1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84 
85 #include "via-velocity.h"
86 
87 enum velocity_bus_type {
88 	BUS_PCI,
89 	BUS_PLATFORM,
90 };
91 
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94 
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 	void *addr = vptr->mac_regs;
98 
99 	if (vptr->pdev)
100 		pci_set_power_state(vptr->pdev, state);
101 	else
102 		writeb(state, addr + 0x154);
103 }
104 
105 /**
106  *	mac_get_cam_mask	-	Read a CAM mask
107  *	@regs: register block for this velocity
108  *	@mask: buffer to store mask
109  *
110  *	Fetch the mask bits of the selected CAM and store them into the
111  *	provided mask buffer.
112  */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 	int i;
116 
117 	/* Select CAM mask */
118 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 
120 	writeb(0, &regs->CAMADDR);
121 
122 	/* read mask */
123 	for (i = 0; i < 8; i++)
124 		*mask++ = readb(&(regs->MARCAM[i]));
125 
126 	/* disable CAMEN */
127 	writeb(0, &regs->CAMADDR);
128 
129 	/* Select mar */
130 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132 
133 /**
134  *	mac_set_cam_mask	-	Set a CAM mask
135  *	@regs: register block for this velocity
136  *	@mask: CAM mask to load
137  *
138  *	Store a new mask into a CAM
139  */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 	int i;
143 	/* Select CAM mask */
144 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 
146 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147 
148 	for (i = 0; i < 8; i++)
149 		writeb(*mask++, &(regs->MARCAM[i]));
150 
151 	/* disable CAMEN */
152 	writeb(0, &regs->CAMADDR);
153 
154 	/* Select mar */
155 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157 
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 	int i;
161 	/* Select CAM mask */
162 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 
164 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165 
166 	for (i = 0; i < 8; i++)
167 		writeb(*mask++, &(regs->MARCAM[i]));
168 
169 	/* disable CAMEN */
170 	writeb(0, &regs->CAMADDR);
171 
172 	/* Select mar */
173 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175 
176 /**
177  *	mac_set_cam	-	set CAM data
178  *	@regs: register block of this velocity
179  *	@idx: Cam index
180  *	@addr: 2 or 6 bytes of CAM data
181  *
182  *	Load an address or vlan tag into a CAM
183  */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 	int i;
187 
188 	/* Select CAM mask */
189 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 
191 	idx &= (64 - 1);
192 
193 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194 
195 	for (i = 0; i < 6; i++)
196 		writeb(*addr++, &(regs->MARCAM[i]));
197 
198 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199 
200 	udelay(10);
201 
202 	writeb(0, &regs->CAMADDR);
203 
204 	/* Select mar */
205 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207 
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 			     const u8 *addr)
210 {
211 
212 	/* Select CAM mask */
213 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 
215 	idx &= (64 - 1);
216 
217 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 	writew(*((u16 *) addr), &regs->MARCAM[0]);
219 
220 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221 
222 	udelay(10);
223 
224 	writeb(0, &regs->CAMADDR);
225 
226 	/* Select mar */
227 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229 
230 
231 /**
232  *	mac_wol_reset	-	reset WOL after exiting low power
233  *	@regs: register block of this velocity
234  *
235  *	Called after we drop out of wake on lan mode in order to
236  *	reset the Wake on lan features. This function doesn't restore
237  *	the rest of the logic from the result of sleep/wakeup
238  */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241 
242 	/* Turn off SWPTAG right after leaving power mode */
243 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 	/* clear sticky bits */
245 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246 
247 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 	/* disable force PME-enable */
250 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 	/* disable power-event config bit */
252 	writew(0xFFFF, &regs->WOLCRClr);
253 	/* clear power status */
254 	writew(0xFFFF, &regs->WOLSRClr);
255 }
256 
257 static const struct ethtool_ops velocity_ethtool_ops;
258 
259 /*
260     Define module options
261 */
262 
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266 
267 #define VELOCITY_PARAM(N, D) \
268 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 	module_param_array(N, int, NULL, 0); \
270 	MODULE_PARM_DESC(N, D);
271 
272 #define RX_DESC_MIN     64
273 #define RX_DESC_MAX     255
274 #define RX_DESC_DEF     64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276 
277 #define TX_DESC_MIN     16
278 #define TX_DESC_MAX     256
279 #define TX_DESC_DEF     64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281 
282 #define RX_THRESH_MIN   0
283 #define RX_THRESH_MAX   3
284 #define RX_THRESH_DEF   0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286    0: indicate the rxfifo threshold is 128 bytes.
287    1: indicate the rxfifo threshold is 512 bytes.
288    2: indicate the rxfifo threshold is 1024 bytes.
289    3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292 
293 #define DMA_LENGTH_MIN  0
294 #define DMA_LENGTH_MAX  7
295 #define DMA_LENGTH_DEF  6
296 
297 /* DMA_length[] is used for controlling the DMA length
298    0: 8 DWORDs
299    1: 16 DWORDs
300    2: 32 DWORDs
301    3: 64 DWORDs
302    4: 128 DWORDs
303    5: 256 DWORDs
304    6: SF(flush till emply)
305    7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308 
309 #define IP_ALIG_DEF     0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311    0: indicate the IP header won't be DWORD byte aligned.(Default) .
312    1: indicate the IP header will be DWORD byte aligned.
313       In some environment, the IP header should be DWORD byte aligned,
314       or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317 
318 #define FLOW_CNTL_DEF   1
319 #define FLOW_CNTL_MIN   1
320 #define FLOW_CNTL_MAX   5
321 
322 /* flow_control[] is used for setting the flow control ability of NIC.
323    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324    2: enable TX flow control.
325    3: enable RX flow control.
326    4: enable RX/TX flow control.
327    5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330 
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335    0: indicate autonegotiation for both speed and duplex mode
336    1: indicate 100Mbps half duplex mode
337    2: indicate 100Mbps full duplex mode
338    3: indicate 10Mbps half duplex mode
339    4: indicate 10Mbps full duplex mode
340    5: indicate 1000Mbps full duplex mode
341 
342    Note:
343    if EEPROM have been set to the force mode, this option is ignored
344    by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347 
348 #define VAL_PKT_LEN_DEF     0
349 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
350    0: Receive frame with invalid layer 2 length (Default)
351    1: Drop frame with invalid layer 2 length
352 */
353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
354 
355 #define WOL_OPT_DEF     0
356 #define WOL_OPT_MIN     0
357 #define WOL_OPT_MAX     7
358 /* wol_opts[] is used for controlling wake on lan behavior.
359    0: Wake up if recevied a magic packet. (Default)
360    1: Wake up if link status is on/off.
361    2: Wake up if recevied an arp packet.
362    4: Wake up if recevied any unicast packet.
363    Those value can be sumed up to support more than one option.
364 */
365 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
366 
367 static int rx_copybreak = 200;
368 module_param(rx_copybreak, int, 0644);
369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
370 
371 /*
372  *	Internal board variants. At the moment we have only one
373  */
374 static struct velocity_info_tbl chip_info_table[] = {
375 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
376 	{ }
377 };
378 
379 /*
380  *	Describe the PCI device identifiers that we support in this
381  *	device driver. Used for hotplug autoloading.
382  */
383 
384 static DEFINE_PCI_DEVICE_TABLE(velocity_pci_id_table) = {
385 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
386 	{ }
387 };
388 
389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
390 
391 /**
392  *	Describe the OF device identifiers that we support in this
393  *	device driver. Used for devicetree nodes.
394  */
395 static struct of_device_id velocity_of_ids[] = {
396 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
397 	{ /* Sentinel */ },
398 };
399 MODULE_DEVICE_TABLE(of, velocity_of_ids);
400 
401 /**
402  *	get_chip_name	- 	identifier to name
403  *	@id: chip identifier
404  *
405  *	Given a chip identifier return a suitable description. Returns
406  *	a pointer a static string valid while the driver is loaded.
407  */
408 static const char *get_chip_name(enum chip_type chip_id)
409 {
410 	int i;
411 	for (i = 0; chip_info_table[i].name != NULL; i++)
412 		if (chip_info_table[i].chip_id == chip_id)
413 			break;
414 	return chip_info_table[i].name;
415 }
416 
417 /**
418  *	velocity_set_int_opt	-	parser for integer options
419  *	@opt: pointer to option value
420  *	@val: value the user requested (or -1 for default)
421  *	@min: lowest value allowed
422  *	@max: highest value allowed
423  *	@def: default value
424  *	@name: property name
425  *	@dev: device name
426  *
427  *	Set an integer property in the module options. This function does
428  *	all the verification and checking as well as reporting so that
429  *	we don't duplicate code for each option.
430  */
431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
432 				 char *name, const char *devname)
433 {
434 	if (val == -1)
435 		*opt = def;
436 	else if (val < min || val > max) {
437 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
438 					devname, name, min, max);
439 		*opt = def;
440 	} else {
441 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
442 					devname, name, val);
443 		*opt = val;
444 	}
445 }
446 
447 /**
448  *	velocity_set_bool_opt	-	parser for boolean options
449  *	@opt: pointer to option value
450  *	@val: value the user requested (or -1 for default)
451  *	@def: default value (yes/no)
452  *	@flag: numeric value to set for true.
453  *	@name: property name
454  *	@dev: device name
455  *
456  *	Set a boolean property in the module options. This function does
457  *	all the verification and checking as well as reporting so that
458  *	we don't duplicate code for each option.
459  */
460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
461 				  char *name, const char *devname)
462 {
463 	(*opt) &= (~flag);
464 	if (val == -1)
465 		*opt |= (def ? flag : 0);
466 	else if (val < 0 || val > 1) {
467 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
468 			devname, name);
469 		*opt |= (def ? flag : 0);
470 	} else {
471 		printk(KERN_INFO "%s: set parameter %s to %s\n",
472 			devname, name, val ? "TRUE" : "FALSE");
473 		*opt |= (val ? flag : 0);
474 	}
475 }
476 
477 /**
478  *	velocity_get_options	-	set options on device
479  *	@opts: option structure for the device
480  *	@index: index of option to use in module options array
481  *	@devname: device name
482  *
483  *	Turn the module and command options into a single structure
484  *	for the current device
485  */
486 static void velocity_get_options(struct velocity_opt *opts, int index,
487 				 const char *devname)
488 {
489 
490 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
491 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
492 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
493 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
494 
495 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
496 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
497 	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
498 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
499 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
500 	opts->numrx = (opts->numrx & ~3);
501 }
502 
503 /**
504  *	velocity_init_cam_filter	-	initialise CAM
505  *	@vptr: velocity to program
506  *
507  *	Initialize the content addressable memory used for filters. Load
508  *	appropriately according to the presence of VLAN
509  */
510 static void velocity_init_cam_filter(struct velocity_info *vptr)
511 {
512 	struct mac_regs __iomem *regs = vptr->mac_regs;
513 	unsigned int vid, i = 0;
514 
515 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
516 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
517 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
518 
519 	/* Disable all CAMs */
520 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
521 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
522 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523 	mac_set_cam_mask(regs, vptr->mCAMmask);
524 
525 	/* Enable VCAMs */
526 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
527 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
528 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
529 		if (++i >= VCAM_SIZE)
530 			break;
531 	}
532 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
533 }
534 
535 static int velocity_vlan_rx_add_vid(struct net_device *dev,
536 				    __be16 proto, u16 vid)
537 {
538 	struct velocity_info *vptr = netdev_priv(dev);
539 
540 	spin_lock_irq(&vptr->lock);
541 	set_bit(vid, vptr->active_vlans);
542 	velocity_init_cam_filter(vptr);
543 	spin_unlock_irq(&vptr->lock);
544 	return 0;
545 }
546 
547 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
548 				     __be16 proto, u16 vid)
549 {
550 	struct velocity_info *vptr = netdev_priv(dev);
551 
552 	spin_lock_irq(&vptr->lock);
553 	clear_bit(vid, vptr->active_vlans);
554 	velocity_init_cam_filter(vptr);
555 	spin_unlock_irq(&vptr->lock);
556 	return 0;
557 }
558 
559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
560 {
561 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
562 }
563 
564 /**
565  *	velocity_rx_reset	-	handle a receive reset
566  *	@vptr: velocity we are resetting
567  *
568  *	Reset the ownership and status for the receive ring side.
569  *	Hand all the receive queue to the NIC.
570  */
571 static void velocity_rx_reset(struct velocity_info *vptr)
572 {
573 
574 	struct mac_regs __iomem *regs = vptr->mac_regs;
575 	int i;
576 
577 	velocity_init_rx_ring_indexes(vptr);
578 
579 	/*
580 	 *	Init state, all RD entries belong to the NIC
581 	 */
582 	for (i = 0; i < vptr->options.numrx; ++i)
583 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
584 
585 	writew(vptr->options.numrx, &regs->RBRDU);
586 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
587 	writew(0, &regs->RDIdx);
588 	writew(vptr->options.numrx - 1, &regs->RDCSize);
589 }
590 
591 /**
592  *	velocity_get_opt_media_mode	-	get media selection
593  *	@vptr: velocity adapter
594  *
595  *	Get the media mode stored in EEPROM or module options and load
596  *	mii_status accordingly. The requested link state information
597  *	is also returned.
598  */
599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
600 {
601 	u32 status = 0;
602 
603 	switch (vptr->options.spd_dpx) {
604 	case SPD_DPX_AUTO:
605 		status = VELOCITY_AUTONEG_ENABLE;
606 		break;
607 	case SPD_DPX_100_FULL:
608 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
609 		break;
610 	case SPD_DPX_10_FULL:
611 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
612 		break;
613 	case SPD_DPX_100_HALF:
614 		status = VELOCITY_SPEED_100;
615 		break;
616 	case SPD_DPX_10_HALF:
617 		status = VELOCITY_SPEED_10;
618 		break;
619 	case SPD_DPX_1000_FULL:
620 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
621 		break;
622 	}
623 	vptr->mii_status = status;
624 	return status;
625 }
626 
627 /**
628  *	safe_disable_mii_autopoll	-	autopoll off
629  *	@regs: velocity registers
630  *
631  *	Turn off the autopoll and wait for it to disable on the chip
632  */
633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
634 {
635 	u16 ww;
636 
637 	/*  turn off MAUTO */
638 	writeb(0, &regs->MIICR);
639 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
640 		udelay(1);
641 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
642 			break;
643 	}
644 }
645 
646 /**
647  *	enable_mii_autopoll	-	turn on autopolling
648  *	@regs: velocity registers
649  *
650  *	Enable the MII link status autopoll feature on the Velocity
651  *	hardware. Wait for it to enable.
652  */
653 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
654 {
655 	int ii;
656 
657 	writeb(0, &(regs->MIICR));
658 	writeb(MIIADR_SWMPL, &regs->MIIADR);
659 
660 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 		udelay(1);
662 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 			break;
664 	}
665 
666 	writeb(MIICR_MAUTO, &regs->MIICR);
667 
668 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
669 		udelay(1);
670 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
671 			break;
672 	}
673 
674 }
675 
676 /**
677  *	velocity_mii_read	-	read MII data
678  *	@regs: velocity registers
679  *	@index: MII register index
680  *	@data: buffer for received data
681  *
682  *	Perform a single read of an MII 16bit register. Returns zero
683  *	on success or -ETIMEDOUT if the PHY did not respond.
684  */
685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
686 {
687 	u16 ww;
688 
689 	/*
690 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
691 	 */
692 	safe_disable_mii_autopoll(regs);
693 
694 	writeb(index, &regs->MIIADR);
695 
696 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
697 
698 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
699 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
700 			break;
701 	}
702 
703 	*data = readw(&regs->MIIDATA);
704 
705 	enable_mii_autopoll(regs);
706 	if (ww == W_MAX_TIMEOUT)
707 		return -ETIMEDOUT;
708 	return 0;
709 }
710 
711 /**
712  *	mii_check_media_mode	-	check media state
713  *	@regs: velocity registers
714  *
715  *	Check the current MII status and determine the link status
716  *	accordingly
717  */
718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
719 {
720 	u32 status = 0;
721 	u16 ANAR;
722 
723 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
724 		status |= VELOCITY_LINK_FAIL;
725 
726 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
727 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
728 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
729 		status |= (VELOCITY_SPEED_1000);
730 	else {
731 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732 		if (ANAR & ADVERTISE_100FULL)
733 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
734 		else if (ANAR & ADVERTISE_100HALF)
735 			status |= VELOCITY_SPEED_100;
736 		else if (ANAR & ADVERTISE_10FULL)
737 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
738 		else
739 			status |= (VELOCITY_SPEED_10);
740 	}
741 
742 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
743 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
744 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
745 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
746 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
747 				status |= VELOCITY_AUTONEG_ENABLE;
748 		}
749 	}
750 
751 	return status;
752 }
753 
754 /**
755  *	velocity_mii_write	-	write MII data
756  *	@regs: velocity registers
757  *	@index: MII register index
758  *	@data: 16bit data for the MII register
759  *
760  *	Perform a single write to an MII 16bit register. Returns zero
761  *	on success or -ETIMEDOUT if the PHY did not respond.
762  */
763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
764 {
765 	u16 ww;
766 
767 	/*
768 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
769 	 */
770 	safe_disable_mii_autopoll(regs);
771 
772 	/* MII reg offset */
773 	writeb(mii_addr, &regs->MIIADR);
774 	/* set MII data */
775 	writew(data, &regs->MIIDATA);
776 
777 	/* turn on MIICR_WCMD */
778 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
779 
780 	/* W_MAX_TIMEOUT is the timeout period */
781 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
782 		udelay(5);
783 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
784 			break;
785 	}
786 	enable_mii_autopoll(regs);
787 
788 	if (ww == W_MAX_TIMEOUT)
789 		return -ETIMEDOUT;
790 	return 0;
791 }
792 
793 /**
794  *	set_mii_flow_control	-	flow control setup
795  *	@vptr: velocity interface
796  *
797  *	Set up the flow control on this interface according to
798  *	the supplied user/eeprom options.
799  */
800 static void set_mii_flow_control(struct velocity_info *vptr)
801 {
802 	/*Enable or Disable PAUSE in ANAR */
803 	switch (vptr->options.flow_cntl) {
804 	case FLOW_CNTL_TX:
805 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
806 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
807 		break;
808 
809 	case FLOW_CNTL_RX:
810 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
811 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
812 		break;
813 
814 	case FLOW_CNTL_TX_RX:
815 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
816 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
817 		break;
818 
819 	case FLOW_CNTL_DISABLE:
820 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
821 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
822 		break;
823 	default:
824 		break;
825 	}
826 }
827 
828 /**
829  *	mii_set_auto_on		-	autonegotiate on
830  *	@vptr: velocity
831  *
832  *	Enable autonegotation on this interface
833  */
834 static void mii_set_auto_on(struct velocity_info *vptr)
835 {
836 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
837 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
838 	else
839 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
840 }
841 
842 static u32 check_connection_type(struct mac_regs __iomem *regs)
843 {
844 	u32 status = 0;
845 	u8 PHYSR0;
846 	u16 ANAR;
847 	PHYSR0 = readb(&regs->PHYSR0);
848 
849 	/*
850 	   if (!(PHYSR0 & PHYSR0_LINKGD))
851 	   status|=VELOCITY_LINK_FAIL;
852 	 */
853 
854 	if (PHYSR0 & PHYSR0_FDPX)
855 		status |= VELOCITY_DUPLEX_FULL;
856 
857 	if (PHYSR0 & PHYSR0_SPDG)
858 		status |= VELOCITY_SPEED_1000;
859 	else if (PHYSR0 & PHYSR0_SPD10)
860 		status |= VELOCITY_SPEED_10;
861 	else
862 		status |= VELOCITY_SPEED_100;
863 
864 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
865 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
866 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
867 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
868 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
869 				status |= VELOCITY_AUTONEG_ENABLE;
870 		}
871 	}
872 
873 	return status;
874 }
875 
876 /**
877  *	velocity_set_media_mode		-	set media mode
878  *	@mii_status: old MII link state
879  *
880  *	Check the media link state and configure the flow control
881  *	PHY and also velocity hardware setup accordingly. In particular
882  *	we need to set up CD polling and frame bursting.
883  */
884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
885 {
886 	u32 curr_status;
887 	struct mac_regs __iomem *regs = vptr->mac_regs;
888 
889 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
890 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
891 
892 	/* Set mii link status */
893 	set_mii_flow_control(vptr);
894 
895 	/*
896 	   Check if new status is consistent with current status
897 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
898 	       (mii_status==curr_status)) {
899 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
900 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
901 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
902 	   return 0;
903 	   }
904 	 */
905 
906 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
907 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
908 
909 	/*
910 	 *	If connection type is AUTO
911 	 */
912 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
913 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
914 		/* clear force MAC mode bit */
915 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
916 		/* set duplex mode of MAC according to duplex mode of MII */
917 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
918 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
919 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
920 
921 		/* enable AUTO-NEGO mode */
922 		mii_set_auto_on(vptr);
923 	} else {
924 		u16 CTRL1000;
925 		u16 ANAR;
926 		u8 CHIPGCR;
927 
928 		/*
929 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
930 		 *    and enable it in fullduplex mode
931 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932 		 * 3. only enable CD heart beat counter in 10HD mode
933 		 */
934 
935 		/* set force MAC mode bit */
936 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
937 
938 		CHIPGCR = readb(&regs->CHIPGCR);
939 
940 		if (mii_status & VELOCITY_SPEED_1000)
941 			CHIPGCR |= CHIPGCR_FCGMII;
942 		else
943 			CHIPGCR &= ~CHIPGCR_FCGMII;
944 
945 		if (mii_status & VELOCITY_DUPLEX_FULL) {
946 			CHIPGCR |= CHIPGCR_FCFDX;
947 			writeb(CHIPGCR, &regs->CHIPGCR);
948 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
949 			if (vptr->rev_id < REV_ID_VT3216_A0)
950 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
951 		} else {
952 			CHIPGCR &= ~CHIPGCR_FCFDX;
953 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
954 			writeb(CHIPGCR, &regs->CHIPGCR);
955 			if (vptr->rev_id < REV_ID_VT3216_A0)
956 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
957 		}
958 
959 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
960 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
961 		if ((mii_status & VELOCITY_SPEED_1000) &&
962 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
963 			CTRL1000 |= ADVERTISE_1000FULL;
964 		}
965 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
966 
967 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
968 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
969 		else
970 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
971 
972 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
973 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
974 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
975 		if (mii_status & VELOCITY_SPEED_100) {
976 			if (mii_status & VELOCITY_DUPLEX_FULL)
977 				ANAR |= ADVERTISE_100FULL;
978 			else
979 				ANAR |= ADVERTISE_100HALF;
980 		} else if (mii_status & VELOCITY_SPEED_10) {
981 			if (mii_status & VELOCITY_DUPLEX_FULL)
982 				ANAR |= ADVERTISE_10FULL;
983 			else
984 				ANAR |= ADVERTISE_10HALF;
985 		}
986 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
987 		/* enable AUTO-NEGO mode */
988 		mii_set_auto_on(vptr);
989 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
990 	}
991 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
992 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
993 	return VELOCITY_LINK_CHANGE;
994 }
995 
996 /**
997  *	velocity_print_link_status	-	link status reporting
998  *	@vptr: velocity to report on
999  *
1000  *	Turn the link status of the velocity card into a kernel log
1001  *	description of the new link state, detailing speed and duplex
1002  *	status
1003  */
1004 static void velocity_print_link_status(struct velocity_info *vptr)
1005 {
1006 
1007 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1008 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1009 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1010 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1011 
1012 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1013 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1014 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1015 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1016 		else
1017 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1018 
1019 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1020 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1021 		else
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1023 	} else {
1024 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1025 		switch (vptr->options.spd_dpx) {
1026 		case SPD_DPX_1000_FULL:
1027 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1028 			break;
1029 		case SPD_DPX_100_HALF:
1030 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1031 			break;
1032 		case SPD_DPX_100_FULL:
1033 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1034 			break;
1035 		case SPD_DPX_10_HALF:
1036 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1037 			break;
1038 		case SPD_DPX_10_FULL:
1039 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1040 			break;
1041 		default:
1042 			break;
1043 		}
1044 	}
1045 }
1046 
1047 /**
1048  *	enable_flow_control_ability	-	flow control
1049  *	@vptr: veloity to configure
1050  *
1051  *	Set up flow control according to the flow control options
1052  *	determined by the eeprom/configuration.
1053  */
1054 static void enable_flow_control_ability(struct velocity_info *vptr)
1055 {
1056 
1057 	struct mac_regs __iomem *regs = vptr->mac_regs;
1058 
1059 	switch (vptr->options.flow_cntl) {
1060 
1061 	case FLOW_CNTL_DEFAULT:
1062 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1064 		else
1065 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066 
1067 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1069 		else
1070 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071 		break;
1072 
1073 	case FLOW_CNTL_TX:
1074 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1075 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 		break;
1077 
1078 	case FLOW_CNTL_RX:
1079 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1080 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081 		break;
1082 
1083 	case FLOW_CNTL_TX_RX:
1084 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1085 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1086 		break;
1087 
1088 	case FLOW_CNTL_DISABLE:
1089 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091 		break;
1092 
1093 	default:
1094 		break;
1095 	}
1096 
1097 }
1098 
1099 /**
1100  *	velocity_soft_reset	-	soft reset
1101  *	@vptr: velocity to reset
1102  *
1103  *	Kick off a soft reset of the velocity adapter and then poll
1104  *	until the reset sequence has completed before returning.
1105  */
1106 static int velocity_soft_reset(struct velocity_info *vptr)
1107 {
1108 	struct mac_regs __iomem *regs = vptr->mac_regs;
1109 	int i = 0;
1110 
1111 	writel(CR0_SFRST, &regs->CR0Set);
1112 
1113 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114 		udelay(5);
1115 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116 			break;
1117 	}
1118 
1119 	if (i == W_MAX_TIMEOUT) {
1120 		writel(CR0_FORSRST, &regs->CR0Set);
1121 		/* FIXME: PCI POSTING */
1122 		/* delay 2ms */
1123 		mdelay(2);
1124 	}
1125 	return 0;
1126 }
1127 
1128 /**
1129  *	velocity_set_multi	-	filter list change callback
1130  *	@dev: network device
1131  *
1132  *	Called by the network layer when the filter lists need to change
1133  *	for a velocity adapter. Reload the CAMs with the new address
1134  *	filter ruleset.
1135  */
1136 static void velocity_set_multi(struct net_device *dev)
1137 {
1138 	struct velocity_info *vptr = netdev_priv(dev);
1139 	struct mac_regs __iomem *regs = vptr->mac_regs;
1140 	u8 rx_mode;
1141 	int i;
1142 	struct netdev_hw_addr *ha;
1143 
1144 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1145 		writel(0xffffffff, &regs->MARCAM[0]);
1146 		writel(0xffffffff, &regs->MARCAM[4]);
1147 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149 		   (dev->flags & IFF_ALLMULTI)) {
1150 		writel(0xffffffff, &regs->MARCAM[0]);
1151 		writel(0xffffffff, &regs->MARCAM[4]);
1152 		rx_mode = (RCR_AM | RCR_AB);
1153 	} else {
1154 		int offset = MCAM_SIZE - vptr->multicast_limit;
1155 		mac_get_cam_mask(regs, vptr->mCAMmask);
1156 
1157 		i = 0;
1158 		netdev_for_each_mc_addr(ha, dev) {
1159 			mac_set_cam(regs, i + offset, ha->addr);
1160 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161 			i++;
1162 		}
1163 
1164 		mac_set_cam_mask(regs, vptr->mCAMmask);
1165 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166 	}
1167 	if (dev->mtu > 1500)
1168 		rx_mode |= RCR_AL;
1169 
1170 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171 
1172 }
1173 
1174 /*
1175  * MII access , media link mode setting functions
1176  */
1177 
1178 /**
1179  *	mii_init	-	set up MII
1180  *	@vptr: velocity adapter
1181  *	@mii_status:  links tatus
1182  *
1183  *	Set up the PHY for the current link state.
1184  */
1185 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186 {
1187 	u16 BMCR;
1188 
1189 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190 	case PHYID_ICPLUS_IP101A:
1191 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192 						MII_ADVERTISE, vptr->mac_regs);
1193 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195 								vptr->mac_regs);
1196 		else
1197 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198 								vptr->mac_regs);
1199 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200 		break;
1201 	case PHYID_CICADA_CS8201:
1202 		/*
1203 		 *	Reset to hardware default
1204 		 */
1205 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 		/*
1207 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1209 		 *	legacy-forced issue.
1210 		 */
1211 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 		else
1214 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 		/*
1216 		 *	Turn on Link/Activity LED enable bit for CIS8201
1217 		 */
1218 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219 		break;
1220 	case PHYID_VT3216_32BIT:
1221 	case PHYID_VT3216_64BIT:
1222 		/*
1223 		 *	Reset to hardware default
1224 		 */
1225 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 		/*
1227 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1228 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1229 		 *	legacy-forced issue
1230 		 */
1231 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233 		else
1234 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235 		break;
1236 
1237 	case PHYID_MARVELL_1000:
1238 	case PHYID_MARVELL_1000S:
1239 		/*
1240 		 *	Assert CRS on Transmit
1241 		 */
1242 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243 		/*
1244 		 *	Reset to hardware default
1245 		 */
1246 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247 		break;
1248 	default:
1249 		;
1250 	}
1251 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252 	if (BMCR & BMCR_ISOLATE) {
1253 		BMCR &= ~BMCR_ISOLATE;
1254 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255 	}
1256 }
1257 
1258 /**
1259  * setup_queue_timers	-	Setup interrupt timers
1260  *
1261  * Setup interrupt frequency during suppression (timeout if the frame
1262  * count isn't filled).
1263  */
1264 static void setup_queue_timers(struct velocity_info *vptr)
1265 {
1266 	/* Only for newer revisions */
1267 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1268 		u8 txqueue_timer = 0;
1269 		u8 rxqueue_timer = 0;
1270 
1271 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1272 				VELOCITY_SPEED_100)) {
1273 			txqueue_timer = vptr->options.txqueue_timer;
1274 			rxqueue_timer = vptr->options.rxqueue_timer;
1275 		}
1276 
1277 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1278 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1279 	}
1280 }
1281 
1282 /**
1283  * setup_adaptive_interrupts  -  Setup interrupt suppression
1284  *
1285  * @vptr velocity adapter
1286  *
1287  * The velocity is able to suppress interrupt during high interrupt load.
1288  * This function turns on that feature.
1289  */
1290 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291 {
1292 	struct mac_regs __iomem *regs = vptr->mac_regs;
1293 	u16 tx_intsup = vptr->options.tx_intsup;
1294 	u16 rx_intsup = vptr->options.rx_intsup;
1295 
1296 	/* Setup default interrupt mask (will be changed below) */
1297 	vptr->int_mask = INT_MASK_DEF;
1298 
1299 	/* Set Tx Interrupt Suppression Threshold */
1300 	writeb(CAMCR_PS0, &regs->CAMCR);
1301 	if (tx_intsup != 0) {
1302 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303 				ISR_PTX2I | ISR_PTX3I);
1304 		writew(tx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Set Rx Interrupt Suppression Threshold */
1309 	writeb(CAMCR_PS1, &regs->CAMCR);
1310 	if (rx_intsup != 0) {
1311 		vptr->int_mask &= ~ISR_PRXI;
1312 		writew(rx_intsup, &regs->ISRCTL);
1313 	} else
1314 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315 
1316 	/* Select page to interrupt hold timer */
1317 	writeb(0, &regs->CAMCR);
1318 }
1319 
1320 /**
1321  *	velocity_init_registers	-	initialise MAC registers
1322  *	@vptr: velocity to init
1323  *	@type: type of initialisation (hot or cold)
1324  *
1325  *	Initialise the MAC on a reset or on first set up on the
1326  *	hardware.
1327  */
1328 static void velocity_init_registers(struct velocity_info *vptr,
1329 				    enum velocity_init_type type)
1330 {
1331 	struct mac_regs __iomem *regs = vptr->mac_regs;
1332 	struct net_device *netdev = vptr->netdev;
1333 	int i, mii_status;
1334 
1335 	mac_wol_reset(regs);
1336 
1337 	switch (type) {
1338 	case VELOCITY_INIT_RESET:
1339 	case VELOCITY_INIT_WOL:
1340 
1341 		netif_stop_queue(netdev);
1342 
1343 		/*
1344 		 *	Reset RX to prevent RX pointer not on the 4X location
1345 		 */
1346 		velocity_rx_reset(vptr);
1347 		mac_rx_queue_run(regs);
1348 		mac_rx_queue_wake(regs);
1349 
1350 		mii_status = velocity_get_opt_media_mode(vptr);
1351 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352 			velocity_print_link_status(vptr);
1353 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354 				netif_wake_queue(netdev);
1355 		}
1356 
1357 		enable_flow_control_ability(vptr);
1358 
1359 		mac_clear_isr(regs);
1360 		writel(CR0_STOP, &regs->CR0Clr);
1361 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362 							&regs->CR0Set);
1363 
1364 		break;
1365 
1366 	case VELOCITY_INIT_COLD:
1367 	default:
1368 		/*
1369 		 *	Do reset
1370 		 */
1371 		velocity_soft_reset(vptr);
1372 		mdelay(5);
1373 
1374 		if (!vptr->no_eeprom) {
1375 			mac_eeprom_reload(regs);
1376 			for (i = 0; i < 6; i++)
1377 				writeb(netdev->dev_addr[i], regs->PAR + i);
1378 		}
1379 
1380 		/*
1381 		 *	clear Pre_ACPI bit.
1382 		 */
1383 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385 		mac_set_dma_length(regs, vptr->options.DMA_length);
1386 
1387 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388 		/*
1389 		 *	Back off algorithm use original IEEE standard
1390 		 */
1391 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392 
1393 		/*
1394 		 *	Init CAM filter
1395 		 */
1396 		velocity_init_cam_filter(vptr);
1397 
1398 		/*
1399 		 *	Set packet filter: Receive directed and broadcast address
1400 		 */
1401 		velocity_set_multi(netdev);
1402 
1403 		/*
1404 		 *	Enable MII auto-polling
1405 		 */
1406 		enable_mii_autopoll(regs);
1407 
1408 		setup_adaptive_interrupts(vptr);
1409 
1410 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1412 		mac_rx_queue_run(regs);
1413 		mac_rx_queue_wake(regs);
1414 
1415 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1416 
1417 		for (i = 0; i < vptr->tx.numq; i++) {
1418 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419 			mac_tx_queue_run(regs, i);
1420 		}
1421 
1422 		init_flow_control_register(vptr);
1423 
1424 		writel(CR0_STOP, &regs->CR0Clr);
1425 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426 
1427 		mii_status = velocity_get_opt_media_mode(vptr);
1428 		netif_stop_queue(netdev);
1429 
1430 		mii_init(vptr, mii_status);
1431 
1432 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433 			velocity_print_link_status(vptr);
1434 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435 				netif_wake_queue(netdev);
1436 		}
1437 
1438 		enable_flow_control_ability(vptr);
1439 		mac_hw_mibs_init(regs);
1440 		mac_write_int_mask(vptr->int_mask, regs);
1441 		mac_clear_isr(regs);
1442 
1443 	}
1444 }
1445 
1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447 {
1448 	struct mac_regs __iomem *regs = vptr->mac_regs;
1449 	int avail, dirty, unusable;
1450 
1451 	/*
1452 	 * RD number must be equal to 4X per hardware spec
1453 	 * (programming guide rev 1.20, p.13)
1454 	 */
1455 	if (vptr->rx.filled < 4)
1456 		return;
1457 
1458 	wmb();
1459 
1460 	unusable = vptr->rx.filled & 0x0003;
1461 	dirty = vptr->rx.dirty - unusable;
1462 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465 	}
1466 
1467 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468 	vptr->rx.filled = unusable;
1469 }
1470 
1471 /**
1472  *	velocity_init_dma_rings	-	set up DMA rings
1473  *	@vptr: Velocity to set up
1474  *
1475  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1476  *	to use.
1477  */
1478 static int velocity_init_dma_rings(struct velocity_info *vptr)
1479 {
1480 	struct velocity_opt *opt = &vptr->options;
1481 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483 	dma_addr_t pool_dma;
1484 	void *pool;
1485 	unsigned int i;
1486 
1487 	/*
1488 	 * Allocate all RD/TD rings a single pool.
1489 	 *
1490 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491 	 * alignment
1492 	 */
1493 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1495 	if (!pool) {
1496 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497 			vptr->netdev->name);
1498 		return -ENOMEM;
1499 	}
1500 
1501 	vptr->rx.ring = pool;
1502 	vptr->rx.pool_dma = pool_dma;
1503 
1504 	pool += rx_ring_size;
1505 	pool_dma += rx_ring_size;
1506 
1507 	for (i = 0; i < vptr->tx.numq; i++) {
1508 		vptr->tx.rings[i] = pool;
1509 		vptr->tx.pool_dma[i] = pool_dma;
1510 		pool += tx_ring_size;
1511 		pool_dma += tx_ring_size;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518 {
1519 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520 }
1521 
1522 /**
1523  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1524  *	@vptr: velocity
1525  *	@idx: ring index
1526  *
1527  *	Allocate a new full sized buffer for the reception of a frame and
1528  *	map it into PCI space for the hardware to use. The hardware
1529  *	requires *64* byte alignment of the buffer which makes life
1530  *	less fun than would be ideal.
1531  */
1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533 {
1534 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536 
1537 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538 	if (rd_info->skb == NULL)
1539 		return -ENOMEM;
1540 
1541 	/*
1542 	 *	Do the gymnastics to get the buffer head for data at
1543 	 *	64byte alignment.
1544 	 */
1545 	skb_reserve(rd_info->skb,
1546 			64 - ((unsigned long) rd_info->skb->data & 63));
1547 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549 
1550 	/*
1551 	 *	Fill in the descriptor to match
1552 	 */
1553 
1554 	*((u32 *) & (rd->rdesc0)) = 0;
1555 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557 	rd->pa_high = 0;
1558 	return 0;
1559 }
1560 
1561 
1562 static int velocity_rx_refill(struct velocity_info *vptr)
1563 {
1564 	int dirty = vptr->rx.dirty, done = 0;
1565 
1566 	do {
1567 		struct rx_desc *rd = vptr->rx.ring + dirty;
1568 
1569 		/* Fine for an all zero Rx desc at init time as well */
1570 		if (rd->rdesc0.len & OWNED_BY_NIC)
1571 			break;
1572 
1573 		if (!vptr->rx.info[dirty].skb) {
1574 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575 				break;
1576 		}
1577 		done++;
1578 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579 	} while (dirty != vptr->rx.curr);
1580 
1581 	if (done) {
1582 		vptr->rx.dirty = dirty;
1583 		vptr->rx.filled += done;
1584 	}
1585 
1586 	return done;
1587 }
1588 
1589 /**
1590  *	velocity_free_rd_ring	-	free receive ring
1591  *	@vptr: velocity to clean up
1592  *
1593  *	Free the receive buffers for each ring slot and any
1594  *	attached socket buffers that need to go away.
1595  */
1596 static void velocity_free_rd_ring(struct velocity_info *vptr)
1597 {
1598 	int i;
1599 
1600 	if (vptr->rx.info == NULL)
1601 		return;
1602 
1603 	for (i = 0; i < vptr->options.numrx; i++) {
1604 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605 		struct rx_desc *rd = vptr->rx.ring + i;
1606 
1607 		memset(rd, 0, sizeof(*rd));
1608 
1609 		if (!rd_info->skb)
1610 			continue;
1611 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612 				 DMA_FROM_DEVICE);
1613 		rd_info->skb_dma = 0;
1614 
1615 		dev_kfree_skb(rd_info->skb);
1616 		rd_info->skb = NULL;
1617 	}
1618 
1619 	kfree(vptr->rx.info);
1620 	vptr->rx.info = NULL;
1621 }
1622 
1623 /**
1624  *	velocity_init_rd_ring	-	set up receive ring
1625  *	@vptr: velocity to configure
1626  *
1627  *	Allocate and set up the receive buffers for each ring slot and
1628  *	assign them to the network adapter.
1629  */
1630 static int velocity_init_rd_ring(struct velocity_info *vptr)
1631 {
1632 	int ret = -ENOMEM;
1633 
1634 	vptr->rx.info = kcalloc(vptr->options.numrx,
1635 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1636 	if (!vptr->rx.info)
1637 		goto out;
1638 
1639 	velocity_init_rx_ring_indexes(vptr);
1640 
1641 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1643 			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1644 		velocity_free_rd_ring(vptr);
1645 		goto out;
1646 	}
1647 
1648 	ret = 0;
1649 out:
1650 	return ret;
1651 }
1652 
1653 /**
1654  *	velocity_init_td_ring	-	set up transmit ring
1655  *	@vptr:	velocity
1656  *
1657  *	Set up the transmit ring and chain the ring pointers together.
1658  *	Returns zero on success or a negative posix errno code for
1659  *	failure.
1660  */
1661 static int velocity_init_td_ring(struct velocity_info *vptr)
1662 {
1663 	int j;
1664 
1665 	/* Init the TD ring entries */
1666 	for (j = 0; j < vptr->tx.numq; j++) {
1667 
1668 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1669 					    sizeof(struct velocity_td_info),
1670 					    GFP_KERNEL);
1671 		if (!vptr->tx.infos[j])	{
1672 			while (--j >= 0)
1673 				kfree(vptr->tx.infos[j]);
1674 			return -ENOMEM;
1675 		}
1676 
1677 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1678 	}
1679 	return 0;
1680 }
1681 
1682 /**
1683  *	velocity_free_dma_rings	-	free PCI ring pointers
1684  *	@vptr: Velocity to free from
1685  *
1686  *	Clean up the PCI ring buffers allocated to this velocity.
1687  */
1688 static void velocity_free_dma_rings(struct velocity_info *vptr)
1689 {
1690 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1691 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1692 
1693 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1694 }
1695 
1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1697 {
1698 	int ret;
1699 
1700 	velocity_set_rxbufsize(vptr, mtu);
1701 
1702 	ret = velocity_init_dma_rings(vptr);
1703 	if (ret < 0)
1704 		goto out;
1705 
1706 	ret = velocity_init_rd_ring(vptr);
1707 	if (ret < 0)
1708 		goto err_free_dma_rings_0;
1709 
1710 	ret = velocity_init_td_ring(vptr);
1711 	if (ret < 0)
1712 		goto err_free_rd_ring_1;
1713 out:
1714 	return ret;
1715 
1716 err_free_rd_ring_1:
1717 	velocity_free_rd_ring(vptr);
1718 err_free_dma_rings_0:
1719 	velocity_free_dma_rings(vptr);
1720 	goto out;
1721 }
1722 
1723 /**
1724  *	velocity_free_tx_buf	-	free transmit buffer
1725  *	@vptr: velocity
1726  *	@tdinfo: buffer
1727  *
1728  *	Release an transmit buffer. If the buffer was preallocated then
1729  *	recycle it, if not then unmap the buffer.
1730  */
1731 static void velocity_free_tx_buf(struct velocity_info *vptr,
1732 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1733 {
1734 	struct sk_buff *skb = tdinfo->skb;
1735 
1736 	/*
1737 	 *	Don't unmap the pre-allocated tx_bufs
1738 	 */
1739 	if (tdinfo->skb_dma) {
1740 		int i;
1741 
1742 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1743 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1744 
1745 			/* For scatter-gather */
1746 			if (skb_shinfo(skb)->nr_frags > 0)
1747 				pktlen = max_t(size_t, pktlen,
1748 						td->td_buf[i].size & ~TD_QUEUE);
1749 
1750 			dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1751 					le16_to_cpu(pktlen), DMA_TO_DEVICE);
1752 		}
1753 	}
1754 	dev_kfree_skb_irq(skb);
1755 	tdinfo->skb = NULL;
1756 }
1757 
1758 /*
1759  *	FIXME: could we merge this with velocity_free_tx_buf ?
1760  */
1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1762 							 int q, int n)
1763 {
1764 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1765 	int i;
1766 
1767 	if (td_info == NULL)
1768 		return;
1769 
1770 	if (td_info->skb) {
1771 		for (i = 0; i < td_info->nskb_dma; i++) {
1772 			if (td_info->skb_dma[i]) {
1773 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1774 					td_info->skb->len, DMA_TO_DEVICE);
1775 				td_info->skb_dma[i] = 0;
1776 			}
1777 		}
1778 		dev_kfree_skb(td_info->skb);
1779 		td_info->skb = NULL;
1780 	}
1781 }
1782 
1783 /**
1784  *	velocity_free_td_ring	-	free td ring
1785  *	@vptr: velocity
1786  *
1787  *	Free up the transmit ring for this particular velocity adapter.
1788  *	We free the ring contents but not the ring itself.
1789  */
1790 static void velocity_free_td_ring(struct velocity_info *vptr)
1791 {
1792 	int i, j;
1793 
1794 	for (j = 0; j < vptr->tx.numq; j++) {
1795 		if (vptr->tx.infos[j] == NULL)
1796 			continue;
1797 		for (i = 0; i < vptr->options.numtx; i++)
1798 			velocity_free_td_ring_entry(vptr, j, i);
1799 
1800 		kfree(vptr->tx.infos[j]);
1801 		vptr->tx.infos[j] = NULL;
1802 	}
1803 }
1804 
1805 static void velocity_free_rings(struct velocity_info *vptr)
1806 {
1807 	velocity_free_td_ring(vptr);
1808 	velocity_free_rd_ring(vptr);
1809 	velocity_free_dma_rings(vptr);
1810 }
1811 
1812 /**
1813  *	velocity_error	-	handle error from controller
1814  *	@vptr: velocity
1815  *	@status: card status
1816  *
1817  *	Process an error report from the hardware and attempt to recover
1818  *	the card itself. At the moment we cannot recover from some
1819  *	theoretically impossible errors but this could be fixed using
1820  *	the pci_device_failed logic to bounce the hardware
1821  *
1822  */
1823 static void velocity_error(struct velocity_info *vptr, int status)
1824 {
1825 
1826 	if (status & ISR_TXSTLI) {
1827 		struct mac_regs __iomem *regs = vptr->mac_regs;
1828 
1829 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1830 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1831 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1832 		netif_stop_queue(vptr->netdev);
1833 
1834 		/* FIXME: port over the pci_device_failed code and use it
1835 		   here */
1836 	}
1837 
1838 	if (status & ISR_SRCI) {
1839 		struct mac_regs __iomem *regs = vptr->mac_regs;
1840 		int linked;
1841 
1842 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1843 			vptr->mii_status = check_connection_type(regs);
1844 
1845 			/*
1846 			 *	If it is a 3119, disable frame bursting in
1847 			 *	halfduplex mode and enable it in fullduplex
1848 			 *	 mode
1849 			 */
1850 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1851 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1852 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1853 				else
1854 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1855 			}
1856 			/*
1857 			 *	Only enable CD heart beat counter in 10HD mode
1858 			 */
1859 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1860 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1861 			else
1862 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1863 
1864 			setup_queue_timers(vptr);
1865 		}
1866 		/*
1867 		 *	Get link status from PHYSR0
1868 		 */
1869 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1870 
1871 		if (linked) {
1872 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1873 			netif_carrier_on(vptr->netdev);
1874 		} else {
1875 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1876 			netif_carrier_off(vptr->netdev);
1877 		}
1878 
1879 		velocity_print_link_status(vptr);
1880 		enable_flow_control_ability(vptr);
1881 
1882 		/*
1883 		 *	Re-enable auto-polling because SRCI will disable
1884 		 *	auto-polling
1885 		 */
1886 
1887 		enable_mii_autopoll(regs);
1888 
1889 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1890 			netif_stop_queue(vptr->netdev);
1891 		else
1892 			netif_wake_queue(vptr->netdev);
1893 
1894 	}
1895 	if (status & ISR_MIBFI)
1896 		velocity_update_hw_mibs(vptr);
1897 	if (status & ISR_LSTEI)
1898 		mac_rx_queue_wake(vptr->mac_regs);
1899 }
1900 
1901 /**
1902  *	tx_srv		-	transmit interrupt service
1903  *	@vptr; Velocity
1904  *
1905  *	Scan the queues looking for transmitted packets that
1906  *	we can complete and clean up. Update any statistics as
1907  *	necessary/
1908  */
1909 static int velocity_tx_srv(struct velocity_info *vptr)
1910 {
1911 	struct tx_desc *td;
1912 	int qnum;
1913 	int full = 0;
1914 	int idx;
1915 	int works = 0;
1916 	struct velocity_td_info *tdinfo;
1917 	struct net_device_stats *stats = &vptr->netdev->stats;
1918 
1919 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1920 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1921 			idx = (idx + 1) % vptr->options.numtx) {
1922 
1923 			/*
1924 			 *	Get Tx Descriptor
1925 			 */
1926 			td = &(vptr->tx.rings[qnum][idx]);
1927 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1928 
1929 			if (td->tdesc0.len & OWNED_BY_NIC)
1930 				break;
1931 
1932 			if ((works++ > 15))
1933 				break;
1934 
1935 			if (td->tdesc0.TSR & TSR0_TERR) {
1936 				stats->tx_errors++;
1937 				stats->tx_dropped++;
1938 				if (td->tdesc0.TSR & TSR0_CDH)
1939 					stats->tx_heartbeat_errors++;
1940 				if (td->tdesc0.TSR & TSR0_CRS)
1941 					stats->tx_carrier_errors++;
1942 				if (td->tdesc0.TSR & TSR0_ABT)
1943 					stats->tx_aborted_errors++;
1944 				if (td->tdesc0.TSR & TSR0_OWC)
1945 					stats->tx_window_errors++;
1946 			} else {
1947 				stats->tx_packets++;
1948 				stats->tx_bytes += tdinfo->skb->len;
1949 			}
1950 			velocity_free_tx_buf(vptr, tdinfo, td);
1951 			vptr->tx.used[qnum]--;
1952 		}
1953 		vptr->tx.tail[qnum] = idx;
1954 
1955 		if (AVAIL_TD(vptr, qnum) < 1)
1956 			full = 1;
1957 	}
1958 	/*
1959 	 *	Look to see if we should kick the transmit network
1960 	 *	layer for more work.
1961 	 */
1962 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1963 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1964 		netif_wake_queue(vptr->netdev);
1965 	}
1966 	return works;
1967 }
1968 
1969 /**
1970  *	velocity_rx_csum	-	checksum process
1971  *	@rd: receive packet descriptor
1972  *	@skb: network layer packet buffer
1973  *
1974  *	Process the status bits for the received packet and determine
1975  *	if the checksum was computed and verified by the hardware
1976  */
1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1978 {
1979 	skb_checksum_none_assert(skb);
1980 
1981 	if (rd->rdesc1.CSM & CSM_IPKT) {
1982 		if (rd->rdesc1.CSM & CSM_IPOK) {
1983 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1984 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1985 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1986 					return;
1987 			}
1988 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1989 		}
1990 	}
1991 }
1992 
1993 /**
1994  *	velocity_rx_copy	-	in place Rx copy for small packets
1995  *	@rx_skb: network layer packet buffer candidate
1996  *	@pkt_size: received data size
1997  *	@rd: receive packet descriptor
1998  *	@dev: network device
1999  *
2000  *	Replace the current skb that is scheduled for Rx processing by a
2001  *	shorter, immediately allocated skb, if the received packet is small
2002  *	enough. This function returns a negative value if the received
2003  *	packet is too big or if memory is exhausted.
2004  */
2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2006 			    struct velocity_info *vptr)
2007 {
2008 	int ret = -1;
2009 	if (pkt_size < rx_copybreak) {
2010 		struct sk_buff *new_skb;
2011 
2012 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2013 		if (new_skb) {
2014 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2015 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2016 			*rx_skb = new_skb;
2017 			ret = 0;
2018 		}
2019 
2020 	}
2021 	return ret;
2022 }
2023 
2024 /**
2025  *	velocity_iph_realign	-	IP header alignment
2026  *	@vptr: velocity we are handling
2027  *	@skb: network layer packet buffer
2028  *	@pkt_size: received data size
2029  *
2030  *	Align IP header on a 2 bytes boundary. This behavior can be
2031  *	configured by the user.
2032  */
2033 static inline void velocity_iph_realign(struct velocity_info *vptr,
2034 					struct sk_buff *skb, int pkt_size)
2035 {
2036 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2037 		memmove(skb->data + 2, skb->data, pkt_size);
2038 		skb_reserve(skb, 2);
2039 	}
2040 }
2041 
2042 /**
2043  *	velocity_receive_frame	-	received packet processor
2044  *	@vptr: velocity we are handling
2045  *	@idx: ring index
2046  *
2047  *	A packet has arrived. We process the packet and if appropriate
2048  *	pass the frame up the network stack
2049  */
2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2051 {
2052 	struct net_device_stats *stats = &vptr->netdev->stats;
2053 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2054 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2055 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2056 	struct sk_buff *skb;
2057 
2058 	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2059 		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->netdev->name);
2060 		stats->rx_length_errors++;
2061 		return -EINVAL;
2062 	}
2063 
2064 	if (rd->rdesc0.RSR & RSR_MAR)
2065 		stats->multicast++;
2066 
2067 	skb = rd_info->skb;
2068 
2069 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2070 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2071 
2072 	/*
2073 	 *	Drop frame not meeting IEEE 802.3
2074 	 */
2075 
2076 	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2077 		if (rd->rdesc0.RSR & RSR_RL) {
2078 			stats->rx_length_errors++;
2079 			return -EINVAL;
2080 		}
2081 	}
2082 
2083 	velocity_rx_csum(rd, skb);
2084 
2085 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086 		velocity_iph_realign(vptr, skb, pkt_len);
2087 		rd_info->skb = NULL;
2088 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2089 				 DMA_FROM_DEVICE);
2090 	} else {
2091 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2092 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2093 	}
2094 
2095 	skb_put(skb, pkt_len - 4);
2096 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2097 
2098 	if (rd->rdesc0.RSR & RSR_DETAG) {
2099 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2100 
2101 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2102 	}
2103 	netif_receive_skb(skb);
2104 
2105 	stats->rx_bytes += pkt_len;
2106 	stats->rx_packets++;
2107 
2108 	return 0;
2109 }
2110 
2111 /**
2112  *	velocity_rx_srv		-	service RX interrupt
2113  *	@vptr: velocity
2114  *
2115  *	Walk the receive ring of the velocity adapter and remove
2116  *	any received packets from the receive queue. Hand the ring
2117  *	slots back to the adapter for reuse.
2118  */
2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2120 {
2121 	struct net_device_stats *stats = &vptr->netdev->stats;
2122 	int rd_curr = vptr->rx.curr;
2123 	int works = 0;
2124 
2125 	while (works < budget_left) {
2126 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2127 
2128 		if (!vptr->rx.info[rd_curr].skb)
2129 			break;
2130 
2131 		if (rd->rdesc0.len & OWNED_BY_NIC)
2132 			break;
2133 
2134 		rmb();
2135 
2136 		/*
2137 		 *	Don't drop CE or RL error frame although RXOK is off
2138 		 */
2139 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2140 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2141 				stats->rx_dropped++;
2142 		} else {
2143 			if (rd->rdesc0.RSR & RSR_CRC)
2144 				stats->rx_crc_errors++;
2145 			if (rd->rdesc0.RSR & RSR_FAE)
2146 				stats->rx_frame_errors++;
2147 
2148 			stats->rx_dropped++;
2149 		}
2150 
2151 		rd->size |= RX_INTEN;
2152 
2153 		rd_curr++;
2154 		if (rd_curr >= vptr->options.numrx)
2155 			rd_curr = 0;
2156 		works++;
2157 	}
2158 
2159 	vptr->rx.curr = rd_curr;
2160 
2161 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2162 		velocity_give_many_rx_descs(vptr);
2163 
2164 	VAR_USED(stats);
2165 	return works;
2166 }
2167 
2168 static int velocity_poll(struct napi_struct *napi, int budget)
2169 {
2170 	struct velocity_info *vptr = container_of(napi,
2171 			struct velocity_info, napi);
2172 	unsigned int rx_done;
2173 	unsigned long flags;
2174 
2175 	spin_lock_irqsave(&vptr->lock, flags);
2176 	/*
2177 	 * Do rx and tx twice for performance (taken from the VIA
2178 	 * out-of-tree driver).
2179 	 */
2180 	rx_done = velocity_rx_srv(vptr, budget / 2);
2181 	velocity_tx_srv(vptr);
2182 	rx_done += velocity_rx_srv(vptr, budget - rx_done);
2183 	velocity_tx_srv(vptr);
2184 
2185 	/* If budget not fully consumed, exit the polling mode */
2186 	if (rx_done < budget) {
2187 		napi_complete(napi);
2188 		mac_enable_int(vptr->mac_regs);
2189 	}
2190 	spin_unlock_irqrestore(&vptr->lock, flags);
2191 
2192 	return rx_done;
2193 }
2194 
2195 /**
2196  *	velocity_intr		-	interrupt callback
2197  *	@irq: interrupt number
2198  *	@dev_instance: interrupting device
2199  *
2200  *	Called whenever an interrupt is generated by the velocity
2201  *	adapter IRQ line. We may not be the source of the interrupt
2202  *	and need to identify initially if we are, and if not exit as
2203  *	efficiently as possible.
2204  */
2205 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2206 {
2207 	struct net_device *dev = dev_instance;
2208 	struct velocity_info *vptr = netdev_priv(dev);
2209 	u32 isr_status;
2210 
2211 	spin_lock(&vptr->lock);
2212 	isr_status = mac_read_isr(vptr->mac_regs);
2213 
2214 	/* Not us ? */
2215 	if (isr_status == 0) {
2216 		spin_unlock(&vptr->lock);
2217 		return IRQ_NONE;
2218 	}
2219 
2220 	/* Ack the interrupt */
2221 	mac_write_isr(vptr->mac_regs, isr_status);
2222 
2223 	if (likely(napi_schedule_prep(&vptr->napi))) {
2224 		mac_disable_int(vptr->mac_regs);
2225 		__napi_schedule(&vptr->napi);
2226 	}
2227 
2228 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2229 		velocity_error(vptr, isr_status);
2230 
2231 	spin_unlock(&vptr->lock);
2232 
2233 	return IRQ_HANDLED;
2234 }
2235 
2236 /**
2237  *	velocity_open		-	interface activation callback
2238  *	@dev: network layer device to open
2239  *
2240  *	Called when the network layer brings the interface up. Returns
2241  *	a negative posix error code on failure, or zero on success.
2242  *
2243  *	All the ring allocation and set up is done on open for this
2244  *	adapter to minimise memory usage when inactive
2245  */
2246 static int velocity_open(struct net_device *dev)
2247 {
2248 	struct velocity_info *vptr = netdev_priv(dev);
2249 	int ret;
2250 
2251 	ret = velocity_init_rings(vptr, dev->mtu);
2252 	if (ret < 0)
2253 		goto out;
2254 
2255 	/* Ensure chip is running */
2256 	velocity_set_power_state(vptr, PCI_D0);
2257 
2258 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2259 
2260 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2261 			  dev->name, dev);
2262 	if (ret < 0) {
2263 		/* Power down the chip */
2264 		velocity_set_power_state(vptr, PCI_D3hot);
2265 		velocity_free_rings(vptr);
2266 		goto out;
2267 	}
2268 
2269 	velocity_give_many_rx_descs(vptr);
2270 
2271 	mac_enable_int(vptr->mac_regs);
2272 	netif_start_queue(dev);
2273 	napi_enable(&vptr->napi);
2274 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2275 out:
2276 	return ret;
2277 }
2278 
2279 /**
2280  *	velocity_shutdown	-	shut down the chip
2281  *	@vptr: velocity to deactivate
2282  *
2283  *	Shuts down the internal operations of the velocity and
2284  *	disables interrupts, autopolling, transmit and receive
2285  */
2286 static void velocity_shutdown(struct velocity_info *vptr)
2287 {
2288 	struct mac_regs __iomem *regs = vptr->mac_regs;
2289 	mac_disable_int(regs);
2290 	writel(CR0_STOP, &regs->CR0Set);
2291 	writew(0xFFFF, &regs->TDCSRClr);
2292 	writeb(0xFF, &regs->RDCSRClr);
2293 	safe_disable_mii_autopoll(regs);
2294 	mac_clear_isr(regs);
2295 }
2296 
2297 /**
2298  *	velocity_change_mtu	-	MTU change callback
2299  *	@dev: network device
2300  *	@new_mtu: desired MTU
2301  *
2302  *	Handle requests from the networking layer for MTU change on
2303  *	this interface. It gets called on a change by the network layer.
2304  *	Return zero for success or negative posix error code.
2305  */
2306 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2307 {
2308 	struct velocity_info *vptr = netdev_priv(dev);
2309 	int ret = 0;
2310 
2311 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2312 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2313 				vptr->netdev->name);
2314 		ret = -EINVAL;
2315 		goto out_0;
2316 	}
2317 
2318 	if (!netif_running(dev)) {
2319 		dev->mtu = new_mtu;
2320 		goto out_0;
2321 	}
2322 
2323 	if (dev->mtu != new_mtu) {
2324 		struct velocity_info *tmp_vptr;
2325 		unsigned long flags;
2326 		struct rx_info rx;
2327 		struct tx_info tx;
2328 
2329 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2330 		if (!tmp_vptr) {
2331 			ret = -ENOMEM;
2332 			goto out_0;
2333 		}
2334 
2335 		tmp_vptr->netdev = dev;
2336 		tmp_vptr->pdev = vptr->pdev;
2337 		tmp_vptr->dev = vptr->dev;
2338 		tmp_vptr->options = vptr->options;
2339 		tmp_vptr->tx.numq = vptr->tx.numq;
2340 
2341 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2342 		if (ret < 0)
2343 			goto out_free_tmp_vptr_1;
2344 
2345 		spin_lock_irqsave(&vptr->lock, flags);
2346 
2347 		netif_stop_queue(dev);
2348 		velocity_shutdown(vptr);
2349 
2350 		rx = vptr->rx;
2351 		tx = vptr->tx;
2352 
2353 		vptr->rx = tmp_vptr->rx;
2354 		vptr->tx = tmp_vptr->tx;
2355 
2356 		tmp_vptr->rx = rx;
2357 		tmp_vptr->tx = tx;
2358 
2359 		dev->mtu = new_mtu;
2360 
2361 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2362 
2363 		velocity_give_many_rx_descs(vptr);
2364 
2365 		mac_enable_int(vptr->mac_regs);
2366 		netif_start_queue(dev);
2367 
2368 		spin_unlock_irqrestore(&vptr->lock, flags);
2369 
2370 		velocity_free_rings(tmp_vptr);
2371 
2372 out_free_tmp_vptr_1:
2373 		kfree(tmp_vptr);
2374 	}
2375 out_0:
2376 	return ret;
2377 }
2378 
2379 /**
2380  *	velocity_mii_ioctl		-	MII ioctl handler
2381  *	@dev: network device
2382  *	@ifr: the ifreq block for the ioctl
2383  *	@cmd: the command
2384  *
2385  *	Process MII requests made via ioctl from the network layer. These
2386  *	are used by tools like kudzu to interrogate the link state of the
2387  *	hardware
2388  */
2389 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2390 {
2391 	struct velocity_info *vptr = netdev_priv(dev);
2392 	struct mac_regs __iomem *regs = vptr->mac_regs;
2393 	unsigned long flags;
2394 	struct mii_ioctl_data *miidata = if_mii(ifr);
2395 	int err;
2396 
2397 	switch (cmd) {
2398 	case SIOCGMIIPHY:
2399 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2400 		break;
2401 	case SIOCGMIIREG:
2402 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2403 			return -ETIMEDOUT;
2404 		break;
2405 	case SIOCSMIIREG:
2406 		spin_lock_irqsave(&vptr->lock, flags);
2407 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2408 		spin_unlock_irqrestore(&vptr->lock, flags);
2409 		check_connection_type(vptr->mac_regs);
2410 		if (err)
2411 			return err;
2412 		break;
2413 	default:
2414 		return -EOPNOTSUPP;
2415 	}
2416 	return 0;
2417 }
2418 
2419 /**
2420  *	velocity_ioctl		-	ioctl entry point
2421  *	@dev: network device
2422  *	@rq: interface request ioctl
2423  *	@cmd: command code
2424  *
2425  *	Called when the user issues an ioctl request to the network
2426  *	device in question. The velocity interface supports MII.
2427  */
2428 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2429 {
2430 	struct velocity_info *vptr = netdev_priv(dev);
2431 	int ret;
2432 
2433 	/* If we are asked for information and the device is power
2434 	   saving then we need to bring the device back up to talk to it */
2435 
2436 	if (!netif_running(dev))
2437 		velocity_set_power_state(vptr, PCI_D0);
2438 
2439 	switch (cmd) {
2440 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2441 	case SIOCGMIIREG:	/* Read MII PHY register. */
2442 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2443 		ret = velocity_mii_ioctl(dev, rq, cmd);
2444 		break;
2445 
2446 	default:
2447 		ret = -EOPNOTSUPP;
2448 	}
2449 	if (!netif_running(dev))
2450 		velocity_set_power_state(vptr, PCI_D3hot);
2451 
2452 
2453 	return ret;
2454 }
2455 
2456 /**
2457  *	velocity_get_status	-	statistics callback
2458  *	@dev: network device
2459  *
2460  *	Callback from the network layer to allow driver statistics
2461  *	to be resynchronized with hardware collected state. In the
2462  *	case of the velocity we need to pull the MIB counters from
2463  *	the hardware into the counters before letting the network
2464  *	layer display them.
2465  */
2466 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2467 {
2468 	struct velocity_info *vptr = netdev_priv(dev);
2469 
2470 	/* If the hardware is down, don't touch MII */
2471 	if (!netif_running(dev))
2472 		return &dev->stats;
2473 
2474 	spin_lock_irq(&vptr->lock);
2475 	velocity_update_hw_mibs(vptr);
2476 	spin_unlock_irq(&vptr->lock);
2477 
2478 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2479 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2480 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2481 
2482 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2483 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2484 	/* detailed rx_errors: */
2485 //  unsigned long   rx_length_errors;
2486 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2487 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2488 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2489 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2490 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2491 
2492 	/* detailed tx_errors */
2493 //  unsigned long   tx_fifo_errors;
2494 
2495 	return &dev->stats;
2496 }
2497 
2498 /**
2499  *	velocity_close		-	close adapter callback
2500  *	@dev: network device
2501  *
2502  *	Callback from the network layer when the velocity is being
2503  *	deactivated by the network layer
2504  */
2505 static int velocity_close(struct net_device *dev)
2506 {
2507 	struct velocity_info *vptr = netdev_priv(dev);
2508 
2509 	napi_disable(&vptr->napi);
2510 	netif_stop_queue(dev);
2511 	velocity_shutdown(vptr);
2512 
2513 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2514 		velocity_get_ip(vptr);
2515 
2516 	free_irq(dev->irq, dev);
2517 
2518 	velocity_free_rings(vptr);
2519 
2520 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2521 	return 0;
2522 }
2523 
2524 /**
2525  *	velocity_xmit		-	transmit packet callback
2526  *	@skb: buffer to transmit
2527  *	@dev: network device
2528  *
2529  *	Called by the networ layer to request a packet is queued to
2530  *	the velocity. Returns zero on success.
2531  */
2532 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2533 				 struct net_device *dev)
2534 {
2535 	struct velocity_info *vptr = netdev_priv(dev);
2536 	int qnum = 0;
2537 	struct tx_desc *td_ptr;
2538 	struct velocity_td_info *tdinfo;
2539 	unsigned long flags;
2540 	int pktlen;
2541 	int index, prev;
2542 	int i = 0;
2543 
2544 	if (skb_padto(skb, ETH_ZLEN))
2545 		goto out;
2546 
2547 	/* The hardware can handle at most 7 memory segments, so merge
2548 	 * the skb if there are more */
2549 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2550 		kfree_skb(skb);
2551 		return NETDEV_TX_OK;
2552 	}
2553 
2554 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2555 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2556 				skb_headlen(skb);
2557 
2558 	spin_lock_irqsave(&vptr->lock, flags);
2559 
2560 	index = vptr->tx.curr[qnum];
2561 	td_ptr = &(vptr->tx.rings[qnum][index]);
2562 	tdinfo = &(vptr->tx.infos[qnum][index]);
2563 
2564 	td_ptr->tdesc1.TCR = TCR0_TIC;
2565 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2566 
2567 	/*
2568 	 *	Map the linear network buffer into PCI space and
2569 	 *	add it to the transmit ring.
2570 	 */
2571 	tdinfo->skb = skb;
2572 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2573 								DMA_TO_DEVICE);
2574 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576 	td_ptr->td_buf[0].pa_high = 0;
2577 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2578 
2579 	/* Handle fragments */
2580 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582 
2583 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2584 							  frag, 0,
2585 							  skb_frag_size(frag),
2586 							  DMA_TO_DEVICE);
2587 
2588 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2589 		td_ptr->td_buf[i + 1].pa_high = 0;
2590 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2591 	}
2592 	tdinfo->nskb_dma = i + 1;
2593 
2594 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2595 
2596 	if (vlan_tx_tag_present(skb)) {
2597 		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2598 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2599 	}
2600 
2601 	/*
2602 	 *	Handle hardware checksum
2603 	 */
2604 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2605 		const struct iphdr *ip = ip_hdr(skb);
2606 		if (ip->protocol == IPPROTO_TCP)
2607 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608 		else if (ip->protocol == IPPROTO_UDP)
2609 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2611 	}
2612 
2613 	prev = index - 1;
2614 	if (prev < 0)
2615 		prev = vptr->options.numtx - 1;
2616 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617 	vptr->tx.used[qnum]++;
2618 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2619 
2620 	if (AVAIL_TD(vptr, qnum) < 1)
2621 		netif_stop_queue(dev);
2622 
2623 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2624 	td_ptr->td_buf[0].size |= TD_QUEUE;
2625 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2626 
2627 	spin_unlock_irqrestore(&vptr->lock, flags);
2628 out:
2629 	return NETDEV_TX_OK;
2630 }
2631 
2632 static const struct net_device_ops velocity_netdev_ops = {
2633 	.ndo_open		= velocity_open,
2634 	.ndo_stop		= velocity_close,
2635 	.ndo_start_xmit		= velocity_xmit,
2636 	.ndo_get_stats		= velocity_get_stats,
2637 	.ndo_validate_addr	= eth_validate_addr,
2638 	.ndo_set_mac_address	= eth_mac_addr,
2639 	.ndo_set_rx_mode	= velocity_set_multi,
2640 	.ndo_change_mtu		= velocity_change_mtu,
2641 	.ndo_do_ioctl		= velocity_ioctl,
2642 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2643 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2644 };
2645 
2646 /**
2647  *	velocity_init_info	-	init private data
2648  *	@pdev: PCI device
2649  *	@vptr: Velocity info
2650  *	@info: Board type
2651  *
2652  *	Set up the initial velocity_info struct for the device that has been
2653  *	discovered.
2654  */
2655 static void velocity_init_info(struct velocity_info *vptr,
2656 				const struct velocity_info_tbl *info)
2657 {
2658 	vptr->chip_id = info->chip_id;
2659 	vptr->tx.numq = info->txqueue;
2660 	vptr->multicast_limit = MCAM_SIZE;
2661 	spin_lock_init(&vptr->lock);
2662 }
2663 
2664 /**
2665  *	velocity_get_pci_info	-	retrieve PCI info for device
2666  *	@vptr: velocity device
2667  *	@pdev: PCI device it matches
2668  *
2669  *	Retrieve the PCI configuration space data that interests us from
2670  *	the kernel PCI layer
2671  */
2672 static int velocity_get_pci_info(struct velocity_info *vptr)
2673 {
2674 	struct pci_dev *pdev = vptr->pdev;
2675 
2676 	pci_set_master(pdev);
2677 
2678 	vptr->ioaddr = pci_resource_start(pdev, 0);
2679 	vptr->memaddr = pci_resource_start(pdev, 1);
2680 
2681 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 		dev_err(&pdev->dev,
2683 			   "region #0 is not an I/O resource, aborting.\n");
2684 		return -EINVAL;
2685 	}
2686 
2687 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 		dev_err(&pdev->dev,
2689 			   "region #1 is an I/O resource, aborting.\n");
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 		dev_err(&pdev->dev, "region #1 is too small.\n");
2695 		return -EINVAL;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  *	velocity_get_platform_info - retrieve platform info for device
2703  *	@vptr: velocity device
2704  *	@pdev: platform device it matches
2705  *
2706  *	Retrieve the Platform configuration data that interests us
2707  */
2708 static int velocity_get_platform_info(struct velocity_info *vptr)
2709 {
2710 	struct resource res;
2711 	int ret;
2712 
2713 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2714 		vptr->no_eeprom = 1;
2715 
2716 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2717 	if (ret) {
2718 		dev_err(vptr->dev, "unable to find memory address\n");
2719 		return ret;
2720 	}
2721 
2722 	vptr->memaddr = res.start;
2723 
2724 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2725 		dev_err(vptr->dev, "memory region is too small.\n");
2726 		return -EINVAL;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  *	velocity_print_info	-	per driver data
2734  *	@vptr: velocity
2735  *
2736  *	Print per driver data as the kernel driver finds Velocity
2737  *	hardware
2738  */
2739 static void velocity_print_info(struct velocity_info *vptr)
2740 {
2741 	struct net_device *dev = vptr->netdev;
2742 
2743 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2744 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2745 		dev->name, dev->dev_addr);
2746 }
2747 
2748 static u32 velocity_get_link(struct net_device *dev)
2749 {
2750 	struct velocity_info *vptr = netdev_priv(dev);
2751 	struct mac_regs __iomem *regs = vptr->mac_regs;
2752 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2753 }
2754 
2755 /**
2756  *	velocity_probe - set up discovered velocity device
2757  *	@pdev: PCI device
2758  *	@ent: PCI device table entry that matched
2759  *	@bustype: bus that device is connected to
2760  *
2761  *	Configure a discovered adapter from scratch. Return a negative
2762  *	errno error code on failure paths.
2763  */
2764 static int velocity_probe(struct device *dev, int irq,
2765 			   const struct velocity_info_tbl *info,
2766 			   enum velocity_bus_type bustype)
2767 {
2768 	static int first = 1;
2769 	struct net_device *netdev;
2770 	int i;
2771 	const char *drv_string;
2772 	struct velocity_info *vptr;
2773 	struct mac_regs __iomem *regs;
2774 	int ret = -ENOMEM;
2775 
2776 	/* FIXME: this driver, like almost all other ethernet drivers,
2777 	 * can support more than MAX_UNITS.
2778 	 */
2779 	if (velocity_nics >= MAX_UNITS) {
2780 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2781 		return -ENODEV;
2782 	}
2783 
2784 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2785 	if (!netdev)
2786 		goto out;
2787 
2788 	/* Chain it all together */
2789 
2790 	SET_NETDEV_DEV(netdev, dev);
2791 	vptr = netdev_priv(netdev);
2792 
2793 	if (first) {
2794 		printk(KERN_INFO "%s Ver. %s\n",
2795 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2796 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2797 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2798 		first = 0;
2799 	}
2800 
2801 	netdev->irq = irq;
2802 	vptr->netdev = netdev;
2803 	vptr->dev = dev;
2804 
2805 	velocity_init_info(vptr, info);
2806 
2807 	if (bustype == BUS_PCI) {
2808 		vptr->pdev = to_pci_dev(dev);
2809 
2810 		ret = velocity_get_pci_info(vptr);
2811 		if (ret < 0)
2812 			goto err_free_dev;
2813 	} else {
2814 		vptr->pdev = NULL;
2815 		ret = velocity_get_platform_info(vptr);
2816 		if (ret < 0)
2817 			goto err_free_dev;
2818 	}
2819 
2820 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2821 	if (regs == NULL) {
2822 		ret = -EIO;
2823 		goto err_free_dev;
2824 	}
2825 
2826 	vptr->mac_regs = regs;
2827 	vptr->rev_id = readb(&regs->rev_id);
2828 
2829 	mac_wol_reset(regs);
2830 
2831 	for (i = 0; i < 6; i++)
2832 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2833 
2834 
2835 	drv_string = dev_driver_string(dev);
2836 
2837 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2838 
2839 	/*
2840 	 *	Mask out the options cannot be set to the chip
2841 	 */
2842 
2843 	vptr->options.flags &= info->flags;
2844 
2845 	/*
2846 	 *	Enable the chip specified capbilities
2847 	 */
2848 
2849 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2850 
2851 	vptr->wol_opts = vptr->options.wol_opts;
2852 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2853 
2854 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2855 
2856 	netdev->netdev_ops = &velocity_netdev_ops;
2857 	netdev->ethtool_ops = &velocity_ethtool_ops;
2858 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2859 							VELOCITY_NAPI_WEIGHT);
2860 
2861 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2862 			   NETIF_F_HW_VLAN_CTAG_TX;
2863 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2864 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2865 			NETIF_F_IP_CSUM;
2866 
2867 	ret = register_netdev(netdev);
2868 	if (ret < 0)
2869 		goto err_iounmap;
2870 
2871 	if (!velocity_get_link(netdev)) {
2872 		netif_carrier_off(netdev);
2873 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2874 	}
2875 
2876 	velocity_print_info(vptr);
2877 	dev_set_drvdata(vptr->dev, netdev);
2878 
2879 	/* and leave the chip powered down */
2880 
2881 	velocity_set_power_state(vptr, PCI_D3hot);
2882 	velocity_nics++;
2883 out:
2884 	return ret;
2885 
2886 err_iounmap:
2887 	netif_napi_del(&vptr->napi);
2888 	iounmap(regs);
2889 err_free_dev:
2890 	free_netdev(netdev);
2891 	goto out;
2892 }
2893 
2894 /**
2895  *	velocity_remove	- device unplug
2896  *	@dev: device being removed
2897  *
2898  *	Device unload callback. Called on an unplug or on module
2899  *	unload for each active device that is present. Disconnects
2900  *	the device from the network layer and frees all the resources
2901  */
2902 static int velocity_remove(struct device *dev)
2903 {
2904 	struct net_device *netdev = dev_get_drvdata(dev);
2905 	struct velocity_info *vptr = netdev_priv(netdev);
2906 
2907 	unregister_netdev(netdev);
2908 	netif_napi_del(&vptr->napi);
2909 	iounmap(vptr->mac_regs);
2910 	free_netdev(netdev);
2911 	velocity_nics--;
2912 
2913 	return 0;
2914 }
2915 
2916 static int velocity_pci_probe(struct pci_dev *pdev,
2917 			       const struct pci_device_id *ent)
2918 {
2919 	const struct velocity_info_tbl *info =
2920 					&chip_info_table[ent->driver_data];
2921 	int ret;
2922 
2923 	ret = pci_enable_device(pdev);
2924 	if (ret < 0)
2925 		return ret;
2926 
2927 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2928 	if (ret < 0) {
2929 		dev_err(&pdev->dev, "No PCI resources.\n");
2930 		goto fail1;
2931 	}
2932 
2933 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2934 	if (ret == 0)
2935 		return 0;
2936 
2937 	pci_release_regions(pdev);
2938 fail1:
2939 	pci_disable_device(pdev);
2940 	return ret;
2941 }
2942 
2943 static void velocity_pci_remove(struct pci_dev *pdev)
2944 {
2945 	velocity_remove(&pdev->dev);
2946 
2947 	pci_release_regions(pdev);
2948 	pci_disable_device(pdev);
2949 }
2950 
2951 static int velocity_platform_probe(struct platform_device *pdev)
2952 {
2953 	const struct of_device_id *of_id;
2954 	const struct velocity_info_tbl *info;
2955 	int irq;
2956 
2957 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2958 	if (!of_id)
2959 		return -EINVAL;
2960 	info = of_id->data;
2961 
2962 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2963 	if (!irq)
2964 		return -EINVAL;
2965 
2966 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2967 }
2968 
2969 static int velocity_platform_remove(struct platform_device *pdev)
2970 {
2971 	velocity_remove(&pdev->dev);
2972 
2973 	return 0;
2974 }
2975 
2976 #ifdef CONFIG_PM_SLEEP
2977 /**
2978  *	wol_calc_crc		-	WOL CRC
2979  *	@pattern: data pattern
2980  *	@mask_pattern: mask
2981  *
2982  *	Compute the wake on lan crc hashes for the packet header
2983  *	we are interested in.
2984  */
2985 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2986 {
2987 	u16 crc = 0xFFFF;
2988 	u8 mask;
2989 	int i, j;
2990 
2991 	for (i = 0; i < size; i++) {
2992 		mask = mask_pattern[i];
2993 
2994 		/* Skip this loop if the mask equals to zero */
2995 		if (mask == 0x00)
2996 			continue;
2997 
2998 		for (j = 0; j < 8; j++) {
2999 			if ((mask & 0x01) == 0) {
3000 				mask >>= 1;
3001 				continue;
3002 			}
3003 			mask >>= 1;
3004 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3005 		}
3006 	}
3007 	/*	Finally, invert the result once to get the correct data */
3008 	crc = ~crc;
3009 	return bitrev32(crc) >> 16;
3010 }
3011 
3012 /**
3013  *	velocity_set_wol	-	set up for wake on lan
3014  *	@vptr: velocity to set WOL status on
3015  *
3016  *	Set a card up for wake on lan either by unicast or by
3017  *	ARP packet.
3018  *
3019  *	FIXME: check static buffer is safe here
3020  */
3021 static int velocity_set_wol(struct velocity_info *vptr)
3022 {
3023 	struct mac_regs __iomem *regs = vptr->mac_regs;
3024 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3025 	static u8 buf[256];
3026 	int i;
3027 
3028 	static u32 mask_pattern[2][4] = {
3029 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3030 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3031 	};
3032 
3033 	writew(0xFFFF, &regs->WOLCRClr);
3034 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3035 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3036 
3037 	/*
3038 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3039 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3040 	 */
3041 
3042 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3043 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3044 
3045 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3046 		struct arp_packet *arp = (struct arp_packet *) buf;
3047 		u16 crc;
3048 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3049 
3050 		for (i = 0; i < 4; i++)
3051 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3052 
3053 		arp->type = htons(ETH_P_ARP);
3054 		arp->ar_op = htons(1);
3055 
3056 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3057 
3058 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3059 				(u8 *) & mask_pattern[0][0]);
3060 
3061 		writew(crc, &regs->PatternCRC[0]);
3062 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3063 	}
3064 
3065 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3066 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3067 
3068 	writew(0x0FFF, &regs->WOLSRClr);
3069 
3070 	if (spd_dpx == SPD_DPX_1000_FULL)
3071 		goto mac_done;
3072 
3073 	if (spd_dpx != SPD_DPX_AUTO)
3074 		goto advertise_done;
3075 
3076 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3077 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3078 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3079 
3080 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3081 	}
3082 
3083 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3084 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3085 
3086 advertise_done:
3087 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3088 
3089 	{
3090 		u8 GCR;
3091 		GCR = readb(&regs->CHIPGCR);
3092 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3093 		writeb(GCR, &regs->CHIPGCR);
3094 	}
3095 
3096 mac_done:
3097 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3098 	/* Turn on SWPTAG just before entering power mode */
3099 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3100 	/* Go to bed ..... */
3101 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3102 
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	velocity_save_context	-	save registers
3108  *	@vptr: velocity
3109  *	@context: buffer for stored context
3110  *
3111  *	Retrieve the current configuration from the velocity hardware
3112  *	and stash it in the context structure, for use by the context
3113  *	restore functions. This allows us to save things we need across
3114  *	power down states
3115  */
3116 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3117 {
3118 	struct mac_regs __iomem *regs = vptr->mac_regs;
3119 	u16 i;
3120 	u8 __iomem *ptr = (u8 __iomem *)regs;
3121 
3122 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3123 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124 
3125 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3126 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127 
3128 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3129 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130 
3131 }
3132 
3133 static int velocity_suspend(struct device *dev)
3134 {
3135 	struct net_device *netdev = dev_get_drvdata(dev);
3136 	struct velocity_info *vptr = netdev_priv(netdev);
3137 	unsigned long flags;
3138 
3139 	if (!netif_running(vptr->netdev))
3140 		return 0;
3141 
3142 	netif_device_detach(vptr->netdev);
3143 
3144 	spin_lock_irqsave(&vptr->lock, flags);
3145 	if (vptr->pdev)
3146 		pci_save_state(vptr->pdev);
3147 
3148 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3149 		velocity_get_ip(vptr);
3150 		velocity_save_context(vptr, &vptr->context);
3151 		velocity_shutdown(vptr);
3152 		velocity_set_wol(vptr);
3153 		if (vptr->pdev)
3154 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3155 		velocity_set_power_state(vptr, PCI_D3hot);
3156 	} else {
3157 		velocity_save_context(vptr, &vptr->context);
3158 		velocity_shutdown(vptr);
3159 		if (vptr->pdev)
3160 			pci_disable_device(vptr->pdev);
3161 		velocity_set_power_state(vptr, PCI_D3hot);
3162 	}
3163 
3164 	spin_unlock_irqrestore(&vptr->lock, flags);
3165 	return 0;
3166 }
3167 
3168 /**
3169  *	velocity_restore_context	-	restore registers
3170  *	@vptr: velocity
3171  *	@context: buffer for stored context
3172  *
3173  *	Reload the register configuration from the velocity context
3174  *	created by velocity_save_context.
3175  */
3176 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3177 {
3178 	struct mac_regs __iomem *regs = vptr->mac_regs;
3179 	int i;
3180 	u8 __iomem *ptr = (u8 __iomem *)regs;
3181 
3182 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3183 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3184 
3185 	/* Just skip cr0 */
3186 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3187 		/* Clear */
3188 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3189 		/* Set */
3190 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3191 	}
3192 
3193 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3194 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3195 
3196 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3197 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198 
3199 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3200 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3201 }
3202 
3203 static int velocity_resume(struct device *dev)
3204 {
3205 	struct net_device *netdev = dev_get_drvdata(dev);
3206 	struct velocity_info *vptr = netdev_priv(netdev);
3207 	unsigned long flags;
3208 	int i;
3209 
3210 	if (!netif_running(vptr->netdev))
3211 		return 0;
3212 
3213 	velocity_set_power_state(vptr, PCI_D0);
3214 
3215 	if (vptr->pdev) {
3216 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3217 		pci_restore_state(vptr->pdev);
3218 	}
3219 
3220 	mac_wol_reset(vptr->mac_regs);
3221 
3222 	spin_lock_irqsave(&vptr->lock, flags);
3223 	velocity_restore_context(vptr, &vptr->context);
3224 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3225 	mac_disable_int(vptr->mac_regs);
3226 
3227 	velocity_tx_srv(vptr);
3228 
3229 	for (i = 0; i < vptr->tx.numq; i++) {
3230 		if (vptr->tx.used[i])
3231 			mac_tx_queue_wake(vptr->mac_regs, i);
3232 	}
3233 
3234 	mac_enable_int(vptr->mac_regs);
3235 	spin_unlock_irqrestore(&vptr->lock, flags);
3236 	netif_device_attach(vptr->netdev);
3237 
3238 	return 0;
3239 }
3240 #endif	/* CONFIG_PM_SLEEP */
3241 
3242 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3243 
3244 /*
3245  *	Definition for our device driver. The PCI layer interface
3246  *	uses this to handle all our card discover and plugging
3247  */
3248 static struct pci_driver velocity_pci_driver = {
3249 	.name		= VELOCITY_NAME,
3250 	.id_table	= velocity_pci_id_table,
3251 	.probe		= velocity_pci_probe,
3252 	.remove		= velocity_pci_remove,
3253 	.driver = {
3254 		.pm = &velocity_pm_ops,
3255 	},
3256 };
3257 
3258 static struct platform_driver velocity_platform_driver = {
3259 	.probe		= velocity_platform_probe,
3260 	.remove		= velocity_platform_remove,
3261 	.driver = {
3262 		.name = "via-velocity",
3263 		.owner = THIS_MODULE,
3264 		.of_match_table = velocity_of_ids,
3265 		.pm = &velocity_pm_ops,
3266 	},
3267 };
3268 
3269 /**
3270  *	velocity_ethtool_up	-	pre hook for ethtool
3271  *	@dev: network device
3272  *
3273  *	Called before an ethtool operation. We need to make sure the
3274  *	chip is out of D3 state before we poke at it.
3275  */
3276 static int velocity_ethtool_up(struct net_device *dev)
3277 {
3278 	struct velocity_info *vptr = netdev_priv(dev);
3279 	if (!netif_running(dev))
3280 		velocity_set_power_state(vptr, PCI_D0);
3281 	return 0;
3282 }
3283 
3284 /**
3285  *	velocity_ethtool_down	-	post hook for ethtool
3286  *	@dev: network device
3287  *
3288  *	Called after an ethtool operation. Restore the chip back to D3
3289  *	state if it isn't running.
3290  */
3291 static void velocity_ethtool_down(struct net_device *dev)
3292 {
3293 	struct velocity_info *vptr = netdev_priv(dev);
3294 	if (!netif_running(dev))
3295 		velocity_set_power_state(vptr, PCI_D3hot);
3296 }
3297 
3298 static int velocity_get_settings(struct net_device *dev,
3299 				 struct ethtool_cmd *cmd)
3300 {
3301 	struct velocity_info *vptr = netdev_priv(dev);
3302 	struct mac_regs __iomem *regs = vptr->mac_regs;
3303 	u32 status;
3304 	status = check_connection_type(vptr->mac_regs);
3305 
3306 	cmd->supported = SUPPORTED_TP |
3307 			SUPPORTED_Autoneg |
3308 			SUPPORTED_10baseT_Half |
3309 			SUPPORTED_10baseT_Full |
3310 			SUPPORTED_100baseT_Half |
3311 			SUPPORTED_100baseT_Full |
3312 			SUPPORTED_1000baseT_Half |
3313 			SUPPORTED_1000baseT_Full;
3314 
3315 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3316 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3317 		cmd->advertising |=
3318 			ADVERTISED_10baseT_Half |
3319 			ADVERTISED_10baseT_Full |
3320 			ADVERTISED_100baseT_Half |
3321 			ADVERTISED_100baseT_Full |
3322 			ADVERTISED_1000baseT_Half |
3323 			ADVERTISED_1000baseT_Full;
3324 	} else {
3325 		switch (vptr->options.spd_dpx) {
3326 		case SPD_DPX_1000_FULL:
3327 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3328 			break;
3329 		case SPD_DPX_100_HALF:
3330 			cmd->advertising |= ADVERTISED_100baseT_Half;
3331 			break;
3332 		case SPD_DPX_100_FULL:
3333 			cmd->advertising |= ADVERTISED_100baseT_Full;
3334 			break;
3335 		case SPD_DPX_10_HALF:
3336 			cmd->advertising |= ADVERTISED_10baseT_Half;
3337 			break;
3338 		case SPD_DPX_10_FULL:
3339 			cmd->advertising |= ADVERTISED_10baseT_Full;
3340 			break;
3341 		default:
3342 			break;
3343 		}
3344 	}
3345 
3346 	if (status & VELOCITY_SPEED_1000)
3347 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3348 	else if (status & VELOCITY_SPEED_100)
3349 		ethtool_cmd_speed_set(cmd, SPEED_100);
3350 	else
3351 		ethtool_cmd_speed_set(cmd, SPEED_10);
3352 
3353 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3354 	cmd->port = PORT_TP;
3355 	cmd->transceiver = XCVR_INTERNAL;
3356 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3357 
3358 	if (status & VELOCITY_DUPLEX_FULL)
3359 		cmd->duplex = DUPLEX_FULL;
3360 	else
3361 		cmd->duplex = DUPLEX_HALF;
3362 
3363 	return 0;
3364 }
3365 
3366 static int velocity_set_settings(struct net_device *dev,
3367 				 struct ethtool_cmd *cmd)
3368 {
3369 	struct velocity_info *vptr = netdev_priv(dev);
3370 	u32 speed = ethtool_cmd_speed(cmd);
3371 	u32 curr_status;
3372 	u32 new_status = 0;
3373 	int ret = 0;
3374 
3375 	curr_status = check_connection_type(vptr->mac_regs);
3376 	curr_status &= (~VELOCITY_LINK_FAIL);
3377 
3378 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3379 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3380 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3381 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3382 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3383 
3384 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3385 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3386 		ret = -EINVAL;
3387 	} else {
3388 		enum speed_opt spd_dpx;
3389 
3390 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3391 			spd_dpx = SPD_DPX_AUTO;
3392 		else if ((new_status & VELOCITY_SPEED_1000) &&
3393 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3394 			spd_dpx = SPD_DPX_1000_FULL;
3395 		} else if (new_status & VELOCITY_SPEED_100)
3396 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3397 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3398 		else if (new_status & VELOCITY_SPEED_10)
3399 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3400 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3401 		else
3402 			return -EOPNOTSUPP;
3403 
3404 		vptr->options.spd_dpx = spd_dpx;
3405 
3406 		velocity_set_media_mode(vptr, new_status);
3407 	}
3408 
3409 	return ret;
3410 }
3411 
3412 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3413 {
3414 	struct velocity_info *vptr = netdev_priv(dev);
3415 
3416 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3417 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3418 	if (vptr->pdev)
3419 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3420 						sizeof(info->bus_info));
3421 	else
3422 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3423 }
3424 
3425 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3426 {
3427 	struct velocity_info *vptr = netdev_priv(dev);
3428 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3429 	wol->wolopts |= WAKE_MAGIC;
3430 	/*
3431 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3432 		   wol.wolopts|=WAKE_PHY;
3433 			 */
3434 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3435 		wol->wolopts |= WAKE_UCAST;
3436 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3437 		wol->wolopts |= WAKE_ARP;
3438 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3439 }
3440 
3441 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3442 {
3443 	struct velocity_info *vptr = netdev_priv(dev);
3444 
3445 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3446 		return -EFAULT;
3447 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3448 
3449 	/*
3450 	   if (wol.wolopts & WAKE_PHY) {
3451 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3452 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3453 	   }
3454 	 */
3455 
3456 	if (wol->wolopts & WAKE_MAGIC) {
3457 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3458 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3459 	}
3460 	if (wol->wolopts & WAKE_UCAST) {
3461 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3462 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3463 	}
3464 	if (wol->wolopts & WAKE_ARP) {
3465 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3466 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3467 	}
3468 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3469 	return 0;
3470 }
3471 
3472 static u32 velocity_get_msglevel(struct net_device *dev)
3473 {
3474 	return msglevel;
3475 }
3476 
3477 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3478 {
3479 	 msglevel = value;
3480 }
3481 
3482 static int get_pending_timer_val(int val)
3483 {
3484 	int mult_bits = val >> 6;
3485 	int mult = 1;
3486 
3487 	switch (mult_bits)
3488 	{
3489 	case 1:
3490 		mult = 4; break;
3491 	case 2:
3492 		mult = 16; break;
3493 	case 3:
3494 		mult = 64; break;
3495 	case 0:
3496 	default:
3497 		break;
3498 	}
3499 
3500 	return (val & 0x3f) * mult;
3501 }
3502 
3503 static void set_pending_timer_val(int *val, u32 us)
3504 {
3505 	u8 mult = 0;
3506 	u8 shift = 0;
3507 
3508 	if (us >= 0x3f) {
3509 		mult = 1; /* mult with 4 */
3510 		shift = 2;
3511 	}
3512 	if (us >= 0x3f * 4) {
3513 		mult = 2; /* mult with 16 */
3514 		shift = 4;
3515 	}
3516 	if (us >= 0x3f * 16) {
3517 		mult = 3; /* mult with 64 */
3518 		shift = 6;
3519 	}
3520 
3521 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3522 }
3523 
3524 
3525 static int velocity_get_coalesce(struct net_device *dev,
3526 		struct ethtool_coalesce *ecmd)
3527 {
3528 	struct velocity_info *vptr = netdev_priv(dev);
3529 
3530 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3531 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3532 
3533 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3534 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3535 
3536 	return 0;
3537 }
3538 
3539 static int velocity_set_coalesce(struct net_device *dev,
3540 		struct ethtool_coalesce *ecmd)
3541 {
3542 	struct velocity_info *vptr = netdev_priv(dev);
3543 	int max_us = 0x3f * 64;
3544 	unsigned long flags;
3545 
3546 	/* 6 bits of  */
3547 	if (ecmd->tx_coalesce_usecs > max_us)
3548 		return -EINVAL;
3549 	if (ecmd->rx_coalesce_usecs > max_us)
3550 		return -EINVAL;
3551 
3552 	if (ecmd->tx_max_coalesced_frames > 0xff)
3553 		return -EINVAL;
3554 	if (ecmd->rx_max_coalesced_frames > 0xff)
3555 		return -EINVAL;
3556 
3557 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3558 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3559 
3560 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3561 			ecmd->rx_coalesce_usecs);
3562 	set_pending_timer_val(&vptr->options.txqueue_timer,
3563 			ecmd->tx_coalesce_usecs);
3564 
3565 	/* Setup the interrupt suppression and queue timers */
3566 	spin_lock_irqsave(&vptr->lock, flags);
3567 	mac_disable_int(vptr->mac_regs);
3568 	setup_adaptive_interrupts(vptr);
3569 	setup_queue_timers(vptr);
3570 
3571 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3572 	mac_clear_isr(vptr->mac_regs);
3573 	mac_enable_int(vptr->mac_regs);
3574 	spin_unlock_irqrestore(&vptr->lock, flags);
3575 
3576 	return 0;
3577 }
3578 
3579 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3580 	"rx_all",
3581 	"rx_ok",
3582 	"tx_ok",
3583 	"rx_error",
3584 	"rx_runt_ok",
3585 	"rx_runt_err",
3586 	"rx_64",
3587 	"tx_64",
3588 	"rx_65_to_127",
3589 	"tx_65_to_127",
3590 	"rx_128_to_255",
3591 	"tx_128_to_255",
3592 	"rx_256_to_511",
3593 	"tx_256_to_511",
3594 	"rx_512_to_1023",
3595 	"tx_512_to_1023",
3596 	"rx_1024_to_1518",
3597 	"tx_1024_to_1518",
3598 	"tx_ether_collisions",
3599 	"rx_crc_errors",
3600 	"rx_jumbo",
3601 	"tx_jumbo",
3602 	"rx_mac_control_frames",
3603 	"tx_mac_control_frames",
3604 	"rx_frame_alignement_errors",
3605 	"rx_long_ok",
3606 	"rx_long_err",
3607 	"tx_sqe_errors",
3608 	"rx_no_buf",
3609 	"rx_symbol_errors",
3610 	"in_range_length_errors",
3611 	"late_collisions"
3612 };
3613 
3614 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3615 {
3616 	switch (sset) {
3617 	case ETH_SS_STATS:
3618 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3619 		break;
3620 	}
3621 }
3622 
3623 static int velocity_get_sset_count(struct net_device *dev, int sset)
3624 {
3625 	switch (sset) {
3626 	case ETH_SS_STATS:
3627 		return ARRAY_SIZE(velocity_gstrings);
3628 	default:
3629 		return -EOPNOTSUPP;
3630 	}
3631 }
3632 
3633 static void velocity_get_ethtool_stats(struct net_device *dev,
3634 				       struct ethtool_stats *stats, u64 *data)
3635 {
3636 	if (netif_running(dev)) {
3637 		struct velocity_info *vptr = netdev_priv(dev);
3638 		u32 *p = vptr->mib_counter;
3639 		int i;
3640 
3641 		spin_lock_irq(&vptr->lock);
3642 		velocity_update_hw_mibs(vptr);
3643 		spin_unlock_irq(&vptr->lock);
3644 
3645 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3646 			*data++ = *p++;
3647 	}
3648 }
3649 
3650 static const struct ethtool_ops velocity_ethtool_ops = {
3651 	.get_settings		= velocity_get_settings,
3652 	.set_settings		= velocity_set_settings,
3653 	.get_drvinfo		= velocity_get_drvinfo,
3654 	.get_wol		= velocity_ethtool_get_wol,
3655 	.set_wol		= velocity_ethtool_set_wol,
3656 	.get_msglevel		= velocity_get_msglevel,
3657 	.set_msglevel		= velocity_set_msglevel,
3658 	.get_link		= velocity_get_link,
3659 	.get_strings		= velocity_get_strings,
3660 	.get_sset_count		= velocity_get_sset_count,
3661 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3662 	.get_coalesce		= velocity_get_coalesce,
3663 	.set_coalesce		= velocity_set_coalesce,
3664 	.begin			= velocity_ethtool_up,
3665 	.complete		= velocity_ethtool_down
3666 };
3667 
3668 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3669 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3670 {
3671 	struct in_ifaddr *ifa = ptr;
3672 	struct net_device *dev = ifa->ifa_dev->dev;
3673 
3674 	if (dev_net(dev) == &init_net &&
3675 	    dev->netdev_ops == &velocity_netdev_ops)
3676 		velocity_get_ip(netdev_priv(dev));
3677 
3678 	return NOTIFY_DONE;
3679 }
3680 
3681 static struct notifier_block velocity_inetaddr_notifier = {
3682 	.notifier_call	= velocity_netdev_event,
3683 };
3684 
3685 static void velocity_register_notifier(void)
3686 {
3687 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3688 }
3689 
3690 static void velocity_unregister_notifier(void)
3691 {
3692 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3693 }
3694 
3695 #else
3696 
3697 #define velocity_register_notifier()	do {} while (0)
3698 #define velocity_unregister_notifier()	do {} while (0)
3699 
3700 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3701 
3702 /**
3703  *	velocity_init_module	-	load time function
3704  *
3705  *	Called when the velocity module is loaded. The PCI driver
3706  *	is registered with the PCI layer, and in turn will call
3707  *	the probe functions for each velocity adapter installed
3708  *	in the system.
3709  */
3710 static int __init velocity_init_module(void)
3711 {
3712 	int ret_pci, ret_platform;
3713 
3714 	velocity_register_notifier();
3715 
3716 	ret_pci = pci_register_driver(&velocity_pci_driver);
3717 	ret_platform = platform_driver_register(&velocity_platform_driver);
3718 
3719 	/* if both_registers failed, remove the notifier */
3720 	if ((ret_pci < 0) && (ret_platform < 0)) {
3721 		velocity_unregister_notifier();
3722 		return ret_pci;
3723 	}
3724 
3725 	return 0;
3726 }
3727 
3728 /**
3729  *	velocity_cleanup	-	module unload
3730  *
3731  *	When the velocity hardware is unloaded this function is called.
3732  *	It will clean up the notifiers and the unregister the PCI
3733  *	driver interface for this hardware. This in turn cleans up
3734  *	all discovered interfaces before returning from the function
3735  */
3736 static void __exit velocity_cleanup_module(void)
3737 {
3738 	velocity_unregister_notifier();
3739 
3740 	pci_unregister_driver(&velocity_pci_driver);
3741 	platform_driver_unregister(&velocity_platform_driver);
3742 }
3743 
3744 module_init(velocity_init_module);
3745 module_exit(velocity_cleanup_module);
3746