to hardware default 1237 */ 1238 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1239 break; 1240 default: 1241 ; 1242 } 1243 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1244 if (BMCR & BMCR_ISOLATE) { 1245 BMCR &= ~BMCR_ISOLATE; 1246 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1247 } 1248 } 1249 1250 /** 1251 * setup_queue_timers - Setup interrupt timers 1252 * 1253 * Setup interrupt frequency during suppression (timeout if the frame 1254 * count isn't filled). 1255 */ 1256 static void setup_queue_timers(struct velocity_info *vptr) 1257 { 1258 /* Only for newer revisions */ 1259 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1260 u8 txqueue_timer = 0; 1261 u8 rxqueue_timer = 0; 1262 1263 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1264 VELOCITY_SPEED_100)) { 1265 txqueue_timer = vptr->options.txqueue_timer; 1266 rxqueue_timer = vptr->options.rxqueue_timer; 1267 } 1268 1269 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1270 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1271 } 1272 } 1273 1274 /** 1275 * setup_adaptive_interrupts - Setup interrupt suppression 1276 * 1277 * @vptr velocity adapter 1278 * 1279 * The velocity is able to suppress interrupt during high interrupt load. 1280 * This function turns on that feature. 1281 */ 1282 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1283 { 1284 struct mac_regs __iomem *regs = vptr->mac_regs; 1285 u16 tx_intsup = vptr->options.tx_intsup; 1286 u16 rx_intsup = vptr->options.rx_intsup; 1287 1288 /* Setup default interrupt mask (will be changed below) */ 1289 vptr->int_mask = INT_MASK_DEF; 1290 1291 /* Set Tx Interrupt Suppression Threshold */ 1292 writeb(CAMCR_PS0, ®s->CAMCR); 1293 if (tx_intsup != 0) { 1294 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1295 ISR_PTX2I | ISR_PTX3I); 1296 writew(tx_intsup, ®s->ISRCTL); 1297 } else 1298 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1299 1300 /* Set Rx Interrupt Suppression Threshold */ 1301 writeb(CAMCR_PS1, ®s->CAMCR); 1302 if (rx_intsup != 0) { 1303 vptr->int_mask &= ~ISR_PRXI; 1304 writew(rx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1307 1308 /* Select page to interrupt hold timer */ 1309 writeb(0, ®s->CAMCR); 1310 } 1311 1312 /** 1313 * velocity_init_registers - initialise MAC registers 1314 * @vptr: velocity to init 1315 * @type: type of initialisation (hot or cold) 1316 * 1317 * Initialise the MAC on a reset or on first set up on the 1318 * hardware. 1319 */ 1320 static void velocity_init_registers(struct velocity_info *vptr, 1321 enum velocity_init_type type) 1322 { 1323 struct mac_regs __iomem *regs = vptr->mac_regs; 1324 struct net_device *netdev = vptr->netdev; 1325 int i, mii_status; 1326 1327 mac_wol_reset(regs); 1328 1329 switch (type) { 1330 case VELOCITY_INIT_RESET: 1331 case VELOCITY_INIT_WOL: 1332 1333 netif_stop_queue(netdev); 1334 1335 /* 1336 * Reset RX to prevent RX pointer not on the 4X location 1337 */ 1338 velocity_rx_reset(vptr); 1339 mac_rx_queue_run(regs); 1340 mac_rx_queue_wake(regs); 1341 1342 mii_status = velocity_get_opt_media_mode(vptr); 1343 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1344 velocity_print_link_status(vptr); 1345 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1346 netif_wake_queue(netdev); 1347 } 1348 1349 enable_flow_control_ability(vptr); 1350 1351 mac_clear_isr(regs); 1352 writel(CR0_STOP, ®s->CR0Clr); 1353 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1354 ®s->CR0Set); 1355 1356 break; 1357 1358 case VELOCITY_INIT_COLD: 1359 default: 1360 /* 1361 * Do reset 1362 */ 1363 velocity_soft_reset(vptr); 1364 mdelay(5); 1365 1366 if (!vptr->no_eeprom) { 1367 mac_eeprom_reload(regs); 1368 for (i = 0; i < 6; i++) 1369 writeb(netdev->dev_addr[i], regs->PAR + i); 1370 } 1371 1372 /* 1373 * clear Pre_ACPI bit. 1374 */ 1375 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1376 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1377 mac_set_dma_length(regs, vptr->options.DMA_length); 1378 1379 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1380 /* 1381 * Back off algorithm use original IEEE standard 1382 */ 1383 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1384 1385 /* 1386 * Init CAM filter 1387 */ 1388 velocity_init_cam_filter(vptr); 1389 1390 /* 1391 * Set packet filter: Receive directed and broadcast address 1392 */ 1393 velocity_set_multi(netdev); 1394 1395 /* 1396 * Enable MII auto-polling 1397 */ 1398 enable_mii_autopoll(regs); 1399 1400 setup_adaptive_interrupts(vptr); 1401 1402 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1403 writew(vptr->options.numrx - 1, ®s->RDCSize); 1404 mac_rx_queue_run(regs); 1405 mac_rx_queue_wake(regs); 1406 1407 writew(vptr->options.numtx - 1, ®s->TDCSize); 1408 1409 for (i = 0; i < vptr->tx.numq; i++) { 1410 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1411 mac_tx_queue_run(regs, i); 1412 } 1413 1414 init_flow_control_register(vptr); 1415 1416 writel(CR0_STOP, ®s->CR0Clr); 1417 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1418 1419 mii_status = velocity_get_opt_media_mode(vptr); 1420 netif_stop_queue(netdev); 1421 1422 mii_init(vptr, mii_status); 1423 1424 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1425 velocity_print_link_status(vptr); 1426 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1427 netif_wake_queue(netdev); 1428 } 1429 1430 enable_flow_control_ability(vptr); 1431 mac_hw_mibs_init(regs); 1432 mac_write_int_mask(vptr->int_mask, regs); 1433 mac_clear_isr(regs); 1434 1435 } 1436 } 1437 1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1439 { 1440 struct mac_regs __iomem *regs = vptr->mac_regs; 1441 int avail, dirty, unusable; 1442 1443 /* 1444 * RD number must be equal to 4X per hardware spec 1445 * (programming guide rev 1.20, p.13) 1446 */ 1447 if (vptr->rx.filled < 4) 1448 return; 1449 1450 wmb(); 1451 1452 unusable = vptr->rx.filled & 0x0003; 1453 dirty = vptr->rx.dirty - unusable; 1454 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1455 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1456 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1457 } 1458 1459 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1460 vptr->rx.filled = unusable; 1461 } 1462 1463 /** 1464 * velocity_init_dma_rings - set up DMA rings 1465 * @vptr: Velocity to set up 1466 * 1467 * Allocate PCI mapped DMA rings for the receive and transmit layer 1468 * to use. 1469 */ 1470 static int velocity_init_dma_rings(struct velocity_info *vptr) 1471 { 1472 struct velocity_opt *opt = &vptr->options; 1473 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1474 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1475 dma_addr_t pool_dma; 1476 void *pool; 1477 unsigned int i; 1478 1479 /* 1480 * Allocate all RD/TD rings a single pool. 1481 * 1482 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1483 * alignment 1484 */ 1485 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1486 rx_ring_size, &pool_dma, GFP_ATOMIC); 1487 if (!pool) { 1488 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1489 vptr->netdev->name); 1490 return -ENOMEM; 1491 } 1492 1493 vptr->rx.ring = pool; 1494 vptr->rx.pool_dma = pool_dma; 1495 1496 pool += rx_ring_size; 1497 pool_dma += rx_ring_size; 1498 1499 for (i = 0; i < vptr->tx.numq; i++) { 1500 vptr->tx.rings[i] = pool; 1501 vptr->tx.pool_dma[i] = pool_dma; 1502 pool += tx_ring_size; 1503 pool_dma += tx_ring_size; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1510 { 1511 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1512 } 1513 1514 /** 1515 * velocity_alloc_rx_buf - allocate aligned receive buffer 1516 * @vptr: velocity 1517 * @idx: ring index 1518 * 1519 * Allocate a new full sized buffer for the reception of a frame and 1520 * map it into PCI space for the hardware to use. The hardware 1521 * requires *64* byte alignment of the buffer which makes life 1522 * less fun than would be ideal. 1523 */ 1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1525 { 1526 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1527 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1528 1529 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1530 if (rd_info->skb == NULL) 1531 return -ENOMEM; 1532 1533 /* 1534 * Do the gymnastics to get the buffer head for data at 1535 * 64byte alignment. 1536 */ 1537 skb_reserve(rd_info->skb, 1538 64 - ((unsigned long) rd_info->skb->data & 63)); 1539 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1540 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1541 1542 /* 1543 * Fill in the descriptor to match 1544 */ 1545 1546 *((u32 *) & (rd->rdesc0)) = 0; 1547 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1548 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1549 rd->pa_high = 0; 1550 return 0; 1551 } 1552 1553 1554 static int velocity_rx_refill(struct velocity_info *vptr) 1555 { 1556 int dirty = vptr->rx.dirty, done = 0; 1557 1558 do { 1559 struct rx_desc *rd = vptr->rx.ring + dirty; 1560 1561 /* Fine for an all zero Rx desc at init time as well */ 1562 if (rd->rdesc0.len & OWNED_BY_NIC) 1563 break; 1564 1565 if (!vptr->rx.info[dirty].skb) { 1566 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1567 break; 1568 } 1569 done++; 1570 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1571 } while (dirty != vptr->rx.curr); 1572 1573 if (done) { 1574 vptr->rx.dirty = dirty; 1575 vptr->rx.filled += done; 1576 } 1577 1578 return done; 1579 } 1580 1581 /** 1582 * velocity_free_rd_ring - free receive ring 1583 * @vptr: velocity to clean up 1584 * 1585 * Free the receive buffers for each ring slot and any 1586 * attached socket buffers that need to go away. 1587 */ 1588 static void velocity_free_rd_ring(struct velocity_info *vptr) 1589 { 1590 int i; 1591 1592 if (vptr->rx.info == NULL) 1593 return; 1594 1595 for (i = 0; i < vptr->options.numrx; i++) { 1596 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1597 struct rx_desc *rd = vptr->rx.ring + i; 1598 1599 memset(rd, 0, sizeof(*rd)); 1600 1601 if (!rd_info->skb) 1602 continue; 1603 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1604 DMA_FROM_DEVICE); 1605 rd_info->skb_dma = 0; 1606 1607 dev_kfree_skb(rd_info->skb); 1608 rd_info->skb = NULL; 1609 } 1610 1611 kfree(vptr->rx.info); 1612 vptr->rx.info = NULL; 1613 } 1614 1615 /** 1616 * velocity_init_rd_ring - set up receive ring 1617 * @vptr: velocity to configure 1618 * 1619 * Allocate and set up the receive buffers for each ring slot and 1620 * assign them to the network adapter. 1621 */ 1622 static int velocity_init_rd_ring(struct velocity_info *vptr) 1623 { 1624 int ret = -ENOMEM; 1625 1626 vptr->rx.info = kcalloc(vptr->options.numrx, 1627 sizeof(struct velocity_rd_info), GFP_KERNEL); 1628 if (!vptr->rx.info) 1629 goto out; 1630 1631 velocity_init_rx_ring_indexes(vptr); 1632 1633 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1634 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1635 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1636 velocity_free_rd_ring(vptr); 1637 goto out; 1638 } 1639 1640 ret = 0; 1641 out: 1642 return ret; 1643 } 1644 1645 /** 1646 * velocity_init_td_ring - set up transmit ring 1647 * @vptr: velocity 1648 * 1649 * Set up the transmit ring and chain the ring pointers together. 1650 * Returns zero on success or a negative posix errno code for 1651 * failure. 1652 */ 1653 static int velocity_init_td_ring(struct velocity_info *vptr) 1654 { 1655 int j; 1656 1657 /* Init the TD ring entries */ 1658 for (j = 0; j < vptr->tx.numq; j++) { 1659 1660 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1661 sizeof(struct velocity_td_info), 1662 GFP_KERNEL); 1663 if (!vptr->tx.infos[j]) { 1664 while (--j >= 0) 1665 kfree(vptr->tx.infos[j]); 1666 return -ENOMEM; 1667 } 1668 1669 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1670 } 1671 return 0; 1672 } 1673 1674 /** 1675 * velocity_free_dma_rings - free PCI ring pointers 1676 * @vptr: Velocity to free from 1677 * 1678 * Clean up the PCI ring buffers allocated to this velocity. 1679 */ 1680 static void velocity_free_dma_rings(struct velocity_info *vptr) 1681 { 1682 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1683 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1684 1685 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1686 } 1687 1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1689 { 1690 int ret; 1691 1692 velocity_set_rxbufsize(vptr, mtu); 1693 1694 ret = velocity_init_dma_rings(vptr); 1695 if (ret < 0) 1696 goto out; 1697 1698 ret = velocity_init_rd_ring(vptr); 1699 if (ret < 0) 1700 goto err_free_dma_rings_0; 1701 1702 ret = velocity_init_td_ring(vptr); 1703 if (ret < 0) 1704 goto err_free_rd_ring_1; 1705 out: 1706 return ret; 1707 1708 err_free_rd_ring_1: 1709 velocity_free_rd_ring(vptr); 1710 err_free_dma_rings_0: 1711 velocity_free_dma_rings(vptr); 1712 goto out; 1713 } 1714 1715 /** 1716 * velocity_free_tx_buf - free transmit buffer 1717 * @vptr: velocity 1718 * @tdinfo: buffer 1719 * 1720 * Release an transmit buffer. If the buffer was preallocated then 1721 * recycle it, if not then unmap the buffer. 1722 */ 1723 static void velocity_free_tx_buf(struct velocity_info *vptr, 1724 struct velocity_td_info *tdinfo, struct tx_desc *td) 1725 { 1726 struct sk_buff *skb = tdinfo->skb; 1727 1728 /* 1729 * Don't unmap the pre-allocated tx_bufs 1730 */ 1731 if (tdinfo->skb_dma) { 1732 int i; 1733 1734 for (i = 0; i < tdinfo->nskb_dma; i++) { 1735 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1736 1737 /* For scatter-gather */ 1738 if (skb_shinfo(skb)->nr_frags > 0) 1739 pktlen = max_t(size_t, pktlen, 1740 td->td_buf[i].size & ~TD_QUEUE); 1741 1742 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1743 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1744 } 1745 } 1746 dev_kfree_skb_irq(skb); 1747 tdinfo->skb = NULL; 1748 } 1749 1750 /* 1751 * FIXME: could we merge this with velocity_free_tx_buf ? 1752 */ 1753 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1754 int q, int n) 1755 { 1756 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1757 int i; 1758 1759 if (td_info == NULL) 1760 return; 1761 1762 if (td_info->skb) { 1763 for (i = 0; i < td_info->nskb_dma; i++) { 1764 if (td_info->skb_dma[i]) { 1765 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1766 td_info->skb->len, DMA_TO_DEVICE); 1767 td_info->skb_dma[i] = 0; 1768 } 1769 } 1770 dev_kfree_skb(td_info->skb); 1771 td_info->skb = NULL; 1772 } 1773 } 1774 1775 /** 1776 * velocity_free_td_ring - free td ring 1777 * @vptr: velocity 1778 * 1779 * Free up the transmit ring for this particular velocity adapter. 1780 * We free the ring contents but not the ring itself. 1781 */ 1782 static void velocity_free_td_ring(struct velocity_info *vptr) 1783 { 1784 int i, j; 1785 1786 for (j = 0; j < vptr->tx.numq; j++) { 1787 if (vptr->tx.infos[j] == NULL) 1788 continue; 1789 for (i = 0; i < vptr->options.numtx; i++) 1790 velocity_free_td_ring_entry(vptr, j, i); 1791 1792 kfree(vptr->tx.infos[j]); 1793 vptr->tx.infos[j] = NULL; 1794 } 1795 } 1796 1797 static void velocity_free_rings(struct velocity_info *vptr) 1798 { 1799 velocity_free_td_ring(vptr); 1800 velocity_free_rd_ring(vptr); 1801 velocity_free_dma_rings(vptr); 1802 } 1803 1804 /** 1805 * velocity_error - handle error from controller 1806 * @vptr: velocity 1807 * @status: card status 1808 * 1809 * Process an error report from the hardware and attempt to recover 1810 * the card itself. At the moment we cannot recover from some 1811 * theoretically impossible errors but this could be fixed using 1812 * the pci_device_failed logic to bounce the hardware 1813 * 1814 */ 1815 static void velocity_error(struct velocity_info *vptr, int status) 1816 { 1817 1818 if (status & ISR_TXSTLI) { 1819 struct mac_regs __iomem *regs = vptr->mac_regs; 1820 1821 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1822 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1823 writew(TRDCSR_RUN, ®s->TDCSRClr); 1824 netif_stop_queue(vptr->netdev); 1825 1826 /* FIXME: port over the pci_device_failed code and use it 1827 here */ 1828 } 1829 1830 if (status & ISR_SRCI) { 1831 struct mac_regs __iomem *regs = vptr->mac_regs; 1832 int linked; 1833 1834 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1835 vptr->mii_status = check_connection_type(regs); 1836 1837 /* 1838 * If it is a 3119, disable frame bursting in 1839 * halfduplex mode and enable it in fullduplex 1840 * mode 1841 */ 1842 if (vptr->rev_id < REV_ID_VT3216_A0) { 1843 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1844 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1845 else 1846 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1847 } 1848 /* 1849 * Only enable CD heart beat counter in 10HD mode 1850 */ 1851 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1852 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1853 else 1854 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1855 1856 setup_queue_timers(vptr); 1857 } 1858 /* 1859 * Get link status from PHYSR0 1860 */ 1861 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1862 1863 if (linked) { 1864 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1865 netif_carrier_on(vptr->netdev); 1866 } else { 1867 vptr->mii_status |= VELOCITY_LINK_FAIL; 1868 netif_carrier_off(vptr->netdev); 1869 } 1870 1871 velocity_print_link_status(vptr); 1872 enable_flow_control_ability(vptr); 1873 1874 /* 1875 * Re-enable auto-polling because SRCI will disable 1876 * auto-polling 1877 */ 1878 1879 enable_mii_autopoll(regs); 1880 1881 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1882 netif_stop_queue(vptr->netdev); 1883 else 1884 netif_wake_queue(vptr->netdev); 1885 1886 } 1887 if (status & ISR_MIBFI) 1888 velocity_update_hw_mibs(vptr); 1889 if (status & ISR_LSTEI) 1890 mac_rx_queue_wake(vptr->mac_regs); 1891 } 1892 1893 /** 1894 * tx_srv - transmit interrupt service 1895 * @vptr; Velocity 1896 * 1897 * Scan the queues looking for transmitted packets that 1898 * we can complete and clean up. Update any statistics as 1899 * necessary/ 1900 */ 1901 static int velocity_tx_srv(struct velocity_info *vptr) 1902 { 1903 struct tx_desc *td; 1904 int qnum; 1905 int full = 0; 1906 int idx; 1907 int works = 0; 1908 struct velocity_td_info *tdinfo; 1909 struct net_device_stats *stats = &vptr->netdev->stats; 1910 1911 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1912 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1913 idx = (idx + 1) % vptr->options.numtx) { 1914 1915 /* 1916 * Get Tx Descriptor 1917 */ 1918 td = &(vptr->tx.rings[qnum][idx]); 1919 tdinfo = &(vptr->tx.infos[qnum][idx]); 1920 1921 if (td->tdesc0.len & OWNED_BY_NIC) 1922 break; 1923 1924 if ((works++ > 15)) 1925 break; 1926 1927 if (td->tdesc0.TSR & TSR0_TERR) { 1928 stats->tx_errors++; 1929 stats->tx_dropped++; 1930 if (td->tdesc0.TSR & TSR0_CDH) 1931 stats->tx_heartbeat_errors++; 1932 if (td->tdesc0.TSR & TSR0_CRS) 1933 stats->tx_carrier_errors++; 1934 if (td->tdesc0.TSR & TSR0_ABT) 1935 stats->tx_aborted_errors++; 1936 if (td->tdesc0.TSR & TSR0_OWC) 1937 stats->tx_window_errors++; 1938 } else { 1939 stats->tx_packets++; 1940 stats->tx_bytes += tdinfo->skb->len; 1941 } 1942 velocity_free_tx_buf(vptr, tdinfo, td); 1943 vptr->tx.used[qnum]--; 1944 } 1945 vptr->tx.tail[qnum] = idx; 1946 1947 if (AVAIL_TD(vptr, qnum) < 1) 1948 full = 1; 1949 } 1950 /* 1951 * Look to see if we should kick the transmit network 1952 * layer for more work. 1953 */ 1954 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1955 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1956 netif_wake_queue(vptr->netdev); 1957 } 1958 return works; 1959 } 1960 1961 /** 1962 * velocity_rx_csum - checksum process 1963 * @rd: receive packet descriptor 1964 * @skb: network layer packet buffer 1965 * 1966 * Process the status bits for the received packet and determine 1967 * if the checksum was computed and verified by the hardware 1968 */ 1969 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1970 { 1971 skb_checksum_none_assert(skb); 1972 1973 if (rd->rdesc1.CSM & CSM_IPKT) { 1974 if (rd->rdesc1.CSM & CSM_IPOK) { 1975 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1976 (rd->rdesc1.CSM & CSM_UDPKT)) { 1977 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1978 return; 1979 } 1980 skb->ip_summed = CHECKSUM_UNNECESSARY; 1981 } 1982 } 1983 } 1984 1985 /** 1986 * velocity_rx_copy - in place Rx copy for small packets 1987 * @rx_skb: network layer packet buffer candidate 1988 * @pkt_size: received data size 1989 * @rd: receive packet descriptor 1990 * @dev: network device 1991 * 1992 * Replace the current skb that is scheduled for Rx processing by a 1993 * shorter, immediately allocated skb, if the received packet is small 1994 * enough. This function returns a negative value if the received 1995 * packet is too big or if memory is exhausted. 1996 */ 1997 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 1998 struct velocity_info *vptr) 1999 { 2000 int ret = -1; 2001 if (pkt_size < rx_copybreak) { 2002 struct sk_buff *new_skb; 2003 2004 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2005 if (new_skb) { 2006 new_skb->ip_summed = rx_skb[0]->ip_summed; 2007 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2008 *rx_skb = new_skb; 2009 ret = 0; 2010 } 2011 2012 } 2013 return ret; 2014 } 2015 2016 /** 2017 * velocity_iph_realign - IP header alignment 2018 * @vptr: velocity we are handling 2019 * @skb: network layer packet buffer 2020 * @pkt_size: received data size 2021 * 2022 * Align IP header on a 2 bytes boundary. This behavior can be 2023 * configured by the user. 2024 */ 2025 static inline void velocity_iph_realign(struct velocity_info *vptr, 2026 struct sk_buff *skb, int pkt_size) 2027 { 2028 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2029 memmove(skb->data + 2, skb->data, pkt_size); 2030 skb_reserve(skb, 2); 2031 } 2032 } 2033 2034 /** 2035 * velocity_receive_frame - received packet processor 2036 * @vptr: velocity we are handling 2037 * @idx: ring index 2038 * 2039 * A packet has arrived. We process the packet and if appropriate 2040 * pass the frame up the network stack 2041 */ 2042 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2043 { 2044 struct net_device_stats *stats = &vptr->netdev->stats; 2045 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2046 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2047 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2048 struct sk_buff *skb; 2049 2050 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) { 2051 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) 2052 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name); 2053 stats->rx_length_errors++; 2054 return -EINVAL; 2055 } 2056 2057 if (rd->rdesc0.RSR & RSR_MAR) 2058 stats->multicast++; 2059 2060 skb = rd_info->skb; 2061 2062 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2063 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2064 2065 velocity_rx_csum(rd, skb); 2066 2067 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2068 velocity_iph_realign(vptr, skb, pkt_len); 2069 rd_info->skb = NULL; 2070 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2071 DMA_FROM_DEVICE); 2072 } else { 2073 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2074 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2075 } 2076 2077 skb_put(skb, pkt_len - 4); 2078 skb->protocol = eth_type_trans(skb, vptr->netdev); 2079 2080 if (rd->rdesc0.RSR & RSR_DETAG) { 2081 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2082 2083 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2084 } 2085 netif_receive_skb(skb); 2086 2087 stats->rx_bytes += pkt_len; 2088 stats->rx_packets++; 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * velocity_rx_srv - service RX interrupt 2095 * @vptr: velocity 2096 * 2097 * Walk the receive ring of the velocity adapter and remove 2098 * any received packets from the receive queue. Hand the ring 2099 * slots back to the adapter for reuse. 2100 */ 2101 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2102 { 2103 struct net_device_stats *stats = &vptr->netdev->stats; 2104 int rd_curr = vptr->rx.curr; 2105 int works = 0; 2106 2107 while (works < budget_left) { 2108 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2109 2110 if (!vptr->rx.info[rd_curr].skb) 2111 break; 2112 2113 if (rd->rdesc0.len & OWNED_BY_NIC) 2114 break; 2115 2116 rmb(); 2117 2118 /* 2119 * Don't drop CE or RL error frame although RXOK is off 2120 */ 2121 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2122 if (velocity_receive_frame(vptr, rd_curr) < 0) 2123 stats->rx_dropped++; 2124 } else { 2125 if (rd->rdesc0.RSR & RSR_CRC) 2126 stats->rx_crc_errors++; 2127 if (rd->rdesc0.RSR & RSR_FAE) 2128 stats->rx_frame_errors++; 2129 2130 stats->rx_dropped++; 2131 } 2132 2133 rd->size |= RX_INTEN; 2134 2135 rd_curr++; 2136 if (rd_curr >= vptr->options.numrx) 2137 rd_curr = 0; 2138 works++; 2139 } 2140 2141 vptr->rx.curr = rd_curr; 2142 2143 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2144 velocity_give_many_rx_descs(vptr); 2145 2146 VAR_USED(stats); 2147 return works; 2148 } 2149 2150 static int velocity_poll(struct napi_struct *napi, int budget) 2151 { 2152 struct velocity_info *vptr = container_of(napi, 2153 struct velocity_info, napi); 2154 unsigned int rx_done; 2155 unsigned long flags; 2156 2157 /* 2158 * Do rx and tx twice for performance (taken from the VIA 2159 * out-of-tree driver). 2160 */ 2161 rx_done = velocity_rx_srv(vptr, budget); 2162 spin_lock_irqsave(&vptr->lock, flags); 2163 velocity_tx_srv(vptr); 2164 /* If budget not fully consumed, exit the polling mode */ 2165 if (rx_done < budget) { 2166 napi_complete(napi); 2167 mac_enable_int(vptr->mac_regs); 2168 } 2169 spin_unlock_irqrestore(&vptr->lock, flags); 2170 2171 return rx_done; 2172 } 2173 2174 /** 2175 * velocity_intr - interrupt callback 2176 * @irq: interrupt number 2177 * @dev_instance: interrupting device 2178 * 2179 * Called whenever an interrupt is generated by the velocity 2180 * adapter IRQ line. We may not be the source of the interrupt 2181 * and need to identify initially if we are, and if not exit as 2182 * efficiently as possible. 2183 */ 2184 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2185 { 2186 struct net_device *dev = dev_instance; 2187 struct velocity_info *vptr = netdev_priv(dev); 2188 u32 isr_status; 2189 2190 spin_lock(&vptr->lock); 2191 isr_status = mac_read_isr(vptr->mac_regs); 2192 2193 /* Not us ? */ 2194 if (isr_status == 0) { 2195 spin_unlock(&vptr->lock); 2196 return IRQ_NONE; 2197 } 2198 2199 /* Ack the interrupt */ 2200 mac_write_isr(vptr->mac_regs, isr_status); 2201 2202 if (likely(napi_schedule_prep(&vptr->napi))) { 2203 mac_disable_int(vptr->mac_regs); 2204 __napi_schedule(&vptr->napi); 2205 } 2206 2207 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2208 velocity_error(vptr, isr_status); 2209 2210 spin_unlock(&vptr->lock); 2211 2212 return IRQ_HANDLED; 2213 } 2214 2215 /** 2216 * velocity_open - interface activation callback 2217 * @dev: network layer device to open 2218 * 2219 * Called when the network layer brings the interface up. Returns 2220 * a negative posix error code on failure, or zero on success. 2221 * 2222 * All the ring allocation and set up is done on open for this 2223 * adapter to minimise memory usage when inactive 2224 */ 2225 static int velocity_open(struct net_device *dev) 2226 { 2227 struct velocity_info *vptr = netdev_priv(dev); 2228 int ret; 2229 2230 ret = velocity_init_rings(vptr, dev->mtu); 2231 if (ret < 0) 2232 goto out; 2233 2234 /* Ensure chip is running */ 2235 velocity_set_power_state(vptr, PCI_D0); 2236 2237 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2238 2239 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2240 dev->name, dev); 2241 if (ret < 0) { 2242 /* Power down the chip */ 2243 velocity_set_power_state(vptr, PCI_D3hot); 2244 velocity_free_rings(vptr); 2245 goto out; 2246 } 2247 2248 velocity_give_many_rx_descs(vptr); 2249 2250 mac_enable_int(vptr->mac_regs); 2251 netif_start_queue(dev); 2252 napi_enable(&vptr->napi); 2253 vptr->flags |= VELOCITY_FLAGS_OPENED; 2254 out: 2255 return ret; 2256 } 2257 2258 /** 2259 * velocity_shutdown - shut down the chip 2260 * @vptr: velocity to deactivate 2261 * 2262 * Shuts down the internal operations of the velocity and 2263 * disables interrupts, autopolling, transmit and receive 2264 */ 2265 static void velocity_shutdown(struct velocity_info *vptr) 2266 { 2267 struct mac_regs __iomem *regs = vptr->mac_regs; 2268 mac_disable_int(regs); 2269 writel(CR0_STOP, ®s->CR0Set); 2270 writew(0xFFFF, ®s->TDCSRClr); 2271 writeb(0xFF, ®s->RDCSRClr); 2272 safe_disable_mii_autopoll(regs); 2273 mac_clear_isr(regs); 2274 } 2275 2276 /** 2277 * velocity_change_mtu - MTU change callback 2278 * @dev: network device 2279 * @new_mtu: desired MTU 2280 * 2281 * Handle requests from the networking layer for MTU change on 2282 * this interface. It gets called on a change by the network layer. 2283 * Return zero for success or negative posix error code. 2284 */ 2285 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2286 { 2287 struct velocity_info *vptr = netdev_priv(dev); 2288 int ret = 0; 2289 2290 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) { 2291 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n", 2292 vptr->netdev->name); 2293 ret = -EINVAL; 2294 goto out_0; 2295 } 2296 2297 if (!netif_running(dev)) { 2298 dev->mtu = new_mtu; 2299 goto out_0; 2300 } 2301 2302 if (dev->mtu != new_mtu) { 2303 struct velocity_info *tmp_vptr; 2304 unsigned long flags; 2305 struct rx_info rx; 2306 struct tx_info tx; 2307 2308 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2309 if (!tmp_vptr) { 2310 ret = -ENOMEM; 2311 goto out_0; 2312 } 2313 2314 tmp_vptr->netdev = dev; 2315 tmp_vptr->pdev = vptr->pdev; 2316 tmp_vptr->dev = vptr->dev; 2317 tmp_vptr->options = vptr->options; 2318 tmp_vptr->tx.numq = vptr->tx.numq; 2319 2320 ret = velocity_init_rings(tmp_vptr, new_mtu); 2321 if (ret < 0) 2322 goto out_free_tmp_vptr_1; 2323 2324 napi_disable(&vptr->napi); 2325 2326 spin_lock_irqsave(&vptr->lock, flags); 2327 2328 netif_stop_queue(dev); 2329 velocity_shutdown(vptr); 2330 2331 rx = vptr->rx; 2332 tx = vptr->tx; 2333 2334 vptr->rx = tmp_vptr->rx; 2335 vptr->tx = tmp_vptr->tx; 2336 2337 tmp_vptr->rx = rx; 2338 tmp_vptr->tx = tx; 2339 2340 dev->mtu = new_mtu; 2341 2342 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2343 2344 velocity_give_many_rx_descs(vptr); 2345 2346 napi_enable(&vptr->napi); 2347 2348 mac_enable_int(vptr->mac_regs); 2349 netif_start_queue(dev); 2350 2351 spin_unlock_irqrestore(&vptr->lock, flags); 2352 2353 velocity_free_rings(tmp_vptr); 2354 2355 out_free_tmp_vptr_1: 2356 kfree(tmp_vptr); 2357 } 2358 out_0: 2359 return ret; 2360 } 2361 2362 #ifdef CONFIG_NET_POLL_CONTROLLER 2363 /** 2364 * velocity_poll_controller - Velocity Poll controller function 2365 * @dev: network device 2366 * 2367 * 2368 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2369 * with interrupts disabled. 2370 */ 2371 static void velocity_poll_controller(struct net_device *dev) 2372 { 2373 disable_irq(dev->irq); 2374 velocity_intr(dev->irq, dev); 2375 enable_irq(dev->irq); 2376 } 2377 #endif 2378 2379 /** 2380 * velocity_mii_ioctl - MII ioctl handler 2381 * @dev: network device 2382 * @ifr: the ifreq block for the ioctl 2383 * @cmd: the command 2384 * 2385 * Process MII requests made via ioctl from the network layer. These 2386 * are used by tools like kudzu to interrogate the link state of the 2387 * hardware 2388 */ 2389 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2390 { 2391 struct velocity_info *vptr = netdev_priv(dev); 2392 struct mac_regs __iomem *regs = vptr->mac_regs; 2393 unsigned long flags; 2394 struct mii_ioctl_data *miidata = if_mii(ifr); 2395 int err; 2396 2397 switch (cmd) { 2398 case SIOCGMIIPHY: 2399 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2400 break; 2401 case SIOCGMIIREG: 2402 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2403 return -ETIMEDOUT; 2404 break; 2405 case SIOCSMIIREG: 2406 spin_lock_irqsave(&vptr->lock, flags); 2407 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2408 spin_unlock_irqrestore(&vptr->lock, flags); 2409 check_connection_type(vptr->mac_regs); 2410 if (err) 2411 return err; 2412 break; 2413 default: 2414 return -EOPNOTSUPP; 2415 } 2416 return 0; 2417 } 2418 2419 /** 2420 * velocity_ioctl - ioctl entry point 2421 * @dev: network device 2422 * @rq: interface request ioctl 2423 * @cmd: command code 2424 * 2425 * Called when the user issues an ioctl request to the network 2426 * device in question. The velocity interface supports MII. 2427 */ 2428 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2429 { 2430 struct velocity_info *vptr = netdev_priv(dev); 2431 int ret; 2432 2433 /* If we are asked for information and the device is power 2434 saving then we need to bring the device back up to talk to it */ 2435 2436 if (!netif_running(dev)) 2437 velocity_set_power_state(vptr, PCI_D0); 2438 2439 switch (cmd) { 2440 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2441 case SIOCGMIIREG: /* Read MII PHY register. */ 2442 case SIOCSMIIREG: /* Write to MII PHY register. */ 2443 ret = velocity_mii_ioctl(dev, rq, cmd); 2444 break; 2445 2446 default: 2447 ret = -EOPNOTSUPP; 2448 } 2449 if (!netif_running(dev)) 2450 velocity_set_power_state(vptr, PCI_D3hot); 2451 2452 2453 return ret; 2454 } 2455 2456 /** 2457 * velocity_get_status - statistics callback 2458 * @dev: network device 2459 * 2460 * Callback from the network layer to allow driver statistics 2461 * to be resynchronized with hardware collected state. In the 2462 * case of the velocity we need to pull the MIB counters from 2463 * the hardware into the counters before letting the network 2464 * layer display them. 2465 */ 2466 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2467 { 2468 struct velocity_info *vptr = netdev_priv(dev); 2469 2470 /* If the hardware is down, don't touch MII */ 2471 if (!netif_running(dev)) 2472 return &dev->stats; 2473 2474 spin_lock_irq(&vptr->lock); 2475 velocity_update_hw_mibs(vptr); 2476 spin_unlock_irq(&vptr->lock); 2477 2478 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2479 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2480 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2481 2482 // unsigned long rx_dropped; /* no space in linux buffers */ 2483 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2484 /* detailed rx_errors: */ 2485 // unsigned long rx_length_errors; 2486 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2487 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2488 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2489 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2490 // unsigned long rx_missed_errors; /* receiver missed packet */ 2491 2492 /* detailed tx_errors */ 2493 // unsigned long tx_fifo_errors; 2494 2495 return &dev->stats; 2496 } 2497 2498 /** 2499 * velocity_close - close adapter callback 2500 * @dev: network device 2501 * 2502 * Callback from the network layer when the velocity is being 2503 * deactivated by the network layer 2504 */ 2505 static int velocity_close(struct net_device *dev) 2506 { 2507 struct velocity_info *vptr = netdev_priv(dev); 2508 2509 napi_disable(&vptr->napi); 2510 netif_stop_queue(dev); 2511 velocity_shutdown(vptr); 2512 2513 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2514 velocity_get_ip(vptr); 2515 2516 free_irq(dev->irq, dev); 2517 2518 velocity_free_rings(vptr); 2519 2520 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2521 return 0; 2522 } 2523 2524 /** 2525 * velocity_xmit - transmit packet callback 2526 * @skb: buffer to transmit 2527 * @dev: network device 2528 * 2529 * Called by the networ layer to request a packet is queued to 2530 * the velocity. Returns zero on success. 2531 */ 2532 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2533 struct net_device *dev) 2534 { 2535 struct velocity_info *vptr = netdev_priv(dev); 2536 int qnum = 0; 2537 struct tx_desc *td_ptr; 2538 struct velocity_td_info *tdinfo; 2539 unsigned long flags; 2540 int pktlen; 2541 int index, prev; 2542 int i = 0; 2543 2544 if (skb_padto(skb, ETH_ZLEN)) 2545 goto out; 2546 2547 /* The hardware can handle at most 7 memory segments, so merge 2548 * the skb if there are more */ 2549 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2550 dev_kfree_skb_any(skb); 2551 return NETDEV_TX_OK; 2552 } 2553 2554 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2555 max_t(unsigned int, skb->len, ETH_ZLEN) : 2556 skb_headlen(skb); 2557 2558 spin_lock_irqsave(&vptr->lock, flags); 2559 2560 index = vptr->tx.curr[qnum]; 2561 td_ptr = &(vptr->tx.rings[qnum][index]); 2562 tdinfo = &(vptr->tx.infos[qnum][index]); 2563 2564 td_ptr->tdesc1.TCR = TCR0_TIC; 2565 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2566 2567 /* 2568 * Map the linear network buffer into PCI space and 2569 * add it to the transmit ring. 2570 */ 2571 tdinfo->skb = skb; 2572 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2573 DMA_TO_DEVICE); 2574 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2575 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2576 td_ptr->td_buf[0].pa_high = 0; 2577 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2578 2579 /* Handle fragments */ 2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2581 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2582 2583 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2584 frag, 0, 2585 skb_frag_size(frag), 2586 DMA_TO_DEVICE); 2587 2588 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2589 td_ptr->td_buf[i + 1].pa_high = 0; 2590 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2591 } 2592 tdinfo->nskb_dma = i + 1; 2593 2594 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2595 2596 if (skb_vlan_tag_present(skb)) { 2597 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 2598 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2599 } 2600 2601 /* 2602 * Handle hardware checksum 2603 */ 2604 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2605 const struct iphdr *ip = ip_hdr(skb); 2606 if (ip->protocol == IPPROTO_TCP) 2607 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2608 else if (ip->protocol == IPPROTO_UDP) 2609 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2610 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2611 } 2612 2613 prev = index - 1; 2614 if (prev < 0) 2615 prev = vptr->options.numtx - 1; 2616 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2617 vptr->tx.used[qnum]++; 2618 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2619 2620 if (AVAIL_TD(vptr, qnum) < 1) 2621 netif_stop_queue(dev); 2622 2623 td_ptr = &(vptr->tx.rings[qnum][prev]); 2624 td_ptr->td_buf[0].size |= TD_QUEUE; 2625 mac_tx_queue_wake(vptr->mac_regs, qnum); 2626 2627 spin_unlock_irqrestore(&vptr->lock, flags); 2628 out: 2629 return NETDEV_TX_OK; 2630 } 2631 2632 static const struct net_device_ops velocity_netdev_ops = { 2633 .ndo_open = velocity_open, 2634 .ndo_stop = velocity_close, 2635 .ndo_start_xmit = velocity_xmit, 2636 .ndo_get_stats = velocity_get_stats, 2637 .ndo_validate_addr = eth_validate_addr, 2638 .ndo_set_mac_address = eth_mac_addr, 2639 .ndo_set_rx_mode = velocity_set_multi, 2640 .ndo_change_mtu = velocity_change_mtu, 2641 .ndo_do_ioctl = velocity_ioctl, 2642 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2643 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2644 #ifdef CONFIG_NET_POLL_CONTROLLER 2645 .ndo_poll_controller = velocity_poll_controller, 2646 #endif 2647 }; 2648 2649 /** 2650 * velocity_init_info - init private data 2651 * @pdev: PCI device 2652 * @vptr: Velocity info 2653 * @info: Board type 2654 * 2655 * Set up the initial velocity_info struct for the device that has been 2656 * discovered. 2657 */ 2658 static void velocity_init_info(struct velocity_info *vptr, 2659 const struct velocity_info_tbl *info) 2660 { 2661 vptr->chip_id = info->chip_id; 2662 vptr->tx.numq = info->txqueue; 2663 vptr->multicast_limit = MCAM_SIZE; 2664 spin_lock_init(&vptr->lock); 2665 } 2666 2667 /** 2668 * velocity_get_pci_info - retrieve PCI info for device 2669 * @vptr: velocity device 2670 * @pdev: PCI device it matches 2671 * 2672 * Retrieve the PCI configuration space data that interests us from 2673 * the kernel PCI layer 2674 */ 2675 static int velocity_get_pci_info(struct velocity_info *vptr) 2676 { 2677 struct pci_dev *pdev = vptr->pdev; 2678 2679 pci_set_master(pdev); 2680 2681 vptr->ioaddr = pci_resource_start(pdev, 0); 2682 vptr->memaddr = pci_resource_start(pdev, 1); 2683 2684 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2685 dev_err(&pdev->dev, 2686 "region #0 is not an I/O resource, aborting.\n"); 2687 return -EINVAL; 2688 } 2689 2690 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2691 dev_err(&pdev->dev, 2692 "region #1 is an I/O resource, aborting.\n"); 2693 return -EINVAL; 2694 } 2695 2696 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2697 dev_err(&pdev->dev, "region #1 is too small.\n"); 2698 return -EINVAL; 2699 } 2700 2701 return 0; 2702 } 2703 2704 /** 2705 * velocity_get_platform_info - retrieve platform info for device 2706 * @vptr: velocity device 2707 * @pdev: platform device it matches 2708 * 2709 * Retrieve the Platform configuration data that interests us 2710 */ 2711 static int velocity_get_platform_info(struct velocity_info *vptr) 2712 { 2713 struct resource res; 2714 int ret; 2715 2716 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2717 vptr->no_eeprom = 1; 2718 2719 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2720 if (ret) { 2721 dev_err(vptr->dev, "unable to find memory address\n"); 2722 return ret; 2723 } 2724 2725 vptr->memaddr = res.start; 2726 2727 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2728 dev_err(vptr->dev, "memory region is too small.\n"); 2729 return -EINVAL; 2730 } 2731 2732 return 0; 2733 } 2734 2735 /** 2736 * velocity_print_info - per driver data 2737 * @vptr: velocity 2738 * 2739 * Print per driver data as the kernel driver finds Velocity 2740 * hardware 2741 */ 2742 static void velocity_print_info(struct velocity_info *vptr) 2743 { 2744 struct net_device *dev = vptr->netdev; 2745 2746 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2747 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2748 dev->name, dev->dev_addr); 2749 } 2750 2751 static u32 velocity_get_link(struct net_device *dev) 2752 { 2753 struct velocity_info *vptr = netdev_priv(dev); 2754 struct mac_regs __iomem *regs = vptr->mac_regs; 2755 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2756 } 2757 2758 /** 2759 * velocity_probe - set up discovered velocity device 2760 * @pdev: PCI device 2761 * @ent: PCI device table entry that matched 2762 * @bustype: bus that device is connected to 2763 * 2764 * Configure a discovered adapter from scratch. Return a negative 2765 * errno error code on failure paths. 2766 */ 2767 static int velocity_probe(struct device *dev, int irq, 2768 const struct velocity_info_tbl *info, 2769 enum velocity_bus_type bustype) 2770 { 2771 static int first = 1; 2772 struct net_device *netdev; 2773 int i; 2774 const char *drv_string; 2775 struct velocity_info *vptr; 2776 struct mac_regs __iomem *regs; 2777 int ret = -ENOMEM; 2778 2779 /* FIXME: this driver, like almost all other ethernet drivers, 2780 * can support more than MAX_UNITS. 2781 */ 2782 if (velocity_nics >= MAX_UNITS) { 2783 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2784 return -ENODEV; 2785 } 2786 2787 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2788 if (!netdev) 2789 goto out; 2790 2791 /* Chain it all together */ 2792 2793 SET_NETDEV_DEV(netdev, dev); 2794 vptr = netdev_priv(netdev); 2795 2796 if (first) { 2797 printk(KERN_INFO "%s Ver. %s\n", 2798 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2799 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2800 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2801 first = 0; 2802 } 2803 2804 netdev->irq = irq; 2805 vptr->netdev = netdev; 2806 vptr->dev = dev; 2807 2808 velocity_init_info(vptr, info); 2809 2810 if (bustype == BUS_PCI) { 2811 vptr->pdev = to_pci_dev(dev); 2812 2813 ret = velocity_get_pci_info(vptr); 2814 if (ret < 0) 2815 goto err_free_dev; 2816 } else { 2817 vptr->pdev = NULL; 2818 ret = velocity_get_platform_info(vptr); 2819 if (ret < 0) 2820 goto err_free_dev; 2821 } 2822 2823 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2824 if (regs == NULL) { 2825 ret = -EIO; 2826 goto err_free_dev; 2827 } 2828 2829 vptr->mac_regs = regs; 2830 vptr->rev_id = readb(®s->rev_id); 2831 2832 mac_wol_reset(regs); 2833 2834 for (i = 0; i < 6; i++) 2835 netdev->dev_addr[i] = readb(®s->PAR[i]); 2836 2837 2838 drv_string = dev_driver_string(dev); 2839 2840 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2841 2842 /* 2843 * Mask out the options cannot be set to the chip 2844 */ 2845 2846 vptr->options.flags &= info->flags; 2847 2848 /* 2849 * Enable the chip specified capbilities 2850 */ 2851 2852 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2853 2854 vptr->wol_opts = vptr->options.wol_opts; 2855 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2856 2857 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2858 2859 netdev->netdev_ops = &velocity_netdev_ops; 2860 netdev->ethtool_ops = &velocity_ethtool_ops; 2861 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2862 VELOCITY_NAPI_WEIGHT); 2863 2864 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2865 NETIF_F_HW_VLAN_CTAG_TX; 2866 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2867 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2868 NETIF_F_IP_CSUM; 2869 2870 ret = register_netdev(netdev); 2871 if (ret < 0) 2872 goto err_iounmap; 2873 2874 if (!velocity_get_link(netdev)) { 2875 netif_carrier_off(netdev); 2876 vptr->mii_status |= VELOCITY_LINK_FAIL; 2877 } 2878 2879 velocity_print_info(vptr); 2880 dev_set_drvdata(vptr->dev, netdev); 2881 2882 /* and leave the chip powered down */ 2883 2884 velocity_set_power_state(vptr, PCI_D3hot); 2885 velocity_nics++; 2886 out: 2887 return ret; 2888 2889 err_iounmap: 2890 netif_napi_del(&vptr->napi); 2891 iounmap(regs); 2892 err_free_dev: 2893 free_netdev(netdev); 2894 goto out; 2895 } 2896 2897 /** 2898 * velocity_remove - device unplug 2899 * @dev: device being removed 2900 * 2901 * Device unload callback. Called on an unplug or on module 2902 * unload for each active device that is present. Disconnects 2903 * the device from the network layer and frees all the resources 2904 */ 2905 static int velocity_remove(struct device *dev) 2906 { 2907 struct net_device *netdev = dev_get_drvdata(dev); 2908 struct velocity_info *vptr = netdev_priv(netdev); 2909 2910 unregister_netdev(netdev); 2911 netif_napi_del(&vptr->napi); 2912 iounmap(vptr->mac_regs); 2913 free_netdev(netdev); 2914 velocity_nics--; 2915 2916 return 0; 2917 } 2918 2919 static int velocity_pci_probe(struct pci_dev *pdev, 2920 const struct pci_device_id *ent) 2921 { 2922 const struct velocity_info_tbl *info = 2923 &chip_info_table[ent->driver_data]; 2924 int ret; 2925 2926 ret = pci_enable_device(pdev); 2927 if (ret < 0) 2928 return ret; 2929 2930 ret = pci_request_regions(pdev, VELOCITY_NAME); 2931 if (ret < 0) { 2932 dev_err(&pdev->dev, "No PCI resources.\n"); 2933 goto fail1; 2934 } 2935 2936 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2937 if (ret == 0) 2938 return 0; 2939 2940 pci_release_regions(pdev); 2941 fail1: 2942 pci_disable_device(pdev); 2943 return ret; 2944 } 2945 2946 static void velocity_pci_remove(struct pci_dev *pdev) 2947 { 2948 velocity_remove(&pdev->dev); 2949 2950 pci_release_regions(pdev); 2951 pci_disable_device(pdev); 2952 } 2953 2954 static int velocity_platform_probe(struct platform_device *pdev) 2955 { 2956 const struct of_device_id *of_id; 2957 const struct velocity_info_tbl *info; 2958 int irq; 2959 2960 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2961 if (!of_id) 2962 return -EINVAL; 2963 info = of_id->data; 2964 2965 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2966 if (!irq) 2967 return -EINVAL; 2968 2969 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2970 } 2971 2972 static int velocity_platform_remove(struct platform_device *pdev) 2973 { 2974 velocity_remove(&pdev->dev); 2975 2976 return 0; 2977 } 2978 2979 #ifdef CONFIG_PM_SLEEP 2980 /** 2981 * wol_calc_crc - WOL CRC 2982 * @pattern: data pattern 2983 * @mask_pattern: mask 2984 * 2985 * Compute the wake on lan crc hashes for the packet header 2986 * we are interested in. 2987 */ 2988 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2989 { 2990 u16 crc = 0xFFFF; 2991 u8 mask; 2992 int i, j; 2993 2994 for (i = 0; i < size; i++) { 2995 mask = mask_pattern[i]; 2996 2997 /* Skip this loop if the mask equals to zero */ 2998 if (mask == 0x00) 2999 continue; 3000 3001 for (j = 0; j < 8; j++) { 3002 if ((mask & 0x01) == 0) { 3003 mask >>= 1; 3004 continue; 3005 } 3006 mask >>= 1; 3007 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 3008 } 3009 } 3010 /* Finally, invert the result once to get the correct data */ 3011 crc = ~crc; 3012 return bitrev32(crc) >> 16; 3013 } 3014 3015 /** 3016 * velocity_set_wol - set up for wake on lan 3017 * @vptr: velocity to set WOL status on 3018 * 3019 * Set a card up for wake on lan either by unicast or by 3020 * ARP packet. 3021 * 3022 * FIXME: check static buffer is safe here 3023 */ 3024 static int velocity_set_wol(struct velocity_info *vptr) 3025 { 3026 struct mac_regs __iomem *regs = vptr->mac_regs; 3027 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3028 static u8 buf[256]; 3029 int i; 3030 3031 static u32 mask_pattern[2][4] = { 3032 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3033 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3034 }; 3035 3036 writew(0xFFFF, ®s->WOLCRClr); 3037 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3038 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3039 3040 /* 3041 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3042 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3043 */ 3044 3045 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3046 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3047 3048 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3049 struct arp_packet *arp = (struct arp_packet *) buf; 3050 u16 crc; 3051 memset(buf, 0, sizeof(struct arp_packet) + 7); 3052 3053 for (i = 0; i < 4; i++) 3054 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3055 3056 arp->type = htons(ETH_P_ARP); 3057 arp->ar_op = htons(1); 3058 3059 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3060 3061 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3062 (u8 *) & mask_pattern[0][0]); 3063 3064 writew(crc, ®s->PatternCRC[0]); 3065 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3066 } 3067 3068 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3069 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3070 3071 writew(0x0FFF, ®s->WOLSRClr); 3072 3073 if (spd_dpx == SPD_DPX_1000_FULL) 3074 goto mac_done; 3075 3076 if (spd_dpx != SPD_DPX_AUTO) 3077 goto advertise_done; 3078 3079 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3080 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3081 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3082 3083 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3084 } 3085 3086 if (vptr->mii_status & VELOCITY_SPEED_1000) 3087 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3088 3089 advertise_done: 3090 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3091 3092 { 3093 u8 GCR; 3094 GCR = readb(®s->CHIPGCR); 3095 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3096 writeb(GCR, ®s->CHIPGCR); 3097 } 3098 3099 mac_done: 3100 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3101 /* Turn on SWPTAG just before entering power mode */ 3102 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3103 /* Go to bed ..... */ 3104 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3105 3106 return 0; 3107 } 3108 3109 /** 3110 * velocity_save_context - save registers 3111 * @vptr: velocity 3112 * @context: buffer for stored context 3113 * 3114 * Retrieve the current configuration from the velocity hardware 3115 * and stash it in the context structure, for use by the context 3116 * restore functions. This allows us to save things we need across 3117 * power down states 3118 */ 3119 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3120 { 3121 struct mac_regs __iomem *regs = vptr->mac_regs; 3122 u16 i; 3123 u8 __iomem *ptr = (u8 __iomem *)regs; 3124 3125 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3126 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3127 3128 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3129 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3130 3131 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3132 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3133 3134 } 3135 3136 static int velocity_suspend(struct device *dev) 3137 { 3138 struct net_device *netdev = dev_get_drvdata(dev); 3139 struct velocity_info *vptr = netdev_priv(netdev); 3140 unsigned long flags; 3141 3142 if (!netif_running(vptr->netdev)) 3143 return 0; 3144 3145 netif_device_detach(vptr->netdev); 3146 3147 spin_lock_irqsave(&vptr->lock, flags); 3148 if (vptr->pdev) 3149 pci_save_state(vptr->pdev); 3150 3151 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3152 velocity_get_ip(vptr); 3153 velocity_save_context(vptr, &vptr->context); 3154 velocity_shutdown(vptr); 3155 velocity_set_wol(vptr); 3156 if (vptr->pdev) 3157 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3158 velocity_set_power_state(vptr, PCI_D3hot); 3159 } else { 3160 velocity_save_context(vptr, &vptr->context); 3161 velocity_shutdown(vptr); 3162 if (vptr->pdev) 3163 pci_disable_device(vptr->pdev); 3164 velocity_set_power_state(vptr, PCI_D3hot); 3165 } 3166 3167 spin_unlock_irqrestore(&vptr->lock, flags); 3168 return 0; 3169 } 3170 3171 /** 3172 * velocity_restore_context - restore registers 3173 * @vptr: velocity 3174 * @context: buffer for stored context 3175 * 3176 * Reload the register configuration from the velocity context 3177 * created by velocity_save_context. 3178 */ 3179 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3180 { 3181 struct mac_regs __iomem *regs = vptr->mac_regs; 3182 int i; 3183 u8 __iomem *ptr = (u8 __iomem *)regs; 3184 3185 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3186 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3187 3188 /* Just skip cr0 */ 3189 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3190 /* Clear */ 3191 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3192 /* Set */ 3193 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3194 } 3195 3196 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3197 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3198 3199 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3200 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3201 3202 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3203 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3204 } 3205 3206 static int velocity_resume(struct device *dev) 3207 { 3208 struct net_device *netdev = dev_get_drvdata(dev); 3209 struct velocity_info *vptr = netdev_priv(netdev); 3210 unsigned long flags; 3211 int i; 3212 3213 if (!netif_running(vptr->netdev)) 3214 return 0; 3215 3216 velocity_set_power_state(vptr, PCI_D0); 3217 3218 if (vptr->pdev) { 3219 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3220 pci_restore_state(vptr->pdev); 3221 } 3222 3223 mac_wol_reset(vptr->mac_regs); 3224 3225 spin_lock_irqsave(&vptr->lock, flags); 3226 velocity_restore_context(vptr, &vptr->context); 3227 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3228 mac_disable_int(vptr->mac_regs); 3229 3230 velocity_tx_srv(vptr); 3231 3232 for (i = 0; i < vptr->tx.numq; i++) { 3233 if (vptr->tx.used[i]) 3234 mac_tx_queue_wake(vptr->mac_regs, i); 3235 } 3236 3237 mac_enable_int(vptr->mac_regs); 3238 spin_unlock_irqrestore(&vptr->lock, flags); 3239 netif_device_attach(vptr->netdev); 3240 3241 return 0; 3242 } 3243 #endif /* CONFIG_PM_SLEEP */ 3244 3245 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3246 3247 /* 3248 * Definition for our device driver. The PCI layer interface 3249 * uses this to handle all our card discover and plugging 3250 */ 3251 static struct pci_driver velocity_pci_driver = { 3252 .name = VELOCITY_NAME, 3253 .id_table = velocity_pci_id_table, 3254 .probe = velocity_pci_probe, 3255 .remove = velocity_pci_remove, 3256 .driver = { 3257 .pm = &velocity_pm_ops, 3258 }, 3259 }; 3260 3261 static struct platform_driver velocity_platform_driver = { 3262 .probe = velocity_platform_probe, 3263 .remove = velocity_platform_remove, 3264 .driver = { 3265 .name = "via-velocity", 3266 .of_match_table = velocity_of_ids, 3267 .pm = &velocity_pm_ops, 3268 }, 3269 }; 3270 3271 /** 3272 * velocity_ethtool_up - pre hook for ethtool 3273 * @dev: network device 3274 * 3275 * Called before an ethtool operation. We need to make sure the 3276 * chip is out of D3 state before we poke at it. 3277 */ 3278 static int velocity_ethtool_up(struct net_device *dev) 3279 { 3280 struct velocity_info *vptr = netdev_priv(dev); 3281 if (!netif_running(dev)) 3282 velocity_set_power_state(vptr, PCI_D0); 3283 return 0; 3284 } 3285 3286 /** 3287 * velocity_ethtool_down - post hook for ethtool 3288 * @dev: network device 3289 * 3290 * Called after an ethtool operation. Restore the chip back to D3 3291 * state if it isn't running. 3292 */ 3293 static void velocity_ethtool_down(struct net_device *dev) 3294 { 3295 struct velocity_info *vptr = netdev_priv(dev); 3296 if (!netif_running(dev)) 3297 velocity_set_power_state(vptr, PCI_D3hot); 3298 } 3299 3300 static int velocity_get_settings(struct net_device *dev, 3301 struct ethtool_cmd *cmd) 3302 { 3303 struct velocity_info *vptr = netdev_priv(dev); 3304 struct mac_regs __iomem *regs = vptr->mac_regs; 3305 u32 status; 3306 status = check_connection_type(vptr->mac_regs); 3307 3308 cmd->supported = SUPPORTED_TP | 3309 SUPPORTED_Autoneg | 3310 SUPPORTED_10baseT_Half | 3311 SUPPORTED_10baseT_Full | 3312 SUPPORTED_100baseT_Half | 3313 SUPPORTED_100baseT_Full | 3314 SUPPORTED_1000baseT_Half | 3315 SUPPORTED_1000baseT_Full; 3316 3317 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3318 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3319 cmd->advertising |= 3320 ADVERTISED_10baseT_Half | 3321 ADVERTISED_10baseT_Full | 3322 ADVERTISED_100baseT_Half | 3323 ADVERTISED_100baseT_Full | 3324 ADVERTISED_1000baseT_Half | 3325 ADVERTISED_1000baseT_Full; 3326 } else { 3327 switch (vptr->options.spd_dpx) { 3328 case SPD_DPX_1000_FULL: 3329 cmd->advertising |= ADVERTISED_1000baseT_Full; 3330 break; 3331 case SPD_DPX_100_HALF: 3332 cmd->advertising |= ADVERTISED_100baseT_Half; 3333 break; 3334 case SPD_DPX_100_FULL: 3335 cmd->advertising |= ADVERTISED_100baseT_Full; 3336 break; 3337 case SPD_DPX_10_HALF: 3338 cmd->advertising |= ADVERTISED_10baseT_Half; 3339 break; 3340 case SPD_DPX_10_FULL: 3341 cmd->advertising |= ADVERTISED_10baseT_Full; 3342 break; 3343 default: 3344 break; 3345 } 3346 } 3347 3348 if (status & VELOCITY_SPEED_1000) 3349 ethtool_cmd_speed_set(cmd, SPEED_1000); 3350 else if (status & VELOCITY_SPEED_100) 3351 ethtool_cmd_speed_set(cmd, SPEED_100); 3352 else 3353 ethtool_cmd_speed_set(cmd, SPEED_10); 3354 3355 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3356 cmd->port = PORT_TP; 3357 cmd->transceiver = XCVR_INTERNAL; 3358 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3359 3360 if (status & VELOCITY_DUPLEX_FULL) 3361 cmd->duplex = DUPLEX_FULL; 3362 else 3363 cmd->duplex = DUPLEX_HALF; 3364 3365 return 0; 3366 } 3367 3368 static int velocity_set_settings(struct net_device *dev, 3369 struct ethtool_cmd *cmd) 3370 { 3371 struct velocity_info *vptr = netdev_priv(dev); 3372 u32 speed = ethtool_cmd_speed(cmd); 3373 u32 curr_status; 3374 u32 new_status = 0; 3375 int ret = 0; 3376 3377 curr_status = check_connection_type(vptr->mac_regs); 3378 curr_status &= (~VELOCITY_LINK_FAIL); 3379 3380 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3381 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3382 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3383 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3384 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3385 3386 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3387 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3388 ret = -EINVAL; 3389 } else { 3390 enum speed_opt spd_dpx; 3391 3392 if (new_status & VELOCITY_AUTONEG_ENABLE) 3393 spd_dpx = SPD_DPX_AUTO; 3394 else if ((new_status & VELOCITY_SPEED_1000) && 3395 (new_status & VELOCITY_DUPLEX_FULL)) { 3396 spd_dpx = SPD_DPX_1000_FULL; 3397 } else if (new_status & VELOCITY_SPEED_100) 3398 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3399 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3400 else if (new_status & VELOCITY_SPEED_10) 3401 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3402 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3403 else 3404 return -EOPNOTSUPP; 3405 3406 vptr->options.spd_dpx = spd_dpx; 3407 3408 velocity_set_media_mode(vptr, new_status); 3409 } 3410 3411 return ret; 3412 } 3413 3414 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3415 { 3416 struct velocity_info *vptr = netdev_priv(dev); 3417 3418 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3419 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3420 if (vptr->pdev) 3421 strlcpy(info->bus_info, pci_name(vptr->pdev), 3422 sizeof(info->bus_info)); 3423 else 3424 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3425 } 3426 3427 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3428 { 3429 struct velocity_info *vptr = netdev_priv(dev); 3430 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3431 wol->wolopts |= WAKE_MAGIC; 3432 /* 3433 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3434 wol.wolopts|=WAKE_PHY; 3435 */ 3436 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3437 wol->wolopts |= WAKE_UCAST; 3438 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3439 wol->wolopts |= WAKE_ARP; 3440 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3441 } 3442 3443 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3444 { 3445 struct velocity_info *vptr = netdev_priv(dev); 3446 3447 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3448 return -EFAULT; 3449 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3450 3451 /* 3452 if (wol.wolopts & WAKE_PHY) { 3453 vptr->wol_opts|=VELOCITY_WOL_PHY; 3454 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3455 } 3456 */ 3457 3458 if (wol->wolopts & WAKE_MAGIC) { 3459 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3460 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3461 } 3462 if (wol->wolopts & WAKE_UCAST) { 3463 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3464 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3465 } 3466 if (wol->wolopts & WAKE_ARP) { 3467 vptr->wol_opts |= VELOCITY_WOL_ARP; 3468 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3469 } 3470 memcpy(vptr->wol_passwd, wol->sopass, 6); 3471 return 0; 3472 } 3473 3474 static u32 velocity_get_msglevel(struct net_device *dev) 3475 { 3476 return msglevel; 3477 } 3478 3479 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3480 { 3481 msglevel = value; 3482 } 3483 3484 static int get_pending_timer_val(int val) 3485 { 3486 int mult_bits = val >> 6; 3487 int mult = 1; 3488 3489 switch (mult_bits) 3490 { 3491 case 1: 3492 mult = 4; break; 3493 case 2: 3494 mult = 16; break; 3495 case 3: 3496 mult = 64; break; 3497 case 0: 3498 default: 3499 break; 3500 } 3501 3502 return (val & 0x3f) * mult; 3503 } 3504 3505 static void set_pending_timer_val(int *val, u32 us) 3506 { 3507 u8 mult = 0; 3508 u8 shift = 0; 3509 3510 if (us >= 0x3f) { 3511 mult = 1; /* mult with 4 */ 3512 shift = 2; 3513 } 3514 if (us >= 0x3f * 4) { 3515 mult = 2; /* mult with 16 */ 3516 shift = 4; 3517 } 3518 if (us >= 0x3f * 16) { 3519 mult = 3; /* mult with 64 */ 3520 shift = 6; 3521 } 3522 3523 *val = (mult << 6) | ((us >> shift) & 0x3f); 3524 } 3525 3526 3527 static int velocity_get_coalesce(struct net_device *dev, 3528 struct ethtool_coalesce *ecmd) 3529 { 3530 struct velocity_info *vptr = netdev_priv(dev); 3531 3532 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3533 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3534 3535 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3536 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3537 3538 return 0; 3539 } 3540 3541 static int velocity_set_coalesce(struct net_device *dev, 3542 struct ethtool_coalesce *ecmd) 3543 { 3544 struct velocity_info *vptr = netdev_priv(dev); 3545 int max_us = 0x3f * 64; 3546 unsigned long flags; 3547 3548 /* 6 bits of */ 3549 if (ecmd->tx_coalesce_usecs > max_us) 3550 return -EINVAL; 3551 if (ecmd->rx_coalesce_usecs > max_us) 3552 return -EINVAL; 3553 3554 if (ecmd->tx_max_coalesced_frames > 0xff) 3555 return -EINVAL; 3556 if (ecmd->rx_max_coalesced_frames > 0xff) 3557 return -EINVAL; 3558 3559 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3560 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3561 3562 set_pending_timer_val(&vptr->options.rxqueue_timer, 3563 ecmd->rx_coalesce_usecs); 3564 set_pending_timer_val(&vptr->options.txqueue_timer, 3565 ecmd->tx_coalesce_usecs); 3566 3567 /* Setup the interrupt suppression and queue timers */ 3568 spin_lock_irqsave(&vptr->lock, flags); 3569 mac_disable_int(vptr->mac_regs); 3570 setup_adaptive_interrupts(vptr); 3571 setup_queue_timers(vptr); 3572 3573 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3574 mac_clear_isr(vptr->mac_regs); 3575 mac_enable_int(vptr->mac_regs); 3576 spin_unlock_irqrestore(&vptr->lock, flags); 3577 3578 return 0; 3579 } 3580 3581 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3582 "rx_all", 3583 "rx_ok", 3584 "tx_ok", 3585 "rx_error", 3586 "rx_runt_ok", 3587 "rx_runt_err", 3588 "rx_64", 3589 "tx_64", 3590 "rx_65_to_127", 3591 "tx_65_to_127", 3592 "rx_128_to_255", 3593 "tx_128_to_255", 3594 "rx_256_to_511", 3595 "tx_256_to_511", 3596 "rx_512_to_1023", 3597 "tx_512_to_1023", 3598 "rx_1024_to_1518", 3599 "tx_1024_to_1518", 3600 "tx_ether_collisions", 3601 "rx_crc_errors", 3602 "rx_jumbo", 3603 "tx_jumbo", 3604 "rx_mac_control_frames", 3605 "tx_mac_control_frames", 3606 "rx_frame_alignement_errors", 3607 "rx_long_ok", 3608 "rx_long_err", 3609 "tx_sqe_errors", 3610 "rx_no_buf", 3611 "rx_symbol_errors", 3612 "in_range_length_errors", 3613 "late_collisions" 3614 }; 3615 3616 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3617 { 3618 switch (sset) { 3619 case ETH_SS_STATS: 3620 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3621 break; 3622 } 3623 } 3624 3625 static int velocity_get_sset_count(struct net_device *dev, int sset) 3626 { 3627 switch (sset) { 3628 case ETH_SS_STATS: 3629 return ARRAY_SIZE(velocity_gstrings); 3630 default: 3631 return -EOPNOTSUPP; 3632 } 3633 } 3634 3635 static void velocity_get_ethtool_stats(struct net_device *dev, 3636 struct ethtool_stats *stats, u64 *data) 3637 { 3638 if (netif_running(dev)) { 3639 struct velocity_info *vptr = netdev_priv(dev); 3640 u32 *p = vptr->mib_counter; 3641 int i; 3642 3643 spin_lock_irq(&vptr->lock); 3644 velocity_update_hw_mibs(vptr); 3645 spin_unlock_irq(&vptr->lock); 3646 3647 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3648 *data++ = *p++; 3649 } 3650 } 3651 3652 static const struct ethtool_ops velocity_ethtool_ops = { 3653 .get_settings = velocity_get_settings, 3654 .set_settings = velocity_set_settings, 3655 .get_drvinfo = velocity_get_drvinfo, 3656 .get_wol = velocity_ethtool_get_wol, 3657 .set_wol = velocity_ethtool_set_wol, 3658 .get_msglevel = velocity_get_msglevel, 3659 .set_msglevel = velocity_set_msglevel, 3660 .get_link = velocity_get_link, 3661 .get_strings = velocity_get_strings, 3662 .get_sset_count = velocity_get_sset_count, 3663 .get_ethtool_stats = velocity_get_ethtool_stats, 3664 .get_coalesce = velocity_get_coalesce, 3665 .set_coalesce = velocity_set_coalesce, 3666 .begin = velocity_ethtool_up, 3667 .complete = velocity_ethtool_down 3668 }; 3669 3670 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3671 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3672 { 3673 struct in_ifaddr *ifa = ptr; 3674 struct net_device *dev = ifa->ifa_dev->dev; 3675 3676 if (dev_net(dev) == &init_net && 3677 dev->netdev_ops == &velocity_netdev_ops) 3678 velocity_get_ip(netdev_priv(dev)); 3679 3680 return NOTIFY_DONE; 3681 } 3682 3683 static struct notifier_block velocity_inetaddr_notifier = { 3684 .notifier_call = velocity_netdev_event, 3685 }; 3686 3687 static void velocity_register_notifier(void) 3688 { 3689 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3690 } 3691 3692 static void velocity_unregister_notifier(void) 3693 { 3694 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3695 } 3696 3697 #else 3698 3699 #define velocity_register_notifier() do {} while (0) 3700 #define velocity_unregister_notifier() do {} while (0) 3701 3702 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3703 3704 /** 3705 * velocity_init_module - load time function 3706 * 3707 * Called when the velocity module is loaded. The PCI driver 3708 * is registered with the PCI layer, and in turn will call 3709 * the probe functions for each velocity adapter installed 3710 * in the system. 3711 */ 3712 static int __init velocity_init_module(void) 3713 { 3714 int ret_pci, ret_platform; 3715 3716 velocity_register_notifier(); 3717 3718 ret_pci = pci_register_driver(&velocity_pci_driver); 3719 ret_platform = platform_driver_register(&velocity_platform_driver); 3720 3721 /* if both_registers failed, remove the notifier */ 3722 if ((ret_pci < 0) && (ret_platform < 0)) { 3723 velocity_unregister_notifier(); 3724 return ret_pci; 3725 } 3726 3727 return 0; 3728 } 3729 3730 /** 3731 * velocity_cleanup - module unload 3732 * 3733 * When the velocity hardware is unloaded this function is called. 3734 * It will clean up the notifiers and the unregister the PCI 3735 * driver interface for this hardware. This in turn cleans up 3736 * all discovered interfaces before returning from the function 3737 */ 3738 static void __exit velocity_cleanup_module(void) 3739 { 3740 velocity_unregister_notifier(); 3741 3742 pci_unregister_driver(&velocity_pci_driver); 3743 platform_driver_unregister(&velocity_platform_driver); 3744 } 3745 3746 module_init(velocity_init_module); 3747 module_exit(velocity_cleanup_module); 3748