1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79 
80 #include "via-velocity.h"
81 
82 
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85 
86 /**
87  *	mac_get_cam_mask	-	Read a CAM mask
88  *	@regs: register block for this velocity
89  *	@mask: buffer to store mask
90  *
91  *	Fetch the mask bits of the selected CAM and store them into the
92  *	provided mask buffer.
93  */
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 	int i;
97 
98 	/* Select CAM mask */
99 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100 
101 	writeb(0, &regs->CAMADDR);
102 
103 	/* read mask */
104 	for (i = 0; i < 8; i++)
105 		*mask++ = readb(&(regs->MARCAM[i]));
106 
107 	/* disable CAMEN */
108 	writeb(0, &regs->CAMADDR);
109 
110 	/* Select mar */
111 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112 }
113 
114 /**
115  *	mac_set_cam_mask	-	Set a CAM mask
116  *	@regs: register block for this velocity
117  *	@mask: CAM mask to load
118  *
119  *	Store a new mask into a CAM
120  */
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122 {
123 	int i;
124 	/* Select CAM mask */
125 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
126 
127 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
128 
129 	for (i = 0; i < 8; i++)
130 		writeb(*mask++, &(regs->MARCAM[i]));
131 
132 	/* disable CAMEN */
133 	writeb(0, &regs->CAMADDR);
134 
135 	/* Select mar */
136 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
137 }
138 
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140 {
141 	int i;
142 	/* Select CAM mask */
143 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 
145 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
146 
147 	for (i = 0; i < 8; i++)
148 		writeb(*mask++, &(regs->MARCAM[i]));
149 
150 	/* disable CAMEN */
151 	writeb(0, &regs->CAMADDR);
152 
153 	/* Select mar */
154 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
155 }
156 
157 /**
158  *	mac_set_cam	-	set CAM data
159  *	@regs: register block of this velocity
160  *	@idx: Cam index
161  *	@addr: 2 or 6 bytes of CAM data
162  *
163  *	Load an address or vlan tag into a CAM
164  */
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166 {
167 	int i;
168 
169 	/* Select CAM mask */
170 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
171 
172 	idx &= (64 - 1);
173 
174 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
175 
176 	for (i = 0; i < 6; i++)
177 		writeb(*addr++, &(regs->MARCAM[i]));
178 
179 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
180 
181 	udelay(10);
182 
183 	writeb(0, &regs->CAMADDR);
184 
185 	/* Select mar */
186 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
187 }
188 
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 			     const u8 *addr)
191 {
192 
193 	/* Select CAM mask */
194 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 
196 	idx &= (64 - 1);
197 
198 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 	writew(*((u16 *) addr), &regs->MARCAM[0]);
200 
201 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
202 
203 	udelay(10);
204 
205 	writeb(0, &regs->CAMADDR);
206 
207 	/* Select mar */
208 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
209 }
210 
211 
212 /**
213  *	mac_wol_reset	-	reset WOL after exiting low power
214  *	@regs: register block of this velocity
215  *
216  *	Called after we drop out of wake on lan mode in order to
217  *	reset the Wake on lan features. This function doesn't restore
218  *	the rest of the logic from the result of sleep/wakeup
219  */
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
221 {
222 
223 	/* Turn off SWPTAG right after leaving power mode */
224 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 	/* clear sticky bits */
226 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
227 
228 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 	/* disable force PME-enable */
231 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 	/* disable power-event config bit */
233 	writew(0xFFFF, &regs->WOLCRClr);
234 	/* clear power status */
235 	writew(0xFFFF, &regs->WOLSRClr);
236 }
237 
238 static const struct ethtool_ops velocity_ethtool_ops;
239 
240 /*
241     Define module options
242 */
243 
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247 
248 #define VELOCITY_PARAM(N, D) \
249 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 	module_param_array(N, int, NULL, 0); \
251 	MODULE_PARM_DESC(N, D);
252 
253 #define RX_DESC_MIN     64
254 #define RX_DESC_MAX     255
255 #define RX_DESC_DEF     64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257 
258 #define TX_DESC_MIN     16
259 #define TX_DESC_MAX     256
260 #define TX_DESC_DEF     64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262 
263 #define RX_THRESH_MIN   0
264 #define RX_THRESH_MAX   3
265 #define RX_THRESH_DEF   0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267    0: indicate the rxfifo threshold is 128 bytes.
268    1: indicate the rxfifo threshold is 512 bytes.
269    2: indicate the rxfifo threshold is 1024 bytes.
270    3: indicate the rxfifo threshold is store & forward.
271 */
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273 
274 #define DMA_LENGTH_MIN  0
275 #define DMA_LENGTH_MAX  7
276 #define DMA_LENGTH_DEF  6
277 
278 /* DMA_length[] is used for controlling the DMA length
279    0: 8 DWORDs
280    1: 16 DWORDs
281    2: 32 DWORDs
282    3: 64 DWORDs
283    4: 128 DWORDs
284    5: 256 DWORDs
285    6: SF(flush till emply)
286    7: SF(flush till emply)
287 */
288 VELOCITY_PARAM(DMA_length, "DMA length");
289 
290 #define IP_ALIG_DEF     0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292    0: indicate the IP header won't be DWORD byte aligned.(Default) .
293    1: indicate the IP header will be DWORD byte aligned.
294       In some environment, the IP header should be DWORD byte aligned,
295       or the packet will be droped when we receive it. (eg: IPVS)
296 */
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298 
299 #define FLOW_CNTL_DEF   1
300 #define FLOW_CNTL_MIN   1
301 #define FLOW_CNTL_MAX   5
302 
303 /* flow_control[] is used for setting the flow control ability of NIC.
304    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305    2: enable TX flow control.
306    3: enable RX flow control.
307    4: enable RX/TX flow control.
308    5: disable
309 */
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
311 
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316    0: indicate autonegotiation for both speed and duplex mode
317    1: indicate 100Mbps half duplex mode
318    2: indicate 100Mbps full duplex mode
319    3: indicate 10Mbps half duplex mode
320    4: indicate 10Mbps full duplex mode
321    5: indicate 1000Mbps full duplex mode
322 
323    Note:
324    if EEPROM have been set to the force mode, this option is ignored
325    by driver.
326 */
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328 
329 #define VAL_PKT_LEN_DEF     0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331    0: Receive frame with invalid layer 2 length (Default)
332    1: Drop frame with invalid layer 2 length
333 */
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335 
336 #define WOL_OPT_DEF     0
337 #define WOL_OPT_MIN     0
338 #define WOL_OPT_MAX     7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340    0: Wake up if recevied a magic packet. (Default)
341    1: Wake up if link status is on/off.
342    2: Wake up if recevied an arp packet.
343    4: Wake up if recevied any unicast packet.
344    Those value can be sumed up to support more than one option.
345 */
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347 
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351 
352 /*
353  *	Internal board variants. At the moment we have only one
354  */
355 static struct velocity_info_tbl chip_info_table[] = {
356 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 	{ }
358 };
359 
360 /*
361  *	Describe the PCI device identifiers that we support in this
362  *	device driver. Used for hotplug autoloading.
363  */
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 	{ }
367 };
368 
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
370 
371 /**
372  *	get_chip_name	- 	identifier to name
373  *	@id: chip identifier
374  *
375  *	Given a chip identifier return a suitable description. Returns
376  *	a pointer a static string valid while the driver is loaded.
377  */
378 static const char __devinit *get_chip_name(enum chip_type chip_id)
379 {
380 	int i;
381 	for (i = 0; chip_info_table[i].name != NULL; i++)
382 		if (chip_info_table[i].chip_id == chip_id)
383 			break;
384 	return chip_info_table[i].name;
385 }
386 
387 /**
388  *	velocity_remove1	-	device unplug
389  *	@pdev: PCI device being removed
390  *
391  *	Device unload callback. Called on an unplug or on module
392  *	unload for each active device that is present. Disconnects
393  *	the device from the network layer and frees all the resources
394  */
395 static void __devexit velocity_remove1(struct pci_dev *pdev)
396 {
397 	struct net_device *dev = pci_get_drvdata(pdev);
398 	struct velocity_info *vptr = netdev_priv(dev);
399 
400 	unregister_netdev(dev);
401 	iounmap(vptr->mac_regs);
402 	pci_release_regions(pdev);
403 	pci_disable_device(pdev);
404 	pci_set_drvdata(pdev, NULL);
405 	free_netdev(dev);
406 
407 	velocity_nics--;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
424 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
425 {
426 	if (val == -1)
427 		*opt = def;
428 	else if (val < min || val > max) {
429 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 					devname, name, min, max);
431 		*opt = def;
432 	} else {
433 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 					devname, name, val);
435 		*opt = val;
436 	}
437 }
438 
439 /**
440  *	velocity_set_bool_opt	-	parser for boolean options
441  *	@opt: pointer to option value
442  *	@val: value the user requested (or -1 for default)
443  *	@def: default value (yes/no)
444  *	@flag: numeric value to set for true.
445  *	@name: property name
446  *	@dev: device name
447  *
448  *	Set a boolean property in the module options. This function does
449  *	all the verification and checking as well as reporting so that
450  *	we don't duplicate code for each option.
451  */
452 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
453 {
454 	(*opt) &= (~flag);
455 	if (val == -1)
456 		*opt |= (def ? flag : 0);
457 	else if (val < 0 || val > 1) {
458 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 			devname, name);
460 		*opt |= (def ? flag : 0);
461 	} else {
462 		printk(KERN_INFO "%s: set parameter %s to %s\n",
463 			devname, name, val ? "TRUE" : "FALSE");
464 		*opt |= (val ? flag : 0);
465 	}
466 }
467 
468 /**
469  *	velocity_get_options	-	set options on device
470  *	@opts: option structure for the device
471  *	@index: index of option to use in module options array
472  *	@devname: device name
473  *
474  *	Turn the module and command options into a single structure
475  *	for the current device
476  */
477 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
478 {
479 
480 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
484 
485 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 	opts->numrx = (opts->numrx & ~3);
491 }
492 
493 /**
494  *	velocity_init_cam_filter	-	initialise CAM
495  *	@vptr: velocity to program
496  *
497  *	Initialize the content addressable memory used for filters. Load
498  *	appropriately according to the presence of VLAN
499  */
500 static void velocity_init_cam_filter(struct velocity_info *vptr)
501 {
502 	struct mac_regs __iomem *regs = vptr->mac_regs;
503 	unsigned int vid, i = 0;
504 
505 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
508 
509 	/* Disable all CAMs */
510 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 	mac_set_cam_mask(regs, vptr->mCAMmask);
514 
515 	/* Enable VCAMs */
516 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
517 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
518 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
519 		if (++i >= VCAM_SIZE)
520 			break;
521 	}
522 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523 }
524 
525 static int velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
526 {
527 	struct velocity_info *vptr = netdev_priv(dev);
528 
529 	spin_lock_irq(&vptr->lock);
530 	set_bit(vid, vptr->active_vlans);
531 	velocity_init_cam_filter(vptr);
532 	spin_unlock_irq(&vptr->lock);
533 	return 0;
534 }
535 
536 static int velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
537 {
538 	struct velocity_info *vptr = netdev_priv(dev);
539 
540 	spin_lock_irq(&vptr->lock);
541 	clear_bit(vid, vptr->active_vlans);
542 	velocity_init_cam_filter(vptr);
543 	spin_unlock_irq(&vptr->lock);
544 	return 0;
545 }
546 
547 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
548 {
549 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
550 }
551 
552 /**
553  *	velocity_rx_reset	-	handle a receive reset
554  *	@vptr: velocity we are resetting
555  *
556  *	Reset the ownership and status for the receive ring side.
557  *	Hand all the receive queue to the NIC.
558  */
559 static void velocity_rx_reset(struct velocity_info *vptr)
560 {
561 
562 	struct mac_regs __iomem *regs = vptr->mac_regs;
563 	int i;
564 
565 	velocity_init_rx_ring_indexes(vptr);
566 
567 	/*
568 	 *	Init state, all RD entries belong to the NIC
569 	 */
570 	for (i = 0; i < vptr->options.numrx; ++i)
571 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
572 
573 	writew(vptr->options.numrx, &regs->RBRDU);
574 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
575 	writew(0, &regs->RDIdx);
576 	writew(vptr->options.numrx - 1, &regs->RDCSize);
577 }
578 
579 /**
580  *	velocity_get_opt_media_mode	-	get media selection
581  *	@vptr: velocity adapter
582  *
583  *	Get the media mode stored in EEPROM or module options and load
584  *	mii_status accordingly. The requested link state information
585  *	is also returned.
586  */
587 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
588 {
589 	u32 status = 0;
590 
591 	switch (vptr->options.spd_dpx) {
592 	case SPD_DPX_AUTO:
593 		status = VELOCITY_AUTONEG_ENABLE;
594 		break;
595 	case SPD_DPX_100_FULL:
596 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
597 		break;
598 	case SPD_DPX_10_FULL:
599 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
600 		break;
601 	case SPD_DPX_100_HALF:
602 		status = VELOCITY_SPEED_100;
603 		break;
604 	case SPD_DPX_10_HALF:
605 		status = VELOCITY_SPEED_10;
606 		break;
607 	case SPD_DPX_1000_FULL:
608 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
609 		break;
610 	}
611 	vptr->mii_status = status;
612 	return status;
613 }
614 
615 /**
616  *	safe_disable_mii_autopoll	-	autopoll off
617  *	@regs: velocity registers
618  *
619  *	Turn off the autopoll and wait for it to disable on the chip
620  */
621 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
622 {
623 	u16 ww;
624 
625 	/*  turn off MAUTO */
626 	writeb(0, &regs->MIICR);
627 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
628 		udelay(1);
629 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
630 			break;
631 	}
632 }
633 
634 /**
635  *	enable_mii_autopoll	-	turn on autopolling
636  *	@regs: velocity registers
637  *
638  *	Enable the MII link status autopoll feature on the Velocity
639  *	hardware. Wait for it to enable.
640  */
641 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
642 {
643 	int ii;
644 
645 	writeb(0, &(regs->MIICR));
646 	writeb(MIIADR_SWMPL, &regs->MIIADR);
647 
648 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
649 		udelay(1);
650 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
651 			break;
652 	}
653 
654 	writeb(MIICR_MAUTO, &regs->MIICR);
655 
656 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
657 		udelay(1);
658 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
659 			break;
660 	}
661 
662 }
663 
664 /**
665  *	velocity_mii_read	-	read MII data
666  *	@regs: velocity registers
667  *	@index: MII register index
668  *	@data: buffer for received data
669  *
670  *	Perform a single read of an MII 16bit register. Returns zero
671  *	on success or -ETIMEDOUT if the PHY did not respond.
672  */
673 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
674 {
675 	u16 ww;
676 
677 	/*
678 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
679 	 */
680 	safe_disable_mii_autopoll(regs);
681 
682 	writeb(index, &regs->MIIADR);
683 
684 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
685 
686 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
687 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
688 			break;
689 	}
690 
691 	*data = readw(&regs->MIIDATA);
692 
693 	enable_mii_autopoll(regs);
694 	if (ww == W_MAX_TIMEOUT)
695 		return -ETIMEDOUT;
696 	return 0;
697 }
698 
699 /**
700  *	mii_check_media_mode	-	check media state
701  *	@regs: velocity registers
702  *
703  *	Check the current MII status and determine the link status
704  *	accordingly
705  */
706 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
707 {
708 	u32 status = 0;
709 	u16 ANAR;
710 
711 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
712 		status |= VELOCITY_LINK_FAIL;
713 
714 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
715 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
716 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
717 		status |= (VELOCITY_SPEED_1000);
718 	else {
719 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
720 		if (ANAR & ADVERTISE_100FULL)
721 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
722 		else if (ANAR & ADVERTISE_100HALF)
723 			status |= VELOCITY_SPEED_100;
724 		else if (ANAR & ADVERTISE_10FULL)
725 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
726 		else
727 			status |= (VELOCITY_SPEED_10);
728 	}
729 
730 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
731 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
733 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
734 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
735 				status |= VELOCITY_AUTONEG_ENABLE;
736 		}
737 	}
738 
739 	return status;
740 }
741 
742 /**
743  *	velocity_mii_write	-	write MII data
744  *	@regs: velocity registers
745  *	@index: MII register index
746  *	@data: 16bit data for the MII register
747  *
748  *	Perform a single write to an MII 16bit register. Returns zero
749  *	on success or -ETIMEDOUT if the PHY did not respond.
750  */
751 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
752 {
753 	u16 ww;
754 
755 	/*
756 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
757 	 */
758 	safe_disable_mii_autopoll(regs);
759 
760 	/* MII reg offset */
761 	writeb(mii_addr, &regs->MIIADR);
762 	/* set MII data */
763 	writew(data, &regs->MIIDATA);
764 
765 	/* turn on MIICR_WCMD */
766 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
767 
768 	/* W_MAX_TIMEOUT is the timeout period */
769 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
770 		udelay(5);
771 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
772 			break;
773 	}
774 	enable_mii_autopoll(regs);
775 
776 	if (ww == W_MAX_TIMEOUT)
777 		return -ETIMEDOUT;
778 	return 0;
779 }
780 
781 /**
782  *	set_mii_flow_control	-	flow control setup
783  *	@vptr: velocity interface
784  *
785  *	Set up the flow control on this interface according to
786  *	the supplied user/eeprom options.
787  */
788 static void set_mii_flow_control(struct velocity_info *vptr)
789 {
790 	/*Enable or Disable PAUSE in ANAR */
791 	switch (vptr->options.flow_cntl) {
792 	case FLOW_CNTL_TX:
793 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
794 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
795 		break;
796 
797 	case FLOW_CNTL_RX:
798 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
799 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
800 		break;
801 
802 	case FLOW_CNTL_TX_RX:
803 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
804 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
805 		break;
806 
807 	case FLOW_CNTL_DISABLE:
808 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 		break;
811 	default:
812 		break;
813 	}
814 }
815 
816 /**
817  *	mii_set_auto_on		-	autonegotiate on
818  *	@vptr: velocity
819  *
820  *	Enable autonegotation on this interface
821  */
822 static void mii_set_auto_on(struct velocity_info *vptr)
823 {
824 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
825 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
826 	else
827 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
828 }
829 
830 static u32 check_connection_type(struct mac_regs __iomem *regs)
831 {
832 	u32 status = 0;
833 	u8 PHYSR0;
834 	u16 ANAR;
835 	PHYSR0 = readb(&regs->PHYSR0);
836 
837 	/*
838 	   if (!(PHYSR0 & PHYSR0_LINKGD))
839 	   status|=VELOCITY_LINK_FAIL;
840 	 */
841 
842 	if (PHYSR0 & PHYSR0_FDPX)
843 		status |= VELOCITY_DUPLEX_FULL;
844 
845 	if (PHYSR0 & PHYSR0_SPDG)
846 		status |= VELOCITY_SPEED_1000;
847 	else if (PHYSR0 & PHYSR0_SPD10)
848 		status |= VELOCITY_SPEED_10;
849 	else
850 		status |= VELOCITY_SPEED_100;
851 
852 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
853 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
854 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
855 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
856 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
857 				status |= VELOCITY_AUTONEG_ENABLE;
858 		}
859 	}
860 
861 	return status;
862 }
863 
864 /**
865  *	velocity_set_media_mode		-	set media mode
866  *	@mii_status: old MII link state
867  *
868  *	Check the media link state and configure the flow control
869  *	PHY and also velocity hardware setup accordingly. In particular
870  *	we need to set up CD polling and frame bursting.
871  */
872 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
873 {
874 	u32 curr_status;
875 	struct mac_regs __iomem *regs = vptr->mac_regs;
876 
877 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
878 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
879 
880 	/* Set mii link status */
881 	set_mii_flow_control(vptr);
882 
883 	/*
884 	   Check if new status is consistent with current status
885 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
886 	       (mii_status==curr_status)) {
887 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
888 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
889 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
890 	   return 0;
891 	   }
892 	 */
893 
894 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
895 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
896 
897 	/*
898 	 *	If connection type is AUTO
899 	 */
900 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
901 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
902 		/* clear force MAC mode bit */
903 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
904 		/* set duplex mode of MAC according to duplex mode of MII */
905 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
906 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
907 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
908 
909 		/* enable AUTO-NEGO mode */
910 		mii_set_auto_on(vptr);
911 	} else {
912 		u16 CTRL1000;
913 		u16 ANAR;
914 		u8 CHIPGCR;
915 
916 		/*
917 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
918 		 *    and enable it in fullduplex mode
919 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
920 		 * 3. only enable CD heart beat counter in 10HD mode
921 		 */
922 
923 		/* set force MAC mode bit */
924 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
925 
926 		CHIPGCR = readb(&regs->CHIPGCR);
927 
928 		if (mii_status & VELOCITY_SPEED_1000)
929 			CHIPGCR |= CHIPGCR_FCGMII;
930 		else
931 			CHIPGCR &= ~CHIPGCR_FCGMII;
932 
933 		if (mii_status & VELOCITY_DUPLEX_FULL) {
934 			CHIPGCR |= CHIPGCR_FCFDX;
935 			writeb(CHIPGCR, &regs->CHIPGCR);
936 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
937 			if (vptr->rev_id < REV_ID_VT3216_A0)
938 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
939 		} else {
940 			CHIPGCR &= ~CHIPGCR_FCFDX;
941 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
942 			writeb(CHIPGCR, &regs->CHIPGCR);
943 			if (vptr->rev_id < REV_ID_VT3216_A0)
944 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
945 		}
946 
947 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
948 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
949 		if ((mii_status & VELOCITY_SPEED_1000) &&
950 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
951 			CTRL1000 |= ADVERTISE_1000FULL;
952 		}
953 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
954 
955 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
956 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
957 		else
958 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
959 
960 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
961 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
962 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
963 		if (mii_status & VELOCITY_SPEED_100) {
964 			if (mii_status & VELOCITY_DUPLEX_FULL)
965 				ANAR |= ADVERTISE_100FULL;
966 			else
967 				ANAR |= ADVERTISE_100HALF;
968 		} else if (mii_status & VELOCITY_SPEED_10) {
969 			if (mii_status & VELOCITY_DUPLEX_FULL)
970 				ANAR |= ADVERTISE_10FULL;
971 			else
972 				ANAR |= ADVERTISE_10HALF;
973 		}
974 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
975 		/* enable AUTO-NEGO mode */
976 		mii_set_auto_on(vptr);
977 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
978 	}
979 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
980 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
981 	return VELOCITY_LINK_CHANGE;
982 }
983 
984 /**
985  *	velocity_print_link_status	-	link status reporting
986  *	@vptr: velocity to report on
987  *
988  *	Turn the link status of the velocity card into a kernel log
989  *	description of the new link state, detailing speed and duplex
990  *	status
991  */
992 static void velocity_print_link_status(struct velocity_info *vptr)
993 {
994 
995 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
996 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
997 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
998 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
999 
1000 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1001 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1002 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1003 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1004 		else
1005 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1006 
1007 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1008 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1009 		else
1010 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1011 	} else {
1012 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1013 		switch (vptr->options.spd_dpx) {
1014 		case SPD_DPX_1000_FULL:
1015 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1016 			break;
1017 		case SPD_DPX_100_HALF:
1018 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1019 			break;
1020 		case SPD_DPX_100_FULL:
1021 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1022 			break;
1023 		case SPD_DPX_10_HALF:
1024 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1025 			break;
1026 		case SPD_DPX_10_FULL:
1027 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1028 			break;
1029 		default:
1030 			break;
1031 		}
1032 	}
1033 }
1034 
1035 /**
1036  *	enable_flow_control_ability	-	flow control
1037  *	@vptr: veloity to configure
1038  *
1039  *	Set up flow control according to the flow control options
1040  *	determined by the eeprom/configuration.
1041  */
1042 static void enable_flow_control_ability(struct velocity_info *vptr)
1043 {
1044 
1045 	struct mac_regs __iomem *regs = vptr->mac_regs;
1046 
1047 	switch (vptr->options.flow_cntl) {
1048 
1049 	case FLOW_CNTL_DEFAULT:
1050 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1051 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1052 		else
1053 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1054 
1055 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1056 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1057 		else
1058 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1059 		break;
1060 
1061 	case FLOW_CNTL_TX:
1062 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1063 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1064 		break;
1065 
1066 	case FLOW_CNTL_RX:
1067 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1068 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1069 		break;
1070 
1071 	case FLOW_CNTL_TX_RX:
1072 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1073 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1074 		break;
1075 
1076 	case FLOW_CNTL_DISABLE:
1077 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1078 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1079 		break;
1080 
1081 	default:
1082 		break;
1083 	}
1084 
1085 }
1086 
1087 /**
1088  *	velocity_soft_reset	-	soft reset
1089  *	@vptr: velocity to reset
1090  *
1091  *	Kick off a soft reset of the velocity adapter and then poll
1092  *	until the reset sequence has completed before returning.
1093  */
1094 static int velocity_soft_reset(struct velocity_info *vptr)
1095 {
1096 	struct mac_regs __iomem *regs = vptr->mac_regs;
1097 	int i = 0;
1098 
1099 	writel(CR0_SFRST, &regs->CR0Set);
1100 
1101 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1102 		udelay(5);
1103 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1104 			break;
1105 	}
1106 
1107 	if (i == W_MAX_TIMEOUT) {
1108 		writel(CR0_FORSRST, &regs->CR0Set);
1109 		/* FIXME: PCI POSTING */
1110 		/* delay 2ms */
1111 		mdelay(2);
1112 	}
1113 	return 0;
1114 }
1115 
1116 /**
1117  *	velocity_set_multi	-	filter list change callback
1118  *	@dev: network device
1119  *
1120  *	Called by the network layer when the filter lists need to change
1121  *	for a velocity adapter. Reload the CAMs with the new address
1122  *	filter ruleset.
1123  */
1124 static void velocity_set_multi(struct net_device *dev)
1125 {
1126 	struct velocity_info *vptr = netdev_priv(dev);
1127 	struct mac_regs __iomem *regs = vptr->mac_regs;
1128 	u8 rx_mode;
1129 	int i;
1130 	struct netdev_hw_addr *ha;
1131 
1132 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1133 		writel(0xffffffff, &regs->MARCAM[0]);
1134 		writel(0xffffffff, &regs->MARCAM[4]);
1135 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1136 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1137 		   (dev->flags & IFF_ALLMULTI)) {
1138 		writel(0xffffffff, &regs->MARCAM[0]);
1139 		writel(0xffffffff, &regs->MARCAM[4]);
1140 		rx_mode = (RCR_AM | RCR_AB);
1141 	} else {
1142 		int offset = MCAM_SIZE - vptr->multicast_limit;
1143 		mac_get_cam_mask(regs, vptr->mCAMmask);
1144 
1145 		i = 0;
1146 		netdev_for_each_mc_addr(ha, dev) {
1147 			mac_set_cam(regs, i + offset, ha->addr);
1148 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1149 			i++;
1150 		}
1151 
1152 		mac_set_cam_mask(regs, vptr->mCAMmask);
1153 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1154 	}
1155 	if (dev->mtu > 1500)
1156 		rx_mode |= RCR_AL;
1157 
1158 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1159 
1160 }
1161 
1162 /*
1163  * MII access , media link mode setting functions
1164  */
1165 
1166 /**
1167  *	mii_init	-	set up MII
1168  *	@vptr: velocity adapter
1169  *	@mii_status:  links tatus
1170  *
1171  *	Set up the PHY for the current link state.
1172  */
1173 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1174 {
1175 	u16 BMCR;
1176 
1177 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1178 	case PHYID_CICADA_CS8201:
1179 		/*
1180 		 *	Reset to hardware default
1181 		 */
1182 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1183 		/*
1184 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1185 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1186 		 *	legacy-forced issue.
1187 		 */
1188 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1189 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1190 		else
1191 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1192 		/*
1193 		 *	Turn on Link/Activity LED enable bit for CIS8201
1194 		 */
1195 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1196 		break;
1197 	case PHYID_VT3216_32BIT:
1198 	case PHYID_VT3216_64BIT:
1199 		/*
1200 		 *	Reset to hardware default
1201 		 */
1202 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1203 		/*
1204 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1205 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1206 		 *	legacy-forced issue
1207 		 */
1208 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1209 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210 		else
1211 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1212 		break;
1213 
1214 	case PHYID_MARVELL_1000:
1215 	case PHYID_MARVELL_1000S:
1216 		/*
1217 		 *	Assert CRS on Transmit
1218 		 */
1219 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1220 		/*
1221 		 *	Reset to hardware default
1222 		 */
1223 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1224 		break;
1225 	default:
1226 		;
1227 	}
1228 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1229 	if (BMCR & BMCR_ISOLATE) {
1230 		BMCR &= ~BMCR_ISOLATE;
1231 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1232 	}
1233 }
1234 
1235 /**
1236  * setup_queue_timers	-	Setup interrupt timers
1237  *
1238  * Setup interrupt frequency during suppression (timeout if the frame
1239  * count isn't filled).
1240  */
1241 static void setup_queue_timers(struct velocity_info *vptr)
1242 {
1243 	/* Only for newer revisions */
1244 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1245 		u8 txqueue_timer = 0;
1246 		u8 rxqueue_timer = 0;
1247 
1248 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1249 				VELOCITY_SPEED_100)) {
1250 			txqueue_timer = vptr->options.txqueue_timer;
1251 			rxqueue_timer = vptr->options.rxqueue_timer;
1252 		}
1253 
1254 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1255 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1256 	}
1257 }
1258 
1259 /**
1260  * setup_adaptive_interrupts  -  Setup interrupt suppression
1261  *
1262  * @vptr velocity adapter
1263  *
1264  * The velocity is able to suppress interrupt during high interrupt load.
1265  * This function turns on that feature.
1266  */
1267 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1268 {
1269 	struct mac_regs __iomem *regs = vptr->mac_regs;
1270 	u16 tx_intsup = vptr->options.tx_intsup;
1271 	u16 rx_intsup = vptr->options.rx_intsup;
1272 
1273 	/* Setup default interrupt mask (will be changed below) */
1274 	vptr->int_mask = INT_MASK_DEF;
1275 
1276 	/* Set Tx Interrupt Suppression Threshold */
1277 	writeb(CAMCR_PS0, &regs->CAMCR);
1278 	if (tx_intsup != 0) {
1279 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1280 				ISR_PTX2I | ISR_PTX3I);
1281 		writew(tx_intsup, &regs->ISRCTL);
1282 	} else
1283 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1284 
1285 	/* Set Rx Interrupt Suppression Threshold */
1286 	writeb(CAMCR_PS1, &regs->CAMCR);
1287 	if (rx_intsup != 0) {
1288 		vptr->int_mask &= ~ISR_PRXI;
1289 		writew(rx_intsup, &regs->ISRCTL);
1290 	} else
1291 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1292 
1293 	/* Select page to interrupt hold timer */
1294 	writeb(0, &regs->CAMCR);
1295 }
1296 
1297 /**
1298  *	velocity_init_registers	-	initialise MAC registers
1299  *	@vptr: velocity to init
1300  *	@type: type of initialisation (hot or cold)
1301  *
1302  *	Initialise the MAC on a reset or on first set up on the
1303  *	hardware.
1304  */
1305 static void velocity_init_registers(struct velocity_info *vptr,
1306 				    enum velocity_init_type type)
1307 {
1308 	struct mac_regs __iomem *regs = vptr->mac_regs;
1309 	int i, mii_status;
1310 
1311 	mac_wol_reset(regs);
1312 
1313 	switch (type) {
1314 	case VELOCITY_INIT_RESET:
1315 	case VELOCITY_INIT_WOL:
1316 
1317 		netif_stop_queue(vptr->dev);
1318 
1319 		/*
1320 		 *	Reset RX to prevent RX pointer not on the 4X location
1321 		 */
1322 		velocity_rx_reset(vptr);
1323 		mac_rx_queue_run(regs);
1324 		mac_rx_queue_wake(regs);
1325 
1326 		mii_status = velocity_get_opt_media_mode(vptr);
1327 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1328 			velocity_print_link_status(vptr);
1329 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1330 				netif_wake_queue(vptr->dev);
1331 		}
1332 
1333 		enable_flow_control_ability(vptr);
1334 
1335 		mac_clear_isr(regs);
1336 		writel(CR0_STOP, &regs->CR0Clr);
1337 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1338 							&regs->CR0Set);
1339 
1340 		break;
1341 
1342 	case VELOCITY_INIT_COLD:
1343 	default:
1344 		/*
1345 		 *	Do reset
1346 		 */
1347 		velocity_soft_reset(vptr);
1348 		mdelay(5);
1349 
1350 		mac_eeprom_reload(regs);
1351 		for (i = 0; i < 6; i++)
1352 			writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1353 
1354 		/*
1355 		 *	clear Pre_ACPI bit.
1356 		 */
1357 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1358 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1359 		mac_set_dma_length(regs, vptr->options.DMA_length);
1360 
1361 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1362 		/*
1363 		 *	Back off algorithm use original IEEE standard
1364 		 */
1365 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1366 
1367 		/*
1368 		 *	Init CAM filter
1369 		 */
1370 		velocity_init_cam_filter(vptr);
1371 
1372 		/*
1373 		 *	Set packet filter: Receive directed and broadcast address
1374 		 */
1375 		velocity_set_multi(vptr->dev);
1376 
1377 		/*
1378 		 *	Enable MII auto-polling
1379 		 */
1380 		enable_mii_autopoll(regs);
1381 
1382 		setup_adaptive_interrupts(vptr);
1383 
1384 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1385 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1386 		mac_rx_queue_run(regs);
1387 		mac_rx_queue_wake(regs);
1388 
1389 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1390 
1391 		for (i = 0; i < vptr->tx.numq; i++) {
1392 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1393 			mac_tx_queue_run(regs, i);
1394 		}
1395 
1396 		init_flow_control_register(vptr);
1397 
1398 		writel(CR0_STOP, &regs->CR0Clr);
1399 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1400 
1401 		mii_status = velocity_get_opt_media_mode(vptr);
1402 		netif_stop_queue(vptr->dev);
1403 
1404 		mii_init(vptr, mii_status);
1405 
1406 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1407 			velocity_print_link_status(vptr);
1408 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1409 				netif_wake_queue(vptr->dev);
1410 		}
1411 
1412 		enable_flow_control_ability(vptr);
1413 		mac_hw_mibs_init(regs);
1414 		mac_write_int_mask(vptr->int_mask, regs);
1415 		mac_clear_isr(regs);
1416 
1417 	}
1418 }
1419 
1420 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1421 {
1422 	struct mac_regs __iomem *regs = vptr->mac_regs;
1423 	int avail, dirty, unusable;
1424 
1425 	/*
1426 	 * RD number must be equal to 4X per hardware spec
1427 	 * (programming guide rev 1.20, p.13)
1428 	 */
1429 	if (vptr->rx.filled < 4)
1430 		return;
1431 
1432 	wmb();
1433 
1434 	unusable = vptr->rx.filled & 0x0003;
1435 	dirty = vptr->rx.dirty - unusable;
1436 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1437 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1438 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1439 	}
1440 
1441 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1442 	vptr->rx.filled = unusable;
1443 }
1444 
1445 /**
1446  *	velocity_init_dma_rings	-	set up DMA rings
1447  *	@vptr: Velocity to set up
1448  *
1449  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1450  *	to use.
1451  */
1452 static int velocity_init_dma_rings(struct velocity_info *vptr)
1453 {
1454 	struct velocity_opt *opt = &vptr->options;
1455 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1456 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1457 	struct pci_dev *pdev = vptr->pdev;
1458 	dma_addr_t pool_dma;
1459 	void *pool;
1460 	unsigned int i;
1461 
1462 	/*
1463 	 * Allocate all RD/TD rings a single pool.
1464 	 *
1465 	 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1466 	 * alignment
1467 	 */
1468 	pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1469 				    rx_ring_size, &pool_dma);
1470 	if (!pool) {
1471 		dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1472 			vptr->dev->name);
1473 		return -ENOMEM;
1474 	}
1475 
1476 	vptr->rx.ring = pool;
1477 	vptr->rx.pool_dma = pool_dma;
1478 
1479 	pool += rx_ring_size;
1480 	pool_dma += rx_ring_size;
1481 
1482 	for (i = 0; i < vptr->tx.numq; i++) {
1483 		vptr->tx.rings[i] = pool;
1484 		vptr->tx.pool_dma[i] = pool_dma;
1485 		pool += tx_ring_size;
1486 		pool_dma += tx_ring_size;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1493 {
1494 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1495 }
1496 
1497 /**
1498  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1499  *	@vptr: velocity
1500  *	@idx: ring index
1501  *
1502  *	Allocate a new full sized buffer for the reception of a frame and
1503  *	map it into PCI space for the hardware to use. The hardware
1504  *	requires *64* byte alignment of the buffer which makes life
1505  *	less fun than would be ideal.
1506  */
1507 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1508 {
1509 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1510 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1511 
1512 	rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64);
1513 	if (rd_info->skb == NULL)
1514 		return -ENOMEM;
1515 
1516 	/*
1517 	 *	Do the gymnastics to get the buffer head for data at
1518 	 *	64byte alignment.
1519 	 */
1520 	skb_reserve(rd_info->skb,
1521 			64 - ((unsigned long) rd_info->skb->data & 63));
1522 	rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1523 					vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1524 
1525 	/*
1526 	 *	Fill in the descriptor to match
1527 	 */
1528 
1529 	*((u32 *) & (rd->rdesc0)) = 0;
1530 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1531 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1532 	rd->pa_high = 0;
1533 	return 0;
1534 }
1535 
1536 
1537 static int velocity_rx_refill(struct velocity_info *vptr)
1538 {
1539 	int dirty = vptr->rx.dirty, done = 0;
1540 
1541 	do {
1542 		struct rx_desc *rd = vptr->rx.ring + dirty;
1543 
1544 		/* Fine for an all zero Rx desc at init time as well */
1545 		if (rd->rdesc0.len & OWNED_BY_NIC)
1546 			break;
1547 
1548 		if (!vptr->rx.info[dirty].skb) {
1549 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1550 				break;
1551 		}
1552 		done++;
1553 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1554 	} while (dirty != vptr->rx.curr);
1555 
1556 	if (done) {
1557 		vptr->rx.dirty = dirty;
1558 		vptr->rx.filled += done;
1559 	}
1560 
1561 	return done;
1562 }
1563 
1564 /**
1565  *	velocity_free_rd_ring	-	free receive ring
1566  *	@vptr: velocity to clean up
1567  *
1568  *	Free the receive buffers for each ring slot and any
1569  *	attached socket buffers that need to go away.
1570  */
1571 static void velocity_free_rd_ring(struct velocity_info *vptr)
1572 {
1573 	int i;
1574 
1575 	if (vptr->rx.info == NULL)
1576 		return;
1577 
1578 	for (i = 0; i < vptr->options.numrx; i++) {
1579 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1580 		struct rx_desc *rd = vptr->rx.ring + i;
1581 
1582 		memset(rd, 0, sizeof(*rd));
1583 
1584 		if (!rd_info->skb)
1585 			continue;
1586 		pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1587 				 PCI_DMA_FROMDEVICE);
1588 		rd_info->skb_dma = 0;
1589 
1590 		dev_kfree_skb(rd_info->skb);
1591 		rd_info->skb = NULL;
1592 	}
1593 
1594 	kfree(vptr->rx.info);
1595 	vptr->rx.info = NULL;
1596 }
1597 
1598 /**
1599  *	velocity_init_rd_ring	-	set up receive ring
1600  *	@vptr: velocity to configure
1601  *
1602  *	Allocate and set up the receive buffers for each ring slot and
1603  *	assign them to the network adapter.
1604  */
1605 static int velocity_init_rd_ring(struct velocity_info *vptr)
1606 {
1607 	int ret = -ENOMEM;
1608 
1609 	vptr->rx.info = kcalloc(vptr->options.numrx,
1610 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1611 	if (!vptr->rx.info)
1612 		goto out;
1613 
1614 	velocity_init_rx_ring_indexes(vptr);
1615 
1616 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1617 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1618 			"%s: failed to allocate RX buffer.\n", vptr->dev->name);
1619 		velocity_free_rd_ring(vptr);
1620 		goto out;
1621 	}
1622 
1623 	ret = 0;
1624 out:
1625 	return ret;
1626 }
1627 
1628 /**
1629  *	velocity_init_td_ring	-	set up transmit ring
1630  *	@vptr:	velocity
1631  *
1632  *	Set up the transmit ring and chain the ring pointers together.
1633  *	Returns zero on success or a negative posix errno code for
1634  *	failure.
1635  */
1636 static int velocity_init_td_ring(struct velocity_info *vptr)
1637 {
1638 	int j;
1639 
1640 	/* Init the TD ring entries */
1641 	for (j = 0; j < vptr->tx.numq; j++) {
1642 
1643 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1644 					    sizeof(struct velocity_td_info),
1645 					    GFP_KERNEL);
1646 		if (!vptr->tx.infos[j])	{
1647 			while (--j >= 0)
1648 				kfree(vptr->tx.infos[j]);
1649 			return -ENOMEM;
1650 		}
1651 
1652 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1653 	}
1654 	return 0;
1655 }
1656 
1657 /**
1658  *	velocity_free_dma_rings	-	free PCI ring pointers
1659  *	@vptr: Velocity to free from
1660  *
1661  *	Clean up the PCI ring buffers allocated to this velocity.
1662  */
1663 static void velocity_free_dma_rings(struct velocity_info *vptr)
1664 {
1665 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1666 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1667 
1668 	pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1669 }
1670 
1671 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1672 {
1673 	int ret;
1674 
1675 	velocity_set_rxbufsize(vptr, mtu);
1676 
1677 	ret = velocity_init_dma_rings(vptr);
1678 	if (ret < 0)
1679 		goto out;
1680 
1681 	ret = velocity_init_rd_ring(vptr);
1682 	if (ret < 0)
1683 		goto err_free_dma_rings_0;
1684 
1685 	ret = velocity_init_td_ring(vptr);
1686 	if (ret < 0)
1687 		goto err_free_rd_ring_1;
1688 out:
1689 	return ret;
1690 
1691 err_free_rd_ring_1:
1692 	velocity_free_rd_ring(vptr);
1693 err_free_dma_rings_0:
1694 	velocity_free_dma_rings(vptr);
1695 	goto out;
1696 }
1697 
1698 /**
1699  *	velocity_free_tx_buf	-	free transmit buffer
1700  *	@vptr: velocity
1701  *	@tdinfo: buffer
1702  *
1703  *	Release an transmit buffer. If the buffer was preallocated then
1704  *	recycle it, if not then unmap the buffer.
1705  */
1706 static void velocity_free_tx_buf(struct velocity_info *vptr,
1707 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1708 {
1709 	struct sk_buff *skb = tdinfo->skb;
1710 
1711 	/*
1712 	 *	Don't unmap the pre-allocated tx_bufs
1713 	 */
1714 	if (tdinfo->skb_dma) {
1715 		int i;
1716 
1717 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1718 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1719 
1720 			/* For scatter-gather */
1721 			if (skb_shinfo(skb)->nr_frags > 0)
1722 				pktlen = max_t(size_t, pktlen,
1723 						td->td_buf[i].size & ~TD_QUEUE);
1724 
1725 			pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1726 					le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1727 		}
1728 	}
1729 	dev_kfree_skb_irq(skb);
1730 	tdinfo->skb = NULL;
1731 }
1732 
1733 /*
1734  *	FIXME: could we merge this with velocity_free_tx_buf ?
1735  */
1736 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1737 							 int q, int n)
1738 {
1739 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1740 	int i;
1741 
1742 	if (td_info == NULL)
1743 		return;
1744 
1745 	if (td_info->skb) {
1746 		for (i = 0; i < td_info->nskb_dma; i++) {
1747 			if (td_info->skb_dma[i]) {
1748 				pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1749 					td_info->skb->len, PCI_DMA_TODEVICE);
1750 				td_info->skb_dma[i] = 0;
1751 			}
1752 		}
1753 		dev_kfree_skb(td_info->skb);
1754 		td_info->skb = NULL;
1755 	}
1756 }
1757 
1758 /**
1759  *	velocity_free_td_ring	-	free td ring
1760  *	@vptr: velocity
1761  *
1762  *	Free up the transmit ring for this particular velocity adapter.
1763  *	We free the ring contents but not the ring itself.
1764  */
1765 static void velocity_free_td_ring(struct velocity_info *vptr)
1766 {
1767 	int i, j;
1768 
1769 	for (j = 0; j < vptr->tx.numq; j++) {
1770 		if (vptr->tx.infos[j] == NULL)
1771 			continue;
1772 		for (i = 0; i < vptr->options.numtx; i++)
1773 			velocity_free_td_ring_entry(vptr, j, i);
1774 
1775 		kfree(vptr->tx.infos[j]);
1776 		vptr->tx.infos[j] = NULL;
1777 	}
1778 }
1779 
1780 static void velocity_free_rings(struct velocity_info *vptr)
1781 {
1782 	velocity_free_td_ring(vptr);
1783 	velocity_free_rd_ring(vptr);
1784 	velocity_free_dma_rings(vptr);
1785 }
1786 
1787 /**
1788  *	velocity_error	-	handle error from controller
1789  *	@vptr: velocity
1790  *	@status: card status
1791  *
1792  *	Process an error report from the hardware and attempt to recover
1793  *	the card itself. At the moment we cannot recover from some
1794  *	theoretically impossible errors but this could be fixed using
1795  *	the pci_device_failed logic to bounce the hardware
1796  *
1797  */
1798 static void velocity_error(struct velocity_info *vptr, int status)
1799 {
1800 
1801 	if (status & ISR_TXSTLI) {
1802 		struct mac_regs __iomem *regs = vptr->mac_regs;
1803 
1804 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1805 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1806 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1807 		netif_stop_queue(vptr->dev);
1808 
1809 		/* FIXME: port over the pci_device_failed code and use it
1810 		   here */
1811 	}
1812 
1813 	if (status & ISR_SRCI) {
1814 		struct mac_regs __iomem *regs = vptr->mac_regs;
1815 		int linked;
1816 
1817 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1818 			vptr->mii_status = check_connection_type(regs);
1819 
1820 			/*
1821 			 *	If it is a 3119, disable frame bursting in
1822 			 *	halfduplex mode and enable it in fullduplex
1823 			 *	 mode
1824 			 */
1825 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1826 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1827 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1828 				else
1829 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1830 			}
1831 			/*
1832 			 *	Only enable CD heart beat counter in 10HD mode
1833 			 */
1834 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1835 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1836 			else
1837 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1838 
1839 			setup_queue_timers(vptr);
1840 		}
1841 		/*
1842 		 *	Get link status from PHYSR0
1843 		 */
1844 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1845 
1846 		if (linked) {
1847 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1848 			netif_carrier_on(vptr->dev);
1849 		} else {
1850 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1851 			netif_carrier_off(vptr->dev);
1852 		}
1853 
1854 		velocity_print_link_status(vptr);
1855 		enable_flow_control_ability(vptr);
1856 
1857 		/*
1858 		 *	Re-enable auto-polling because SRCI will disable
1859 		 *	auto-polling
1860 		 */
1861 
1862 		enable_mii_autopoll(regs);
1863 
1864 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1865 			netif_stop_queue(vptr->dev);
1866 		else
1867 			netif_wake_queue(vptr->dev);
1868 
1869 	}
1870 	if (status & ISR_MIBFI)
1871 		velocity_update_hw_mibs(vptr);
1872 	if (status & ISR_LSTEI)
1873 		mac_rx_queue_wake(vptr->mac_regs);
1874 }
1875 
1876 /**
1877  *	tx_srv		-	transmit interrupt service
1878  *	@vptr; Velocity
1879  *
1880  *	Scan the queues looking for transmitted packets that
1881  *	we can complete and clean up. Update any statistics as
1882  *	necessary/
1883  */
1884 static int velocity_tx_srv(struct velocity_info *vptr)
1885 {
1886 	struct tx_desc *td;
1887 	int qnum;
1888 	int full = 0;
1889 	int idx;
1890 	int works = 0;
1891 	struct velocity_td_info *tdinfo;
1892 	struct net_device_stats *stats = &vptr->dev->stats;
1893 
1894 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1895 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1896 			idx = (idx + 1) % vptr->options.numtx) {
1897 
1898 			/*
1899 			 *	Get Tx Descriptor
1900 			 */
1901 			td = &(vptr->tx.rings[qnum][idx]);
1902 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1903 
1904 			if (td->tdesc0.len & OWNED_BY_NIC)
1905 				break;
1906 
1907 			if ((works++ > 15))
1908 				break;
1909 
1910 			if (td->tdesc0.TSR & TSR0_TERR) {
1911 				stats->tx_errors++;
1912 				stats->tx_dropped++;
1913 				if (td->tdesc0.TSR & TSR0_CDH)
1914 					stats->tx_heartbeat_errors++;
1915 				if (td->tdesc0.TSR & TSR0_CRS)
1916 					stats->tx_carrier_errors++;
1917 				if (td->tdesc0.TSR & TSR0_ABT)
1918 					stats->tx_aborted_errors++;
1919 				if (td->tdesc0.TSR & TSR0_OWC)
1920 					stats->tx_window_errors++;
1921 			} else {
1922 				stats->tx_packets++;
1923 				stats->tx_bytes += tdinfo->skb->len;
1924 			}
1925 			velocity_free_tx_buf(vptr, tdinfo, td);
1926 			vptr->tx.used[qnum]--;
1927 		}
1928 		vptr->tx.tail[qnum] = idx;
1929 
1930 		if (AVAIL_TD(vptr, qnum) < 1)
1931 			full = 1;
1932 	}
1933 	/*
1934 	 *	Look to see if we should kick the transmit network
1935 	 *	layer for more work.
1936 	 */
1937 	if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1938 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1939 		netif_wake_queue(vptr->dev);
1940 	}
1941 	return works;
1942 }
1943 
1944 /**
1945  *	velocity_rx_csum	-	checksum process
1946  *	@rd: receive packet descriptor
1947  *	@skb: network layer packet buffer
1948  *
1949  *	Process the status bits for the received packet and determine
1950  *	if the checksum was computed and verified by the hardware
1951  */
1952 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1953 {
1954 	skb_checksum_none_assert(skb);
1955 
1956 	if (rd->rdesc1.CSM & CSM_IPKT) {
1957 		if (rd->rdesc1.CSM & CSM_IPOK) {
1958 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1959 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1960 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1961 					return;
1962 			}
1963 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1964 		}
1965 	}
1966 }
1967 
1968 /**
1969  *	velocity_rx_copy	-	in place Rx copy for small packets
1970  *	@rx_skb: network layer packet buffer candidate
1971  *	@pkt_size: received data size
1972  *	@rd: receive packet descriptor
1973  *	@dev: network device
1974  *
1975  *	Replace the current skb that is scheduled for Rx processing by a
1976  *	shorter, immediately allocated skb, if the received packet is small
1977  *	enough. This function returns a negative value if the received
1978  *	packet is too big or if memory is exhausted.
1979  */
1980 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1981 			    struct velocity_info *vptr)
1982 {
1983 	int ret = -1;
1984 	if (pkt_size < rx_copybreak) {
1985 		struct sk_buff *new_skb;
1986 
1987 		new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1988 		if (new_skb) {
1989 			new_skb->ip_summed = rx_skb[0]->ip_summed;
1990 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1991 			*rx_skb = new_skb;
1992 			ret = 0;
1993 		}
1994 
1995 	}
1996 	return ret;
1997 }
1998 
1999 /**
2000  *	velocity_iph_realign	-	IP header alignment
2001  *	@vptr: velocity we are handling
2002  *	@skb: network layer packet buffer
2003  *	@pkt_size: received data size
2004  *
2005  *	Align IP header on a 2 bytes boundary. This behavior can be
2006  *	configured by the user.
2007  */
2008 static inline void velocity_iph_realign(struct velocity_info *vptr,
2009 					struct sk_buff *skb, int pkt_size)
2010 {
2011 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2012 		memmove(skb->data + 2, skb->data, pkt_size);
2013 		skb_reserve(skb, 2);
2014 	}
2015 }
2016 
2017 /**
2018  *	velocity_receive_frame	-	received packet processor
2019  *	@vptr: velocity we are handling
2020  *	@idx: ring index
2021  *
2022  *	A packet has arrived. We process the packet and if appropriate
2023  *	pass the frame up the network stack
2024  */
2025 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2026 {
2027 	void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2028 	struct net_device_stats *stats = &vptr->dev->stats;
2029 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2030 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2031 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2032 	struct sk_buff *skb;
2033 
2034 	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2035 		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2036 		stats->rx_length_errors++;
2037 		return -EINVAL;
2038 	}
2039 
2040 	if (rd->rdesc0.RSR & RSR_MAR)
2041 		stats->multicast++;
2042 
2043 	skb = rd_info->skb;
2044 
2045 	pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2046 				    vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2047 
2048 	/*
2049 	 *	Drop frame not meeting IEEE 802.3
2050 	 */
2051 
2052 	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2053 		if (rd->rdesc0.RSR & RSR_RL) {
2054 			stats->rx_length_errors++;
2055 			return -EINVAL;
2056 		}
2057 	}
2058 
2059 	pci_action = pci_dma_sync_single_for_device;
2060 
2061 	velocity_rx_csum(rd, skb);
2062 
2063 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2064 		velocity_iph_realign(vptr, skb, pkt_len);
2065 		pci_action = pci_unmap_single;
2066 		rd_info->skb = NULL;
2067 	}
2068 
2069 	pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2070 		   PCI_DMA_FROMDEVICE);
2071 
2072 	skb_put(skb, pkt_len - 4);
2073 	skb->protocol = eth_type_trans(skb, vptr->dev);
2074 
2075 	if (rd->rdesc0.RSR & RSR_DETAG) {
2076 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2077 
2078 		__vlan_hwaccel_put_tag(skb, vid);
2079 	}
2080 	netif_rx(skb);
2081 
2082 	stats->rx_bytes += pkt_len;
2083 	stats->rx_packets++;
2084 
2085 	return 0;
2086 }
2087 
2088 /**
2089  *	velocity_rx_srv		-	service RX interrupt
2090  *	@vptr: velocity
2091  *
2092  *	Walk the receive ring of the velocity adapter and remove
2093  *	any received packets from the receive queue. Hand the ring
2094  *	slots back to the adapter for reuse.
2095  */
2096 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2097 {
2098 	struct net_device_stats *stats = &vptr->dev->stats;
2099 	int rd_curr = vptr->rx.curr;
2100 	int works = 0;
2101 
2102 	while (works < budget_left) {
2103 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2104 
2105 		if (!vptr->rx.info[rd_curr].skb)
2106 			break;
2107 
2108 		if (rd->rdesc0.len & OWNED_BY_NIC)
2109 			break;
2110 
2111 		rmb();
2112 
2113 		/*
2114 		 *	Don't drop CE or RL error frame although RXOK is off
2115 		 */
2116 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2117 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2118 				stats->rx_dropped++;
2119 		} else {
2120 			if (rd->rdesc0.RSR & RSR_CRC)
2121 				stats->rx_crc_errors++;
2122 			if (rd->rdesc0.RSR & RSR_FAE)
2123 				stats->rx_frame_errors++;
2124 
2125 			stats->rx_dropped++;
2126 		}
2127 
2128 		rd->size |= RX_INTEN;
2129 
2130 		rd_curr++;
2131 		if (rd_curr >= vptr->options.numrx)
2132 			rd_curr = 0;
2133 		works++;
2134 	}
2135 
2136 	vptr->rx.curr = rd_curr;
2137 
2138 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2139 		velocity_give_many_rx_descs(vptr);
2140 
2141 	VAR_USED(stats);
2142 	return works;
2143 }
2144 
2145 static int velocity_poll(struct napi_struct *napi, int budget)
2146 {
2147 	struct velocity_info *vptr = container_of(napi,
2148 			struct velocity_info, napi);
2149 	unsigned int rx_done;
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&vptr->lock, flags);
2153 	/*
2154 	 * Do rx and tx twice for performance (taken from the VIA
2155 	 * out-of-tree driver).
2156 	 */
2157 	rx_done = velocity_rx_srv(vptr, budget / 2);
2158 	velocity_tx_srv(vptr);
2159 	rx_done += velocity_rx_srv(vptr, budget - rx_done);
2160 	velocity_tx_srv(vptr);
2161 
2162 	/* If budget not fully consumed, exit the polling mode */
2163 	if (rx_done < budget) {
2164 		napi_complete(napi);
2165 		mac_enable_int(vptr->mac_regs);
2166 	}
2167 	spin_unlock_irqrestore(&vptr->lock, flags);
2168 
2169 	return rx_done;
2170 }
2171 
2172 /**
2173  *	velocity_intr		-	interrupt callback
2174  *	@irq: interrupt number
2175  *	@dev_instance: interrupting device
2176  *
2177  *	Called whenever an interrupt is generated by the velocity
2178  *	adapter IRQ line. We may not be the source of the interrupt
2179  *	and need to identify initially if we are, and if not exit as
2180  *	efficiently as possible.
2181  */
2182 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2183 {
2184 	struct net_device *dev = dev_instance;
2185 	struct velocity_info *vptr = netdev_priv(dev);
2186 	u32 isr_status;
2187 
2188 	spin_lock(&vptr->lock);
2189 	isr_status = mac_read_isr(vptr->mac_regs);
2190 
2191 	/* Not us ? */
2192 	if (isr_status == 0) {
2193 		spin_unlock(&vptr->lock);
2194 		return IRQ_NONE;
2195 	}
2196 
2197 	/* Ack the interrupt */
2198 	mac_write_isr(vptr->mac_regs, isr_status);
2199 
2200 	if (likely(napi_schedule_prep(&vptr->napi))) {
2201 		mac_disable_int(vptr->mac_regs);
2202 		__napi_schedule(&vptr->napi);
2203 	}
2204 
2205 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2206 		velocity_error(vptr, isr_status);
2207 
2208 	spin_unlock(&vptr->lock);
2209 
2210 	return IRQ_HANDLED;
2211 }
2212 
2213 /**
2214  *	velocity_open		-	interface activation callback
2215  *	@dev: network layer device to open
2216  *
2217  *	Called when the network layer brings the interface up. Returns
2218  *	a negative posix error code on failure, or zero on success.
2219  *
2220  *	All the ring allocation and set up is done on open for this
2221  *	adapter to minimise memory usage when inactive
2222  */
2223 static int velocity_open(struct net_device *dev)
2224 {
2225 	struct velocity_info *vptr = netdev_priv(dev);
2226 	int ret;
2227 
2228 	ret = velocity_init_rings(vptr, dev->mtu);
2229 	if (ret < 0)
2230 		goto out;
2231 
2232 	/* Ensure chip is running */
2233 	pci_set_power_state(vptr->pdev, PCI_D0);
2234 
2235 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2236 
2237 	ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2238 			  dev->name, dev);
2239 	if (ret < 0) {
2240 		/* Power down the chip */
2241 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2242 		velocity_free_rings(vptr);
2243 		goto out;
2244 	}
2245 
2246 	velocity_give_many_rx_descs(vptr);
2247 
2248 	mac_enable_int(vptr->mac_regs);
2249 	netif_start_queue(dev);
2250 	napi_enable(&vptr->napi);
2251 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2252 out:
2253 	return ret;
2254 }
2255 
2256 /**
2257  *	velocity_shutdown	-	shut down the chip
2258  *	@vptr: velocity to deactivate
2259  *
2260  *	Shuts down the internal operations of the velocity and
2261  *	disables interrupts, autopolling, transmit and receive
2262  */
2263 static void velocity_shutdown(struct velocity_info *vptr)
2264 {
2265 	struct mac_regs __iomem *regs = vptr->mac_regs;
2266 	mac_disable_int(regs);
2267 	writel(CR0_STOP, &regs->CR0Set);
2268 	writew(0xFFFF, &regs->TDCSRClr);
2269 	writeb(0xFF, &regs->RDCSRClr);
2270 	safe_disable_mii_autopoll(regs);
2271 	mac_clear_isr(regs);
2272 }
2273 
2274 /**
2275  *	velocity_change_mtu	-	MTU change callback
2276  *	@dev: network device
2277  *	@new_mtu: desired MTU
2278  *
2279  *	Handle requests from the networking layer for MTU change on
2280  *	this interface. It gets called on a change by the network layer.
2281  *	Return zero for success or negative posix error code.
2282  */
2283 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2284 {
2285 	struct velocity_info *vptr = netdev_priv(dev);
2286 	int ret = 0;
2287 
2288 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2289 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2290 				vptr->dev->name);
2291 		ret = -EINVAL;
2292 		goto out_0;
2293 	}
2294 
2295 	if (!netif_running(dev)) {
2296 		dev->mtu = new_mtu;
2297 		goto out_0;
2298 	}
2299 
2300 	if (dev->mtu != new_mtu) {
2301 		struct velocity_info *tmp_vptr;
2302 		unsigned long flags;
2303 		struct rx_info rx;
2304 		struct tx_info tx;
2305 
2306 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2307 		if (!tmp_vptr) {
2308 			ret = -ENOMEM;
2309 			goto out_0;
2310 		}
2311 
2312 		tmp_vptr->dev = dev;
2313 		tmp_vptr->pdev = vptr->pdev;
2314 		tmp_vptr->options = vptr->options;
2315 		tmp_vptr->tx.numq = vptr->tx.numq;
2316 
2317 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2318 		if (ret < 0)
2319 			goto out_free_tmp_vptr_1;
2320 
2321 		spin_lock_irqsave(&vptr->lock, flags);
2322 
2323 		netif_stop_queue(dev);
2324 		velocity_shutdown(vptr);
2325 
2326 		rx = vptr->rx;
2327 		tx = vptr->tx;
2328 
2329 		vptr->rx = tmp_vptr->rx;
2330 		vptr->tx = tmp_vptr->tx;
2331 
2332 		tmp_vptr->rx = rx;
2333 		tmp_vptr->tx = tx;
2334 
2335 		dev->mtu = new_mtu;
2336 
2337 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2338 
2339 		velocity_give_many_rx_descs(vptr);
2340 
2341 		mac_enable_int(vptr->mac_regs);
2342 		netif_start_queue(dev);
2343 
2344 		spin_unlock_irqrestore(&vptr->lock, flags);
2345 
2346 		velocity_free_rings(tmp_vptr);
2347 
2348 out_free_tmp_vptr_1:
2349 		kfree(tmp_vptr);
2350 	}
2351 out_0:
2352 	return ret;
2353 }
2354 
2355 /**
2356  *	velocity_mii_ioctl		-	MII ioctl handler
2357  *	@dev: network device
2358  *	@ifr: the ifreq block for the ioctl
2359  *	@cmd: the command
2360  *
2361  *	Process MII requests made via ioctl from the network layer. These
2362  *	are used by tools like kudzu to interrogate the link state of the
2363  *	hardware
2364  */
2365 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2366 {
2367 	struct velocity_info *vptr = netdev_priv(dev);
2368 	struct mac_regs __iomem *regs = vptr->mac_regs;
2369 	unsigned long flags;
2370 	struct mii_ioctl_data *miidata = if_mii(ifr);
2371 	int err;
2372 
2373 	switch (cmd) {
2374 	case SIOCGMIIPHY:
2375 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2376 		break;
2377 	case SIOCGMIIREG:
2378 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2379 			return -ETIMEDOUT;
2380 		break;
2381 	case SIOCSMIIREG:
2382 		spin_lock_irqsave(&vptr->lock, flags);
2383 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2384 		spin_unlock_irqrestore(&vptr->lock, flags);
2385 		check_connection_type(vptr->mac_regs);
2386 		if (err)
2387 			return err;
2388 		break;
2389 	default:
2390 		return -EOPNOTSUPP;
2391 	}
2392 	return 0;
2393 }
2394 
2395 /**
2396  *	velocity_ioctl		-	ioctl entry point
2397  *	@dev: network device
2398  *	@rq: interface request ioctl
2399  *	@cmd: command code
2400  *
2401  *	Called when the user issues an ioctl request to the network
2402  *	device in question. The velocity interface supports MII.
2403  */
2404 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2405 {
2406 	struct velocity_info *vptr = netdev_priv(dev);
2407 	int ret;
2408 
2409 	/* If we are asked for information and the device is power
2410 	   saving then we need to bring the device back up to talk to it */
2411 
2412 	if (!netif_running(dev))
2413 		pci_set_power_state(vptr->pdev, PCI_D0);
2414 
2415 	switch (cmd) {
2416 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2417 	case SIOCGMIIREG:	/* Read MII PHY register. */
2418 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2419 		ret = velocity_mii_ioctl(dev, rq, cmd);
2420 		break;
2421 
2422 	default:
2423 		ret = -EOPNOTSUPP;
2424 	}
2425 	if (!netif_running(dev))
2426 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2427 
2428 
2429 	return ret;
2430 }
2431 
2432 /**
2433  *	velocity_get_status	-	statistics callback
2434  *	@dev: network device
2435  *
2436  *	Callback from the network layer to allow driver statistics
2437  *	to be resynchronized with hardware collected state. In the
2438  *	case of the velocity we need to pull the MIB counters from
2439  *	the hardware into the counters before letting the network
2440  *	layer display them.
2441  */
2442 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2443 {
2444 	struct velocity_info *vptr = netdev_priv(dev);
2445 
2446 	/* If the hardware is down, don't touch MII */
2447 	if (!netif_running(dev))
2448 		return &dev->stats;
2449 
2450 	spin_lock_irq(&vptr->lock);
2451 	velocity_update_hw_mibs(vptr);
2452 	spin_unlock_irq(&vptr->lock);
2453 
2454 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2455 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2456 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2457 
2458 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2459 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2460 	/* detailed rx_errors: */
2461 //  unsigned long   rx_length_errors;
2462 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2463 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2464 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2465 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2466 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2467 
2468 	/* detailed tx_errors */
2469 //  unsigned long   tx_fifo_errors;
2470 
2471 	return &dev->stats;
2472 }
2473 
2474 /**
2475  *	velocity_close		-	close adapter callback
2476  *	@dev: network device
2477  *
2478  *	Callback from the network layer when the velocity is being
2479  *	deactivated by the network layer
2480  */
2481 static int velocity_close(struct net_device *dev)
2482 {
2483 	struct velocity_info *vptr = netdev_priv(dev);
2484 
2485 	napi_disable(&vptr->napi);
2486 	netif_stop_queue(dev);
2487 	velocity_shutdown(vptr);
2488 
2489 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2490 		velocity_get_ip(vptr);
2491 
2492 	free_irq(vptr->pdev->irq, dev);
2493 
2494 	velocity_free_rings(vptr);
2495 
2496 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2497 	return 0;
2498 }
2499 
2500 /**
2501  *	velocity_xmit		-	transmit packet callback
2502  *	@skb: buffer to transmit
2503  *	@dev: network device
2504  *
2505  *	Called by the networ layer to request a packet is queued to
2506  *	the velocity. Returns zero on success.
2507  */
2508 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2509 				 struct net_device *dev)
2510 {
2511 	struct velocity_info *vptr = netdev_priv(dev);
2512 	int qnum = 0;
2513 	struct tx_desc *td_ptr;
2514 	struct velocity_td_info *tdinfo;
2515 	unsigned long flags;
2516 	int pktlen;
2517 	int index, prev;
2518 	int i = 0;
2519 
2520 	if (skb_padto(skb, ETH_ZLEN))
2521 		goto out;
2522 
2523 	/* The hardware can handle at most 7 memory segments, so merge
2524 	 * the skb if there are more */
2525 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2526 		kfree_skb(skb);
2527 		return NETDEV_TX_OK;
2528 	}
2529 
2530 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2531 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2532 				skb_headlen(skb);
2533 
2534 	spin_lock_irqsave(&vptr->lock, flags);
2535 
2536 	index = vptr->tx.curr[qnum];
2537 	td_ptr = &(vptr->tx.rings[qnum][index]);
2538 	tdinfo = &(vptr->tx.infos[qnum][index]);
2539 
2540 	td_ptr->tdesc1.TCR = TCR0_TIC;
2541 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2542 
2543 	/*
2544 	 *	Map the linear network buffer into PCI space and
2545 	 *	add it to the transmit ring.
2546 	 */
2547 	tdinfo->skb = skb;
2548 	tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2549 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2550 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2551 	td_ptr->td_buf[0].pa_high = 0;
2552 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2553 
2554 	/* Handle fragments */
2555 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2556 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2557 
2558 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2559 							  frag, 0,
2560 							  skb_frag_size(frag),
2561 							  DMA_TO_DEVICE);
2562 
2563 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2564 		td_ptr->td_buf[i + 1].pa_high = 0;
2565 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2566 	}
2567 	tdinfo->nskb_dma = i + 1;
2568 
2569 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2570 
2571 	if (vlan_tx_tag_present(skb)) {
2572 		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2573 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2574 	}
2575 
2576 	/*
2577 	 *	Handle hardware checksum
2578 	 */
2579 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2580 		const struct iphdr *ip = ip_hdr(skb);
2581 		if (ip->protocol == IPPROTO_TCP)
2582 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2583 		else if (ip->protocol == IPPROTO_UDP)
2584 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2585 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2586 	}
2587 
2588 	prev = index - 1;
2589 	if (prev < 0)
2590 		prev = vptr->options.numtx - 1;
2591 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2592 	vptr->tx.used[qnum]++;
2593 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2594 
2595 	if (AVAIL_TD(vptr, qnum) < 1)
2596 		netif_stop_queue(dev);
2597 
2598 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2599 	td_ptr->td_buf[0].size |= TD_QUEUE;
2600 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2601 
2602 	spin_unlock_irqrestore(&vptr->lock, flags);
2603 out:
2604 	return NETDEV_TX_OK;
2605 }
2606 
2607 static const struct net_device_ops velocity_netdev_ops = {
2608 	.ndo_open		= velocity_open,
2609 	.ndo_stop		= velocity_close,
2610 	.ndo_start_xmit		= velocity_xmit,
2611 	.ndo_get_stats		= velocity_get_stats,
2612 	.ndo_validate_addr	= eth_validate_addr,
2613 	.ndo_set_mac_address	= eth_mac_addr,
2614 	.ndo_set_rx_mode	= velocity_set_multi,
2615 	.ndo_change_mtu		= velocity_change_mtu,
2616 	.ndo_do_ioctl		= velocity_ioctl,
2617 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2618 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2619 };
2620 
2621 /**
2622  *	velocity_init_info	-	init private data
2623  *	@pdev: PCI device
2624  *	@vptr: Velocity info
2625  *	@info: Board type
2626  *
2627  *	Set up the initial velocity_info struct for the device that has been
2628  *	discovered.
2629  */
2630 static void __devinit velocity_init_info(struct pci_dev *pdev,
2631 					 struct velocity_info *vptr,
2632 					 const struct velocity_info_tbl *info)
2633 {
2634 	memset(vptr, 0, sizeof(struct velocity_info));
2635 
2636 	vptr->pdev = pdev;
2637 	vptr->chip_id = info->chip_id;
2638 	vptr->tx.numq = info->txqueue;
2639 	vptr->multicast_limit = MCAM_SIZE;
2640 	spin_lock_init(&vptr->lock);
2641 }
2642 
2643 /**
2644  *	velocity_get_pci_info	-	retrieve PCI info for device
2645  *	@vptr: velocity device
2646  *	@pdev: PCI device it matches
2647  *
2648  *	Retrieve the PCI configuration space data that interests us from
2649  *	the kernel PCI layer
2650  */
2651 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2652 {
2653 	vptr->rev_id = pdev->revision;
2654 
2655 	pci_set_master(pdev);
2656 
2657 	vptr->ioaddr = pci_resource_start(pdev, 0);
2658 	vptr->memaddr = pci_resource_start(pdev, 1);
2659 
2660 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2661 		dev_err(&pdev->dev,
2662 			   "region #0 is not an I/O resource, aborting.\n");
2663 		return -EINVAL;
2664 	}
2665 
2666 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2667 		dev_err(&pdev->dev,
2668 			   "region #1 is an I/O resource, aborting.\n");
2669 		return -EINVAL;
2670 	}
2671 
2672 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2673 		dev_err(&pdev->dev, "region #1 is too small.\n");
2674 		return -EINVAL;
2675 	}
2676 	vptr->pdev = pdev;
2677 
2678 	return 0;
2679 }
2680 
2681 /**
2682  *	velocity_print_info	-	per driver data
2683  *	@vptr: velocity
2684  *
2685  *	Print per driver data as the kernel driver finds Velocity
2686  *	hardware
2687  */
2688 static void __devinit velocity_print_info(struct velocity_info *vptr)
2689 {
2690 	struct net_device *dev = vptr->dev;
2691 
2692 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2693 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2694 		dev->name, dev->dev_addr);
2695 }
2696 
2697 static u32 velocity_get_link(struct net_device *dev)
2698 {
2699 	struct velocity_info *vptr = netdev_priv(dev);
2700 	struct mac_regs __iomem *regs = vptr->mac_regs;
2701 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2702 }
2703 
2704 /**
2705  *	velocity_found1		-	set up discovered velocity card
2706  *	@pdev: PCI device
2707  *	@ent: PCI device table entry that matched
2708  *
2709  *	Configure a discovered adapter from scratch. Return a negative
2710  *	errno error code on failure paths.
2711  */
2712 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2713 {
2714 	static int first = 1;
2715 	struct net_device *dev;
2716 	int i;
2717 	const char *drv_string;
2718 	const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2719 	struct velocity_info *vptr;
2720 	struct mac_regs __iomem *regs;
2721 	int ret = -ENOMEM;
2722 
2723 	/* FIXME: this driver, like almost all other ethernet drivers,
2724 	 * can support more than MAX_UNITS.
2725 	 */
2726 	if (velocity_nics >= MAX_UNITS) {
2727 		dev_notice(&pdev->dev, "already found %d NICs.\n",
2728 			   velocity_nics);
2729 		return -ENODEV;
2730 	}
2731 
2732 	dev = alloc_etherdev(sizeof(struct velocity_info));
2733 	if (!dev)
2734 		goto out;
2735 
2736 	/* Chain it all together */
2737 
2738 	SET_NETDEV_DEV(dev, &pdev->dev);
2739 	vptr = netdev_priv(dev);
2740 
2741 
2742 	if (first) {
2743 		printk(KERN_INFO "%s Ver. %s\n",
2744 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2745 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2746 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2747 		first = 0;
2748 	}
2749 
2750 	velocity_init_info(pdev, vptr, info);
2751 
2752 	vptr->dev = dev;
2753 
2754 	ret = pci_enable_device(pdev);
2755 	if (ret < 0)
2756 		goto err_free_dev;
2757 
2758 	ret = velocity_get_pci_info(vptr, pdev);
2759 	if (ret < 0) {
2760 		/* error message already printed */
2761 		goto err_disable;
2762 	}
2763 
2764 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2765 	if (ret < 0) {
2766 		dev_err(&pdev->dev, "No PCI resources.\n");
2767 		goto err_disable;
2768 	}
2769 
2770 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2771 	if (regs == NULL) {
2772 		ret = -EIO;
2773 		goto err_release_res;
2774 	}
2775 
2776 	vptr->mac_regs = regs;
2777 
2778 	mac_wol_reset(regs);
2779 
2780 	for (i = 0; i < 6; i++)
2781 		dev->dev_addr[i] = readb(&regs->PAR[i]);
2782 
2783 
2784 	drv_string = dev_driver_string(&pdev->dev);
2785 
2786 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2787 
2788 	/*
2789 	 *	Mask out the options cannot be set to the chip
2790 	 */
2791 
2792 	vptr->options.flags &= info->flags;
2793 
2794 	/*
2795 	 *	Enable the chip specified capbilities
2796 	 */
2797 
2798 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2799 
2800 	vptr->wol_opts = vptr->options.wol_opts;
2801 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2802 
2803 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2804 
2805 	dev->netdev_ops = &velocity_netdev_ops;
2806 	dev->ethtool_ops = &velocity_ethtool_ops;
2807 	netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2808 
2809 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2810 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2811 		NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2812 
2813 	ret = register_netdev(dev);
2814 	if (ret < 0)
2815 		goto err_iounmap;
2816 
2817 	if (!velocity_get_link(dev)) {
2818 		netif_carrier_off(dev);
2819 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2820 	}
2821 
2822 	velocity_print_info(vptr);
2823 	pci_set_drvdata(pdev, dev);
2824 
2825 	/* and leave the chip powered down */
2826 
2827 	pci_set_power_state(pdev, PCI_D3hot);
2828 	velocity_nics++;
2829 out:
2830 	return ret;
2831 
2832 err_iounmap:
2833 	iounmap(regs);
2834 err_release_res:
2835 	pci_release_regions(pdev);
2836 err_disable:
2837 	pci_disable_device(pdev);
2838 err_free_dev:
2839 	free_netdev(dev);
2840 	goto out;
2841 }
2842 
2843 #ifdef CONFIG_PM
2844 /**
2845  *	wol_calc_crc		-	WOL CRC
2846  *	@pattern: data pattern
2847  *	@mask_pattern: mask
2848  *
2849  *	Compute the wake on lan crc hashes for the packet header
2850  *	we are interested in.
2851  */
2852 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2853 {
2854 	u16 crc = 0xFFFF;
2855 	u8 mask;
2856 	int i, j;
2857 
2858 	for (i = 0; i < size; i++) {
2859 		mask = mask_pattern[i];
2860 
2861 		/* Skip this loop if the mask equals to zero */
2862 		if (mask == 0x00)
2863 			continue;
2864 
2865 		for (j = 0; j < 8; j++) {
2866 			if ((mask & 0x01) == 0) {
2867 				mask >>= 1;
2868 				continue;
2869 			}
2870 			mask >>= 1;
2871 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2872 		}
2873 	}
2874 	/*	Finally, invert the result once to get the correct data */
2875 	crc = ~crc;
2876 	return bitrev32(crc) >> 16;
2877 }
2878 
2879 /**
2880  *	velocity_set_wol	-	set up for wake on lan
2881  *	@vptr: velocity to set WOL status on
2882  *
2883  *	Set a card up for wake on lan either by unicast or by
2884  *	ARP packet.
2885  *
2886  *	FIXME: check static buffer is safe here
2887  */
2888 static int velocity_set_wol(struct velocity_info *vptr)
2889 {
2890 	struct mac_regs __iomem *regs = vptr->mac_regs;
2891 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
2892 	static u8 buf[256];
2893 	int i;
2894 
2895 	static u32 mask_pattern[2][4] = {
2896 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2897 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
2898 	};
2899 
2900 	writew(0xFFFF, &regs->WOLCRClr);
2901 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2902 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2903 
2904 	/*
2905 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
2906 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2907 	 */
2908 
2909 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2910 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2911 
2912 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2913 		struct arp_packet *arp = (struct arp_packet *) buf;
2914 		u16 crc;
2915 		memset(buf, 0, sizeof(struct arp_packet) + 7);
2916 
2917 		for (i = 0; i < 4; i++)
2918 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2919 
2920 		arp->type = htons(ETH_P_ARP);
2921 		arp->ar_op = htons(1);
2922 
2923 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
2924 
2925 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2926 				(u8 *) & mask_pattern[0][0]);
2927 
2928 		writew(crc, &regs->PatternCRC[0]);
2929 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2930 	}
2931 
2932 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2933 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2934 
2935 	writew(0x0FFF, &regs->WOLSRClr);
2936 
2937 	if (spd_dpx == SPD_DPX_1000_FULL)
2938 		goto mac_done;
2939 
2940 	if (spd_dpx != SPD_DPX_AUTO)
2941 		goto advertise_done;
2942 
2943 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2944 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2945 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2946 
2947 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2948 	}
2949 
2950 	if (vptr->mii_status & VELOCITY_SPEED_1000)
2951 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2952 
2953 advertise_done:
2954 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2955 
2956 	{
2957 		u8 GCR;
2958 		GCR = readb(&regs->CHIPGCR);
2959 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2960 		writeb(GCR, &regs->CHIPGCR);
2961 	}
2962 
2963 mac_done:
2964 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2965 	/* Turn on SWPTAG just before entering power mode */
2966 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2967 	/* Go to bed ..... */
2968 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2969 
2970 	return 0;
2971 }
2972 
2973 /**
2974  *	velocity_save_context	-	save registers
2975  *	@vptr: velocity
2976  *	@context: buffer for stored context
2977  *
2978  *	Retrieve the current configuration from the velocity hardware
2979  *	and stash it in the context structure, for use by the context
2980  *	restore functions. This allows us to save things we need across
2981  *	power down states
2982  */
2983 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2984 {
2985 	struct mac_regs __iomem *regs = vptr->mac_regs;
2986 	u16 i;
2987 	u8 __iomem *ptr = (u8 __iomem *)regs;
2988 
2989 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2990 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2991 
2992 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
2993 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2994 
2995 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
2996 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2997 
2998 }
2999 
3000 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3001 {
3002 	struct net_device *dev = pci_get_drvdata(pdev);
3003 	struct velocity_info *vptr = netdev_priv(dev);
3004 	unsigned long flags;
3005 
3006 	if (!netif_running(vptr->dev))
3007 		return 0;
3008 
3009 	netif_device_detach(vptr->dev);
3010 
3011 	spin_lock_irqsave(&vptr->lock, flags);
3012 	pci_save_state(pdev);
3013 
3014 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3015 		velocity_get_ip(vptr);
3016 		velocity_save_context(vptr, &vptr->context);
3017 		velocity_shutdown(vptr);
3018 		velocity_set_wol(vptr);
3019 		pci_enable_wake(pdev, PCI_D3hot, 1);
3020 		pci_set_power_state(pdev, PCI_D3hot);
3021 	} else {
3022 		velocity_save_context(vptr, &vptr->context);
3023 		velocity_shutdown(vptr);
3024 		pci_disable_device(pdev);
3025 		pci_set_power_state(pdev, pci_choose_state(pdev, state));
3026 	}
3027 
3028 	spin_unlock_irqrestore(&vptr->lock, flags);
3029 	return 0;
3030 }
3031 
3032 /**
3033  *	velocity_restore_context	-	restore registers
3034  *	@vptr: velocity
3035  *	@context: buffer for stored context
3036  *
3037  *	Reload the register configuration from the velocity context
3038  *	created by velocity_save_context.
3039  */
3040 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3041 {
3042 	struct mac_regs __iomem *regs = vptr->mac_regs;
3043 	int i;
3044 	u8 __iomem *ptr = (u8 __iomem *)regs;
3045 
3046 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3047 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3048 
3049 	/* Just skip cr0 */
3050 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3051 		/* Clear */
3052 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3053 		/* Set */
3054 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3055 	}
3056 
3057 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3058 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3059 
3060 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3061 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3062 
3063 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3064 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3065 }
3066 
3067 static int velocity_resume(struct pci_dev *pdev)
3068 {
3069 	struct net_device *dev = pci_get_drvdata(pdev);
3070 	struct velocity_info *vptr = netdev_priv(dev);
3071 	unsigned long flags;
3072 	int i;
3073 
3074 	if (!netif_running(vptr->dev))
3075 		return 0;
3076 
3077 	pci_set_power_state(pdev, PCI_D0);
3078 	pci_enable_wake(pdev, 0, 0);
3079 	pci_restore_state(pdev);
3080 
3081 	mac_wol_reset(vptr->mac_regs);
3082 
3083 	spin_lock_irqsave(&vptr->lock, flags);
3084 	velocity_restore_context(vptr, &vptr->context);
3085 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3086 	mac_disable_int(vptr->mac_regs);
3087 
3088 	velocity_tx_srv(vptr);
3089 
3090 	for (i = 0; i < vptr->tx.numq; i++) {
3091 		if (vptr->tx.used[i])
3092 			mac_tx_queue_wake(vptr->mac_regs, i);
3093 	}
3094 
3095 	mac_enable_int(vptr->mac_regs);
3096 	spin_unlock_irqrestore(&vptr->lock, flags);
3097 	netif_device_attach(vptr->dev);
3098 
3099 	return 0;
3100 }
3101 #endif
3102 
3103 /*
3104  *	Definition for our device driver. The PCI layer interface
3105  *	uses this to handle all our card discover and plugging
3106  */
3107 static struct pci_driver velocity_driver = {
3108 	.name		= VELOCITY_NAME,
3109 	.id_table	= velocity_id_table,
3110 	.probe		= velocity_found1,
3111 	.remove		= __devexit_p(velocity_remove1),
3112 #ifdef CONFIG_PM
3113 	.suspend	= velocity_suspend,
3114 	.resume		= velocity_resume,
3115 #endif
3116 };
3117 
3118 
3119 /**
3120  *	velocity_ethtool_up	-	pre hook for ethtool
3121  *	@dev: network device
3122  *
3123  *	Called before an ethtool operation. We need to make sure the
3124  *	chip is out of D3 state before we poke at it.
3125  */
3126 static int velocity_ethtool_up(struct net_device *dev)
3127 {
3128 	struct velocity_info *vptr = netdev_priv(dev);
3129 	if (!netif_running(dev))
3130 		pci_set_power_state(vptr->pdev, PCI_D0);
3131 	return 0;
3132 }
3133 
3134 /**
3135  *	velocity_ethtool_down	-	post hook for ethtool
3136  *	@dev: network device
3137  *
3138  *	Called after an ethtool operation. Restore the chip back to D3
3139  *	state if it isn't running.
3140  */
3141 static void velocity_ethtool_down(struct net_device *dev)
3142 {
3143 	struct velocity_info *vptr = netdev_priv(dev);
3144 	if (!netif_running(dev))
3145 		pci_set_power_state(vptr->pdev, PCI_D3hot);
3146 }
3147 
3148 static int velocity_get_settings(struct net_device *dev,
3149 				 struct ethtool_cmd *cmd)
3150 {
3151 	struct velocity_info *vptr = netdev_priv(dev);
3152 	struct mac_regs __iomem *regs = vptr->mac_regs;
3153 	u32 status;
3154 	status = check_connection_type(vptr->mac_regs);
3155 
3156 	cmd->supported = SUPPORTED_TP |
3157 			SUPPORTED_Autoneg |
3158 			SUPPORTED_10baseT_Half |
3159 			SUPPORTED_10baseT_Full |
3160 			SUPPORTED_100baseT_Half |
3161 			SUPPORTED_100baseT_Full |
3162 			SUPPORTED_1000baseT_Half |
3163 			SUPPORTED_1000baseT_Full;
3164 
3165 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3166 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3167 		cmd->advertising |=
3168 			ADVERTISED_10baseT_Half |
3169 			ADVERTISED_10baseT_Full |
3170 			ADVERTISED_100baseT_Half |
3171 			ADVERTISED_100baseT_Full |
3172 			ADVERTISED_1000baseT_Half |
3173 			ADVERTISED_1000baseT_Full;
3174 	} else {
3175 		switch (vptr->options.spd_dpx) {
3176 		case SPD_DPX_1000_FULL:
3177 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3178 			break;
3179 		case SPD_DPX_100_HALF:
3180 			cmd->advertising |= ADVERTISED_100baseT_Half;
3181 			break;
3182 		case SPD_DPX_100_FULL:
3183 			cmd->advertising |= ADVERTISED_100baseT_Full;
3184 			break;
3185 		case SPD_DPX_10_HALF:
3186 			cmd->advertising |= ADVERTISED_10baseT_Half;
3187 			break;
3188 		case SPD_DPX_10_FULL:
3189 			cmd->advertising |= ADVERTISED_10baseT_Full;
3190 			break;
3191 		default:
3192 			break;
3193 		}
3194 	}
3195 
3196 	if (status & VELOCITY_SPEED_1000)
3197 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3198 	else if (status & VELOCITY_SPEED_100)
3199 		ethtool_cmd_speed_set(cmd, SPEED_100);
3200 	else
3201 		ethtool_cmd_speed_set(cmd, SPEED_10);
3202 
3203 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3204 	cmd->port = PORT_TP;
3205 	cmd->transceiver = XCVR_INTERNAL;
3206 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3207 
3208 	if (status & VELOCITY_DUPLEX_FULL)
3209 		cmd->duplex = DUPLEX_FULL;
3210 	else
3211 		cmd->duplex = DUPLEX_HALF;
3212 
3213 	return 0;
3214 }
3215 
3216 static int velocity_set_settings(struct net_device *dev,
3217 				 struct ethtool_cmd *cmd)
3218 {
3219 	struct velocity_info *vptr = netdev_priv(dev);
3220 	u32 speed = ethtool_cmd_speed(cmd);
3221 	u32 curr_status;
3222 	u32 new_status = 0;
3223 	int ret = 0;
3224 
3225 	curr_status = check_connection_type(vptr->mac_regs);
3226 	curr_status &= (~VELOCITY_LINK_FAIL);
3227 
3228 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3229 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3230 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3231 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3232 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3233 
3234 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3235 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3236 		ret = -EINVAL;
3237 	} else {
3238 		enum speed_opt spd_dpx;
3239 
3240 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3241 			spd_dpx = SPD_DPX_AUTO;
3242 		else if ((new_status & VELOCITY_SPEED_1000) &&
3243 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3244 			spd_dpx = SPD_DPX_1000_FULL;
3245 		} else if (new_status & VELOCITY_SPEED_100)
3246 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3247 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3248 		else if (new_status & VELOCITY_SPEED_10)
3249 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3250 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3251 		else
3252 			return -EOPNOTSUPP;
3253 
3254 		vptr->options.spd_dpx = spd_dpx;
3255 
3256 		velocity_set_media_mode(vptr, new_status);
3257 	}
3258 
3259 	return ret;
3260 }
3261 
3262 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3263 {
3264 	struct velocity_info *vptr = netdev_priv(dev);
3265 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3266 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3267 	strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3268 }
3269 
3270 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3271 {
3272 	struct velocity_info *vptr = netdev_priv(dev);
3273 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3274 	wol->wolopts |= WAKE_MAGIC;
3275 	/*
3276 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3277 		   wol.wolopts|=WAKE_PHY;
3278 			 */
3279 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3280 		wol->wolopts |= WAKE_UCAST;
3281 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3282 		wol->wolopts |= WAKE_ARP;
3283 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3284 }
3285 
3286 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3287 {
3288 	struct velocity_info *vptr = netdev_priv(dev);
3289 
3290 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3291 		return -EFAULT;
3292 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3293 
3294 	/*
3295 	   if (wol.wolopts & WAKE_PHY) {
3296 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3297 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3298 	   }
3299 	 */
3300 
3301 	if (wol->wolopts & WAKE_MAGIC) {
3302 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3303 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3304 	}
3305 	if (wol->wolopts & WAKE_UCAST) {
3306 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3307 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3308 	}
3309 	if (wol->wolopts & WAKE_ARP) {
3310 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3311 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3312 	}
3313 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3314 	return 0;
3315 }
3316 
3317 static u32 velocity_get_msglevel(struct net_device *dev)
3318 {
3319 	return msglevel;
3320 }
3321 
3322 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3323 {
3324 	 msglevel = value;
3325 }
3326 
3327 static int get_pending_timer_val(int val)
3328 {
3329 	int mult_bits = val >> 6;
3330 	int mult = 1;
3331 
3332 	switch (mult_bits)
3333 	{
3334 	case 1:
3335 		mult = 4; break;
3336 	case 2:
3337 		mult = 16; break;
3338 	case 3:
3339 		mult = 64; break;
3340 	case 0:
3341 	default:
3342 		break;
3343 	}
3344 
3345 	return (val & 0x3f) * mult;
3346 }
3347 
3348 static void set_pending_timer_val(int *val, u32 us)
3349 {
3350 	u8 mult = 0;
3351 	u8 shift = 0;
3352 
3353 	if (us >= 0x3f) {
3354 		mult = 1; /* mult with 4 */
3355 		shift = 2;
3356 	}
3357 	if (us >= 0x3f * 4) {
3358 		mult = 2; /* mult with 16 */
3359 		shift = 4;
3360 	}
3361 	if (us >= 0x3f * 16) {
3362 		mult = 3; /* mult with 64 */
3363 		shift = 6;
3364 	}
3365 
3366 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3367 }
3368 
3369 
3370 static int velocity_get_coalesce(struct net_device *dev,
3371 		struct ethtool_coalesce *ecmd)
3372 {
3373 	struct velocity_info *vptr = netdev_priv(dev);
3374 
3375 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3376 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3377 
3378 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3379 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3380 
3381 	return 0;
3382 }
3383 
3384 static int velocity_set_coalesce(struct net_device *dev,
3385 		struct ethtool_coalesce *ecmd)
3386 {
3387 	struct velocity_info *vptr = netdev_priv(dev);
3388 	int max_us = 0x3f * 64;
3389 	unsigned long flags;
3390 
3391 	/* 6 bits of  */
3392 	if (ecmd->tx_coalesce_usecs > max_us)
3393 		return -EINVAL;
3394 	if (ecmd->rx_coalesce_usecs > max_us)
3395 		return -EINVAL;
3396 
3397 	if (ecmd->tx_max_coalesced_frames > 0xff)
3398 		return -EINVAL;
3399 	if (ecmd->rx_max_coalesced_frames > 0xff)
3400 		return -EINVAL;
3401 
3402 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3403 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3404 
3405 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3406 			ecmd->rx_coalesce_usecs);
3407 	set_pending_timer_val(&vptr->options.txqueue_timer,
3408 			ecmd->tx_coalesce_usecs);
3409 
3410 	/* Setup the interrupt suppression and queue timers */
3411 	spin_lock_irqsave(&vptr->lock, flags);
3412 	mac_disable_int(vptr->mac_regs);
3413 	setup_adaptive_interrupts(vptr);
3414 	setup_queue_timers(vptr);
3415 
3416 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3417 	mac_clear_isr(vptr->mac_regs);
3418 	mac_enable_int(vptr->mac_regs);
3419 	spin_unlock_irqrestore(&vptr->lock, flags);
3420 
3421 	return 0;
3422 }
3423 
3424 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3425 	"rx_all",
3426 	"rx_ok",
3427 	"tx_ok",
3428 	"rx_error",
3429 	"rx_runt_ok",
3430 	"rx_runt_err",
3431 	"rx_64",
3432 	"tx_64",
3433 	"rx_65_to_127",
3434 	"tx_65_to_127",
3435 	"rx_128_to_255",
3436 	"tx_128_to_255",
3437 	"rx_256_to_511",
3438 	"tx_256_to_511",
3439 	"rx_512_to_1023",
3440 	"tx_512_to_1023",
3441 	"rx_1024_to_1518",
3442 	"tx_1024_to_1518",
3443 	"tx_ether_collisions",
3444 	"rx_crc_errors",
3445 	"rx_jumbo",
3446 	"tx_jumbo",
3447 	"rx_mac_control_frames",
3448 	"tx_mac_control_frames",
3449 	"rx_frame_alignement_errors",
3450 	"rx_long_ok",
3451 	"rx_long_err",
3452 	"tx_sqe_errors",
3453 	"rx_no_buf",
3454 	"rx_symbol_errors",
3455 	"in_range_length_errors",
3456 	"late_collisions"
3457 };
3458 
3459 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3460 {
3461 	switch (sset) {
3462 	case ETH_SS_STATS:
3463 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3464 		break;
3465 	}
3466 }
3467 
3468 static int velocity_get_sset_count(struct net_device *dev, int sset)
3469 {
3470 	switch (sset) {
3471 	case ETH_SS_STATS:
3472 		return ARRAY_SIZE(velocity_gstrings);
3473 	default:
3474 		return -EOPNOTSUPP;
3475 	}
3476 }
3477 
3478 static void velocity_get_ethtool_stats(struct net_device *dev,
3479 				       struct ethtool_stats *stats, u64 *data)
3480 {
3481 	if (netif_running(dev)) {
3482 		struct velocity_info *vptr = netdev_priv(dev);
3483 		u32 *p = vptr->mib_counter;
3484 		int i;
3485 
3486 		spin_lock_irq(&vptr->lock);
3487 		velocity_update_hw_mibs(vptr);
3488 		spin_unlock_irq(&vptr->lock);
3489 
3490 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3491 			*data++ = *p++;
3492 	}
3493 }
3494 
3495 static const struct ethtool_ops velocity_ethtool_ops = {
3496 	.get_settings		= velocity_get_settings,
3497 	.set_settings		= velocity_set_settings,
3498 	.get_drvinfo		= velocity_get_drvinfo,
3499 	.get_wol		= velocity_ethtool_get_wol,
3500 	.set_wol		= velocity_ethtool_set_wol,
3501 	.get_msglevel		= velocity_get_msglevel,
3502 	.set_msglevel		= velocity_set_msglevel,
3503 	.get_link		= velocity_get_link,
3504 	.get_strings		= velocity_get_strings,
3505 	.get_sset_count		= velocity_get_sset_count,
3506 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3507 	.get_coalesce		= velocity_get_coalesce,
3508 	.set_coalesce		= velocity_set_coalesce,
3509 	.begin			= velocity_ethtool_up,
3510 	.complete		= velocity_ethtool_down
3511 };
3512 
3513 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3514 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3515 {
3516 	struct in_ifaddr *ifa = ptr;
3517 	struct net_device *dev = ifa->ifa_dev->dev;
3518 
3519 	if (dev_net(dev) == &init_net &&
3520 	    dev->netdev_ops == &velocity_netdev_ops)
3521 		velocity_get_ip(netdev_priv(dev));
3522 
3523 	return NOTIFY_DONE;
3524 }
3525 
3526 static struct notifier_block velocity_inetaddr_notifier = {
3527 	.notifier_call	= velocity_netdev_event,
3528 };
3529 
3530 static void velocity_register_notifier(void)
3531 {
3532 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3533 }
3534 
3535 static void velocity_unregister_notifier(void)
3536 {
3537 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3538 }
3539 
3540 #else
3541 
3542 #define velocity_register_notifier()	do {} while (0)
3543 #define velocity_unregister_notifier()	do {} while (0)
3544 
3545 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3546 
3547 /**
3548  *	velocity_init_module	-	load time function
3549  *
3550  *	Called when the velocity module is loaded. The PCI driver
3551  *	is registered with the PCI layer, and in turn will call
3552  *	the probe functions for each velocity adapter installed
3553  *	in the system.
3554  */
3555 static int __init velocity_init_module(void)
3556 {
3557 	int ret;
3558 
3559 	velocity_register_notifier();
3560 	ret = pci_register_driver(&velocity_driver);
3561 	if (ret < 0)
3562 		velocity_unregister_notifier();
3563 	return ret;
3564 }
3565 
3566 /**
3567  *	velocity_cleanup	-	module unload
3568  *
3569  *	When the velocity hardware is unloaded this function is called.
3570  *	It will clean up the notifiers and the unregister the PCI
3571  *	driver interface for this hardware. This in turn cleans up
3572  *	all discovered interfaces before returning from the function
3573  */
3574 static void __exit velocity_cleanup_module(void)
3575 {
3576 	velocity_unregister_notifier();
3577 	pci_unregister_driver(&velocity_driver);
3578 }
3579 
3580 module_init(velocity_init_module);
3581 module_exit(velocity_cleanup_module);
3582