1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/mm.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/pci.h> 54 #include <linux/kernel.h> 55 #include <linux/netdevice.h> 56 #include <linux/etherdevice.h> 57 #include <linux/skbuff.h> 58 #include <linux/delay.h> 59 #include <linux/timer.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/string.h> 63 #include <linux/wait.h> 64 #include <linux/io.h> 65 #include <linux/if.h> 66 #include <linux/uaccess.h> 67 #include <linux/proc_fs.h> 68 #include <linux/of_address.h> 69 #include <linux/of_device.h> 70 #include <linux/of_irq.h> 71 #include <linux/inetdevice.h> 72 #include <linux/platform_device.h> 73 #include <linux/reboot.h> 74 #include <linux/ethtool.h> 75 #include <linux/mii.h> 76 #include <linux/in.h> 77 #include <linux/if_arp.h> 78 #include <linux/if_vlan.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/crc-ccitt.h> 83 #include <linux/crc32.h> 84 85 #include "via-velocity.h" 86 87 enum velocity_bus_type { 88 BUS_PCI, 89 BUS_PLATFORM, 90 }; 91 92 static int velocity_nics; 93 static int msglevel = MSG_LEVEL_INFO; 94 95 static void velocity_set_power_state(struct velocity_info *vptr, char state) 96 { 97 void *addr = vptr->mac_regs; 98 99 if (vptr->pdev) 100 pci_set_power_state(vptr->pdev, state); 101 else 102 writeb(state, addr + 0x154); 103 } 104 105 /** 106 * mac_get_cam_mask - Read a CAM mask 107 * @regs: register block for this velocity 108 * @mask: buffer to store mask 109 * 110 * Fetch the mask bits of the selected CAM and store them into the 111 * provided mask buffer. 112 */ 113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 114 { 115 int i; 116 117 /* Select CAM mask */ 118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 119 120 writeb(0, ®s->CAMADDR); 121 122 /* read mask */ 123 for (i = 0; i < 8; i++) 124 *mask++ = readb(&(regs->MARCAM[i])); 125 126 /* disable CAMEN */ 127 writeb(0, ®s->CAMADDR); 128 129 /* Select mar */ 130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 131 } 132 133 /** 134 * mac_set_cam_mask - Set a CAM mask 135 * @regs: register block for this velocity 136 * @mask: CAM mask to load 137 * 138 * Store a new mask into a CAM 139 */ 140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 141 { 142 int i; 143 /* Select CAM mask */ 144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 145 146 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 147 148 for (i = 0; i < 8; i++) 149 writeb(*mask++, &(regs->MARCAM[i])); 150 151 /* disable CAMEN */ 152 writeb(0, ®s->CAMADDR); 153 154 /* Select mar */ 155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 156 } 157 158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 159 { 160 int i; 161 /* Select CAM mask */ 162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 163 164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 165 166 for (i = 0; i < 8; i++) 167 writeb(*mask++, &(regs->MARCAM[i])); 168 169 /* disable CAMEN */ 170 writeb(0, ®s->CAMADDR); 171 172 /* Select mar */ 173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 174 } 175 176 /** 177 * mac_set_cam - set CAM data 178 * @regs: register block of this velocity 179 * @idx: Cam index 180 * @addr: 2 or 6 bytes of CAM data 181 * 182 * Load an address or vlan tag into a CAM 183 */ 184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 185 { 186 int i; 187 188 /* Select CAM mask */ 189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 190 191 idx &= (64 - 1); 192 193 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 194 195 for (i = 0; i < 6; i++) 196 writeb(*addr++, &(regs->MARCAM[i])); 197 198 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 199 200 udelay(10); 201 202 writeb(0, ®s->CAMADDR); 203 204 /* Select mar */ 205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 206 } 207 208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 209 const u8 *addr) 210 { 211 212 /* Select CAM mask */ 213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 214 215 idx &= (64 - 1); 216 217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 218 writew(*((u16 *) addr), ®s->MARCAM[0]); 219 220 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 221 222 udelay(10); 223 224 writeb(0, ®s->CAMADDR); 225 226 /* Select mar */ 227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 228 } 229 230 231 /** 232 * mac_wol_reset - reset WOL after exiting low power 233 * @regs: register block of this velocity 234 * 235 * Called after we drop out of wake on lan mode in order to 236 * reset the Wake on lan features. This function doesn't restore 237 * the rest of the logic from the result of sleep/wakeup 238 */ 239 static void mac_wol_reset(struct mac_regs __iomem *regs) 240 { 241 242 /* Turn off SWPTAG right after leaving power mode */ 243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 244 /* clear sticky bits */ 245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 246 247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 249 /* disable force PME-enable */ 250 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 251 /* disable power-event config bit */ 252 writew(0xFFFF, ®s->WOLCRClr); 253 /* clear power status */ 254 writew(0xFFFF, ®s->WOLSRClr); 255 } 256 257 static const struct ethtool_ops velocity_ethtool_ops; 258 259 /* 260 Define module options 261 */ 262 263 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 264 MODULE_LICENSE("GPL"); 265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 266 267 #define VELOCITY_PARAM(N, D) \ 268 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 269 module_param_array(N, int, NULL, 0); \ 270 MODULE_PARM_DESC(N, D); 271 272 #define RX_DESC_MIN 64 273 #define RX_DESC_MAX 255 274 #define RX_DESC_DEF 64 275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 276 277 #define TX_DESC_MIN 16 278 #define TX_DESC_MAX 256 279 #define TX_DESC_DEF 64 280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 281 282 #define RX_THRESH_MIN 0 283 #define RX_THRESH_MAX 3 284 #define RX_THRESH_DEF 0 285 /* rx_thresh[] is used for controlling the receive fifo threshold. 286 0: indicate the rxfifo threshold is 128 bytes. 287 1: indicate the rxfifo threshold is 512 bytes. 288 2: indicate the rxfifo threshold is 1024 bytes. 289 3: indicate the rxfifo threshold is store & forward. 290 */ 291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 292 293 #define DMA_LENGTH_MIN 0 294 #define DMA_LENGTH_MAX 7 295 #define DMA_LENGTH_DEF 6 296 297 /* DMA_length[] is used for controlling the DMA length 298 0: 8 DWORDs 299 1: 16 DWORDs 300 2: 32 DWORDs 301 3: 64 DWORDs 302 4: 128 DWORDs 303 5: 256 DWORDs 304 6: SF(flush till emply) 305 7: SF(flush till emply) 306 */ 307 VELOCITY_PARAM(DMA_length, "DMA length"); 308 309 #define IP_ALIG_DEF 0 310 /* IP_byte_align[] is used for IP header DWORD byte aligned 311 0: indicate the IP header won't be DWORD byte aligned.(Default) . 312 1: indicate the IP header will be DWORD byte aligned. 313 In some environment, the IP header should be DWORD byte aligned, 314 or the packet will be droped when we receive it. (eg: IPVS) 315 */ 316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 317 318 #define FLOW_CNTL_DEF 1 319 #define FLOW_CNTL_MIN 1 320 #define FLOW_CNTL_MAX 5 321 322 /* flow_control[] is used for setting the flow control ability of NIC. 323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 324 2: enable TX flow control. 325 3: enable RX flow control. 326 4: enable RX/TX flow control. 327 5: disable 328 */ 329 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 330 331 #define MED_LNK_DEF 0 332 #define MED_LNK_MIN 0 333 #define MED_LNK_MAX 5 334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 335 0: indicate autonegotiation for both speed and duplex mode 336 1: indicate 100Mbps half duplex mode 337 2: indicate 100Mbps full duplex mode 338 3: indicate 10Mbps half duplex mode 339 4: indicate 10Mbps full duplex mode 340 5: indicate 1000Mbps full duplex mode 341 342 Note: 343 if EEPROM have been set to the force mode, this option is ignored 344 by driver. 345 */ 346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 347 348 #define VAL_PKT_LEN_DEF 0 349 /* ValPktLen[] is used for setting the checksum offload ability of NIC. 350 0: Receive frame with invalid layer 2 length (Default) 351 1: Drop frame with invalid layer 2 length 352 */ 353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame"); 354 355 #define WOL_OPT_DEF 0 356 #define WOL_OPT_MIN 0 357 #define WOL_OPT_MAX 7 358 /* wol_opts[] is used for controlling wake on lan behavior. 359 0: Wake up if recevied a magic packet. (Default) 360 1: Wake up if link status is on/off. 361 2: Wake up if recevied an arp packet. 362 4: Wake up if recevied any unicast packet. 363 Those value can be sumed up to support more than one option. 364 */ 365 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 366 367 static int rx_copybreak = 200; 368 module_param(rx_copybreak, int, 0644); 369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 370 371 /* 372 * Internal board variants. At the moment we have only one 373 */ 374 static struct velocity_info_tbl chip_info_table[] = { 375 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 376 { } 377 }; 378 379 /* 380 * Describe the PCI device identifiers that we support in this 381 * device driver. Used for hotplug autoloading. 382 */ 383 384 static DEFINE_PCI_DEVICE_TABLE(velocity_pci_id_table) = { 385 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 386 { } 387 }; 388 389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 390 391 /** 392 * Describe the OF device identifiers that we support in this 393 * device driver. Used for devicetree nodes. 394 */ 395 static struct of_device_id velocity_of_ids[] = { 396 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 397 { /* Sentinel */ }, 398 }; 399 MODULE_DEVICE_TABLE(of, velocity_of_ids); 400 401 /** 402 * get_chip_name - identifier to name 403 * @id: chip identifier 404 * 405 * Given a chip identifier return a suitable description. Returns 406 * a pointer a static string valid while the driver is loaded. 407 */ 408 static const char *get_chip_name(enum chip_type chip_id) 409 { 410 int i; 411 for (i = 0; chip_info_table[i].name != NULL; i++) 412 if (chip_info_table[i].chip_id == chip_id) 413 break; 414 return chip_info_table[i].name; 415 } 416 417 /** 418 * velocity_set_int_opt - parser for integer options 419 * @opt: pointer to option value 420 * @val: value the user requested (or -1 for default) 421 * @min: lowest value allowed 422 * @max: highest value allowed 423 * @def: default value 424 * @name: property name 425 * @dev: device name 426 * 427 * Set an integer property in the module options. This function does 428 * all the verification and checking as well as reporting so that 429 * we don't duplicate code for each option. 430 */ 431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 432 char *name, const char *devname) 433 { 434 if (val == -1) 435 *opt = def; 436 else if (val < min || val > max) { 437 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 438 devname, name, min, max); 439 *opt = def; 440 } else { 441 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 442 devname, name, val); 443 *opt = val; 444 } 445 } 446 447 /** 448 * velocity_set_bool_opt - parser for boolean options 449 * @opt: pointer to option value 450 * @val: value the user requested (or -1 for default) 451 * @def: default value (yes/no) 452 * @flag: numeric value to set for true. 453 * @name: property name 454 * @dev: device name 455 * 456 * Set a boolean property in the module options. This function does 457 * all the verification and checking as well as reporting so that 458 * we don't duplicate code for each option. 459 */ 460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 461 char *name, const char *devname) 462 { 463 (*opt) &= (~flag); 464 if (val == -1) 465 *opt |= (def ? flag : 0); 466 else if (val < 0 || val > 1) { 467 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 468 devname, name); 469 *opt |= (def ? flag : 0); 470 } else { 471 printk(KERN_INFO "%s: set parameter %s to %s\n", 472 devname, name, val ? "TRUE" : "FALSE"); 473 *opt |= (val ? flag : 0); 474 } 475 } 476 477 /** 478 * velocity_get_options - set options on device 479 * @opts: option structure for the device 480 * @index: index of option to use in module options array 481 * @devname: device name 482 * 483 * Turn the module and command options into a single structure 484 * for the current device 485 */ 486 static void velocity_get_options(struct velocity_opt *opts, int index, 487 const char *devname) 488 { 489 490 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 491 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 492 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 493 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 494 495 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 496 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 497 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname); 498 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 499 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 500 opts->numrx = (opts->numrx & ~3); 501 } 502 503 /** 504 * velocity_init_cam_filter - initialise CAM 505 * @vptr: velocity to program 506 * 507 * Initialize the content addressable memory used for filters. Load 508 * appropriately according to the presence of VLAN 509 */ 510 static void velocity_init_cam_filter(struct velocity_info *vptr) 511 { 512 struct mac_regs __iomem *regs = vptr->mac_regs; 513 unsigned int vid, i = 0; 514 515 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 516 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 517 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 518 519 /* Disable all CAMs */ 520 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 521 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 523 mac_set_cam_mask(regs, vptr->mCAMmask); 524 525 /* Enable VCAMs */ 526 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 527 mac_set_vlan_cam(regs, i, (u8 *) &vid); 528 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 529 if (++i >= VCAM_SIZE) 530 break; 531 } 532 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 533 } 534 535 static int velocity_vlan_rx_add_vid(struct net_device *dev, 536 __be16 proto, u16 vid) 537 { 538 struct velocity_info *vptr = netdev_priv(dev); 539 540 spin_lock_irq(&vptr->lock); 541 set_bit(vid, vptr->active_vlans); 542 velocity_init_cam_filter(vptr); 543 spin_unlock_irq(&vptr->lock); 544 return 0; 545 } 546 547 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 548 __be16 proto, u16 vid) 549 { 550 struct velocity_info *vptr = netdev_priv(dev); 551 552 spin_lock_irq(&vptr->lock); 553 clear_bit(vid, vptr->active_vlans); 554 velocity_init_cam_filter(vptr); 555 spin_unlock_irq(&vptr->lock); 556 return 0; 557 } 558 559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 560 { 561 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 562 } 563 564 /** 565 * velocity_rx_reset - handle a receive reset 566 * @vptr: velocity we are resetting 567 * 568 * Reset the ownership and status for the receive ring side. 569 * Hand all the receive queue to the NIC. 570 */ 571 static void velocity_rx_reset(struct velocity_info *vptr) 572 { 573 574 struct mac_regs __iomem *regs = vptr->mac_regs; 575 int i; 576 577 velocity_init_rx_ring_indexes(vptr); 578 579 /* 580 * Init state, all RD entries belong to the NIC 581 */ 582 for (i = 0; i < vptr->options.numrx; ++i) 583 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 584 585 writew(vptr->options.numrx, ®s->RBRDU); 586 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 587 writew(0, ®s->RDIdx); 588 writew(vptr->options.numrx - 1, ®s->RDCSize); 589 } 590 591 /** 592 * velocity_get_opt_media_mode - get media selection 593 * @vptr: velocity adapter 594 * 595 * Get the media mode stored in EEPROM or module options and load 596 * mii_status accordingly. The requested link state information 597 * is also returned. 598 */ 599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 600 { 601 u32 status = 0; 602 603 switch (vptr->options.spd_dpx) { 604 case SPD_DPX_AUTO: 605 status = VELOCITY_AUTONEG_ENABLE; 606 break; 607 case SPD_DPX_100_FULL: 608 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 609 break; 610 case SPD_DPX_10_FULL: 611 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 612 break; 613 case SPD_DPX_100_HALF: 614 status = VELOCITY_SPEED_100; 615 break; 616 case SPD_DPX_10_HALF: 617 status = VELOCITY_SPEED_10; 618 break; 619 case SPD_DPX_1000_FULL: 620 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 621 break; 622 } 623 vptr->mii_status = status; 624 return status; 625 } 626 627 /** 628 * safe_disable_mii_autopoll - autopoll off 629 * @regs: velocity registers 630 * 631 * Turn off the autopoll and wait for it to disable on the chip 632 */ 633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 634 { 635 u16 ww; 636 637 /* turn off MAUTO */ 638 writeb(0, ®s->MIICR); 639 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 640 udelay(1); 641 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 642 break; 643 } 644 } 645 646 /** 647 * enable_mii_autopoll - turn on autopolling 648 * @regs: velocity registers 649 * 650 * Enable the MII link status autopoll feature on the Velocity 651 * hardware. Wait for it to enable. 652 */ 653 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 654 { 655 int ii; 656 657 writeb(0, &(regs->MIICR)); 658 writeb(MIIADR_SWMPL, ®s->MIIADR); 659 660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 661 udelay(1); 662 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 663 break; 664 } 665 666 writeb(MIICR_MAUTO, ®s->MIICR); 667 668 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 669 udelay(1); 670 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 671 break; 672 } 673 674 } 675 676 /** 677 * velocity_mii_read - read MII data 678 * @regs: velocity registers 679 * @index: MII register index 680 * @data: buffer for received data 681 * 682 * Perform a single read of an MII 16bit register. Returns zero 683 * on success or -ETIMEDOUT if the PHY did not respond. 684 */ 685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 686 { 687 u16 ww; 688 689 /* 690 * Disable MIICR_MAUTO, so that mii addr can be set normally 691 */ 692 safe_disable_mii_autopoll(regs); 693 694 writeb(index, ®s->MIIADR); 695 696 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 697 698 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 699 if (!(readb(®s->MIICR) & MIICR_RCMD)) 700 break; 701 } 702 703 *data = readw(®s->MIIDATA); 704 705 enable_mii_autopoll(regs); 706 if (ww == W_MAX_TIMEOUT) 707 return -ETIMEDOUT; 708 return 0; 709 } 710 711 /** 712 * mii_check_media_mode - check media state 713 * @regs: velocity registers 714 * 715 * Check the current MII status and determine the link status 716 * accordingly 717 */ 718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 719 { 720 u32 status = 0; 721 u16 ANAR; 722 723 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 724 status |= VELOCITY_LINK_FAIL; 725 726 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 727 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 728 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 729 status |= (VELOCITY_SPEED_1000); 730 else { 731 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 732 if (ANAR & ADVERTISE_100FULL) 733 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 734 else if (ANAR & ADVERTISE_100HALF) 735 status |= VELOCITY_SPEED_100; 736 else if (ANAR & ADVERTISE_10FULL) 737 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 738 else 739 status |= (VELOCITY_SPEED_10); 740 } 741 742 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 743 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 744 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 745 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 746 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 747 status |= VELOCITY_AUTONEG_ENABLE; 748 } 749 } 750 751 return status; 752 } 753 754 /** 755 * velocity_mii_write - write MII data 756 * @regs: velocity registers 757 * @index: MII register index 758 * @data: 16bit data for the MII register 759 * 760 * Perform a single write to an MII 16bit register. Returns zero 761 * on success or -ETIMEDOUT if the PHY did not respond. 762 */ 763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 764 { 765 u16 ww; 766 767 /* 768 * Disable MIICR_MAUTO, so that mii addr can be set normally 769 */ 770 safe_disable_mii_autopoll(regs); 771 772 /* MII reg offset */ 773 writeb(mii_addr, ®s->MIIADR); 774 /* set MII data */ 775 writew(data, ®s->MIIDATA); 776 777 /* turn on MIICR_WCMD */ 778 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 779 780 /* W_MAX_TIMEOUT is the timeout period */ 781 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 782 udelay(5); 783 if (!(readb(®s->MIICR) & MIICR_WCMD)) 784 break; 785 } 786 enable_mii_autopoll(regs); 787 788 if (ww == W_MAX_TIMEOUT) 789 return -ETIMEDOUT; 790 return 0; 791 } 792 793 /** 794 * set_mii_flow_control - flow control setup 795 * @vptr: velocity interface 796 * 797 * Set up the flow control on this interface according to 798 * the supplied user/eeprom options. 799 */ 800 static void set_mii_flow_control(struct velocity_info *vptr) 801 { 802 /*Enable or Disable PAUSE in ANAR */ 803 switch (vptr->options.flow_cntl) { 804 case FLOW_CNTL_TX: 805 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 806 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 807 break; 808 809 case FLOW_CNTL_RX: 810 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 811 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 812 break; 813 814 case FLOW_CNTL_TX_RX: 815 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 816 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 817 break; 818 819 case FLOW_CNTL_DISABLE: 820 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 821 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 822 break; 823 default: 824 break; 825 } 826 } 827 828 /** 829 * mii_set_auto_on - autonegotiate on 830 * @vptr: velocity 831 * 832 * Enable autonegotation on this interface 833 */ 834 static void mii_set_auto_on(struct velocity_info *vptr) 835 { 836 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 837 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 838 else 839 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 840 } 841 842 static u32 check_connection_type(struct mac_regs __iomem *regs) 843 { 844 u32 status = 0; 845 u8 PHYSR0; 846 u16 ANAR; 847 PHYSR0 = readb(®s->PHYSR0); 848 849 /* 850 if (!(PHYSR0 & PHYSR0_LINKGD)) 851 status|=VELOCITY_LINK_FAIL; 852 */ 853 854 if (PHYSR0 & PHYSR0_FDPX) 855 status |= VELOCITY_DUPLEX_FULL; 856 857 if (PHYSR0 & PHYSR0_SPDG) 858 status |= VELOCITY_SPEED_1000; 859 else if (PHYSR0 & PHYSR0_SPD10) 860 status |= VELOCITY_SPEED_10; 861 else 862 status |= VELOCITY_SPEED_100; 863 864 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 865 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 866 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 867 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 868 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 869 status |= VELOCITY_AUTONEG_ENABLE; 870 } 871 } 872 873 return status; 874 } 875 876 /** 877 * velocity_set_media_mode - set media mode 878 * @mii_status: old MII link state 879 * 880 * Check the media link state and configure the flow control 881 * PHY and also velocity hardware setup accordingly. In particular 882 * we need to set up CD polling and frame bursting. 883 */ 884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 885 { 886 u32 curr_status; 887 struct mac_regs __iomem *regs = vptr->mac_regs; 888 889 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 890 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 891 892 /* Set mii link status */ 893 set_mii_flow_control(vptr); 894 895 /* 896 Check if new status is consistent with current status 897 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 898 (mii_status==curr_status)) { 899 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 900 vptr->mii_status=check_connection_type(vptr->mac_regs); 901 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 902 return 0; 903 } 904 */ 905 906 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 907 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 908 909 /* 910 * If connection type is AUTO 911 */ 912 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 913 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 914 /* clear force MAC mode bit */ 915 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 916 /* set duplex mode of MAC according to duplex mode of MII */ 917 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 918 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 919 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 920 921 /* enable AUTO-NEGO mode */ 922 mii_set_auto_on(vptr); 923 } else { 924 u16 CTRL1000; 925 u16 ANAR; 926 u8 CHIPGCR; 927 928 /* 929 * 1. if it's 3119, disable frame bursting in halfduplex mode 930 * and enable it in fullduplex mode 931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 932 * 3. only enable CD heart beat counter in 10HD mode 933 */ 934 935 /* set force MAC mode bit */ 936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 937 938 CHIPGCR = readb(®s->CHIPGCR); 939 940 if (mii_status & VELOCITY_SPEED_1000) 941 CHIPGCR |= CHIPGCR_FCGMII; 942 else 943 CHIPGCR &= ~CHIPGCR_FCGMII; 944 945 if (mii_status & VELOCITY_DUPLEX_FULL) { 946 CHIPGCR |= CHIPGCR_FCFDX; 947 writeb(CHIPGCR, ®s->CHIPGCR); 948 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 949 if (vptr->rev_id < REV_ID_VT3216_A0) 950 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 951 } else { 952 CHIPGCR &= ~CHIPGCR_FCFDX; 953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 954 writeb(CHIPGCR, ®s->CHIPGCR); 955 if (vptr->rev_id < REV_ID_VT3216_A0) 956 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 957 } 958 959 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 960 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 961 if ((mii_status & VELOCITY_SPEED_1000) && 962 (mii_status & VELOCITY_DUPLEX_FULL)) { 963 CTRL1000 |= ADVERTISE_1000FULL; 964 } 965 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 966 967 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 968 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 969 else 970 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 971 972 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 973 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 974 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 975 if (mii_status & VELOCITY_SPEED_100) { 976 if (mii_status & VELOCITY_DUPLEX_FULL) 977 ANAR |= ADVERTISE_100FULL; 978 else 979 ANAR |= ADVERTISE_100HALF; 980 } else if (mii_status & VELOCITY_SPEED_10) { 981 if (mii_status & VELOCITY_DUPLEX_FULL) 982 ANAR |= ADVERTISE_10FULL; 983 else 984 ANAR |= ADVERTISE_10HALF; 985 } 986 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 987 /* enable AUTO-NEGO mode */ 988 mii_set_auto_on(vptr); 989 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 990 } 991 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 992 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 993 return VELOCITY_LINK_CHANGE; 994 } 995 996 /** 997 * velocity_print_link_status - link status reporting 998 * @vptr: velocity to report on 999 * 1000 * Turn the link status of the velocity card into a kernel log 1001 * description of the new link state, detailing speed and duplex 1002 * status 1003 */ 1004 static void velocity_print_link_status(struct velocity_info *vptr) 1005 { 1006 1007 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1008 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 1009 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1010 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 1011 1012 if (vptr->mii_status & VELOCITY_SPEED_1000) 1013 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1014 else if (vptr->mii_status & VELOCITY_SPEED_100) 1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1016 else 1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1018 1019 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1020 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1021 else 1022 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1023 } else { 1024 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1025 switch (vptr->options.spd_dpx) { 1026 case SPD_DPX_1000_FULL: 1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1028 break; 1029 case SPD_DPX_100_HALF: 1030 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1031 break; 1032 case SPD_DPX_100_FULL: 1033 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1034 break; 1035 case SPD_DPX_10_HALF: 1036 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1037 break; 1038 case SPD_DPX_10_FULL: 1039 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1040 break; 1041 default: 1042 break; 1043 } 1044 } 1045 } 1046 1047 /** 1048 * enable_flow_control_ability - flow control 1049 * @vptr: veloity to configure 1050 * 1051 * Set up flow control according to the flow control options 1052 * determined by the eeprom/configuration. 1053 */ 1054 static void enable_flow_control_ability(struct velocity_info *vptr) 1055 { 1056 1057 struct mac_regs __iomem *regs = vptr->mac_regs; 1058 1059 switch (vptr->options.flow_cntl) { 1060 1061 case FLOW_CNTL_DEFAULT: 1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1063 writel(CR0_FDXRFCEN, ®s->CR0Set); 1064 else 1065 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1066 1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1068 writel(CR0_FDXTFCEN, ®s->CR0Set); 1069 else 1070 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1071 break; 1072 1073 case FLOW_CNTL_TX: 1074 writel(CR0_FDXTFCEN, ®s->CR0Set); 1075 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1076 break; 1077 1078 case FLOW_CNTL_RX: 1079 writel(CR0_FDXRFCEN, ®s->CR0Set); 1080 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1081 break; 1082 1083 case FLOW_CNTL_TX_RX: 1084 writel(CR0_FDXTFCEN, ®s->CR0Set); 1085 writel(CR0_FDXRFCEN, ®s->CR0Set); 1086 break; 1087 1088 case FLOW_CNTL_DISABLE: 1089 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1090 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 1097 } 1098 1099 /** 1100 * velocity_soft_reset - soft reset 1101 * @vptr: velocity to reset 1102 * 1103 * Kick off a soft reset of the velocity adapter and then poll 1104 * until the reset sequence has completed before returning. 1105 */ 1106 static int velocity_soft_reset(struct velocity_info *vptr) 1107 { 1108 struct mac_regs __iomem *regs = vptr->mac_regs; 1109 int i = 0; 1110 1111 writel(CR0_SFRST, ®s->CR0Set); 1112 1113 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1114 udelay(5); 1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1116 break; 1117 } 1118 1119 if (i == W_MAX_TIMEOUT) { 1120 writel(CR0_FORSRST, ®s->CR0Set); 1121 /* FIXME: PCI POSTING */ 1122 /* delay 2ms */ 1123 mdelay(2); 1124 } 1125 return 0; 1126 } 1127 1128 /** 1129 * velocity_set_multi - filter list change callback 1130 * @dev: network device 1131 * 1132 * Called by the network layer when the filter lists need to change 1133 * for a velocity adapter. Reload the CAMs with the new address 1134 * filter ruleset. 1135 */ 1136 static void velocity_set_multi(struct net_device *dev) 1137 { 1138 struct velocity_info *vptr = netdev_priv(dev); 1139 struct mac_regs __iomem *regs = vptr->mac_regs; 1140 u8 rx_mode; 1141 int i; 1142 struct netdev_hw_addr *ha; 1143 1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1145 writel(0xffffffff, ®s->MARCAM[0]); 1146 writel(0xffffffff, ®s->MARCAM[4]); 1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1149 (dev->flags & IFF_ALLMULTI)) { 1150 writel(0xffffffff, ®s->MARCAM[0]); 1151 writel(0xffffffff, ®s->MARCAM[4]); 1152 rx_mode = (RCR_AM | RCR_AB); 1153 } else { 1154 int offset = MCAM_SIZE - vptr->multicast_limit; 1155 mac_get_cam_mask(regs, vptr->mCAMmask); 1156 1157 i = 0; 1158 netdev_for_each_mc_addr(ha, dev) { 1159 mac_set_cam(regs, i + offset, ha->addr); 1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1161 i++; 1162 } 1163 1164 mac_set_cam_mask(regs, vptr->mCAMmask); 1165 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1166 } 1167 if (dev->mtu > 1500) 1168 rx_mode |= RCR_AL; 1169 1170 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1171 1172 } 1173 1174 /* 1175 * MII access , media link mode setting functions 1176 */ 1177 1178 /** 1179 * mii_init - set up MII 1180 * @vptr: velocity adapter 1181 * @mii_status: links tatus 1182 * 1183 * Set up the PHY for the current link state. 1184 */ 1185 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1186 { 1187 u16 BMCR; 1188 1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1190 case PHYID_ICPLUS_IP101A: 1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1192 MII_ADVERTISE, vptr->mac_regs); 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1195 vptr->mac_regs); 1196 else 1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1198 vptr->mac_regs); 1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1200 break; 1201 case PHYID_CICADA_CS8201: 1202 /* 1203 * Reset to hardware default 1204 */ 1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1206 /* 1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1208 * off it in NWay-forced half mode for NWay-forced v.s. 1209 * legacy-forced issue. 1210 */ 1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1213 else 1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 /* 1216 * Turn on Link/Activity LED enable bit for CIS8201 1217 */ 1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1219 break; 1220 case PHYID_VT3216_32BIT: 1221 case PHYID_VT3216_64BIT: 1222 /* 1223 * Reset to hardware default 1224 */ 1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1226 /* 1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1228 * off it in NWay-forced half mode for NWay-forced v.s. 1229 * legacy-forced issue 1230 */ 1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1233 else 1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1235 break; 1236 1237 case PHYID_MARVELL_1000: 1238 case PHYID_MARVELL_1000S: 1239 /* 1240 * Assert CRS on Transmit 1241 */ 1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1243 /* 1244 * Reset to hardware default 1245 */ 1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1247 break; 1248 default: 1249 ; 1250 } 1251 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1252 if (BMCR & BMCR_ISOLATE) { 1253 BMCR &= ~BMCR_ISOLATE; 1254 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1255 } 1256 } 1257 1258 /** 1259 * setup_queue_timers - Setup interrupt timers 1260 * 1261 * Setup interrupt frequency during suppression (timeout if the frame 1262 * count isn't filled). 1263 */ 1264 static void setup_queue_timers(struct velocity_info *vptr) 1265 { 1266 /* Only for newer revisions */ 1267 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1268 u8 txqueue_timer = 0; 1269 u8 rxqueue_timer = 0; 1270 1271 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1272 VELOCITY_SPEED_100)) { 1273 txqueue_timer = vptr->options.txqueue_timer; 1274 rxqueue_timer = vptr->options.rxqueue_timer; 1275 } 1276 1277 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1278 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1279 } 1280 } 1281 1282 /** 1283 * setup_adaptive_interrupts - Setup interrupt suppression 1284 * 1285 * @vptr velocity adapter 1286 * 1287 * The velocity is able to suppress interrupt during high interrupt load. 1288 * This function turns on that feature. 1289 */ 1290 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1291 { 1292 struct mac_regs __iomem *regs = vptr->mac_regs; 1293 u16 tx_intsup = vptr->options.tx_intsup; 1294 u16 rx_intsup = vptr->options.rx_intsup; 1295 1296 /* Setup default interrupt mask (will be changed below) */ 1297 vptr->int_mask = INT_MASK_DEF; 1298 1299 /* Set Tx Interrupt Suppression Threshold */ 1300 writeb(CAMCR_PS0, ®s->CAMCR); 1301 if (tx_intsup != 0) { 1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1303 ISR_PTX2I | ISR_PTX3I); 1304 writew(tx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1307 1308 /* Set Rx Interrupt Suppression Threshold */ 1309 writeb(CAMCR_PS1, ®s->CAMCR); 1310 if (rx_intsup != 0) { 1311 vptr->int_mask &= ~ISR_PRXI; 1312 writew(rx_intsup, ®s->ISRCTL); 1313 } else 1314 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1315 1316 /* Select page to interrupt hold timer */ 1317 writeb(0, ®s->CAMCR); 1318 } 1319 1320 /** 1321 * velocity_init_registers - initialise MAC registers 1322 * @vptr: velocity to init 1323 * @type: type of initialisation (hot or cold) 1324 * 1325 * Initialise the MAC on a reset or on first set up on the 1326 * hardware. 1327 */ 1328 static void velocity_init_registers(struct velocity_info *vptr, 1329 enum velocity_init_type type) 1330 { 1331 struct mac_regs __iomem *regs = vptr->mac_regs; 1332 struct net_device *netdev = vptr->netdev; 1333 int i, mii_status; 1334 1335 mac_wol_reset(regs); 1336 1337 switch (type) { 1338 case VELOCITY_INIT_RESET: 1339 case VELOCITY_INIT_WOL: 1340 1341 netif_stop_queue(netdev); 1342 1343 /* 1344 * Reset RX to prevent RX pointer not on the 4X location 1345 */ 1346 velocity_rx_reset(vptr); 1347 mac_rx_queue_run(regs); 1348 mac_rx_queue_wake(regs); 1349 1350 mii_status = velocity_get_opt_media_mode(vptr); 1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1352 velocity_print_link_status(vptr); 1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1354 netif_wake_queue(netdev); 1355 } 1356 1357 enable_flow_control_ability(vptr); 1358 1359 mac_clear_isr(regs); 1360 writel(CR0_STOP, ®s->CR0Clr); 1361 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1362 ®s->CR0Set); 1363 1364 break; 1365 1366 case VELOCITY_INIT_COLD: 1367 default: 1368 /* 1369 * Do reset 1370 */ 1371 velocity_soft_reset(vptr); 1372 mdelay(5); 1373 1374 if (!vptr->no_eeprom) { 1375 mac_eeprom_reload(regs); 1376 for (i = 0; i < 6; i++) 1377 writeb(netdev->dev_addr[i], regs->PAR + i); 1378 } 1379 1380 /* 1381 * clear Pre_ACPI bit. 1382 */ 1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1385 mac_set_dma_length(regs, vptr->options.DMA_length); 1386 1387 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1388 /* 1389 * Back off algorithm use original IEEE standard 1390 */ 1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1392 1393 /* 1394 * Init CAM filter 1395 */ 1396 velocity_init_cam_filter(vptr); 1397 1398 /* 1399 * Set packet filter: Receive directed and broadcast address 1400 */ 1401 velocity_set_multi(netdev); 1402 1403 /* 1404 * Enable MII auto-polling 1405 */ 1406 enable_mii_autopoll(regs); 1407 1408 setup_adaptive_interrupts(vptr); 1409 1410 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1411 writew(vptr->options.numrx - 1, ®s->RDCSize); 1412 mac_rx_queue_run(regs); 1413 mac_rx_queue_wake(regs); 1414 1415 writew(vptr->options.numtx - 1, ®s->TDCSize); 1416 1417 for (i = 0; i < vptr->tx.numq; i++) { 1418 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1419 mac_tx_queue_run(regs, i); 1420 } 1421 1422 init_flow_control_register(vptr); 1423 1424 writel(CR0_STOP, ®s->CR0Clr); 1425 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1426 1427 mii_status = velocity_get_opt_media_mode(vptr); 1428 netif_stop_queue(netdev); 1429 1430 mii_init(vptr, mii_status); 1431 1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1433 velocity_print_link_status(vptr); 1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1435 netif_wake_queue(netdev); 1436 } 1437 1438 enable_flow_control_ability(vptr); 1439 mac_hw_mibs_init(regs); 1440 mac_write_int_mask(vptr->int_mask, regs); 1441 mac_clear_isr(regs); 1442 1443 } 1444 } 1445 1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1447 { 1448 struct mac_regs __iomem *regs = vptr->mac_regs; 1449 int avail, dirty, unusable; 1450 1451 /* 1452 * RD number must be equal to 4X per hardware spec 1453 * (programming guide rev 1.20, p.13) 1454 */ 1455 if (vptr->rx.filled < 4) 1456 return; 1457 1458 wmb(); 1459 1460 unusable = vptr->rx.filled & 0x0003; 1461 dirty = vptr->rx.dirty - unusable; 1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1465 } 1466 1467 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1468 vptr->rx.filled = unusable; 1469 } 1470 1471 /** 1472 * velocity_init_dma_rings - set up DMA rings 1473 * @vptr: Velocity to set up 1474 * 1475 * Allocate PCI mapped DMA rings for the receive and transmit layer 1476 * to use. 1477 */ 1478 static int velocity_init_dma_rings(struct velocity_info *vptr) 1479 { 1480 struct velocity_opt *opt = &vptr->options; 1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1483 dma_addr_t pool_dma; 1484 void *pool; 1485 unsigned int i; 1486 1487 /* 1488 * Allocate all RD/TD rings a single pool. 1489 * 1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1491 * alignment 1492 */ 1493 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1494 rx_ring_size, &pool_dma, GFP_ATOMIC); 1495 if (!pool) { 1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1497 vptr->netdev->name); 1498 return -ENOMEM; 1499 } 1500 1501 vptr->rx.ring = pool; 1502 vptr->rx.pool_dma = pool_dma; 1503 1504 pool += rx_ring_size; 1505 pool_dma += rx_ring_size; 1506 1507 for (i = 0; i < vptr->tx.numq; i++) { 1508 vptr->tx.rings[i] = pool; 1509 vptr->tx.pool_dma[i] = pool_dma; 1510 pool += tx_ring_size; 1511 pool_dma += tx_ring_size; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1518 { 1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1520 } 1521 1522 /** 1523 * velocity_alloc_rx_buf - allocate aligned receive buffer 1524 * @vptr: velocity 1525 * @idx: ring index 1526 * 1527 * Allocate a new full sized buffer for the reception of a frame and 1528 * map it into PCI space for the hardware to use. The hardware 1529 * requires *64* byte alignment of the buffer which makes life 1530 * less fun than would be ideal. 1531 */ 1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1533 { 1534 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1536 1537 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1538 if (rd_info->skb == NULL) 1539 return -ENOMEM; 1540 1541 /* 1542 * Do the gymnastics to get the buffer head for data at 1543 * 64byte alignment. 1544 */ 1545 skb_reserve(rd_info->skb, 1546 64 - ((unsigned long) rd_info->skb->data & 63)); 1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1548 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1549 1550 /* 1551 * Fill in the descriptor to match 1552 */ 1553 1554 *((u32 *) & (rd->rdesc0)) = 0; 1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1557 rd->pa_high = 0; 1558 return 0; 1559 } 1560 1561 1562 static int velocity_rx_refill(struct velocity_info *vptr) 1563 { 1564 int dirty = vptr->rx.dirty, done = 0; 1565 1566 do { 1567 struct rx_desc *rd = vptr->rx.ring + dirty; 1568 1569 /* Fine for an all zero Rx desc at init time as well */ 1570 if (rd->rdesc0.len & OWNED_BY_NIC) 1571 break; 1572 1573 if (!vptr->rx.info[dirty].skb) { 1574 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1575 break; 1576 } 1577 done++; 1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1579 } while (dirty != vptr->rx.curr); 1580 1581 if (done) { 1582 vptr->rx.dirty = dirty; 1583 vptr->rx.filled += done; 1584 } 1585 1586 return done; 1587 } 1588 1589 /** 1590 * velocity_free_rd_ring - free receive ring 1591 * @vptr: velocity to clean up 1592 * 1593 * Free the receive buffers for each ring slot and any 1594 * attached socket buffers that need to go away. 1595 */ 1596 static void velocity_free_rd_ring(struct velocity_info *vptr) 1597 { 1598 int i; 1599 1600 if (vptr->rx.info == NULL) 1601 return; 1602 1603 for (i = 0; i < vptr->options.numrx; i++) { 1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1605 struct rx_desc *rd = vptr->rx.ring + i; 1606 1607 memset(rd, 0, sizeof(*rd)); 1608 1609 if (!rd_info->skb) 1610 continue; 1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1612 DMA_FROM_DEVICE); 1613 rd_info->skb_dma = 0; 1614 1615 dev_kfree_skb(rd_info->skb); 1616 rd_info->skb = NULL; 1617 } 1618 1619 kfree(vptr->rx.info); 1620 vptr->rx.info = NULL; 1621 } 1622 1623 /** 1624 * velocity_init_rd_ring - set up receive ring 1625 * @vptr: velocity to configure 1626 * 1627 * Allocate and set up the receive buffers for each ring slot and 1628 * assign them to the network adapter. 1629 */ 1630 static int velocity_init_rd_ring(struct velocity_info *vptr) 1631 { 1632 int ret = -ENOMEM; 1633 1634 vptr->rx.info = kcalloc(vptr->options.numrx, 1635 sizeof(struct velocity_rd_info), GFP_KERNEL); 1636 if (!vptr->rx.info) 1637 goto out; 1638 1639 velocity_init_rx_ring_indexes(vptr); 1640 1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1642 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1643 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1644 velocity_free_rd_ring(vptr); 1645 goto out; 1646 } 1647 1648 ret = 0; 1649 out: 1650 return ret; 1651 } 1652 1653 /** 1654 * velocity_init_td_ring - set up transmit ring 1655 * @vptr: velocity 1656 * 1657 * Set up the transmit ring and chain the ring pointers together. 1658 * Returns zero on success or a negative posix errno code for 1659 * failure. 1660 */ 1661 static int velocity_init_td_ring(struct velocity_info *vptr) 1662 { 1663 int j; 1664 1665 /* Init the TD ring entries */ 1666 for (j = 0; j < vptr->tx.numq; j++) { 1667 1668 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1669 sizeof(struct velocity_td_info), 1670 GFP_KERNEL); 1671 if (!vptr->tx.infos[j]) { 1672 while (--j >= 0) 1673 kfree(vptr->tx.infos[j]); 1674 return -ENOMEM; 1675 } 1676 1677 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1678 } 1679 return 0; 1680 } 1681 1682 /** 1683 * velocity_free_dma_rings - free PCI ring pointers 1684 * @vptr: Velocity to free from 1685 * 1686 * Clean up the PCI ring buffers allocated to this velocity. 1687 */ 1688 static void velocity_free_dma_rings(struct velocity_info *vptr) 1689 { 1690 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1691 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1692 1693 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1694 } 1695 1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1697 { 1698 int ret; 1699 1700 velocity_set_rxbufsize(vptr, mtu); 1701 1702 ret = velocity_init_dma_rings(vptr); 1703 if (ret < 0) 1704 goto out; 1705 1706 ret = velocity_init_rd_ring(vptr); 1707 if (ret < 0) 1708 goto err_free_dma_rings_0; 1709 1710 ret = velocity_init_td_ring(vptr); 1711 if (ret < 0) 1712 goto err_free_rd_ring_1; 1713 out: 1714 return ret; 1715 1716 err_free_rd_ring_1: 1717 velocity_free_rd_ring(vptr); 1718 err_free_dma_rings_0: 1719 velocity_free_dma_rings(vptr); 1720 goto out; 1721 } 1722 1723 /** 1724 * velocity_free_tx_buf - free transmit buffer 1725 * @vptr: velocity 1726 * @tdinfo: buffer 1727 * 1728 * Release an transmit buffer. If the buffer was preallocated then 1729 * recycle it, if not then unmap the buffer. 1730 */ 1731 static void velocity_free_tx_buf(struct velocity_info *vptr, 1732 struct velocity_td_info *tdinfo, struct tx_desc *td) 1733 { 1734 struct sk_buff *skb = tdinfo->skb; 1735 1736 /* 1737 * Don't unmap the pre-allocated tx_bufs 1738 */ 1739 if (tdinfo->skb_dma) { 1740 int i; 1741 1742 for (i = 0; i < tdinfo->nskb_dma; i++) { 1743 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1744 1745 /* For scatter-gather */ 1746 if (skb_shinfo(skb)->nr_frags > 0) 1747 pktlen = max_t(size_t, pktlen, 1748 td->td_buf[i].size & ~TD_QUEUE); 1749 1750 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1751 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1752 } 1753 } 1754 dev_kfree_skb_irq(skb); 1755 tdinfo->skb = NULL; 1756 } 1757 1758 /* 1759 * FIXME: could we merge this with velocity_free_tx_buf ? 1760 */ 1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1762 int q, int n) 1763 { 1764 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1765 int i; 1766 1767 if (td_info == NULL) 1768 return; 1769 1770 if (td_info->skb) { 1771 for (i = 0; i < td_info->nskb_dma; i++) { 1772 if (td_info->skb_dma[i]) { 1773 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1774 td_info->skb->len, DMA_TO_DEVICE); 1775 td_info->skb_dma[i] = 0; 1776 } 1777 } 1778 dev_kfree_skb(td_info->skb); 1779 td_info->skb = NULL; 1780 } 1781 } 1782 1783 /** 1784 * velocity_free_td_ring - free td ring 1785 * @vptr: velocity 1786 * 1787 * Free up the transmit ring for this particular velocity adapter. 1788 * We free the ring contents but not the ring itself. 1789 */ 1790 static void velocity_free_td_ring(struct velocity_info *vptr) 1791 { 1792 int i, j; 1793 1794 for (j = 0; j < vptr->tx.numq; j++) { 1795 if (vptr->tx.infos[j] == NULL) 1796 continue; 1797 for (i = 0; i < vptr->options.numtx; i++) 1798 velocity_free_td_ring_entry(vptr, j, i); 1799 1800 kfree(vptr->tx.infos[j]); 1801 vptr->tx.infos[j] = NULL; 1802 } 1803 } 1804 1805 static void velocity_free_rings(struct velocity_info *vptr) 1806 { 1807 velocity_free_td_ring(vptr); 1808 velocity_free_rd_ring(vptr); 1809 velocity_free_dma_rings(vptr); 1810 } 1811 1812 /** 1813 * velocity_error - handle error from controller 1814 * @vptr: velocity 1815 * @status: card status 1816 * 1817 * Process an error report from the hardware and attempt to recover 1818 * the card itself. At the moment we cannot recover from some 1819 * theoretically impossible errors but this could be fixed using 1820 * the pci_device_failed logic to bounce the hardware 1821 * 1822 */ 1823 static void velocity_error(struct velocity_info *vptr, int status) 1824 { 1825 1826 if (status & ISR_TXSTLI) { 1827 struct mac_regs __iomem *regs = vptr->mac_regs; 1828 1829 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1830 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1831 writew(TRDCSR_RUN, ®s->TDCSRClr); 1832 netif_stop_queue(vptr->netdev); 1833 1834 /* FIXME: port over the pci_device_failed code and use it 1835 here */ 1836 } 1837 1838 if (status & ISR_SRCI) { 1839 struct mac_regs __iomem *regs = vptr->mac_regs; 1840 int linked; 1841 1842 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1843 vptr->mii_status = check_connection_type(regs); 1844 1845 /* 1846 * If it is a 3119, disable frame bursting in 1847 * halfduplex mode and enable it in fullduplex 1848 * mode 1849 */ 1850 if (vptr->rev_id < REV_ID_VT3216_A0) { 1851 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1852 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1853 else 1854 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1855 } 1856 /* 1857 * Only enable CD heart beat counter in 10HD mode 1858 */ 1859 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1860 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1861 else 1862 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1863 1864 setup_queue_timers(vptr); 1865 } 1866 /* 1867 * Get link status from PHYSR0 1868 */ 1869 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1870 1871 if (linked) { 1872 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1873 netif_carrier_on(vptr->netdev); 1874 } else { 1875 vptr->mii_status |= VELOCITY_LINK_FAIL; 1876 netif_carrier_off(vptr->netdev); 1877 } 1878 1879 velocity_print_link_status(vptr); 1880 enable_flow_control_ability(vptr); 1881 1882 /* 1883 * Re-enable auto-polling because SRCI will disable 1884 * auto-polling 1885 */ 1886 1887 enable_mii_autopoll(regs); 1888 1889 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1890 netif_stop_queue(vptr->netdev); 1891 else 1892 netif_wake_queue(vptr->netdev); 1893 1894 } 1895 if (status & ISR_MIBFI) 1896 velocity_update_hw_mibs(vptr); 1897 if (status & ISR_LSTEI) 1898 mac_rx_queue_wake(vptr->mac_regs); 1899 } 1900 1901 /** 1902 * tx_srv - transmit interrupt service 1903 * @vptr; Velocity 1904 * 1905 * Scan the queues looking for transmitted packets that 1906 * we can complete and clean up. Update any statistics as 1907 * necessary/ 1908 */ 1909 static int velocity_tx_srv(struct velocity_info *vptr) 1910 { 1911 struct tx_desc *td; 1912 int qnum; 1913 int full = 0; 1914 int idx; 1915 int works = 0; 1916 struct velocity_td_info *tdinfo; 1917 struct net_device_stats *stats = &vptr->netdev->stats; 1918 1919 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1920 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1921 idx = (idx + 1) % vptr->options.numtx) { 1922 1923 /* 1924 * Get Tx Descriptor 1925 */ 1926 td = &(vptr->tx.rings[qnum][idx]); 1927 tdinfo = &(vptr->tx.infos[qnum][idx]); 1928 1929 if (td->tdesc0.len & OWNED_BY_NIC) 1930 break; 1931 1932 if ((works++ > 15)) 1933 break; 1934 1935 if (td->tdesc0.TSR & TSR0_TERR) { 1936 stats->tx_errors++; 1937 stats->tx_dropped++; 1938 if (td->tdesc0.TSR & TSR0_CDH) 1939 stats->tx_heartbeat_errors++; 1940 if (td->tdesc0.TSR & TSR0_CRS) 1941 stats->tx_carrier_errors++; 1942 if (td->tdesc0.TSR & TSR0_ABT) 1943 stats->tx_aborted_errors++; 1944 if (td->tdesc0.TSR & TSR0_OWC) 1945 stats->tx_window_errors++; 1946 } else { 1947 stats->tx_packets++; 1948 stats->tx_bytes += tdinfo->skb->len; 1949 } 1950 velocity_free_tx_buf(vptr, tdinfo, td); 1951 vptr->tx.used[qnum]--; 1952 } 1953 vptr->tx.tail[qnum] = idx; 1954 1955 if (AVAIL_TD(vptr, qnum) < 1) 1956 full = 1; 1957 } 1958 /* 1959 * Look to see if we should kick the transmit network 1960 * layer for more work. 1961 */ 1962 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1963 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1964 netif_wake_queue(vptr->netdev); 1965 } 1966 return works; 1967 } 1968 1969 /** 1970 * velocity_rx_csum - checksum process 1971 * @rd: receive packet descriptor 1972 * @skb: network layer packet buffer 1973 * 1974 * Process the status bits for the received packet and determine 1975 * if the checksum was computed and verified by the hardware 1976 */ 1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1978 { 1979 skb_checksum_none_assert(skb); 1980 1981 if (rd->rdesc1.CSM & CSM_IPKT) { 1982 if (rd->rdesc1.CSM & CSM_IPOK) { 1983 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1984 (rd->rdesc1.CSM & CSM_UDPKT)) { 1985 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1986 return; 1987 } 1988 skb->ip_summed = CHECKSUM_UNNECESSARY; 1989 } 1990 } 1991 } 1992 1993 /** 1994 * velocity_rx_copy - in place Rx copy for small packets 1995 * @rx_skb: network layer packet buffer candidate 1996 * @pkt_size: received data size 1997 * @rd: receive packet descriptor 1998 * @dev: network device 1999 * 2000 * Replace the current skb that is scheduled for Rx processing by a 2001 * shorter, immediately allocated skb, if the received packet is small 2002 * enough. This function returns a negative value if the received 2003 * packet is too big or if memory is exhausted. 2004 */ 2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 2006 struct velocity_info *vptr) 2007 { 2008 int ret = -1; 2009 if (pkt_size < rx_copybreak) { 2010 struct sk_buff *new_skb; 2011 2012 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2013 if (new_skb) { 2014 new_skb->ip_summed = rx_skb[0]->ip_summed; 2015 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2016 *rx_skb = new_skb; 2017 ret = 0; 2018 } 2019 2020 } 2021 return ret; 2022 } 2023 2024 /** 2025 * velocity_iph_realign - IP header alignment 2026 * @vptr: velocity we are handling 2027 * @skb: network layer packet buffer 2028 * @pkt_size: received data size 2029 * 2030 * Align IP header on a 2 bytes boundary. This behavior can be 2031 * configured by the user. 2032 */ 2033 static inline void velocity_iph_realign(struct velocity_info *vptr, 2034 struct sk_buff *skb, int pkt_size) 2035 { 2036 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2037 memmove(skb->data + 2, skb->data, pkt_size); 2038 skb_reserve(skb, 2); 2039 } 2040 } 2041 2042 /** 2043 * velocity_receive_frame - received packet processor 2044 * @vptr: velocity we are handling 2045 * @idx: ring index 2046 * 2047 * A packet has arrived. We process the packet and if appropriate 2048 * pass the frame up the network stack 2049 */ 2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2051 { 2052 struct net_device_stats *stats = &vptr->netdev->stats; 2053 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2054 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2055 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2056 struct sk_buff *skb; 2057 2058 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) { 2059 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->netdev->name); 2060 stats->rx_length_errors++; 2061 return -EINVAL; 2062 } 2063 2064 if (rd->rdesc0.RSR & RSR_MAR) 2065 stats->multicast++; 2066 2067 skb = rd_info->skb; 2068 2069 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2070 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2071 2072 /* 2073 * Drop frame not meeting IEEE 802.3 2074 */ 2075 2076 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) { 2077 if (rd->rdesc0.RSR & RSR_RL) { 2078 stats->rx_length_errors++; 2079 return -EINVAL; 2080 } 2081 } 2082 2083 velocity_rx_csum(rd, skb); 2084 2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2086 velocity_iph_realign(vptr, skb, pkt_len); 2087 rd_info->skb = NULL; 2088 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2089 DMA_FROM_DEVICE); 2090 } else { 2091 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2092 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2093 } 2094 2095 skb_put(skb, pkt_len - 4); 2096 skb->protocol = eth_type_trans(skb, vptr->netdev); 2097 2098 if (rd->rdesc0.RSR & RSR_DETAG) { 2099 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2100 2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2102 } 2103 netif_receive_skb(skb); 2104 2105 stats->rx_bytes += pkt_len; 2106 stats->rx_packets++; 2107 2108 return 0; 2109 } 2110 2111 /** 2112 * velocity_rx_srv - service RX interrupt 2113 * @vptr: velocity 2114 * 2115 * Walk the receive ring of the velocity adapter and remove 2116 * any received packets from the receive queue. Hand the ring 2117 * slots back to the adapter for reuse. 2118 */ 2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2120 { 2121 struct net_device_stats *stats = &vptr->netdev->stats; 2122 int rd_curr = vptr->rx.curr; 2123 int works = 0; 2124 2125 while (works < budget_left) { 2126 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2127 2128 if (!vptr->rx.info[rd_curr].skb) 2129 break; 2130 2131 if (rd->rdesc0.len & OWNED_BY_NIC) 2132 break; 2133 2134 rmb(); 2135 2136 /* 2137 * Don't drop CE or RL error frame although RXOK is off 2138 */ 2139 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2140 if (velocity_receive_frame(vptr, rd_curr) < 0) 2141 stats->rx_dropped++; 2142 } else { 2143 if (rd->rdesc0.RSR & RSR_CRC) 2144 stats->rx_crc_errors++; 2145 if (rd->rdesc0.RSR & RSR_FAE) 2146 stats->rx_frame_errors++; 2147 2148 stats->rx_dropped++; 2149 } 2150 2151 rd->size |= RX_INTEN; 2152 2153 rd_curr++; 2154 if (rd_curr >= vptr->options.numrx) 2155 rd_curr = 0; 2156 works++; 2157 } 2158 2159 vptr->rx.curr = rd_curr; 2160 2161 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2162 velocity_give_many_rx_descs(vptr); 2163 2164 VAR_USED(stats); 2165 return works; 2166 } 2167 2168 static int velocity_poll(struct napi_struct *napi, int budget) 2169 { 2170 struct velocity_info *vptr = container_of(napi, 2171 struct velocity_info, napi); 2172 unsigned int rx_done; 2173 unsigned long flags; 2174 2175 spin_lock_irqsave(&vptr->lock, flags); 2176 /* 2177 * Do rx and tx twice for performance (taken from the VIA 2178 * out-of-tree driver). 2179 */ 2180 rx_done = velocity_rx_srv(vptr, budget / 2); 2181 velocity_tx_srv(vptr); 2182 rx_done += velocity_rx_srv(vptr, budget - rx_done); 2183 velocity_tx_srv(vptr); 2184 2185 /* If budget not fully consumed, exit the polling mode */ 2186 if (rx_done < budget) { 2187 napi_complete(napi); 2188 mac_enable_int(vptr->mac_regs); 2189 } 2190 spin_unlock_irqrestore(&vptr->lock, flags); 2191 2192 return rx_done; 2193 } 2194 2195 /** 2196 * velocity_intr - interrupt callback 2197 * @irq: interrupt number 2198 * @dev_instance: interrupting device 2199 * 2200 * Called whenever an interrupt is generated by the velocity 2201 * adapter IRQ line. We may not be the source of the interrupt 2202 * and need to identify initially if we are, and if not exit as 2203 * efficiently as possible. 2204 */ 2205 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2206 { 2207 struct net_device *dev = dev_instance; 2208 struct velocity_info *vptr = netdev_priv(dev); 2209 u32 isr_status; 2210 2211 spin_lock(&vptr->lock); 2212 isr_status = mac_read_isr(vptr->mac_regs); 2213 2214 /* Not us ? */ 2215 if (isr_status == 0) { 2216 spin_unlock(&vptr->lock); 2217 return IRQ_NONE; 2218 } 2219 2220 /* Ack the interrupt */ 2221 mac_write_isr(vptr->mac_regs, isr_status); 2222 2223 if (likely(napi_schedule_prep(&vptr->napi))) { 2224 mac_disable_int(vptr->mac_regs); 2225 __napi_schedule(&vptr->napi); 2226 } 2227 2228 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2229 velocity_error(vptr, isr_status); 2230 2231 spin_unlock(&vptr->lock); 2232 2233 return IRQ_HANDLED; 2234 } 2235 2236 /** 2237 * velocity_open - interface activation callback 2238 * @dev: network layer device to open 2239 * 2240 * Called when the network layer brings the interface up. Returns 2241 * a negative posix error code on failure, or zero on success. 2242 * 2243 * All the ring allocation and set up is done on open for this 2244 * adapter to minimise memory usage when inactive 2245 */ 2246 static int velocity_open(struct net_device *dev) 2247 { 2248 struct velocity_info *vptr = netdev_priv(dev); 2249 int ret; 2250 2251 ret = velocity_init_rings(vptr, dev->mtu); 2252 if (ret < 0) 2253 goto out; 2254 2255 /* Ensure chip is running */ 2256 velocity_set_power_state(vptr, PCI_D0); 2257 2258 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2259 2260 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2261 dev->name, dev); 2262 if (ret < 0) { 2263 /* Power down the chip */ 2264 velocity_set_power_state(vptr, PCI_D3hot); 2265 velocity_free_rings(vptr); 2266 goto out; 2267 } 2268 2269 velocity_give_many_rx_descs(vptr); 2270 2271 mac_enable_int(vptr->mac_regs); 2272 netif_start_queue(dev); 2273 napi_enable(&vptr->napi); 2274 vptr->flags |= VELOCITY_FLAGS_OPENED; 2275 out: 2276 return ret; 2277 } 2278 2279 /** 2280 * velocity_shutdown - shut down the chip 2281 * @vptr: velocity to deactivate 2282 * 2283 * Shuts down the internal operations of the velocity and 2284 * disables interrupts, autopolling, transmit and receive 2285 */ 2286 static void velocity_shutdown(struct velocity_info *vptr) 2287 { 2288 struct mac_regs __iomem *regs = vptr->mac_regs; 2289 mac_disable_int(regs); 2290 writel(CR0_STOP, ®s->CR0Set); 2291 writew(0xFFFF, ®s->TDCSRClr); 2292 writeb(0xFF, ®s->RDCSRClr); 2293 safe_disable_mii_autopoll(regs); 2294 mac_clear_isr(regs); 2295 } 2296 2297 /** 2298 * velocity_change_mtu - MTU change callback 2299 * @dev: network device 2300 * @new_mtu: desired MTU 2301 * 2302 * Handle requests from the networking layer for MTU change on 2303 * this interface. It gets called on a change by the network layer. 2304 * Return zero for success or negative posix error code. 2305 */ 2306 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2307 { 2308 struct velocity_info *vptr = netdev_priv(dev); 2309 int ret = 0; 2310 2311 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) { 2312 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n", 2313 vptr->netdev->name); 2314 ret = -EINVAL; 2315 goto out_0; 2316 } 2317 2318 if (!netif_running(dev)) { 2319 dev->mtu = new_mtu; 2320 goto out_0; 2321 } 2322 2323 if (dev->mtu != new_mtu) { 2324 struct velocity_info *tmp_vptr; 2325 unsigned long flags; 2326 struct rx_info rx; 2327 struct tx_info tx; 2328 2329 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2330 if (!tmp_vptr) { 2331 ret = -ENOMEM; 2332 goto out_0; 2333 } 2334 2335 tmp_vptr->netdev = dev; 2336 tmp_vptr->pdev = vptr->pdev; 2337 tmp_vptr->dev = vptr->dev; 2338 tmp_vptr->options = vptr->options; 2339 tmp_vptr->tx.numq = vptr->tx.numq; 2340 2341 ret = velocity_init_rings(tmp_vptr, new_mtu); 2342 if (ret < 0) 2343 goto out_free_tmp_vptr_1; 2344 2345 spin_lock_irqsave(&vptr->lock, flags); 2346 2347 netif_stop_queue(dev); 2348 velocity_shutdown(vptr); 2349 2350 rx = vptr->rx; 2351 tx = vptr->tx; 2352 2353 vptr->rx = tmp_vptr->rx; 2354 vptr->tx = tmp_vptr->tx; 2355 2356 tmp_vptr->rx = rx; 2357 tmp_vptr->tx = tx; 2358 2359 dev->mtu = new_mtu; 2360 2361 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2362 2363 velocity_give_many_rx_descs(vptr); 2364 2365 mac_enable_int(vptr->mac_regs); 2366 netif_start_queue(dev); 2367 2368 spin_unlock_irqrestore(&vptr->lock, flags); 2369 2370 velocity_free_rings(tmp_vptr); 2371 2372 out_free_tmp_vptr_1: 2373 kfree(tmp_vptr); 2374 } 2375 out_0: 2376 return ret; 2377 } 2378 2379 /** 2380 * velocity_mii_ioctl - MII ioctl handler 2381 * @dev: network device 2382 * @ifr: the ifreq block for the ioctl 2383 * @cmd: the command 2384 * 2385 * Process MII requests made via ioctl from the network layer. These 2386 * are used by tools like kudzu to interrogate the link state of the 2387 * hardware 2388 */ 2389 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2390 { 2391 struct velocity_info *vptr = netdev_priv(dev); 2392 struct mac_regs __iomem *regs = vptr->mac_regs; 2393 unsigned long flags; 2394 struct mii_ioctl_data *miidata = if_mii(ifr); 2395 int err; 2396 2397 switch (cmd) { 2398 case SIOCGMIIPHY: 2399 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2400 break; 2401 case SIOCGMIIREG: 2402 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2403 return -ETIMEDOUT; 2404 break; 2405 case SIOCSMIIREG: 2406 spin_lock_irqsave(&vptr->lock, flags); 2407 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2408 spin_unlock_irqrestore(&vptr->lock, flags); 2409 check_connection_type(vptr->mac_regs); 2410 if (err) 2411 return err; 2412 break; 2413 default: 2414 return -EOPNOTSUPP; 2415 } 2416 return 0; 2417 } 2418 2419 /** 2420 * velocity_ioctl - ioctl entry point 2421 * @dev: network device 2422 * @rq: interface request ioctl 2423 * @cmd: command code 2424 * 2425 * Called when the user issues an ioctl request to the network 2426 * device in question. The velocity interface supports MII. 2427 */ 2428 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2429 { 2430 struct velocity_info *vptr = netdev_priv(dev); 2431 int ret; 2432 2433 /* If we are asked for information and the device is power 2434 saving then we need to bring the device back up to talk to it */ 2435 2436 if (!netif_running(dev)) 2437 velocity_set_power_state(vptr, PCI_D0); 2438 2439 switch (cmd) { 2440 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2441 case SIOCGMIIREG: /* Read MII PHY register. */ 2442 case SIOCSMIIREG: /* Write to MII PHY register. */ 2443 ret = velocity_mii_ioctl(dev, rq, cmd); 2444 break; 2445 2446 default: 2447 ret = -EOPNOTSUPP; 2448 } 2449 if (!netif_running(dev)) 2450 velocity_set_power_state(vptr, PCI_D3hot); 2451 2452 2453 return ret; 2454 } 2455 2456 /** 2457 * velocity_get_status - statistics callback 2458 * @dev: network device 2459 * 2460 * Callback from the network layer to allow driver statistics 2461 * to be resynchronized with hardware collected state. In the 2462 * case of the velocity we need to pull the MIB counters from 2463 * the hardware into the counters before letting the network 2464 * layer display them. 2465 */ 2466 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2467 { 2468 struct velocity_info *vptr = netdev_priv(dev); 2469 2470 /* If the hardware is down, don't touch MII */ 2471 if (!netif_running(dev)) 2472 return &dev->stats; 2473 2474 spin_lock_irq(&vptr->lock); 2475 velocity_update_hw_mibs(vptr); 2476 spin_unlock_irq(&vptr->lock); 2477 2478 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2479 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2480 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2481 2482 // unsigned long rx_dropped; /* no space in linux buffers */ 2483 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2484 /* detailed rx_errors: */ 2485 // unsigned long rx_length_errors; 2486 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2487 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2488 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2489 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2490 // unsigned long rx_missed_errors; /* receiver missed packet */ 2491 2492 /* detailed tx_errors */ 2493 // unsigned long tx_fifo_errors; 2494 2495 return &dev->stats; 2496 } 2497 2498 /** 2499 * velocity_close - close adapter callback 2500 * @dev: network device 2501 * 2502 * Callback from the network layer when the velocity is being 2503 * deactivated by the network layer 2504 */ 2505 static int velocity_close(struct net_device *dev) 2506 { 2507 struct velocity_info *vptr = netdev_priv(dev); 2508 2509 napi_disable(&vptr->napi); 2510 netif_stop_queue(dev); 2511 velocity_shutdown(vptr); 2512 2513 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2514 velocity_get_ip(vptr); 2515 2516 free_irq(dev->irq, dev); 2517 2518 velocity_free_rings(vptr); 2519 2520 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2521 return 0; 2522 } 2523 2524 /** 2525 * velocity_xmit - transmit packet callback 2526 * @skb: buffer to transmit 2527 * @dev: network device 2528 * 2529 * Called by the networ layer to request a packet is queued to 2530 * the velocity. Returns zero on success. 2531 */ 2532 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2533 struct net_device *dev) 2534 { 2535 struct velocity_info *vptr = netdev_priv(dev); 2536 int qnum = 0; 2537 struct tx_desc *td_ptr; 2538 struct velocity_td_info *tdinfo; 2539 unsigned long flags; 2540 int pktlen; 2541 int index, prev; 2542 int i = 0; 2543 2544 if (skb_padto(skb, ETH_ZLEN)) 2545 goto out; 2546 2547 /* The hardware can handle at most 7 memory segments, so merge 2548 * the skb if there are more */ 2549 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2550 kfree_skb(skb); 2551 return NETDEV_TX_OK; 2552 } 2553 2554 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2555 max_t(unsigned int, skb->len, ETH_ZLEN) : 2556 skb_headlen(skb); 2557 2558 spin_lock_irqsave(&vptr->lock, flags); 2559 2560 index = vptr->tx.curr[qnum]; 2561 td_ptr = &(vptr->tx.rings[qnum][index]); 2562 tdinfo = &(vptr->tx.infos[qnum][index]); 2563 2564 td_ptr->tdesc1.TCR = TCR0_TIC; 2565 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2566 2567 /* 2568 * Map the linear network buffer into PCI space and 2569 * add it to the transmit ring. 2570 */ 2571 tdinfo->skb = skb; 2572 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2573 DMA_TO_DEVICE); 2574 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2575 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2576 td_ptr->td_buf[0].pa_high = 0; 2577 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2578 2579 /* Handle fragments */ 2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2581 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2582 2583 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2584 frag, 0, 2585 skb_frag_size(frag), 2586 DMA_TO_DEVICE); 2587 2588 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2589 td_ptr->td_buf[i + 1].pa_high = 0; 2590 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2591 } 2592 tdinfo->nskb_dma = i + 1; 2593 2594 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2595 2596 if (vlan_tx_tag_present(skb)) { 2597 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb)); 2598 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2599 } 2600 2601 /* 2602 * Handle hardware checksum 2603 */ 2604 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2605 const struct iphdr *ip = ip_hdr(skb); 2606 if (ip->protocol == IPPROTO_TCP) 2607 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2608 else if (ip->protocol == IPPROTO_UDP) 2609 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2610 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2611 } 2612 2613 prev = index - 1; 2614 if (prev < 0) 2615 prev = vptr->options.numtx - 1; 2616 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2617 vptr->tx.used[qnum]++; 2618 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2619 2620 if (AVAIL_TD(vptr, qnum) < 1) 2621 netif_stop_queue(dev); 2622 2623 td_ptr = &(vptr->tx.rings[qnum][prev]); 2624 td_ptr->td_buf[0].size |= TD_QUEUE; 2625 mac_tx_queue_wake(vptr->mac_regs, qnum); 2626 2627 spin_unlock_irqrestore(&vptr->lock, flags); 2628 out: 2629 return NETDEV_TX_OK; 2630 } 2631 2632 static const struct net_device_ops velocity_netdev_ops = { 2633 .ndo_open = velocity_open, 2634 .ndo_stop = velocity_close, 2635 .ndo_start_xmit = velocity_xmit, 2636 .ndo_get_stats = velocity_get_stats, 2637 .ndo_validate_addr = eth_validate_addr, 2638 .ndo_set_mac_address = eth_mac_addr, 2639 .ndo_set_rx_mode = velocity_set_multi, 2640 .ndo_change_mtu = velocity_change_mtu, 2641 .ndo_do_ioctl = velocity_ioctl, 2642 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2643 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2644 }; 2645 2646 /** 2647 * velocity_init_info - init private data 2648 * @pdev: PCI device 2649 * @vptr: Velocity info 2650 * @info: Board type 2651 * 2652 * Set up the initial velocity_info struct for the device that has been 2653 * discovered. 2654 */ 2655 static void velocity_init_info(struct velocity_info *vptr, 2656 const struct velocity_info_tbl *info) 2657 { 2658 vptr->chip_id = info->chip_id; 2659 vptr->tx.numq = info->txqueue; 2660 vptr->multicast_limit = MCAM_SIZE; 2661 spin_lock_init(&vptr->lock); 2662 } 2663 2664 /** 2665 * velocity_get_pci_info - retrieve PCI info for device 2666 * @vptr: velocity device 2667 * @pdev: PCI device it matches 2668 * 2669 * Retrieve the PCI configuration space data that interests us from 2670 * the kernel PCI layer 2671 */ 2672 static int velocity_get_pci_info(struct velocity_info *vptr) 2673 { 2674 struct pci_dev *pdev = vptr->pdev; 2675 2676 pci_set_master(pdev); 2677 2678 vptr->ioaddr = pci_resource_start(pdev, 0); 2679 vptr->memaddr = pci_resource_start(pdev, 1); 2680 2681 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2682 dev_err(&pdev->dev, 2683 "region #0 is not an I/O resource, aborting.\n"); 2684 return -EINVAL; 2685 } 2686 2687 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2688 dev_err(&pdev->dev, 2689 "region #1 is an I/O resource, aborting.\n"); 2690 return -EINVAL; 2691 } 2692 2693 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2694 dev_err(&pdev->dev, "region #1 is too small.\n"); 2695 return -EINVAL; 2696 } 2697 2698 return 0; 2699 } 2700 2701 /** 2702 * velocity_get_platform_info - retrieve platform info for device 2703 * @vptr: velocity device 2704 * @pdev: platform device it matches 2705 * 2706 * Retrieve the Platform configuration data that interests us 2707 */ 2708 static int velocity_get_platform_info(struct velocity_info *vptr) 2709 { 2710 struct resource res; 2711 int ret; 2712 2713 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2714 vptr->no_eeprom = 1; 2715 2716 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2717 if (ret) { 2718 dev_err(vptr->dev, "unable to find memory address\n"); 2719 return ret; 2720 } 2721 2722 vptr->memaddr = res.start; 2723 2724 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2725 dev_err(vptr->dev, "memory region is too small.\n"); 2726 return -EINVAL; 2727 } 2728 2729 return 0; 2730 } 2731 2732 /** 2733 * velocity_print_info - per driver data 2734 * @vptr: velocity 2735 * 2736 * Print per driver data as the kernel driver finds Velocity 2737 * hardware 2738 */ 2739 static void velocity_print_info(struct velocity_info *vptr) 2740 { 2741 struct net_device *dev = vptr->netdev; 2742 2743 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2744 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2745 dev->name, dev->dev_addr); 2746 } 2747 2748 static u32 velocity_get_link(struct net_device *dev) 2749 { 2750 struct velocity_info *vptr = netdev_priv(dev); 2751 struct mac_regs __iomem *regs = vptr->mac_regs; 2752 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2753 } 2754 2755 /** 2756 * velocity_probe - set up discovered velocity device 2757 * @pdev: PCI device 2758 * @ent: PCI device table entry that matched 2759 * @bustype: bus that device is connected to 2760 * 2761 * Configure a discovered adapter from scratch. Return a negative 2762 * errno error code on failure paths. 2763 */ 2764 static int velocity_probe(struct device *dev, int irq, 2765 const struct velocity_info_tbl *info, 2766 enum velocity_bus_type bustype) 2767 { 2768 static int first = 1; 2769 struct net_device *netdev; 2770 int i; 2771 const char *drv_string; 2772 struct velocity_info *vptr; 2773 struct mac_regs __iomem *regs; 2774 int ret = -ENOMEM; 2775 2776 /* FIXME: this driver, like almost all other ethernet drivers, 2777 * can support more than MAX_UNITS. 2778 */ 2779 if (velocity_nics >= MAX_UNITS) { 2780 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2781 return -ENODEV; 2782 } 2783 2784 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2785 if (!netdev) 2786 goto out; 2787 2788 /* Chain it all together */ 2789 2790 SET_NETDEV_DEV(netdev, dev); 2791 vptr = netdev_priv(netdev); 2792 2793 if (first) { 2794 printk(KERN_INFO "%s Ver. %s\n", 2795 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2796 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2797 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2798 first = 0; 2799 } 2800 2801 netdev->irq = irq; 2802 vptr->netdev = netdev; 2803 vptr->dev = dev; 2804 2805 velocity_init_info(vptr, info); 2806 2807 if (bustype == BUS_PCI) { 2808 vptr->pdev = to_pci_dev(dev); 2809 2810 ret = velocity_get_pci_info(vptr); 2811 if (ret < 0) 2812 goto err_free_dev; 2813 } else { 2814 vptr->pdev = NULL; 2815 ret = velocity_get_platform_info(vptr); 2816 if (ret < 0) 2817 goto err_free_dev; 2818 } 2819 2820 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2821 if (regs == NULL) { 2822 ret = -EIO; 2823 goto err_free_dev; 2824 } 2825 2826 vptr->mac_regs = regs; 2827 vptr->rev_id = readb(®s->rev_id); 2828 2829 mac_wol_reset(regs); 2830 2831 for (i = 0; i < 6; i++) 2832 netdev->dev_addr[i] = readb(®s->PAR[i]); 2833 2834 2835 drv_string = dev_driver_string(dev); 2836 2837 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2838 2839 /* 2840 * Mask out the options cannot be set to the chip 2841 */ 2842 2843 vptr->options.flags &= info->flags; 2844 2845 /* 2846 * Enable the chip specified capbilities 2847 */ 2848 2849 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2850 2851 vptr->wol_opts = vptr->options.wol_opts; 2852 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2853 2854 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2855 2856 netdev->netdev_ops = &velocity_netdev_ops; 2857 netdev->ethtool_ops = &velocity_ethtool_ops; 2858 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2859 VELOCITY_NAPI_WEIGHT); 2860 2861 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2862 NETIF_F_HW_VLAN_CTAG_TX; 2863 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2864 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2865 NETIF_F_IP_CSUM; 2866 2867 ret = register_netdev(netdev); 2868 if (ret < 0) 2869 goto err_iounmap; 2870 2871 if (!velocity_get_link(netdev)) { 2872 netif_carrier_off(netdev); 2873 vptr->mii_status |= VELOCITY_LINK_FAIL; 2874 } 2875 2876 velocity_print_info(vptr); 2877 dev_set_drvdata(vptr->dev, netdev); 2878 2879 /* and leave the chip powered down */ 2880 2881 velocity_set_power_state(vptr, PCI_D3hot); 2882 velocity_nics++; 2883 out: 2884 return ret; 2885 2886 err_iounmap: 2887 netif_napi_del(&vptr->napi); 2888 iounmap(regs); 2889 err_free_dev: 2890 free_netdev(netdev); 2891 goto out; 2892 } 2893 2894 /** 2895 * velocity_remove - device unplug 2896 * @dev: device being removed 2897 * 2898 * Device unload callback. Called on an unplug or on module 2899 * unload for each active device that is present. Disconnects 2900 * the device from the network layer and frees all the resources 2901 */ 2902 static int velocity_remove(struct device *dev) 2903 { 2904 struct net_device *netdev = dev_get_drvdata(dev); 2905 struct velocity_info *vptr = netdev_priv(netdev); 2906 2907 unregister_netdev(netdev); 2908 netif_napi_del(&vptr->napi); 2909 iounmap(vptr->mac_regs); 2910 free_netdev(netdev); 2911 velocity_nics--; 2912 2913 return 0; 2914 } 2915 2916 static int velocity_pci_probe(struct pci_dev *pdev, 2917 const struct pci_device_id *ent) 2918 { 2919 const struct velocity_info_tbl *info = 2920 &chip_info_table[ent->driver_data]; 2921 int ret; 2922 2923 ret = pci_enable_device(pdev); 2924 if (ret < 0) 2925 return ret; 2926 2927 ret = pci_request_regions(pdev, VELOCITY_NAME); 2928 if (ret < 0) { 2929 dev_err(&pdev->dev, "No PCI resources.\n"); 2930 goto fail1; 2931 } 2932 2933 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2934 if (ret == 0) 2935 return 0; 2936 2937 pci_release_regions(pdev); 2938 fail1: 2939 pci_disable_device(pdev); 2940 return ret; 2941 } 2942 2943 static void velocity_pci_remove(struct pci_dev *pdev) 2944 { 2945 velocity_remove(&pdev->dev); 2946 2947 pci_release_regions(pdev); 2948 pci_disable_device(pdev); 2949 } 2950 2951 static int velocity_platform_probe(struct platform_device *pdev) 2952 { 2953 const struct of_device_id *of_id; 2954 const struct velocity_info_tbl *info; 2955 int irq; 2956 2957 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2958 if (!of_id) 2959 return -EINVAL; 2960 info = of_id->data; 2961 2962 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2963 if (!irq) 2964 return -EINVAL; 2965 2966 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2967 } 2968 2969 static int velocity_platform_remove(struct platform_device *pdev) 2970 { 2971 velocity_remove(&pdev->dev); 2972 2973 return 0; 2974 } 2975 2976 #ifdef CONFIG_PM_SLEEP 2977 /** 2978 * wol_calc_crc - WOL CRC 2979 * @pattern: data pattern 2980 * @mask_pattern: mask 2981 * 2982 * Compute the wake on lan crc hashes for the packet header 2983 * we are interested in. 2984 */ 2985 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2986 { 2987 u16 crc = 0xFFFF; 2988 u8 mask; 2989 int i, j; 2990 2991 for (i = 0; i < size; i++) { 2992 mask = mask_pattern[i]; 2993 2994 /* Skip this loop if the mask equals to zero */ 2995 if (mask == 0x00) 2996 continue; 2997 2998 for (j = 0; j < 8; j++) { 2999 if ((mask & 0x01) == 0) { 3000 mask >>= 1; 3001 continue; 3002 } 3003 mask >>= 1; 3004 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 3005 } 3006 } 3007 /* Finally, invert the result once to get the correct data */ 3008 crc = ~crc; 3009 return bitrev32(crc) >> 16; 3010 } 3011 3012 /** 3013 * velocity_set_wol - set up for wake on lan 3014 * @vptr: velocity to set WOL status on 3015 * 3016 * Set a card up for wake on lan either by unicast or by 3017 * ARP packet. 3018 * 3019 * FIXME: check static buffer is safe here 3020 */ 3021 static int velocity_set_wol(struct velocity_info *vptr) 3022 { 3023 struct mac_regs __iomem *regs = vptr->mac_regs; 3024 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3025 static u8 buf[256]; 3026 int i; 3027 3028 static u32 mask_pattern[2][4] = { 3029 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3030 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3031 }; 3032 3033 writew(0xFFFF, ®s->WOLCRClr); 3034 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3035 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3036 3037 /* 3038 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3039 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3040 */ 3041 3042 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3043 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3044 3045 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3046 struct arp_packet *arp = (struct arp_packet *) buf; 3047 u16 crc; 3048 memset(buf, 0, sizeof(struct arp_packet) + 7); 3049 3050 for (i = 0; i < 4; i++) 3051 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3052 3053 arp->type = htons(ETH_P_ARP); 3054 arp->ar_op = htons(1); 3055 3056 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3057 3058 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3059 (u8 *) & mask_pattern[0][0]); 3060 3061 writew(crc, ®s->PatternCRC[0]); 3062 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3063 } 3064 3065 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3066 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3067 3068 writew(0x0FFF, ®s->WOLSRClr); 3069 3070 if (spd_dpx == SPD_DPX_1000_FULL) 3071 goto mac_done; 3072 3073 if (spd_dpx != SPD_DPX_AUTO) 3074 goto advertise_done; 3075 3076 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3077 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3078 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3079 3080 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3081 } 3082 3083 if (vptr->mii_status & VELOCITY_SPEED_1000) 3084 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3085 3086 advertise_done: 3087 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3088 3089 { 3090 u8 GCR; 3091 GCR = readb(®s->CHIPGCR); 3092 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3093 writeb(GCR, ®s->CHIPGCR); 3094 } 3095 3096 mac_done: 3097 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3098 /* Turn on SWPTAG just before entering power mode */ 3099 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3100 /* Go to bed ..... */ 3101 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3102 3103 return 0; 3104 } 3105 3106 /** 3107 * velocity_save_context - save registers 3108 * @vptr: velocity 3109 * @context: buffer for stored context 3110 * 3111 * Retrieve the current configuration from the velocity hardware 3112 * and stash it in the context structure, for use by the context 3113 * restore functions. This allows us to save things we need across 3114 * power down states 3115 */ 3116 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3117 { 3118 struct mac_regs __iomem *regs = vptr->mac_regs; 3119 u16 i; 3120 u8 __iomem *ptr = (u8 __iomem *)regs; 3121 3122 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3123 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3124 3125 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3126 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3127 3128 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3129 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3130 3131 } 3132 3133 static int velocity_suspend(struct device *dev) 3134 { 3135 struct net_device *netdev = dev_get_drvdata(dev); 3136 struct velocity_info *vptr = netdev_priv(netdev); 3137 unsigned long flags; 3138 3139 if (!netif_running(vptr->netdev)) 3140 return 0; 3141 3142 netif_device_detach(vptr->netdev); 3143 3144 spin_lock_irqsave(&vptr->lock, flags); 3145 if (vptr->pdev) 3146 pci_save_state(vptr->pdev); 3147 3148 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3149 velocity_get_ip(vptr); 3150 velocity_save_context(vptr, &vptr->context); 3151 velocity_shutdown(vptr); 3152 velocity_set_wol(vptr); 3153 if (vptr->pdev) 3154 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3155 velocity_set_power_state(vptr, PCI_D3hot); 3156 } else { 3157 velocity_save_context(vptr, &vptr->context); 3158 velocity_shutdown(vptr); 3159 if (vptr->pdev) 3160 pci_disable_device(vptr->pdev); 3161 velocity_set_power_state(vptr, PCI_D3hot); 3162 } 3163 3164 spin_unlock_irqrestore(&vptr->lock, flags); 3165 return 0; 3166 } 3167 3168 /** 3169 * velocity_restore_context - restore registers 3170 * @vptr: velocity 3171 * @context: buffer for stored context 3172 * 3173 * Reload the register configuration from the velocity context 3174 * created by velocity_save_context. 3175 */ 3176 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3177 { 3178 struct mac_regs __iomem *regs = vptr->mac_regs; 3179 int i; 3180 u8 __iomem *ptr = (u8 __iomem *)regs; 3181 3182 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3183 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3184 3185 /* Just skip cr0 */ 3186 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3187 /* Clear */ 3188 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3189 /* Set */ 3190 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3191 } 3192 3193 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3194 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3195 3196 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3197 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3198 3199 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3200 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3201 } 3202 3203 static int velocity_resume(struct device *dev) 3204 { 3205 struct net_device *netdev = dev_get_drvdata(dev); 3206 struct velocity_info *vptr = netdev_priv(netdev); 3207 unsigned long flags; 3208 int i; 3209 3210 if (!netif_running(vptr->netdev)) 3211 return 0; 3212 3213 velocity_set_power_state(vptr, PCI_D0); 3214 3215 if (vptr->pdev) { 3216 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3217 pci_restore_state(vptr->pdev); 3218 } 3219 3220 mac_wol_reset(vptr->mac_regs); 3221 3222 spin_lock_irqsave(&vptr->lock, flags); 3223 velocity_restore_context(vptr, &vptr->context); 3224 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3225 mac_disable_int(vptr->mac_regs); 3226 3227 velocity_tx_srv(vptr); 3228 3229 for (i = 0; i < vptr->tx.numq; i++) { 3230 if (vptr->tx.used[i]) 3231 mac_tx_queue_wake(vptr->mac_regs, i); 3232 } 3233 3234 mac_enable_int(vptr->mac_regs); 3235 spin_unlock_irqrestore(&vptr->lock, flags); 3236 netif_device_attach(vptr->netdev); 3237 3238 return 0; 3239 } 3240 #endif /* CONFIG_PM_SLEEP */ 3241 3242 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3243 3244 /* 3245 * Definition for our device driver. The PCI layer interface 3246 * uses this to handle all our card discover and plugging 3247 */ 3248 static struct pci_driver velocity_pci_driver = { 3249 .name = VELOCITY_NAME, 3250 .id_table = velocity_pci_id_table, 3251 .probe = velocity_pci_probe, 3252 .remove = velocity_pci_remove, 3253 .driver = { 3254 .pm = &velocity_pm_ops, 3255 }, 3256 }; 3257 3258 static struct platform_driver velocity_platform_driver = { 3259 .probe = velocity_platform_probe, 3260 .remove = velocity_platform_remove, 3261 .driver = { 3262 .name = "via-velocity", 3263 .owner = THIS_MODULE, 3264 .of_match_table = velocity_of_ids, 3265 .pm = &velocity_pm_ops, 3266 }, 3267 }; 3268 3269 /** 3270 * velocity_ethtool_up - pre hook for ethtool 3271 * @dev: network device 3272 * 3273 * Called before an ethtool operation. We need to make sure the 3274 * chip is out of D3 state before we poke at it. 3275 */ 3276 static int velocity_ethtool_up(struct net_device *dev) 3277 { 3278 struct velocity_info *vptr = netdev_priv(dev); 3279 if (!netif_running(dev)) 3280 velocity_set_power_state(vptr, PCI_D0); 3281 return 0; 3282 } 3283 3284 /** 3285 * velocity_ethtool_down - post hook for ethtool 3286 * @dev: network device 3287 * 3288 * Called after an ethtool operation. Restore the chip back to D3 3289 * state if it isn't running. 3290 */ 3291 static void velocity_ethtool_down(struct net_device *dev) 3292 { 3293 struct velocity_info *vptr = netdev_priv(dev); 3294 if (!netif_running(dev)) 3295 velocity_set_power_state(vptr, PCI_D3hot); 3296 } 3297 3298 static int velocity_get_settings(struct net_device *dev, 3299 struct ethtool_cmd *cmd) 3300 { 3301 struct velocity_info *vptr = netdev_priv(dev); 3302 struct mac_regs __iomem *regs = vptr->mac_regs; 3303 u32 status; 3304 status = check_connection_type(vptr->mac_regs); 3305 3306 cmd->supported = SUPPORTED_TP | 3307 SUPPORTED_Autoneg | 3308 SUPPORTED_10baseT_Half | 3309 SUPPORTED_10baseT_Full | 3310 SUPPORTED_100baseT_Half | 3311 SUPPORTED_100baseT_Full | 3312 SUPPORTED_1000baseT_Half | 3313 SUPPORTED_1000baseT_Full; 3314 3315 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3316 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3317 cmd->advertising |= 3318 ADVERTISED_10baseT_Half | 3319 ADVERTISED_10baseT_Full | 3320 ADVERTISED_100baseT_Half | 3321 ADVERTISED_100baseT_Full | 3322 ADVERTISED_1000baseT_Half | 3323 ADVERTISED_1000baseT_Full; 3324 } else { 3325 switch (vptr->options.spd_dpx) { 3326 case SPD_DPX_1000_FULL: 3327 cmd->advertising |= ADVERTISED_1000baseT_Full; 3328 break; 3329 case SPD_DPX_100_HALF: 3330 cmd->advertising |= ADVERTISED_100baseT_Half; 3331 break; 3332 case SPD_DPX_100_FULL: 3333 cmd->advertising |= ADVERTISED_100baseT_Full; 3334 break; 3335 case SPD_DPX_10_HALF: 3336 cmd->advertising |= ADVERTISED_10baseT_Half; 3337 break; 3338 case SPD_DPX_10_FULL: 3339 cmd->advertising |= ADVERTISED_10baseT_Full; 3340 break; 3341 default: 3342 break; 3343 } 3344 } 3345 3346 if (status & VELOCITY_SPEED_1000) 3347 ethtool_cmd_speed_set(cmd, SPEED_1000); 3348 else if (status & VELOCITY_SPEED_100) 3349 ethtool_cmd_speed_set(cmd, SPEED_100); 3350 else 3351 ethtool_cmd_speed_set(cmd, SPEED_10); 3352 3353 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3354 cmd->port = PORT_TP; 3355 cmd->transceiver = XCVR_INTERNAL; 3356 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3357 3358 if (status & VELOCITY_DUPLEX_FULL) 3359 cmd->duplex = DUPLEX_FULL; 3360 else 3361 cmd->duplex = DUPLEX_HALF; 3362 3363 return 0; 3364 } 3365 3366 static int velocity_set_settings(struct net_device *dev, 3367 struct ethtool_cmd *cmd) 3368 { 3369 struct velocity_info *vptr = netdev_priv(dev); 3370 u32 speed = ethtool_cmd_speed(cmd); 3371 u32 curr_status; 3372 u32 new_status = 0; 3373 int ret = 0; 3374 3375 curr_status = check_connection_type(vptr->mac_regs); 3376 curr_status &= (~VELOCITY_LINK_FAIL); 3377 3378 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3379 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3380 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3381 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3382 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3383 3384 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3385 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3386 ret = -EINVAL; 3387 } else { 3388 enum speed_opt spd_dpx; 3389 3390 if (new_status & VELOCITY_AUTONEG_ENABLE) 3391 spd_dpx = SPD_DPX_AUTO; 3392 else if ((new_status & VELOCITY_SPEED_1000) && 3393 (new_status & VELOCITY_DUPLEX_FULL)) { 3394 spd_dpx = SPD_DPX_1000_FULL; 3395 } else if (new_status & VELOCITY_SPEED_100) 3396 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3397 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3398 else if (new_status & VELOCITY_SPEED_10) 3399 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3400 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3401 else 3402 return -EOPNOTSUPP; 3403 3404 vptr->options.spd_dpx = spd_dpx; 3405 3406 velocity_set_media_mode(vptr, new_status); 3407 } 3408 3409 return ret; 3410 } 3411 3412 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3413 { 3414 struct velocity_info *vptr = netdev_priv(dev); 3415 3416 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3417 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3418 if (vptr->pdev) 3419 strlcpy(info->bus_info, pci_name(vptr->pdev), 3420 sizeof(info->bus_info)); 3421 else 3422 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3423 } 3424 3425 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3426 { 3427 struct velocity_info *vptr = netdev_priv(dev); 3428 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3429 wol->wolopts |= WAKE_MAGIC; 3430 /* 3431 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3432 wol.wolopts|=WAKE_PHY; 3433 */ 3434 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3435 wol->wolopts |= WAKE_UCAST; 3436 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3437 wol->wolopts |= WAKE_ARP; 3438 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3439 } 3440 3441 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3442 { 3443 struct velocity_info *vptr = netdev_priv(dev); 3444 3445 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3446 return -EFAULT; 3447 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3448 3449 /* 3450 if (wol.wolopts & WAKE_PHY) { 3451 vptr->wol_opts|=VELOCITY_WOL_PHY; 3452 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3453 } 3454 */ 3455 3456 if (wol->wolopts & WAKE_MAGIC) { 3457 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3458 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3459 } 3460 if (wol->wolopts & WAKE_UCAST) { 3461 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3462 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3463 } 3464 if (wol->wolopts & WAKE_ARP) { 3465 vptr->wol_opts |= VELOCITY_WOL_ARP; 3466 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3467 } 3468 memcpy(vptr->wol_passwd, wol->sopass, 6); 3469 return 0; 3470 } 3471 3472 static u32 velocity_get_msglevel(struct net_device *dev) 3473 { 3474 return msglevel; 3475 } 3476 3477 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3478 { 3479 msglevel = value; 3480 } 3481 3482 static int get_pending_timer_val(int val) 3483 { 3484 int mult_bits = val >> 6; 3485 int mult = 1; 3486 3487 switch (mult_bits) 3488 { 3489 case 1: 3490 mult = 4; break; 3491 case 2: 3492 mult = 16; break; 3493 case 3: 3494 mult = 64; break; 3495 case 0: 3496 default: 3497 break; 3498 } 3499 3500 return (val & 0x3f) * mult; 3501 } 3502 3503 static void set_pending_timer_val(int *val, u32 us) 3504 { 3505 u8 mult = 0; 3506 u8 shift = 0; 3507 3508 if (us >= 0x3f) { 3509 mult = 1; /* mult with 4 */ 3510 shift = 2; 3511 } 3512 if (us >= 0x3f * 4) { 3513 mult = 2; /* mult with 16 */ 3514 shift = 4; 3515 } 3516 if (us >= 0x3f * 16) { 3517 mult = 3; /* mult with 64 */ 3518 shift = 6; 3519 } 3520 3521 *val = (mult << 6) | ((us >> shift) & 0x3f); 3522 } 3523 3524 3525 static int velocity_get_coalesce(struct net_device *dev, 3526 struct ethtool_coalesce *ecmd) 3527 { 3528 struct velocity_info *vptr = netdev_priv(dev); 3529 3530 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3531 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3532 3533 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3534 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3535 3536 return 0; 3537 } 3538 3539 static int velocity_set_coalesce(struct net_device *dev, 3540 struct ethtool_coalesce *ecmd) 3541 { 3542 struct velocity_info *vptr = netdev_priv(dev); 3543 int max_us = 0x3f * 64; 3544 unsigned long flags; 3545 3546 /* 6 bits of */ 3547 if (ecmd->tx_coalesce_usecs > max_us) 3548 return -EINVAL; 3549 if (ecmd->rx_coalesce_usecs > max_us) 3550 return -EINVAL; 3551 3552 if (ecmd->tx_max_coalesced_frames > 0xff) 3553 return -EINVAL; 3554 if (ecmd->rx_max_coalesced_frames > 0xff) 3555 return -EINVAL; 3556 3557 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3558 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3559 3560 set_pending_timer_val(&vptr->options.rxqueue_timer, 3561 ecmd->rx_coalesce_usecs); 3562 set_pending_timer_val(&vptr->options.txqueue_timer, 3563 ecmd->tx_coalesce_usecs); 3564 3565 /* Setup the interrupt suppression and queue timers */ 3566 spin_lock_irqsave(&vptr->lock, flags); 3567 mac_disable_int(vptr->mac_regs); 3568 setup_adaptive_interrupts(vptr); 3569 setup_queue_timers(vptr); 3570 3571 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3572 mac_clear_isr(vptr->mac_regs); 3573 mac_enable_int(vptr->mac_regs); 3574 spin_unlock_irqrestore(&vptr->lock, flags); 3575 3576 return 0; 3577 } 3578 3579 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3580 "rx_all", 3581 "rx_ok", 3582 "tx_ok", 3583 "rx_error", 3584 "rx_runt_ok", 3585 "rx_runt_err", 3586 "rx_64", 3587 "tx_64", 3588 "rx_65_to_127", 3589 "tx_65_to_127", 3590 "rx_128_to_255", 3591 "tx_128_to_255", 3592 "rx_256_to_511", 3593 "tx_256_to_511", 3594 "rx_512_to_1023", 3595 "tx_512_to_1023", 3596 "rx_1024_to_1518", 3597 "tx_1024_to_1518", 3598 "tx_ether_collisions", 3599 "rx_crc_errors", 3600 "rx_jumbo", 3601 "tx_jumbo", 3602 "rx_mac_control_frames", 3603 "tx_mac_control_frames", 3604 "rx_frame_alignement_errors", 3605 "rx_long_ok", 3606 "rx_long_err", 3607 "tx_sqe_errors", 3608 "rx_no_buf", 3609 "rx_symbol_errors", 3610 "in_range_length_errors", 3611 "late_collisions" 3612 }; 3613 3614 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3615 { 3616 switch (sset) { 3617 case ETH_SS_STATS: 3618 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3619 break; 3620 } 3621 } 3622 3623 static int velocity_get_sset_count(struct net_device *dev, int sset) 3624 { 3625 switch (sset) { 3626 case ETH_SS_STATS: 3627 return ARRAY_SIZE(velocity_gstrings); 3628 default: 3629 return -EOPNOTSUPP; 3630 } 3631 } 3632 3633 static void velocity_get_ethtool_stats(struct net_device *dev, 3634 struct ethtool_stats *stats, u64 *data) 3635 { 3636 if (netif_running(dev)) { 3637 struct velocity_info *vptr = netdev_priv(dev); 3638 u32 *p = vptr->mib_counter; 3639 int i; 3640 3641 spin_lock_irq(&vptr->lock); 3642 velocity_update_hw_mibs(vptr); 3643 spin_unlock_irq(&vptr->lock); 3644 3645 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3646 *data++ = *p++; 3647 } 3648 } 3649 3650 static const struct ethtool_ops velocity_ethtool_ops = { 3651 .get_settings = velocity_get_settings, 3652 .set_settings = velocity_set_settings, 3653 .get_drvinfo = velocity_get_drvinfo, 3654 .get_wol = velocity_ethtool_get_wol, 3655 .set_wol = velocity_ethtool_set_wol, 3656 .get_msglevel = velocity_get_msglevel, 3657 .set_msglevel = velocity_set_msglevel, 3658 .get_link = velocity_get_link, 3659 .get_strings = velocity_get_strings, 3660 .get_sset_count = velocity_get_sset_count, 3661 .get_ethtool_stats = velocity_get_ethtool_stats, 3662 .get_coalesce = velocity_get_coalesce, 3663 .set_coalesce = velocity_set_coalesce, 3664 .begin = velocity_ethtool_up, 3665 .complete = velocity_ethtool_down 3666 }; 3667 3668 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3669 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3670 { 3671 struct in_ifaddr *ifa = ptr; 3672 struct net_device *dev = ifa->ifa_dev->dev; 3673 3674 if (dev_net(dev) == &init_net && 3675 dev->netdev_ops == &velocity_netdev_ops) 3676 velocity_get_ip(netdev_priv(dev)); 3677 3678 return NOTIFY_DONE; 3679 } 3680 3681 static struct notifier_block velocity_inetaddr_notifier = { 3682 .notifier_call = velocity_netdev_event, 3683 }; 3684 3685 static void velocity_register_notifier(void) 3686 { 3687 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3688 } 3689 3690 static void velocity_unregister_notifier(void) 3691 { 3692 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3693 } 3694 3695 #else 3696 3697 #define velocity_register_notifier() do {} while (0) 3698 #define velocity_unregister_notifier() do {} while (0) 3699 3700 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3701 3702 /** 3703 * velocity_init_module - load time function 3704 * 3705 * Called when the velocity module is loaded. The PCI driver 3706 * is registered with the PCI layer, and in turn will call 3707 * the probe functions for each velocity adapter installed 3708 * in the system. 3709 */ 3710 static int __init velocity_init_module(void) 3711 { 3712 int ret_pci, ret_platform; 3713 3714 velocity_register_notifier(); 3715 3716 ret_pci = pci_register_driver(&velocity_pci_driver); 3717 ret_platform = platform_driver_register(&velocity_platform_driver); 3718 3719 /* if both_registers failed, remove the notifier */ 3720 if ((ret_pci < 0) && (ret_platform < 0)) { 3721 velocity_unregister_notifier(); 3722 return ret_pci; 3723 } 3724 3725 return 0; 3726 } 3727 3728 /** 3729 * velocity_cleanup - module unload 3730 * 3731 * When the velocity hardware is unloaded this function is called. 3732 * It will clean up the notifiers and the unregister the PCI 3733 * driver interface for this hardware. This in turn cleans up 3734 * all discovered interfaces before returning from the function 3735 */ 3736 static void __exit velocity_cleanup_module(void) 3737 { 3738 velocity_unregister_notifier(); 3739 3740 pci_unregister_driver(&velocity_pci_driver); 3741 platform_driver_unregister(&velocity_platform_driver); 3742 } 3743 3744 module_init(velocity_init_module); 3745 module_exit(velocity_cleanup_module); 3746