1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84 
85 #include "via-velocity.h"
86 
87 enum velocity_bus_type {
88 	BUS_PCI,
89 	BUS_PLATFORM,
90 };
91 
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94 
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 	void *addr = vptr->mac_regs;
98 
99 	if (vptr->pdev)
100 		pci_set_power_state(vptr->pdev, state);
101 	else
102 		writeb(state, addr + 0x154);
103 }
104 
105 /**
106  *	mac_get_cam_mask	-	Read a CAM mask
107  *	@regs: register block for this velocity
108  *	@mask: buffer to store mask
109  *
110  *	Fetch the mask bits of the selected CAM and store them into the
111  *	provided mask buffer.
112  */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 	int i;
116 
117 	/* Select CAM mask */
118 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 
120 	writeb(0, &regs->CAMADDR);
121 
122 	/* read mask */
123 	for (i = 0; i < 8; i++)
124 		*mask++ = readb(&(regs->MARCAM[i]));
125 
126 	/* disable CAMEN */
127 	writeb(0, &regs->CAMADDR);
128 
129 	/* Select mar */
130 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132 
133 /**
134  *	mac_set_cam_mask	-	Set a CAM mask
135  *	@regs: register block for this velocity
136  *	@mask: CAM mask to load
137  *
138  *	Store a new mask into a CAM
139  */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 	int i;
143 	/* Select CAM mask */
144 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 
146 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147 
148 	for (i = 0; i < 8; i++)
149 		writeb(*mask++, &(regs->MARCAM[i]));
150 
151 	/* disable CAMEN */
152 	writeb(0, &regs->CAMADDR);
153 
154 	/* Select mar */
155 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157 
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 	int i;
161 	/* Select CAM mask */
162 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 
164 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165 
166 	for (i = 0; i < 8; i++)
167 		writeb(*mask++, &(regs->MARCAM[i]));
168 
169 	/* disable CAMEN */
170 	writeb(0, &regs->CAMADDR);
171 
172 	/* Select mar */
173 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175 
176 /**
177  *	mac_set_cam	-	set CAM data
178  *	@regs: register block of this velocity
179  *	@idx: Cam index
180  *	@addr: 2 or 6 bytes of CAM data
181  *
182  *	Load an address or vlan tag into a CAM
183  */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 	int i;
187 
188 	/* Select CAM mask */
189 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 
191 	idx &= (64 - 1);
192 
193 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194 
195 	for (i = 0; i < 6; i++)
196 		writeb(*addr++, &(regs->MARCAM[i]));
197 
198 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199 
200 	udelay(10);
201 
202 	writeb(0, &regs->CAMADDR);
203 
204 	/* Select mar */
205 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207 
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 			     const u8 *addr)
210 {
211 
212 	/* Select CAM mask */
213 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 
215 	idx &= (64 - 1);
216 
217 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 	writew(*((u16 *) addr), &regs->MARCAM[0]);
219 
220 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221 
222 	udelay(10);
223 
224 	writeb(0, &regs->CAMADDR);
225 
226 	/* Select mar */
227 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229 
230 
231 /**
232  *	mac_wol_reset	-	reset WOL after exiting low power
233  *	@regs: register block of this velocity
234  *
235  *	Called after we drop out of wake on lan mode in order to
236  *	reset the Wake on lan features. This function doesn't restore
237  *	the rest of the logic from the result of sleep/wakeup
238  */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241 
242 	/* Turn off SWPTAG right after leaving power mode */
243 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 	/* clear sticky bits */
245 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246 
247 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 	/* disable force PME-enable */
250 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 	/* disable power-event config bit */
252 	writew(0xFFFF, &regs->WOLCRClr);
253 	/* clear power status */
254 	writew(0xFFFF, &regs->WOLSRClr);
255 }
256 
257 static const struct ethtool_ops velocity_ethtool_ops;
258 
259 /*
260     Define module options
261 */
262 
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266 
267 #define VELOCITY_PARAM(N, D) \
268 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 	module_param_array(N, int, NULL, 0); \
270 	MODULE_PARM_DESC(N, D);
271 
272 #define RX_DESC_MIN     64
273 #define RX_DESC_MAX     255
274 #define RX_DESC_DEF     64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276 
277 #define TX_DESC_MIN     16
278 #define TX_DESC_MAX     256
279 #define TX_DESC_DEF     64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281 
282 #define RX_THRESH_MIN   0
283 #define RX_THRESH_MAX   3
284 #define RX_THRESH_DEF   0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286    0: indicate the rxfifo threshold is 128 bytes.
287    1: indicate the rxfifo threshold is 512 bytes.
288    2: indicate the rxfifo threshold is 1024 bytes.
289    3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292 
293 #define DMA_LENGTH_MIN  0
294 #define DMA_LENGTH_MAX  7
295 #define DMA_LENGTH_DEF  6
296 
297 /* DMA_length[] is used for controlling the DMA length
298    0: 8 DWORDs
299    1: 16 DWORDs
300    2: 32 DWORDs
301    3: 64 DWORDs
302    4: 128 DWORDs
303    5: 256 DWORDs
304    6: SF(flush till emply)
305    7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308 
309 #define IP_ALIG_DEF     0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311    0: indicate the IP header won't be DWORD byte aligned.(Default) .
312    1: indicate the IP header will be DWORD byte aligned.
313       In some environment, the IP header should be DWORD byte aligned,
314       or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317 
318 #define FLOW_CNTL_DEF   1
319 #define FLOW_CNTL_MIN   1
320 #define FLOW_CNTL_MAX   5
321 
322 /* flow_control[] is used for setting the flow control ability of NIC.
323    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324    2: enable TX flow control.
325    3: enable RX flow control.
326    4: enable RX/TX flow control.
327    5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330 
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335    0: indicate autonegotiation for both speed and duplex mode
336    1: indicate 100Mbps half duplex mode
337    2: indicate 100Mbps full duplex mode
338    3: indicate 10Mbps half duplex mode
339    4: indicate 10Mbps full duplex mode
340    5: indicate 1000Mbps full duplex mode
341 
342    Note:
343    if EEPROM have been set to the force mode, this option is ignored
344    by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347 
348 #define WOL_OPT_DEF     0
349 #define WOL_OPT_MIN     0
350 #define WOL_OPT_MAX     7
351 /* wol_opts[] is used for controlling wake on lan behavior.
352    0: Wake up if recevied a magic packet. (Default)
353    1: Wake up if link status is on/off.
354    2: Wake up if recevied an arp packet.
355    4: Wake up if recevied any unicast packet.
356    Those value can be sumed up to support more than one option.
357 */
358 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
359 
360 static int rx_copybreak = 200;
361 module_param(rx_copybreak, int, 0644);
362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
363 
364 /*
365  *	Internal board variants. At the moment we have only one
366  */
367 static struct velocity_info_tbl chip_info_table[] = {
368 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
369 	{ }
370 };
371 
372 /*
373  *	Describe the PCI device identifiers that we support in this
374  *	device driver. Used for hotplug autoloading.
375  */
376 
377 static const struct pci_device_id velocity_pci_id_table[] = {
378 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
379 	{ }
380 };
381 
382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
383 
384 /**
385  *	Describe the OF device identifiers that we support in this
386  *	device driver. Used for devicetree nodes.
387  */
388 static const struct of_device_id velocity_of_ids[] = {
389 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
390 	{ /* Sentinel */ },
391 };
392 MODULE_DEVICE_TABLE(of, velocity_of_ids);
393 
394 /**
395  *	get_chip_name	- 	identifier to name
396  *	@id: chip identifier
397  *
398  *	Given a chip identifier return a suitable description. Returns
399  *	a pointer a static string valid while the driver is loaded.
400  */
401 static const char *get_chip_name(enum chip_type chip_id)
402 {
403 	int i;
404 	for (i = 0; chip_info_table[i].name != NULL; i++)
405 		if (chip_info_table[i].chip_id == chip_id)
406 			break;
407 	return chip_info_table[i].name;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 				 char *name, const char *devname)
426 {
427 	if (val == -1)
428 		*opt = def;
429 	else if (val < min || val > max) {
430 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 					devname, name, min, max);
432 		*opt = def;
433 	} else {
434 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 					devname, name, val);
436 		*opt = val;
437 	}
438 }
439 
440 /**
441  *	velocity_set_bool_opt	-	parser for boolean options
442  *	@opt: pointer to option value
443  *	@val: value the user requested (or -1 for default)
444  *	@def: default value (yes/no)
445  *	@flag: numeric value to set for true.
446  *	@name: property name
447  *	@dev: device name
448  *
449  *	Set a boolean property in the module options. This function does
450  *	all the verification and checking as well as reporting so that
451  *	we don't duplicate code for each option.
452  */
453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 				  char *name, const char *devname)
455 {
456 	(*opt) &= (~flag);
457 	if (val == -1)
458 		*opt |= (def ? flag : 0);
459 	else if (val < 0 || val > 1) {
460 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 			devname, name);
462 		*opt |= (def ? flag : 0);
463 	} else {
464 		printk(KERN_INFO "%s: set parameter %s to %s\n",
465 			devname, name, val ? "TRUE" : "FALSE");
466 		*opt |= (val ? flag : 0);
467 	}
468 }
469 
470 /**
471  *	velocity_get_options	-	set options on device
472  *	@opts: option structure for the device
473  *	@index: index of option to use in module options array
474  *	@devname: device name
475  *
476  *	Turn the module and command options into a single structure
477  *	for the current device
478  */
479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 				 const char *devname)
481 {
482 
483 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487 
488 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
491 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
492 	opts->numrx = (opts->numrx & ~3);
493 }
494 
495 /**
496  *	velocity_init_cam_filter	-	initialise CAM
497  *	@vptr: velocity to program
498  *
499  *	Initialize the content addressable memory used for filters. Load
500  *	appropriately according to the presence of VLAN
501  */
502 static void velocity_init_cam_filter(struct velocity_info *vptr)
503 {
504 	struct mac_regs __iomem *regs = vptr->mac_regs;
505 	unsigned int vid, i = 0;
506 
507 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
508 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
509 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
510 
511 	/* Disable all CAMs */
512 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
513 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
514 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
515 	mac_set_cam_mask(regs, vptr->mCAMmask);
516 
517 	/* Enable VCAMs */
518 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
519 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
520 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
521 		if (++i >= VCAM_SIZE)
522 			break;
523 	}
524 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 }
526 
527 static int velocity_vlan_rx_add_vid(struct net_device *dev,
528 				    __be16 proto, u16 vid)
529 {
530 	struct velocity_info *vptr = netdev_priv(dev);
531 
532 	spin_lock_irq(&vptr->lock);
533 	set_bit(vid, vptr->active_vlans);
534 	velocity_init_cam_filter(vptr);
535 	spin_unlock_irq(&vptr->lock);
536 	return 0;
537 }
538 
539 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
540 				     __be16 proto, u16 vid)
541 {
542 	struct velocity_info *vptr = netdev_priv(dev);
543 
544 	spin_lock_irq(&vptr->lock);
545 	clear_bit(vid, vptr->active_vlans);
546 	velocity_init_cam_filter(vptr);
547 	spin_unlock_irq(&vptr->lock);
548 	return 0;
549 }
550 
551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
552 {
553 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
554 }
555 
556 /**
557  *	velocity_rx_reset	-	handle a receive reset
558  *	@vptr: velocity we are resetting
559  *
560  *	Reset the ownership and status for the receive ring side.
561  *	Hand all the receive queue to the NIC.
562  */
563 static void velocity_rx_reset(struct velocity_info *vptr)
564 {
565 
566 	struct mac_regs __iomem *regs = vptr->mac_regs;
567 	int i;
568 
569 	velocity_init_rx_ring_indexes(vptr);
570 
571 	/*
572 	 *	Init state, all RD entries belong to the NIC
573 	 */
574 	for (i = 0; i < vptr->options.numrx; ++i)
575 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
576 
577 	writew(vptr->options.numrx, &regs->RBRDU);
578 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
579 	writew(0, &regs->RDIdx);
580 	writew(vptr->options.numrx - 1, &regs->RDCSize);
581 }
582 
583 /**
584  *	velocity_get_opt_media_mode	-	get media selection
585  *	@vptr: velocity adapter
586  *
587  *	Get the media mode stored in EEPROM or module options and load
588  *	mii_status accordingly. The requested link state information
589  *	is also returned.
590  */
591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
592 {
593 	u32 status = 0;
594 
595 	switch (vptr->options.spd_dpx) {
596 	case SPD_DPX_AUTO:
597 		status = VELOCITY_AUTONEG_ENABLE;
598 		break;
599 	case SPD_DPX_100_FULL:
600 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
601 		break;
602 	case SPD_DPX_10_FULL:
603 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
604 		break;
605 	case SPD_DPX_100_HALF:
606 		status = VELOCITY_SPEED_100;
607 		break;
608 	case SPD_DPX_10_HALF:
609 		status = VELOCITY_SPEED_10;
610 		break;
611 	case SPD_DPX_1000_FULL:
612 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
613 		break;
614 	}
615 	vptr->mii_status = status;
616 	return status;
617 }
618 
619 /**
620  *	safe_disable_mii_autopoll	-	autopoll off
621  *	@regs: velocity registers
622  *
623  *	Turn off the autopoll and wait for it to disable on the chip
624  */
625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
626 {
627 	u16 ww;
628 
629 	/*  turn off MAUTO */
630 	writeb(0, &regs->MIICR);
631 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
632 		udelay(1);
633 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
634 			break;
635 	}
636 }
637 
638 /**
639  *	enable_mii_autopoll	-	turn on autopolling
640  *	@regs: velocity registers
641  *
642  *	Enable the MII link status autopoll feature on the Velocity
643  *	hardware. Wait for it to enable.
644  */
645 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
646 {
647 	int ii;
648 
649 	writeb(0, &(regs->MIICR));
650 	writeb(MIIADR_SWMPL, &regs->MIIADR);
651 
652 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
653 		udelay(1);
654 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
655 			break;
656 	}
657 
658 	writeb(MIICR_MAUTO, &regs->MIICR);
659 
660 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 		udelay(1);
662 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 			break;
664 	}
665 
666 }
667 
668 /**
669  *	velocity_mii_read	-	read MII data
670  *	@regs: velocity registers
671  *	@index: MII register index
672  *	@data: buffer for received data
673  *
674  *	Perform a single read of an MII 16bit register. Returns zero
675  *	on success or -ETIMEDOUT if the PHY did not respond.
676  */
677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
678 {
679 	u16 ww;
680 
681 	/*
682 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
683 	 */
684 	safe_disable_mii_autopoll(regs);
685 
686 	writeb(index, &regs->MIIADR);
687 
688 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
689 
690 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
691 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
692 			break;
693 	}
694 
695 	*data = readw(&regs->MIIDATA);
696 
697 	enable_mii_autopoll(regs);
698 	if (ww == W_MAX_TIMEOUT)
699 		return -ETIMEDOUT;
700 	return 0;
701 }
702 
703 /**
704  *	mii_check_media_mode	-	check media state
705  *	@regs: velocity registers
706  *
707  *	Check the current MII status and determine the link status
708  *	accordingly
709  */
710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
711 {
712 	u32 status = 0;
713 	u16 ANAR;
714 
715 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
716 		status |= VELOCITY_LINK_FAIL;
717 
718 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
719 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
720 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
721 		status |= (VELOCITY_SPEED_1000);
722 	else {
723 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
724 		if (ANAR & ADVERTISE_100FULL)
725 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
726 		else if (ANAR & ADVERTISE_100HALF)
727 			status |= VELOCITY_SPEED_100;
728 		else if (ANAR & ADVERTISE_10FULL)
729 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
730 		else
731 			status |= (VELOCITY_SPEED_10);
732 	}
733 
734 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
735 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
736 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
737 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
738 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
739 				status |= VELOCITY_AUTONEG_ENABLE;
740 		}
741 	}
742 
743 	return status;
744 }
745 
746 /**
747  *	velocity_mii_write	-	write MII data
748  *	@regs: velocity registers
749  *	@index: MII register index
750  *	@data: 16bit data for the MII register
751  *
752  *	Perform a single write to an MII 16bit register. Returns zero
753  *	on success or -ETIMEDOUT if the PHY did not respond.
754  */
755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
756 {
757 	u16 ww;
758 
759 	/*
760 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
761 	 */
762 	safe_disable_mii_autopoll(regs);
763 
764 	/* MII reg offset */
765 	writeb(mii_addr, &regs->MIIADR);
766 	/* set MII data */
767 	writew(data, &regs->MIIDATA);
768 
769 	/* turn on MIICR_WCMD */
770 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
771 
772 	/* W_MAX_TIMEOUT is the timeout period */
773 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
774 		udelay(5);
775 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
776 			break;
777 	}
778 	enable_mii_autopoll(regs);
779 
780 	if (ww == W_MAX_TIMEOUT)
781 		return -ETIMEDOUT;
782 	return 0;
783 }
784 
785 /**
786  *	set_mii_flow_control	-	flow control setup
787  *	@vptr: velocity interface
788  *
789  *	Set up the flow control on this interface according to
790  *	the supplied user/eeprom options.
791  */
792 static void set_mii_flow_control(struct velocity_info *vptr)
793 {
794 	/*Enable or Disable PAUSE in ANAR */
795 	switch (vptr->options.flow_cntl) {
796 	case FLOW_CNTL_TX:
797 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
798 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
799 		break;
800 
801 	case FLOW_CNTL_RX:
802 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
803 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
804 		break;
805 
806 	case FLOW_CNTL_TX_RX:
807 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
808 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
809 		break;
810 
811 	case FLOW_CNTL_DISABLE:
812 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
813 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
814 		break;
815 	default:
816 		break;
817 	}
818 }
819 
820 /**
821  *	mii_set_auto_on		-	autonegotiate on
822  *	@vptr: velocity
823  *
824  *	Enable autonegotation on this interface
825  */
826 static void mii_set_auto_on(struct velocity_info *vptr)
827 {
828 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
829 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
830 	else
831 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
832 }
833 
834 static u32 check_connection_type(struct mac_regs __iomem *regs)
835 {
836 	u32 status = 0;
837 	u8 PHYSR0;
838 	u16 ANAR;
839 	PHYSR0 = readb(&regs->PHYSR0);
840 
841 	/*
842 	   if (!(PHYSR0 & PHYSR0_LINKGD))
843 	   status|=VELOCITY_LINK_FAIL;
844 	 */
845 
846 	if (PHYSR0 & PHYSR0_FDPX)
847 		status |= VELOCITY_DUPLEX_FULL;
848 
849 	if (PHYSR0 & PHYSR0_SPDG)
850 		status |= VELOCITY_SPEED_1000;
851 	else if (PHYSR0 & PHYSR0_SPD10)
852 		status |= VELOCITY_SPEED_10;
853 	else
854 		status |= VELOCITY_SPEED_100;
855 
856 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
857 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
858 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
859 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
860 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
861 				status |= VELOCITY_AUTONEG_ENABLE;
862 		}
863 	}
864 
865 	return status;
866 }
867 
868 /**
869  *	velocity_set_media_mode		-	set media mode
870  *	@mii_status: old MII link state
871  *
872  *	Check the media link state and configure the flow control
873  *	PHY and also velocity hardware setup accordingly. In particular
874  *	we need to set up CD polling and frame bursting.
875  */
876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
877 {
878 	u32 curr_status;
879 	struct mac_regs __iomem *regs = vptr->mac_regs;
880 
881 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
882 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
883 
884 	/* Set mii link status */
885 	set_mii_flow_control(vptr);
886 
887 	/*
888 	   Check if new status is consistent with current status
889 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
890 	       (mii_status==curr_status)) {
891 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
892 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
893 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
894 	   return 0;
895 	   }
896 	 */
897 
898 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
899 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
900 
901 	/*
902 	 *	If connection type is AUTO
903 	 */
904 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
905 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
906 		/* clear force MAC mode bit */
907 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
908 		/* set duplex mode of MAC according to duplex mode of MII */
909 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
910 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
911 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
912 
913 		/* enable AUTO-NEGO mode */
914 		mii_set_auto_on(vptr);
915 	} else {
916 		u16 CTRL1000;
917 		u16 ANAR;
918 		u8 CHIPGCR;
919 
920 		/*
921 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
922 		 *    and enable it in fullduplex mode
923 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
924 		 * 3. only enable CD heart beat counter in 10HD mode
925 		 */
926 
927 		/* set force MAC mode bit */
928 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
929 
930 		CHIPGCR = readb(&regs->CHIPGCR);
931 
932 		if (mii_status & VELOCITY_SPEED_1000)
933 			CHIPGCR |= CHIPGCR_FCGMII;
934 		else
935 			CHIPGCR &= ~CHIPGCR_FCGMII;
936 
937 		if (mii_status & VELOCITY_DUPLEX_FULL) {
938 			CHIPGCR |= CHIPGCR_FCFDX;
939 			writeb(CHIPGCR, &regs->CHIPGCR);
940 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
941 			if (vptr->rev_id < REV_ID_VT3216_A0)
942 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
943 		} else {
944 			CHIPGCR &= ~CHIPGCR_FCFDX;
945 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
946 			writeb(CHIPGCR, &regs->CHIPGCR);
947 			if (vptr->rev_id < REV_ID_VT3216_A0)
948 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
949 		}
950 
951 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
952 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
953 		if ((mii_status & VELOCITY_SPEED_1000) &&
954 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
955 			CTRL1000 |= ADVERTISE_1000FULL;
956 		}
957 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
958 
959 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
960 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
961 		else
962 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
963 
964 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
965 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
966 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
967 		if (mii_status & VELOCITY_SPEED_100) {
968 			if (mii_status & VELOCITY_DUPLEX_FULL)
969 				ANAR |= ADVERTISE_100FULL;
970 			else
971 				ANAR |= ADVERTISE_100HALF;
972 		} else if (mii_status & VELOCITY_SPEED_10) {
973 			if (mii_status & VELOCITY_DUPLEX_FULL)
974 				ANAR |= ADVERTISE_10FULL;
975 			else
976 				ANAR |= ADVERTISE_10HALF;
977 		}
978 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
979 		/* enable AUTO-NEGO mode */
980 		mii_set_auto_on(vptr);
981 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
982 	}
983 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
984 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
985 	return VELOCITY_LINK_CHANGE;
986 }
987 
988 /**
989  *	velocity_print_link_status	-	link status reporting
990  *	@vptr: velocity to report on
991  *
992  *	Turn the link status of the velocity card into a kernel log
993  *	description of the new link state, detailing speed and duplex
994  *	status
995  */
996 static void velocity_print_link_status(struct velocity_info *vptr)
997 {
998 
999 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1000 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1001 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1002 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1003 
1004 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1005 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1006 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1007 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1008 		else
1009 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1010 
1011 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1012 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1013 		else
1014 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1015 	} else {
1016 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1017 		switch (vptr->options.spd_dpx) {
1018 		case SPD_DPX_1000_FULL:
1019 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1020 			break;
1021 		case SPD_DPX_100_HALF:
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1023 			break;
1024 		case SPD_DPX_100_FULL:
1025 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1026 			break;
1027 		case SPD_DPX_10_HALF:
1028 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1029 			break;
1030 		case SPD_DPX_10_FULL:
1031 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1032 			break;
1033 		default:
1034 			break;
1035 		}
1036 	}
1037 }
1038 
1039 /**
1040  *	enable_flow_control_ability	-	flow control
1041  *	@vptr: veloity to configure
1042  *
1043  *	Set up flow control according to the flow control options
1044  *	determined by the eeprom/configuration.
1045  */
1046 static void enable_flow_control_ability(struct velocity_info *vptr)
1047 {
1048 
1049 	struct mac_regs __iomem *regs = vptr->mac_regs;
1050 
1051 	switch (vptr->options.flow_cntl) {
1052 
1053 	case FLOW_CNTL_DEFAULT:
1054 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1055 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1056 		else
1057 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1058 
1059 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1060 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 		else
1062 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1063 		break;
1064 
1065 	case FLOW_CNTL_TX:
1066 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1067 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1068 		break;
1069 
1070 	case FLOW_CNTL_RX:
1071 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1073 		break;
1074 
1075 	case FLOW_CNTL_TX_RX:
1076 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1077 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1078 		break;
1079 
1080 	case FLOW_CNTL_DISABLE:
1081 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1082 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1083 		break;
1084 
1085 	default:
1086 		break;
1087 	}
1088 
1089 }
1090 
1091 /**
1092  *	velocity_soft_reset	-	soft reset
1093  *	@vptr: velocity to reset
1094  *
1095  *	Kick off a soft reset of the velocity adapter and then poll
1096  *	until the reset sequence has completed before returning.
1097  */
1098 static int velocity_soft_reset(struct velocity_info *vptr)
1099 {
1100 	struct mac_regs __iomem *regs = vptr->mac_regs;
1101 	int i = 0;
1102 
1103 	writel(CR0_SFRST, &regs->CR0Set);
1104 
1105 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1106 		udelay(5);
1107 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1108 			break;
1109 	}
1110 
1111 	if (i == W_MAX_TIMEOUT) {
1112 		writel(CR0_FORSRST, &regs->CR0Set);
1113 		/* FIXME: PCI POSTING */
1114 		/* delay 2ms */
1115 		mdelay(2);
1116 	}
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	velocity_set_multi	-	filter list change callback
1122  *	@dev: network device
1123  *
1124  *	Called by the network layer when the filter lists need to change
1125  *	for a velocity adapter. Reload the CAMs with the new address
1126  *	filter ruleset.
1127  */
1128 static void velocity_set_multi(struct net_device *dev)
1129 {
1130 	struct velocity_info *vptr = netdev_priv(dev);
1131 	struct mac_regs __iomem *regs = vptr->mac_regs;
1132 	u8 rx_mode;
1133 	int i;
1134 	struct netdev_hw_addr *ha;
1135 
1136 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1137 		writel(0xffffffff, &regs->MARCAM[0]);
1138 		writel(0xffffffff, &regs->MARCAM[4]);
1139 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1140 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1141 		   (dev->flags & IFF_ALLMULTI)) {
1142 		writel(0xffffffff, &regs->MARCAM[0]);
1143 		writel(0xffffffff, &regs->MARCAM[4]);
1144 		rx_mode = (RCR_AM | RCR_AB);
1145 	} else {
1146 		int offset = MCAM_SIZE - vptr->multicast_limit;
1147 		mac_get_cam_mask(regs, vptr->mCAMmask);
1148 
1149 		i = 0;
1150 		netdev_for_each_mc_addr(ha, dev) {
1151 			mac_set_cam(regs, i + offset, ha->addr);
1152 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1153 			i++;
1154 		}
1155 
1156 		mac_set_cam_mask(regs, vptr->mCAMmask);
1157 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1158 	}
1159 	if (dev->mtu > 1500)
1160 		rx_mode |= RCR_AL;
1161 
1162 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163 
1164 }
1165 
1166 /*
1167  * MII access , media link mode setting functions
1168  */
1169 
1170 /**
1171  *	mii_init	-	set up MII
1172  *	@vptr: velocity adapter
1173  *	@mii_status:  links tatus
1174  *
1175  *	Set up the PHY for the current link state.
1176  */
1177 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1178 {
1179 	u16 BMCR;
1180 
1181 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1182 	case PHYID_ICPLUS_IP101A:
1183 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1184 						MII_ADVERTISE, vptr->mac_regs);
1185 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1187 								vptr->mac_regs);
1188 		else
1189 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1190 								vptr->mac_regs);
1191 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1192 		break;
1193 	case PHYID_CICADA_CS8201:
1194 		/*
1195 		 *	Reset to hardware default
1196 		 */
1197 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1198 		/*
1199 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1200 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1201 		 *	legacy-forced issue.
1202 		 */
1203 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1204 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1205 		else
1206 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 		/*
1208 		 *	Turn on Link/Activity LED enable bit for CIS8201
1209 		 */
1210 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1211 		break;
1212 	case PHYID_VT3216_32BIT:
1213 	case PHYID_VT3216_64BIT:
1214 		/*
1215 		 *	Reset to hardware default
1216 		 */
1217 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1218 		/*
1219 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1220 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1221 		 *	legacy-forced issue
1222 		 */
1223 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1224 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1225 		else
1226 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 		break;
1228 
1229 	case PHYID_MARVELL_1000:
1230 	case PHYID_MARVELL_1000S:
1231 		/*
1232 		 *	Assert CRS on Transmit
1233 		 */
1234 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1235 		/*
1236 		 *	Reset to hardware default
1237 		 */
1238 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1239 		break;
1240 	default:
1241 		;
1242 	}
1243 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1244 	if (BMCR & BMCR_ISOLATE) {
1245 		BMCR &= ~BMCR_ISOLATE;
1246 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1247 	}
1248 }
1249 
1250 /**
1251  * setup_queue_timers	-	Setup interrupt timers
1252  *
1253  * Setup interrupt frequency during suppression (timeout if the frame
1254  * count isn't filled).
1255  */
1256 static void setup_queue_timers(struct velocity_info *vptr)
1257 {
1258 	/* Only for newer revisions */
1259 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1260 		u8 txqueue_timer = 0;
1261 		u8 rxqueue_timer = 0;
1262 
1263 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1264 				VELOCITY_SPEED_100)) {
1265 			txqueue_timer = vptr->options.txqueue_timer;
1266 			rxqueue_timer = vptr->options.rxqueue_timer;
1267 		}
1268 
1269 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1270 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1271 	}
1272 }
1273 
1274 /**
1275  * setup_adaptive_interrupts  -  Setup interrupt suppression
1276  *
1277  * @vptr velocity adapter
1278  *
1279  * The velocity is able to suppress interrupt during high interrupt load.
1280  * This function turns on that feature.
1281  */
1282 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1283 {
1284 	struct mac_regs __iomem *regs = vptr->mac_regs;
1285 	u16 tx_intsup = vptr->options.tx_intsup;
1286 	u16 rx_intsup = vptr->options.rx_intsup;
1287 
1288 	/* Setup default interrupt mask (will be changed below) */
1289 	vptr->int_mask = INT_MASK_DEF;
1290 
1291 	/* Set Tx Interrupt Suppression Threshold */
1292 	writeb(CAMCR_PS0, &regs->CAMCR);
1293 	if (tx_intsup != 0) {
1294 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1295 				ISR_PTX2I | ISR_PTX3I);
1296 		writew(tx_intsup, &regs->ISRCTL);
1297 	} else
1298 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1299 
1300 	/* Set Rx Interrupt Suppression Threshold */
1301 	writeb(CAMCR_PS1, &regs->CAMCR);
1302 	if (rx_intsup != 0) {
1303 		vptr->int_mask &= ~ISR_PRXI;
1304 		writew(rx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Select page to interrupt hold timer */
1309 	writeb(0, &regs->CAMCR);
1310 }
1311 
1312 /**
1313  *	velocity_init_registers	-	initialise MAC registers
1314  *	@vptr: velocity to init
1315  *	@type: type of initialisation (hot or cold)
1316  *
1317  *	Initialise the MAC on a reset or on first set up on the
1318  *	hardware.
1319  */
1320 static void velocity_init_registers(struct velocity_info *vptr,
1321 				    enum velocity_init_type type)
1322 {
1323 	struct mac_regs __iomem *regs = vptr->mac_regs;
1324 	struct net_device *netdev = vptr->netdev;
1325 	int i, mii_status;
1326 
1327 	mac_wol_reset(regs);
1328 
1329 	switch (type) {
1330 	case VELOCITY_INIT_RESET:
1331 	case VELOCITY_INIT_WOL:
1332 
1333 		netif_stop_queue(netdev);
1334 
1335 		/*
1336 		 *	Reset RX to prevent RX pointer not on the 4X location
1337 		 */
1338 		velocity_rx_reset(vptr);
1339 		mac_rx_queue_run(regs);
1340 		mac_rx_queue_wake(regs);
1341 
1342 		mii_status = velocity_get_opt_media_mode(vptr);
1343 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 			velocity_print_link_status(vptr);
1345 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 				netif_wake_queue(netdev);
1347 		}
1348 
1349 		enable_flow_control_ability(vptr);
1350 
1351 		mac_clear_isr(regs);
1352 		writel(CR0_STOP, &regs->CR0Clr);
1353 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 							&regs->CR0Set);
1355 
1356 		break;
1357 
1358 	case VELOCITY_INIT_COLD:
1359 	default:
1360 		/*
1361 		 *	Do reset
1362 		 */
1363 		velocity_soft_reset(vptr);
1364 		mdelay(5);
1365 
1366 		if (!vptr->no_eeprom) {
1367 			mac_eeprom_reload(regs);
1368 			for (i = 0; i < 6; i++)
1369 				writeb(netdev->dev_addr[i], regs->PAR + i);
1370 		}
1371 
1372 		/*
1373 		 *	clear Pre_ACPI bit.
1374 		 */
1375 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1376 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1377 		mac_set_dma_length(regs, vptr->options.DMA_length);
1378 
1379 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1380 		/*
1381 		 *	Back off algorithm use original IEEE standard
1382 		 */
1383 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384 
1385 		/*
1386 		 *	Init CAM filter
1387 		 */
1388 		velocity_init_cam_filter(vptr);
1389 
1390 		/*
1391 		 *	Set packet filter: Receive directed and broadcast address
1392 		 */
1393 		velocity_set_multi(netdev);
1394 
1395 		/*
1396 		 *	Enable MII auto-polling
1397 		 */
1398 		enable_mii_autopoll(regs);
1399 
1400 		setup_adaptive_interrupts(vptr);
1401 
1402 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1403 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1404 		mac_rx_queue_run(regs);
1405 		mac_rx_queue_wake(regs);
1406 
1407 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1408 
1409 		for (i = 0; i < vptr->tx.numq; i++) {
1410 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1411 			mac_tx_queue_run(regs, i);
1412 		}
1413 
1414 		init_flow_control_register(vptr);
1415 
1416 		writel(CR0_STOP, &regs->CR0Clr);
1417 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1418 
1419 		mii_status = velocity_get_opt_media_mode(vptr);
1420 		netif_stop_queue(netdev);
1421 
1422 		mii_init(vptr, mii_status);
1423 
1424 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1425 			velocity_print_link_status(vptr);
1426 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1427 				netif_wake_queue(netdev);
1428 		}
1429 
1430 		enable_flow_control_ability(vptr);
1431 		mac_hw_mibs_init(regs);
1432 		mac_write_int_mask(vptr->int_mask, regs);
1433 		mac_clear_isr(regs);
1434 
1435 	}
1436 }
1437 
1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1439 {
1440 	struct mac_regs __iomem *regs = vptr->mac_regs;
1441 	int avail, dirty, unusable;
1442 
1443 	/*
1444 	 * RD number must be equal to 4X per hardware spec
1445 	 * (programming guide rev 1.20, p.13)
1446 	 */
1447 	if (vptr->rx.filled < 4)
1448 		return;
1449 
1450 	wmb();
1451 
1452 	unusable = vptr->rx.filled & 0x0003;
1453 	dirty = vptr->rx.dirty - unusable;
1454 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1455 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1456 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457 	}
1458 
1459 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1460 	vptr->rx.filled = unusable;
1461 }
1462 
1463 /**
1464  *	velocity_init_dma_rings	-	set up DMA rings
1465  *	@vptr: Velocity to set up
1466  *
1467  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1468  *	to use.
1469  */
1470 static int velocity_init_dma_rings(struct velocity_info *vptr)
1471 {
1472 	struct velocity_opt *opt = &vptr->options;
1473 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1474 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1475 	dma_addr_t pool_dma;
1476 	void *pool;
1477 	unsigned int i;
1478 
1479 	/*
1480 	 * Allocate all RD/TD rings a single pool.
1481 	 *
1482 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1483 	 * alignment
1484 	 */
1485 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1486 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1487 	if (!pool) {
1488 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1489 			vptr->netdev->name);
1490 		return -ENOMEM;
1491 	}
1492 
1493 	vptr->rx.ring = pool;
1494 	vptr->rx.pool_dma = pool_dma;
1495 
1496 	pool += rx_ring_size;
1497 	pool_dma += rx_ring_size;
1498 
1499 	for (i = 0; i < vptr->tx.numq; i++) {
1500 		vptr->tx.rings[i] = pool;
1501 		vptr->tx.pool_dma[i] = pool_dma;
1502 		pool += tx_ring_size;
1503 		pool_dma += tx_ring_size;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510 {
1511 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1512 }
1513 
1514 /**
1515  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1516  *	@vptr: velocity
1517  *	@idx: ring index
1518  *
1519  *	Allocate a new full sized buffer for the reception of a frame and
1520  *	map it into PCI space for the hardware to use. The hardware
1521  *	requires *64* byte alignment of the buffer which makes life
1522  *	less fun than would be ideal.
1523  */
1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525 {
1526 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528 
1529 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1530 	if (rd_info->skb == NULL)
1531 		return -ENOMEM;
1532 
1533 	/*
1534 	 *	Do the gymnastics to get the buffer head for data at
1535 	 *	64byte alignment.
1536 	 */
1537 	skb_reserve(rd_info->skb,
1538 			64 - ((unsigned long) rd_info->skb->data & 63));
1539 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1540 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1541 
1542 	/*
1543 	 *	Fill in the descriptor to match
1544 	 */
1545 
1546 	*((u32 *) & (rd->rdesc0)) = 0;
1547 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1548 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1549 	rd->pa_high = 0;
1550 	return 0;
1551 }
1552 
1553 
1554 static int velocity_rx_refill(struct velocity_info *vptr)
1555 {
1556 	int dirty = vptr->rx.dirty, done = 0;
1557 
1558 	do {
1559 		struct rx_desc *rd = vptr->rx.ring + dirty;
1560 
1561 		/* Fine for an all zero Rx desc at init time as well */
1562 		if (rd->rdesc0.len & OWNED_BY_NIC)
1563 			break;
1564 
1565 		if (!vptr->rx.info[dirty].skb) {
1566 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1567 				break;
1568 		}
1569 		done++;
1570 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1571 	} while (dirty != vptr->rx.curr);
1572 
1573 	if (done) {
1574 		vptr->rx.dirty = dirty;
1575 		vptr->rx.filled += done;
1576 	}
1577 
1578 	return done;
1579 }
1580 
1581 /**
1582  *	velocity_free_rd_ring	-	free receive ring
1583  *	@vptr: velocity to clean up
1584  *
1585  *	Free the receive buffers for each ring slot and any
1586  *	attached socket buffers that need to go away.
1587  */
1588 static void velocity_free_rd_ring(struct velocity_info *vptr)
1589 {
1590 	int i;
1591 
1592 	if (vptr->rx.info == NULL)
1593 		return;
1594 
1595 	for (i = 0; i < vptr->options.numrx; i++) {
1596 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1597 		struct rx_desc *rd = vptr->rx.ring + i;
1598 
1599 		memset(rd, 0, sizeof(*rd));
1600 
1601 		if (!rd_info->skb)
1602 			continue;
1603 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1604 				 DMA_FROM_DEVICE);
1605 		rd_info->skb_dma = 0;
1606 
1607 		dev_kfree_skb(rd_info->skb);
1608 		rd_info->skb = NULL;
1609 	}
1610 
1611 	kfree(vptr->rx.info);
1612 	vptr->rx.info = NULL;
1613 }
1614 
1615 /**
1616  *	velocity_init_rd_ring	-	set up receive ring
1617  *	@vptr: velocity to configure
1618  *
1619  *	Allocate and set up the receive buffers for each ring slot and
1620  *	assign them to the network adapter.
1621  */
1622 static int velocity_init_rd_ring(struct velocity_info *vptr)
1623 {
1624 	int ret = -ENOMEM;
1625 
1626 	vptr->rx.info = kcalloc(vptr->options.numrx,
1627 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1628 	if (!vptr->rx.info)
1629 		goto out;
1630 
1631 	velocity_init_rx_ring_indexes(vptr);
1632 
1633 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1634 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1635 			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1636 		velocity_free_rd_ring(vptr);
1637 		goto out;
1638 	}
1639 
1640 	ret = 0;
1641 out:
1642 	return ret;
1643 }
1644 
1645 /**
1646  *	velocity_init_td_ring	-	set up transmit ring
1647  *	@vptr:	velocity
1648  *
1649  *	Set up the transmit ring and chain the ring pointers together.
1650  *	Returns zero on success or a negative posix errno code for
1651  *	failure.
1652  */
1653 static int velocity_init_td_ring(struct velocity_info *vptr)
1654 {
1655 	int j;
1656 
1657 	/* Init the TD ring entries */
1658 	for (j = 0; j < vptr->tx.numq; j++) {
1659 
1660 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1661 					    sizeof(struct velocity_td_info),
1662 					    GFP_KERNEL);
1663 		if (!vptr->tx.infos[j])	{
1664 			while (--j >= 0)
1665 				kfree(vptr->tx.infos[j]);
1666 			return -ENOMEM;
1667 		}
1668 
1669 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1670 	}
1671 	return 0;
1672 }
1673 
1674 /**
1675  *	velocity_free_dma_rings	-	free PCI ring pointers
1676  *	@vptr: Velocity to free from
1677  *
1678  *	Clean up the PCI ring buffers allocated to this velocity.
1679  */
1680 static void velocity_free_dma_rings(struct velocity_info *vptr)
1681 {
1682 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1683 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1684 
1685 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1686 }
1687 
1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1689 {
1690 	int ret;
1691 
1692 	velocity_set_rxbufsize(vptr, mtu);
1693 
1694 	ret = velocity_init_dma_rings(vptr);
1695 	if (ret < 0)
1696 		goto out;
1697 
1698 	ret = velocity_init_rd_ring(vptr);
1699 	if (ret < 0)
1700 		goto err_free_dma_rings_0;
1701 
1702 	ret = velocity_init_td_ring(vptr);
1703 	if (ret < 0)
1704 		goto err_free_rd_ring_1;
1705 out:
1706 	return ret;
1707 
1708 err_free_rd_ring_1:
1709 	velocity_free_rd_ring(vptr);
1710 err_free_dma_rings_0:
1711 	velocity_free_dma_rings(vptr);
1712 	goto out;
1713 }
1714 
1715 /**
1716  *	velocity_free_tx_buf	-	free transmit buffer
1717  *	@vptr: velocity
1718  *	@tdinfo: buffer
1719  *
1720  *	Release an transmit buffer. If the buffer was preallocated then
1721  *	recycle it, if not then unmap the buffer.
1722  */
1723 static void velocity_free_tx_buf(struct velocity_info *vptr,
1724 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1725 {
1726 	struct sk_buff *skb = tdinfo->skb;
1727 	int i;
1728 
1729 	/*
1730 	 *	Don't unmap the pre-allocated tx_bufs
1731 	 */
1732 	for (i = 0; i < tdinfo->nskb_dma; i++) {
1733 		size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1734 
1735 		/* For scatter-gather */
1736 		if (skb_shinfo(skb)->nr_frags > 0)
1737 			pktlen = max_t(size_t, pktlen,
1738 				       td->td_buf[i].size & ~TD_QUEUE);
1739 
1740 		dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1741 				 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1742 	}
1743 	dev_kfree_skb_irq(skb);
1744 	tdinfo->skb = NULL;
1745 }
1746 
1747 /*
1748  *	FIXME: could we merge this with velocity_free_tx_buf ?
1749  */
1750 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1751 							 int q, int n)
1752 {
1753 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1754 	int i;
1755 
1756 	if (td_info == NULL)
1757 		return;
1758 
1759 	if (td_info->skb) {
1760 		for (i = 0; i < td_info->nskb_dma; i++) {
1761 			if (td_info->skb_dma[i]) {
1762 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1763 					td_info->skb->len, DMA_TO_DEVICE);
1764 				td_info->skb_dma[i] = 0;
1765 			}
1766 		}
1767 		dev_kfree_skb(td_info->skb);
1768 		td_info->skb = NULL;
1769 	}
1770 }
1771 
1772 /**
1773  *	velocity_free_td_ring	-	free td ring
1774  *	@vptr: velocity
1775  *
1776  *	Free up the transmit ring for this particular velocity adapter.
1777  *	We free the ring contents but not the ring itself.
1778  */
1779 static void velocity_free_td_ring(struct velocity_info *vptr)
1780 {
1781 	int i, j;
1782 
1783 	for (j = 0; j < vptr->tx.numq; j++) {
1784 		if (vptr->tx.infos[j] == NULL)
1785 			continue;
1786 		for (i = 0; i < vptr->options.numtx; i++)
1787 			velocity_free_td_ring_entry(vptr, j, i);
1788 
1789 		kfree(vptr->tx.infos[j]);
1790 		vptr->tx.infos[j] = NULL;
1791 	}
1792 }
1793 
1794 static void velocity_free_rings(struct velocity_info *vptr)
1795 {
1796 	velocity_free_td_ring(vptr);
1797 	velocity_free_rd_ring(vptr);
1798 	velocity_free_dma_rings(vptr);
1799 }
1800 
1801 /**
1802  *	velocity_error	-	handle error from controller
1803  *	@vptr: velocity
1804  *	@status: card status
1805  *
1806  *	Process an error report from the hardware and attempt to recover
1807  *	the card itself. At the moment we cannot recover from some
1808  *	theoretically impossible errors but this could be fixed using
1809  *	the pci_device_failed logic to bounce the hardware
1810  *
1811  */
1812 static void velocity_error(struct velocity_info *vptr, int status)
1813 {
1814 
1815 	if (status & ISR_TXSTLI) {
1816 		struct mac_regs __iomem *regs = vptr->mac_regs;
1817 
1818 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1819 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1820 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1821 		netif_stop_queue(vptr->netdev);
1822 
1823 		/* FIXME: port over the pci_device_failed code and use it
1824 		   here */
1825 	}
1826 
1827 	if (status & ISR_SRCI) {
1828 		struct mac_regs __iomem *regs = vptr->mac_regs;
1829 		int linked;
1830 
1831 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1832 			vptr->mii_status = check_connection_type(regs);
1833 
1834 			/*
1835 			 *	If it is a 3119, disable frame bursting in
1836 			 *	halfduplex mode and enable it in fullduplex
1837 			 *	 mode
1838 			 */
1839 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1840 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1841 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1842 				else
1843 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1844 			}
1845 			/*
1846 			 *	Only enable CD heart beat counter in 10HD mode
1847 			 */
1848 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1849 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1850 			else
1851 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1852 
1853 			setup_queue_timers(vptr);
1854 		}
1855 		/*
1856 		 *	Get link status from PHYSR0
1857 		 */
1858 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1859 
1860 		if (linked) {
1861 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1862 			netif_carrier_on(vptr->netdev);
1863 		} else {
1864 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1865 			netif_carrier_off(vptr->netdev);
1866 		}
1867 
1868 		velocity_print_link_status(vptr);
1869 		enable_flow_control_ability(vptr);
1870 
1871 		/*
1872 		 *	Re-enable auto-polling because SRCI will disable
1873 		 *	auto-polling
1874 		 */
1875 
1876 		enable_mii_autopoll(regs);
1877 
1878 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1879 			netif_stop_queue(vptr->netdev);
1880 		else
1881 			netif_wake_queue(vptr->netdev);
1882 
1883 	}
1884 	if (status & ISR_MIBFI)
1885 		velocity_update_hw_mibs(vptr);
1886 	if (status & ISR_LSTEI)
1887 		mac_rx_queue_wake(vptr->mac_regs);
1888 }
1889 
1890 /**
1891  *	tx_srv		-	transmit interrupt service
1892  *	@vptr; Velocity
1893  *
1894  *	Scan the queues looking for transmitted packets that
1895  *	we can complete and clean up. Update any statistics as
1896  *	necessary/
1897  */
1898 static int velocity_tx_srv(struct velocity_info *vptr)
1899 {
1900 	struct tx_desc *td;
1901 	int qnum;
1902 	int full = 0;
1903 	int idx;
1904 	int works = 0;
1905 	struct velocity_td_info *tdinfo;
1906 	struct net_device_stats *stats = &vptr->netdev->stats;
1907 
1908 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1909 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1910 			idx = (idx + 1) % vptr->options.numtx) {
1911 
1912 			/*
1913 			 *	Get Tx Descriptor
1914 			 */
1915 			td = &(vptr->tx.rings[qnum][idx]);
1916 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1917 
1918 			if (td->tdesc0.len & OWNED_BY_NIC)
1919 				break;
1920 
1921 			if ((works++ > 15))
1922 				break;
1923 
1924 			if (td->tdesc0.TSR & TSR0_TERR) {
1925 				stats->tx_errors++;
1926 				stats->tx_dropped++;
1927 				if (td->tdesc0.TSR & TSR0_CDH)
1928 					stats->tx_heartbeat_errors++;
1929 				if (td->tdesc0.TSR & TSR0_CRS)
1930 					stats->tx_carrier_errors++;
1931 				if (td->tdesc0.TSR & TSR0_ABT)
1932 					stats->tx_aborted_errors++;
1933 				if (td->tdesc0.TSR & TSR0_OWC)
1934 					stats->tx_window_errors++;
1935 			} else {
1936 				stats->tx_packets++;
1937 				stats->tx_bytes += tdinfo->skb->len;
1938 			}
1939 			velocity_free_tx_buf(vptr, tdinfo, td);
1940 			vptr->tx.used[qnum]--;
1941 		}
1942 		vptr->tx.tail[qnum] = idx;
1943 
1944 		if (AVAIL_TD(vptr, qnum) < 1)
1945 			full = 1;
1946 	}
1947 	/*
1948 	 *	Look to see if we should kick the transmit network
1949 	 *	layer for more work.
1950 	 */
1951 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1952 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1953 		netif_wake_queue(vptr->netdev);
1954 	}
1955 	return works;
1956 }
1957 
1958 /**
1959  *	velocity_rx_csum	-	checksum process
1960  *	@rd: receive packet descriptor
1961  *	@skb: network layer packet buffer
1962  *
1963  *	Process the status bits for the received packet and determine
1964  *	if the checksum was computed and verified by the hardware
1965  */
1966 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1967 {
1968 	skb_checksum_none_assert(skb);
1969 
1970 	if (rd->rdesc1.CSM & CSM_IPKT) {
1971 		if (rd->rdesc1.CSM & CSM_IPOK) {
1972 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1973 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1974 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1975 					return;
1976 			}
1977 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1978 		}
1979 	}
1980 }
1981 
1982 /**
1983  *	velocity_rx_copy	-	in place Rx copy for small packets
1984  *	@rx_skb: network layer packet buffer candidate
1985  *	@pkt_size: received data size
1986  *	@rd: receive packet descriptor
1987  *	@dev: network device
1988  *
1989  *	Replace the current skb that is scheduled for Rx processing by a
1990  *	shorter, immediately allocated skb, if the received packet is small
1991  *	enough. This function returns a negative value if the received
1992  *	packet is too big or if memory is exhausted.
1993  */
1994 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1995 			    struct velocity_info *vptr)
1996 {
1997 	int ret = -1;
1998 	if (pkt_size < rx_copybreak) {
1999 		struct sk_buff *new_skb;
2000 
2001 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2002 		if (new_skb) {
2003 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2004 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2005 			*rx_skb = new_skb;
2006 			ret = 0;
2007 		}
2008 
2009 	}
2010 	return ret;
2011 }
2012 
2013 /**
2014  *	velocity_iph_realign	-	IP header alignment
2015  *	@vptr: velocity we are handling
2016  *	@skb: network layer packet buffer
2017  *	@pkt_size: received data size
2018  *
2019  *	Align IP header on a 2 bytes boundary. This behavior can be
2020  *	configured by the user.
2021  */
2022 static inline void velocity_iph_realign(struct velocity_info *vptr,
2023 					struct sk_buff *skb, int pkt_size)
2024 {
2025 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2026 		memmove(skb->data + 2, skb->data, pkt_size);
2027 		skb_reserve(skb, 2);
2028 	}
2029 }
2030 
2031 /**
2032  *	velocity_receive_frame	-	received packet processor
2033  *	@vptr: velocity we are handling
2034  *	@idx: ring index
2035  *
2036  *	A packet has arrived. We process the packet and if appropriate
2037  *	pass the frame up the network stack
2038  */
2039 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2040 {
2041 	struct net_device_stats *stats = &vptr->netdev->stats;
2042 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2043 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2044 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2045 	struct sk_buff *skb;
2046 
2047 	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2048 		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2049 			VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2050 		stats->rx_length_errors++;
2051 		return -EINVAL;
2052 	}
2053 
2054 	if (rd->rdesc0.RSR & RSR_MAR)
2055 		stats->multicast++;
2056 
2057 	skb = rd_info->skb;
2058 
2059 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2060 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2061 
2062 	velocity_rx_csum(rd, skb);
2063 
2064 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2065 		velocity_iph_realign(vptr, skb, pkt_len);
2066 		rd_info->skb = NULL;
2067 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2068 				 DMA_FROM_DEVICE);
2069 	} else {
2070 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2071 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2072 	}
2073 
2074 	skb_put(skb, pkt_len - 4);
2075 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2076 
2077 	if (rd->rdesc0.RSR & RSR_DETAG) {
2078 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2079 
2080 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2081 	}
2082 	netif_receive_skb(skb);
2083 
2084 	stats->rx_bytes += pkt_len;
2085 	stats->rx_packets++;
2086 
2087 	return 0;
2088 }
2089 
2090 /**
2091  *	velocity_rx_srv		-	service RX interrupt
2092  *	@vptr: velocity
2093  *
2094  *	Walk the receive ring of the velocity adapter and remove
2095  *	any received packets from the receive queue. Hand the ring
2096  *	slots back to the adapter for reuse.
2097  */
2098 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2099 {
2100 	struct net_device_stats *stats = &vptr->netdev->stats;
2101 	int rd_curr = vptr->rx.curr;
2102 	int works = 0;
2103 
2104 	while (works < budget_left) {
2105 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2106 
2107 		if (!vptr->rx.info[rd_curr].skb)
2108 			break;
2109 
2110 		if (rd->rdesc0.len & OWNED_BY_NIC)
2111 			break;
2112 
2113 		rmb();
2114 
2115 		/*
2116 		 *	Don't drop CE or RL error frame although RXOK is off
2117 		 */
2118 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2119 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2120 				stats->rx_dropped++;
2121 		} else {
2122 			if (rd->rdesc0.RSR & RSR_CRC)
2123 				stats->rx_crc_errors++;
2124 			if (rd->rdesc0.RSR & RSR_FAE)
2125 				stats->rx_frame_errors++;
2126 
2127 			stats->rx_dropped++;
2128 		}
2129 
2130 		rd->size |= RX_INTEN;
2131 
2132 		rd_curr++;
2133 		if (rd_curr >= vptr->options.numrx)
2134 			rd_curr = 0;
2135 		works++;
2136 	}
2137 
2138 	vptr->rx.curr = rd_curr;
2139 
2140 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2141 		velocity_give_many_rx_descs(vptr);
2142 
2143 	VAR_USED(stats);
2144 	return works;
2145 }
2146 
2147 static int velocity_poll(struct napi_struct *napi, int budget)
2148 {
2149 	struct velocity_info *vptr = container_of(napi,
2150 			struct velocity_info, napi);
2151 	unsigned int rx_done;
2152 	unsigned long flags;
2153 
2154 	/*
2155 	 * Do rx and tx twice for performance (taken from the VIA
2156 	 * out-of-tree driver).
2157 	 */
2158 	rx_done = velocity_rx_srv(vptr, budget);
2159 	spin_lock_irqsave(&vptr->lock, flags);
2160 	velocity_tx_srv(vptr);
2161 	/* If budget not fully consumed, exit the polling mode */
2162 	if (rx_done < budget) {
2163 		napi_complete_done(napi, rx_done);
2164 		mac_enable_int(vptr->mac_regs);
2165 	}
2166 	spin_unlock_irqrestore(&vptr->lock, flags);
2167 
2168 	return rx_done;
2169 }
2170 
2171 /**
2172  *	velocity_intr		-	interrupt callback
2173  *	@irq: interrupt number
2174  *	@dev_instance: interrupting device
2175  *
2176  *	Called whenever an interrupt is generated by the velocity
2177  *	adapter IRQ line. We may not be the source of the interrupt
2178  *	and need to identify initially if we are, and if not exit as
2179  *	efficiently as possible.
2180  */
2181 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2182 {
2183 	struct net_device *dev = dev_instance;
2184 	struct velocity_info *vptr = netdev_priv(dev);
2185 	u32 isr_status;
2186 
2187 	spin_lock(&vptr->lock);
2188 	isr_status = mac_read_isr(vptr->mac_regs);
2189 
2190 	/* Not us ? */
2191 	if (isr_status == 0) {
2192 		spin_unlock(&vptr->lock);
2193 		return IRQ_NONE;
2194 	}
2195 
2196 	/* Ack the interrupt */
2197 	mac_write_isr(vptr->mac_regs, isr_status);
2198 
2199 	if (likely(napi_schedule_prep(&vptr->napi))) {
2200 		mac_disable_int(vptr->mac_regs);
2201 		__napi_schedule(&vptr->napi);
2202 	}
2203 
2204 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2205 		velocity_error(vptr, isr_status);
2206 
2207 	spin_unlock(&vptr->lock);
2208 
2209 	return IRQ_HANDLED;
2210 }
2211 
2212 /**
2213  *	velocity_open		-	interface activation callback
2214  *	@dev: network layer device to open
2215  *
2216  *	Called when the network layer brings the interface up. Returns
2217  *	a negative posix error code on failure, or zero on success.
2218  *
2219  *	All the ring allocation and set up is done on open for this
2220  *	adapter to minimise memory usage when inactive
2221  */
2222 static int velocity_open(struct net_device *dev)
2223 {
2224 	struct velocity_info *vptr = netdev_priv(dev);
2225 	int ret;
2226 
2227 	ret = velocity_init_rings(vptr, dev->mtu);
2228 	if (ret < 0)
2229 		goto out;
2230 
2231 	/* Ensure chip is running */
2232 	velocity_set_power_state(vptr, PCI_D0);
2233 
2234 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2235 
2236 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2237 			  dev->name, dev);
2238 	if (ret < 0) {
2239 		/* Power down the chip */
2240 		velocity_set_power_state(vptr, PCI_D3hot);
2241 		velocity_free_rings(vptr);
2242 		goto out;
2243 	}
2244 
2245 	velocity_give_many_rx_descs(vptr);
2246 
2247 	mac_enable_int(vptr->mac_regs);
2248 	netif_start_queue(dev);
2249 	napi_enable(&vptr->napi);
2250 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2251 out:
2252 	return ret;
2253 }
2254 
2255 /**
2256  *	velocity_shutdown	-	shut down the chip
2257  *	@vptr: velocity to deactivate
2258  *
2259  *	Shuts down the internal operations of the velocity and
2260  *	disables interrupts, autopolling, transmit and receive
2261  */
2262 static void velocity_shutdown(struct velocity_info *vptr)
2263 {
2264 	struct mac_regs __iomem *regs = vptr->mac_regs;
2265 	mac_disable_int(regs);
2266 	writel(CR0_STOP, &regs->CR0Set);
2267 	writew(0xFFFF, &regs->TDCSRClr);
2268 	writeb(0xFF, &regs->RDCSRClr);
2269 	safe_disable_mii_autopoll(regs);
2270 	mac_clear_isr(regs);
2271 }
2272 
2273 /**
2274  *	velocity_change_mtu	-	MTU change callback
2275  *	@dev: network device
2276  *	@new_mtu: desired MTU
2277  *
2278  *	Handle requests from the networking layer for MTU change on
2279  *	this interface. It gets called on a change by the network layer.
2280  *	Return zero for success or negative posix error code.
2281  */
2282 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2283 {
2284 	struct velocity_info *vptr = netdev_priv(dev);
2285 	int ret = 0;
2286 
2287 	if (!netif_running(dev)) {
2288 		dev->mtu = new_mtu;
2289 		goto out_0;
2290 	}
2291 
2292 	if (dev->mtu != new_mtu) {
2293 		struct velocity_info *tmp_vptr;
2294 		unsigned long flags;
2295 		struct rx_info rx;
2296 		struct tx_info tx;
2297 
2298 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2299 		if (!tmp_vptr) {
2300 			ret = -ENOMEM;
2301 			goto out_0;
2302 		}
2303 
2304 		tmp_vptr->netdev = dev;
2305 		tmp_vptr->pdev = vptr->pdev;
2306 		tmp_vptr->dev = vptr->dev;
2307 		tmp_vptr->options = vptr->options;
2308 		tmp_vptr->tx.numq = vptr->tx.numq;
2309 
2310 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2311 		if (ret < 0)
2312 			goto out_free_tmp_vptr_1;
2313 
2314 		napi_disable(&vptr->napi);
2315 
2316 		spin_lock_irqsave(&vptr->lock, flags);
2317 
2318 		netif_stop_queue(dev);
2319 		velocity_shutdown(vptr);
2320 
2321 		rx = vptr->rx;
2322 		tx = vptr->tx;
2323 
2324 		vptr->rx = tmp_vptr->rx;
2325 		vptr->tx = tmp_vptr->tx;
2326 
2327 		tmp_vptr->rx = rx;
2328 		tmp_vptr->tx = tx;
2329 
2330 		dev->mtu = new_mtu;
2331 
2332 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2333 
2334 		velocity_give_many_rx_descs(vptr);
2335 
2336 		napi_enable(&vptr->napi);
2337 
2338 		mac_enable_int(vptr->mac_regs);
2339 		netif_start_queue(dev);
2340 
2341 		spin_unlock_irqrestore(&vptr->lock, flags);
2342 
2343 		velocity_free_rings(tmp_vptr);
2344 
2345 out_free_tmp_vptr_1:
2346 		kfree(tmp_vptr);
2347 	}
2348 out_0:
2349 	return ret;
2350 }
2351 
2352 #ifdef CONFIG_NET_POLL_CONTROLLER
2353 /**
2354  *  velocity_poll_controller		-	Velocity Poll controller function
2355  *  @dev: network device
2356  *
2357  *
2358  *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2359  *  with interrupts disabled.
2360  */
2361 static void velocity_poll_controller(struct net_device *dev)
2362 {
2363 	disable_irq(dev->irq);
2364 	velocity_intr(dev->irq, dev);
2365 	enable_irq(dev->irq);
2366 }
2367 #endif
2368 
2369 /**
2370  *	velocity_mii_ioctl		-	MII ioctl handler
2371  *	@dev: network device
2372  *	@ifr: the ifreq block for the ioctl
2373  *	@cmd: the command
2374  *
2375  *	Process MII requests made via ioctl from the network layer. These
2376  *	are used by tools like kudzu to interrogate the link state of the
2377  *	hardware
2378  */
2379 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2380 {
2381 	struct velocity_info *vptr = netdev_priv(dev);
2382 	struct mac_regs __iomem *regs = vptr->mac_regs;
2383 	unsigned long flags;
2384 	struct mii_ioctl_data *miidata = if_mii(ifr);
2385 	int err;
2386 
2387 	switch (cmd) {
2388 	case SIOCGMIIPHY:
2389 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2390 		break;
2391 	case SIOCGMIIREG:
2392 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2393 			return -ETIMEDOUT;
2394 		break;
2395 	case SIOCSMIIREG:
2396 		spin_lock_irqsave(&vptr->lock, flags);
2397 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2398 		spin_unlock_irqrestore(&vptr->lock, flags);
2399 		check_connection_type(vptr->mac_regs);
2400 		if (err)
2401 			return err;
2402 		break;
2403 	default:
2404 		return -EOPNOTSUPP;
2405 	}
2406 	return 0;
2407 }
2408 
2409 /**
2410  *	velocity_ioctl		-	ioctl entry point
2411  *	@dev: network device
2412  *	@rq: interface request ioctl
2413  *	@cmd: command code
2414  *
2415  *	Called when the user issues an ioctl request to the network
2416  *	device in question. The velocity interface supports MII.
2417  */
2418 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2419 {
2420 	struct velocity_info *vptr = netdev_priv(dev);
2421 	int ret;
2422 
2423 	/* If we are asked for information and the device is power
2424 	   saving then we need to bring the device back up to talk to it */
2425 
2426 	if (!netif_running(dev))
2427 		velocity_set_power_state(vptr, PCI_D0);
2428 
2429 	switch (cmd) {
2430 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2431 	case SIOCGMIIREG:	/* Read MII PHY register. */
2432 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2433 		ret = velocity_mii_ioctl(dev, rq, cmd);
2434 		break;
2435 
2436 	default:
2437 		ret = -EOPNOTSUPP;
2438 	}
2439 	if (!netif_running(dev))
2440 		velocity_set_power_state(vptr, PCI_D3hot);
2441 
2442 
2443 	return ret;
2444 }
2445 
2446 /**
2447  *	velocity_get_status	-	statistics callback
2448  *	@dev: network device
2449  *
2450  *	Callback from the network layer to allow driver statistics
2451  *	to be resynchronized with hardware collected state. In the
2452  *	case of the velocity we need to pull the MIB counters from
2453  *	the hardware into the counters before letting the network
2454  *	layer display them.
2455  */
2456 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2457 {
2458 	struct velocity_info *vptr = netdev_priv(dev);
2459 
2460 	/* If the hardware is down, don't touch MII */
2461 	if (!netif_running(dev))
2462 		return &dev->stats;
2463 
2464 	spin_lock_irq(&vptr->lock);
2465 	velocity_update_hw_mibs(vptr);
2466 	spin_unlock_irq(&vptr->lock);
2467 
2468 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2469 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2470 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2471 
2472 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2473 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2474 	/* detailed rx_errors: */
2475 //  unsigned long   rx_length_errors;
2476 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2477 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2478 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2479 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2480 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2481 
2482 	/* detailed tx_errors */
2483 //  unsigned long   tx_fifo_errors;
2484 
2485 	return &dev->stats;
2486 }
2487 
2488 /**
2489  *	velocity_close		-	close adapter callback
2490  *	@dev: network device
2491  *
2492  *	Callback from the network layer when the velocity is being
2493  *	deactivated by the network layer
2494  */
2495 static int velocity_close(struct net_device *dev)
2496 {
2497 	struct velocity_info *vptr = netdev_priv(dev);
2498 
2499 	napi_disable(&vptr->napi);
2500 	netif_stop_queue(dev);
2501 	velocity_shutdown(vptr);
2502 
2503 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2504 		velocity_get_ip(vptr);
2505 
2506 	free_irq(dev->irq, dev);
2507 
2508 	velocity_free_rings(vptr);
2509 
2510 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2511 	return 0;
2512 }
2513 
2514 /**
2515  *	velocity_xmit		-	transmit packet callback
2516  *	@skb: buffer to transmit
2517  *	@dev: network device
2518  *
2519  *	Called by the networ layer to request a packet is queued to
2520  *	the velocity. Returns zero on success.
2521  */
2522 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2523 				 struct net_device *dev)
2524 {
2525 	struct velocity_info *vptr = netdev_priv(dev);
2526 	int qnum = 0;
2527 	struct tx_desc *td_ptr;
2528 	struct velocity_td_info *tdinfo;
2529 	unsigned long flags;
2530 	int pktlen;
2531 	int index, prev;
2532 	int i = 0;
2533 
2534 	if (skb_padto(skb, ETH_ZLEN))
2535 		goto out;
2536 
2537 	/* The hardware can handle at most 7 memory segments, so merge
2538 	 * the skb if there are more */
2539 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2540 		dev_kfree_skb_any(skb);
2541 		return NETDEV_TX_OK;
2542 	}
2543 
2544 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2545 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2546 				skb_headlen(skb);
2547 
2548 	spin_lock_irqsave(&vptr->lock, flags);
2549 
2550 	index = vptr->tx.curr[qnum];
2551 	td_ptr = &(vptr->tx.rings[qnum][index]);
2552 	tdinfo = &(vptr->tx.infos[qnum][index]);
2553 
2554 	td_ptr->tdesc1.TCR = TCR0_TIC;
2555 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2556 
2557 	/*
2558 	 *	Map the linear network buffer into PCI space and
2559 	 *	add it to the transmit ring.
2560 	 */
2561 	tdinfo->skb = skb;
2562 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2563 								DMA_TO_DEVICE);
2564 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2565 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2566 	td_ptr->td_buf[0].pa_high = 0;
2567 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2568 
2569 	/* Handle fragments */
2570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 
2573 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2574 							  frag, 0,
2575 							  skb_frag_size(frag),
2576 							  DMA_TO_DEVICE);
2577 
2578 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2579 		td_ptr->td_buf[i + 1].pa_high = 0;
2580 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2581 	}
2582 	tdinfo->nskb_dma = i + 1;
2583 
2584 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2585 
2586 	if (skb_vlan_tag_present(skb)) {
2587 		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2588 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2589 	}
2590 
2591 	/*
2592 	 *	Handle hardware checksum
2593 	 */
2594 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2595 		const struct iphdr *ip = ip_hdr(skb);
2596 		if (ip->protocol == IPPROTO_TCP)
2597 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2598 		else if (ip->protocol == IPPROTO_UDP)
2599 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2600 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2601 	}
2602 
2603 	prev = index - 1;
2604 	if (prev < 0)
2605 		prev = vptr->options.numtx - 1;
2606 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2607 	vptr->tx.used[qnum]++;
2608 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2609 
2610 	if (AVAIL_TD(vptr, qnum) < 1)
2611 		netif_stop_queue(dev);
2612 
2613 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2614 	td_ptr->td_buf[0].size |= TD_QUEUE;
2615 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2616 
2617 	spin_unlock_irqrestore(&vptr->lock, flags);
2618 out:
2619 	return NETDEV_TX_OK;
2620 }
2621 
2622 static const struct net_device_ops velocity_netdev_ops = {
2623 	.ndo_open		= velocity_open,
2624 	.ndo_stop		= velocity_close,
2625 	.ndo_start_xmit		= velocity_xmit,
2626 	.ndo_get_stats		= velocity_get_stats,
2627 	.ndo_validate_addr	= eth_validate_addr,
2628 	.ndo_set_mac_address	= eth_mac_addr,
2629 	.ndo_set_rx_mode	= velocity_set_multi,
2630 	.ndo_change_mtu		= velocity_change_mtu,
2631 	.ndo_do_ioctl		= velocity_ioctl,
2632 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2633 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2634 #ifdef CONFIG_NET_POLL_CONTROLLER
2635 	.ndo_poll_controller = velocity_poll_controller,
2636 #endif
2637 };
2638 
2639 /**
2640  *	velocity_init_info	-	init private data
2641  *	@pdev: PCI device
2642  *	@vptr: Velocity info
2643  *	@info: Board type
2644  *
2645  *	Set up the initial velocity_info struct for the device that has been
2646  *	discovered.
2647  */
2648 static void velocity_init_info(struct velocity_info *vptr,
2649 				const struct velocity_info_tbl *info)
2650 {
2651 	vptr->chip_id = info->chip_id;
2652 	vptr->tx.numq = info->txqueue;
2653 	vptr->multicast_limit = MCAM_SIZE;
2654 	spin_lock_init(&vptr->lock);
2655 }
2656 
2657 /**
2658  *	velocity_get_pci_info	-	retrieve PCI info for device
2659  *	@vptr: velocity device
2660  *	@pdev: PCI device it matches
2661  *
2662  *	Retrieve the PCI configuration space data that interests us from
2663  *	the kernel PCI layer
2664  */
2665 static int velocity_get_pci_info(struct velocity_info *vptr)
2666 {
2667 	struct pci_dev *pdev = vptr->pdev;
2668 
2669 	pci_set_master(pdev);
2670 
2671 	vptr->ioaddr = pci_resource_start(pdev, 0);
2672 	vptr->memaddr = pci_resource_start(pdev, 1);
2673 
2674 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2675 		dev_err(&pdev->dev,
2676 			   "region #0 is not an I/O resource, aborting.\n");
2677 		return -EINVAL;
2678 	}
2679 
2680 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2681 		dev_err(&pdev->dev,
2682 			   "region #1 is an I/O resource, aborting.\n");
2683 		return -EINVAL;
2684 	}
2685 
2686 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2687 		dev_err(&pdev->dev, "region #1 is too small.\n");
2688 		return -EINVAL;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 /**
2695  *	velocity_get_platform_info - retrieve platform info for device
2696  *	@vptr: velocity device
2697  *	@pdev: platform device it matches
2698  *
2699  *	Retrieve the Platform configuration data that interests us
2700  */
2701 static int velocity_get_platform_info(struct velocity_info *vptr)
2702 {
2703 	struct resource res;
2704 	int ret;
2705 
2706 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2707 		vptr->no_eeprom = 1;
2708 
2709 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2710 	if (ret) {
2711 		dev_err(vptr->dev, "unable to find memory address\n");
2712 		return ret;
2713 	}
2714 
2715 	vptr->memaddr = res.start;
2716 
2717 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2718 		dev_err(vptr->dev, "memory region is too small.\n");
2719 		return -EINVAL;
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 /**
2726  *	velocity_print_info	-	per driver data
2727  *	@vptr: velocity
2728  *
2729  *	Print per driver data as the kernel driver finds Velocity
2730  *	hardware
2731  */
2732 static void velocity_print_info(struct velocity_info *vptr)
2733 {
2734 	struct net_device *dev = vptr->netdev;
2735 
2736 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2737 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2738 		dev->name, dev->dev_addr);
2739 }
2740 
2741 static u32 velocity_get_link(struct net_device *dev)
2742 {
2743 	struct velocity_info *vptr = netdev_priv(dev);
2744 	struct mac_regs __iomem *regs = vptr->mac_regs;
2745 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2746 }
2747 
2748 /**
2749  *	velocity_probe - set up discovered velocity device
2750  *	@pdev: PCI device
2751  *	@ent: PCI device table entry that matched
2752  *	@bustype: bus that device is connected to
2753  *
2754  *	Configure a discovered adapter from scratch. Return a negative
2755  *	errno error code on failure paths.
2756  */
2757 static int velocity_probe(struct device *dev, int irq,
2758 			   const struct velocity_info_tbl *info,
2759 			   enum velocity_bus_type bustype)
2760 {
2761 	static int first = 1;
2762 	struct net_device *netdev;
2763 	int i;
2764 	const char *drv_string;
2765 	struct velocity_info *vptr;
2766 	struct mac_regs __iomem *regs;
2767 	int ret = -ENOMEM;
2768 
2769 	/* FIXME: this driver, like almost all other ethernet drivers,
2770 	 * can support more than MAX_UNITS.
2771 	 */
2772 	if (velocity_nics >= MAX_UNITS) {
2773 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2774 		return -ENODEV;
2775 	}
2776 
2777 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2778 	if (!netdev)
2779 		goto out;
2780 
2781 	/* Chain it all together */
2782 
2783 	SET_NETDEV_DEV(netdev, dev);
2784 	vptr = netdev_priv(netdev);
2785 
2786 	if (first) {
2787 		printk(KERN_INFO "%s Ver. %s\n",
2788 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2789 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2790 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2791 		first = 0;
2792 	}
2793 
2794 	netdev->irq = irq;
2795 	vptr->netdev = netdev;
2796 	vptr->dev = dev;
2797 
2798 	velocity_init_info(vptr, info);
2799 
2800 	if (bustype == BUS_PCI) {
2801 		vptr->pdev = to_pci_dev(dev);
2802 
2803 		ret = velocity_get_pci_info(vptr);
2804 		if (ret < 0)
2805 			goto err_free_dev;
2806 	} else {
2807 		vptr->pdev = NULL;
2808 		ret = velocity_get_platform_info(vptr);
2809 		if (ret < 0)
2810 			goto err_free_dev;
2811 	}
2812 
2813 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2814 	if (regs == NULL) {
2815 		ret = -EIO;
2816 		goto err_free_dev;
2817 	}
2818 
2819 	vptr->mac_regs = regs;
2820 	vptr->rev_id = readb(&regs->rev_id);
2821 
2822 	mac_wol_reset(regs);
2823 
2824 	for (i = 0; i < 6; i++)
2825 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2826 
2827 
2828 	drv_string = dev_driver_string(dev);
2829 
2830 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2831 
2832 	/*
2833 	 *	Mask out the options cannot be set to the chip
2834 	 */
2835 
2836 	vptr->options.flags &= info->flags;
2837 
2838 	/*
2839 	 *	Enable the chip specified capbilities
2840 	 */
2841 
2842 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2843 
2844 	vptr->wol_opts = vptr->options.wol_opts;
2845 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2846 
2847 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2848 
2849 	netdev->netdev_ops = &velocity_netdev_ops;
2850 	netdev->ethtool_ops = &velocity_ethtool_ops;
2851 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2852 							VELOCITY_NAPI_WEIGHT);
2853 
2854 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2855 			   NETIF_F_HW_VLAN_CTAG_TX;
2856 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2857 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2858 			NETIF_F_IP_CSUM;
2859 
2860 	/* MTU range: 64 - 9000 */
2861 	netdev->min_mtu = VELOCITY_MIN_MTU;
2862 	netdev->max_mtu = VELOCITY_MAX_MTU;
2863 
2864 	ret = register_netdev(netdev);
2865 	if (ret < 0)
2866 		goto err_iounmap;
2867 
2868 	if (!velocity_get_link(netdev)) {
2869 		netif_carrier_off(netdev);
2870 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2871 	}
2872 
2873 	velocity_print_info(vptr);
2874 	dev_set_drvdata(vptr->dev, netdev);
2875 
2876 	/* and leave the chip powered down */
2877 
2878 	velocity_set_power_state(vptr, PCI_D3hot);
2879 	velocity_nics++;
2880 out:
2881 	return ret;
2882 
2883 err_iounmap:
2884 	netif_napi_del(&vptr->napi);
2885 	iounmap(regs);
2886 err_free_dev:
2887 	free_netdev(netdev);
2888 	goto out;
2889 }
2890 
2891 /**
2892  *	velocity_remove	- device unplug
2893  *	@dev: device being removed
2894  *
2895  *	Device unload callback. Called on an unplug or on module
2896  *	unload for each active device that is present. Disconnects
2897  *	the device from the network layer and frees all the resources
2898  */
2899 static int velocity_remove(struct device *dev)
2900 {
2901 	struct net_device *netdev = dev_get_drvdata(dev);
2902 	struct velocity_info *vptr = netdev_priv(netdev);
2903 
2904 	unregister_netdev(netdev);
2905 	netif_napi_del(&vptr->napi);
2906 	iounmap(vptr->mac_regs);
2907 	free_netdev(netdev);
2908 	velocity_nics--;
2909 
2910 	return 0;
2911 }
2912 
2913 static int velocity_pci_probe(struct pci_dev *pdev,
2914 			       const struct pci_device_id *ent)
2915 {
2916 	const struct velocity_info_tbl *info =
2917 					&chip_info_table[ent->driver_data];
2918 	int ret;
2919 
2920 	ret = pci_enable_device(pdev);
2921 	if (ret < 0)
2922 		return ret;
2923 
2924 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2925 	if (ret < 0) {
2926 		dev_err(&pdev->dev, "No PCI resources.\n");
2927 		goto fail1;
2928 	}
2929 
2930 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2931 	if (ret == 0)
2932 		return 0;
2933 
2934 	pci_release_regions(pdev);
2935 fail1:
2936 	pci_disable_device(pdev);
2937 	return ret;
2938 }
2939 
2940 static void velocity_pci_remove(struct pci_dev *pdev)
2941 {
2942 	velocity_remove(&pdev->dev);
2943 
2944 	pci_release_regions(pdev);
2945 	pci_disable_device(pdev);
2946 }
2947 
2948 static int velocity_platform_probe(struct platform_device *pdev)
2949 {
2950 	const struct of_device_id *of_id;
2951 	const struct velocity_info_tbl *info;
2952 	int irq;
2953 
2954 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2955 	if (!of_id)
2956 		return -EINVAL;
2957 	info = of_id->data;
2958 
2959 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2960 	if (!irq)
2961 		return -EINVAL;
2962 
2963 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2964 }
2965 
2966 static int velocity_platform_remove(struct platform_device *pdev)
2967 {
2968 	velocity_remove(&pdev->dev);
2969 
2970 	return 0;
2971 }
2972 
2973 #ifdef CONFIG_PM_SLEEP
2974 /**
2975  *	wol_calc_crc		-	WOL CRC
2976  *	@pattern: data pattern
2977  *	@mask_pattern: mask
2978  *
2979  *	Compute the wake on lan crc hashes for the packet header
2980  *	we are interested in.
2981  */
2982 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2983 {
2984 	u16 crc = 0xFFFF;
2985 	u8 mask;
2986 	int i, j;
2987 
2988 	for (i = 0; i < size; i++) {
2989 		mask = mask_pattern[i];
2990 
2991 		/* Skip this loop if the mask equals to zero */
2992 		if (mask == 0x00)
2993 			continue;
2994 
2995 		for (j = 0; j < 8; j++) {
2996 			if ((mask & 0x01) == 0) {
2997 				mask >>= 1;
2998 				continue;
2999 			}
3000 			mask >>= 1;
3001 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3002 		}
3003 	}
3004 	/*	Finally, invert the result once to get the correct data */
3005 	crc = ~crc;
3006 	return bitrev32(crc) >> 16;
3007 }
3008 
3009 /**
3010  *	velocity_set_wol	-	set up for wake on lan
3011  *	@vptr: velocity to set WOL status on
3012  *
3013  *	Set a card up for wake on lan either by unicast or by
3014  *	ARP packet.
3015  *
3016  *	FIXME: check static buffer is safe here
3017  */
3018 static int velocity_set_wol(struct velocity_info *vptr)
3019 {
3020 	struct mac_regs __iomem *regs = vptr->mac_regs;
3021 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3022 	static u8 buf[256];
3023 	int i;
3024 
3025 	static u32 mask_pattern[2][4] = {
3026 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3027 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3028 	};
3029 
3030 	writew(0xFFFF, &regs->WOLCRClr);
3031 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3032 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3033 
3034 	/*
3035 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3036 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3037 	 */
3038 
3039 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3040 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3041 
3042 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3043 		struct arp_packet *arp = (struct arp_packet *) buf;
3044 		u16 crc;
3045 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3046 
3047 		for (i = 0; i < 4; i++)
3048 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3049 
3050 		arp->type = htons(ETH_P_ARP);
3051 		arp->ar_op = htons(1);
3052 
3053 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3054 
3055 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3056 				(u8 *) & mask_pattern[0][0]);
3057 
3058 		writew(crc, &regs->PatternCRC[0]);
3059 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3060 	}
3061 
3062 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3063 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3064 
3065 	writew(0x0FFF, &regs->WOLSRClr);
3066 
3067 	if (spd_dpx == SPD_DPX_1000_FULL)
3068 		goto mac_done;
3069 
3070 	if (spd_dpx != SPD_DPX_AUTO)
3071 		goto advertise_done;
3072 
3073 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3074 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3075 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3076 
3077 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3078 	}
3079 
3080 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3081 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3082 
3083 advertise_done:
3084 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3085 
3086 	{
3087 		u8 GCR;
3088 		GCR = readb(&regs->CHIPGCR);
3089 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3090 		writeb(GCR, &regs->CHIPGCR);
3091 	}
3092 
3093 mac_done:
3094 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3095 	/* Turn on SWPTAG just before entering power mode */
3096 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3097 	/* Go to bed ..... */
3098 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3099 
3100 	return 0;
3101 }
3102 
3103 /**
3104  *	velocity_save_context	-	save registers
3105  *	@vptr: velocity
3106  *	@context: buffer for stored context
3107  *
3108  *	Retrieve the current configuration from the velocity hardware
3109  *	and stash it in the context structure, for use by the context
3110  *	restore functions. This allows us to save things we need across
3111  *	power down states
3112  */
3113 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3114 {
3115 	struct mac_regs __iomem *regs = vptr->mac_regs;
3116 	u16 i;
3117 	u8 __iomem *ptr = (u8 __iomem *)regs;
3118 
3119 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3120 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3121 
3122 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3123 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124 
3125 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3126 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127 
3128 }
3129 
3130 static int velocity_suspend(struct device *dev)
3131 {
3132 	struct net_device *netdev = dev_get_drvdata(dev);
3133 	struct velocity_info *vptr = netdev_priv(netdev);
3134 	unsigned long flags;
3135 
3136 	if (!netif_running(vptr->netdev))
3137 		return 0;
3138 
3139 	netif_device_detach(vptr->netdev);
3140 
3141 	spin_lock_irqsave(&vptr->lock, flags);
3142 	if (vptr->pdev)
3143 		pci_save_state(vptr->pdev);
3144 
3145 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3146 		velocity_get_ip(vptr);
3147 		velocity_save_context(vptr, &vptr->context);
3148 		velocity_shutdown(vptr);
3149 		velocity_set_wol(vptr);
3150 		if (vptr->pdev)
3151 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3152 		velocity_set_power_state(vptr, PCI_D3hot);
3153 	} else {
3154 		velocity_save_context(vptr, &vptr->context);
3155 		velocity_shutdown(vptr);
3156 		if (vptr->pdev)
3157 			pci_disable_device(vptr->pdev);
3158 		velocity_set_power_state(vptr, PCI_D3hot);
3159 	}
3160 
3161 	spin_unlock_irqrestore(&vptr->lock, flags);
3162 	return 0;
3163 }
3164 
3165 /**
3166  *	velocity_restore_context	-	restore registers
3167  *	@vptr: velocity
3168  *	@context: buffer for stored context
3169  *
3170  *	Reload the register configuration from the velocity context
3171  *	created by velocity_save_context.
3172  */
3173 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3174 {
3175 	struct mac_regs __iomem *regs = vptr->mac_regs;
3176 	int i;
3177 	u8 __iomem *ptr = (u8 __iomem *)regs;
3178 
3179 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3180 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3181 
3182 	/* Just skip cr0 */
3183 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3184 		/* Clear */
3185 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3186 		/* Set */
3187 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3188 	}
3189 
3190 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3191 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3192 
3193 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3194 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3195 
3196 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3197 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3198 }
3199 
3200 static int velocity_resume(struct device *dev)
3201 {
3202 	struct net_device *netdev = dev_get_drvdata(dev);
3203 	struct velocity_info *vptr = netdev_priv(netdev);
3204 	unsigned long flags;
3205 	int i;
3206 
3207 	if (!netif_running(vptr->netdev))
3208 		return 0;
3209 
3210 	velocity_set_power_state(vptr, PCI_D0);
3211 
3212 	if (vptr->pdev) {
3213 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3214 		pci_restore_state(vptr->pdev);
3215 	}
3216 
3217 	mac_wol_reset(vptr->mac_regs);
3218 
3219 	spin_lock_irqsave(&vptr->lock, flags);
3220 	velocity_restore_context(vptr, &vptr->context);
3221 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3222 	mac_disable_int(vptr->mac_regs);
3223 
3224 	velocity_tx_srv(vptr);
3225 
3226 	for (i = 0; i < vptr->tx.numq; i++) {
3227 		if (vptr->tx.used[i])
3228 			mac_tx_queue_wake(vptr->mac_regs, i);
3229 	}
3230 
3231 	mac_enable_int(vptr->mac_regs);
3232 	spin_unlock_irqrestore(&vptr->lock, flags);
3233 	netif_device_attach(vptr->netdev);
3234 
3235 	return 0;
3236 }
3237 #endif	/* CONFIG_PM_SLEEP */
3238 
3239 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3240 
3241 /*
3242  *	Definition for our device driver. The PCI layer interface
3243  *	uses this to handle all our card discover and plugging
3244  */
3245 static struct pci_driver velocity_pci_driver = {
3246 	.name		= VELOCITY_NAME,
3247 	.id_table	= velocity_pci_id_table,
3248 	.probe		= velocity_pci_probe,
3249 	.remove		= velocity_pci_remove,
3250 	.driver = {
3251 		.pm = &velocity_pm_ops,
3252 	},
3253 };
3254 
3255 static struct platform_driver velocity_platform_driver = {
3256 	.probe		= velocity_platform_probe,
3257 	.remove		= velocity_platform_remove,
3258 	.driver = {
3259 		.name = "via-velocity",
3260 		.of_match_table = velocity_of_ids,
3261 		.pm = &velocity_pm_ops,
3262 	},
3263 };
3264 
3265 /**
3266  *	velocity_ethtool_up	-	pre hook for ethtool
3267  *	@dev: network device
3268  *
3269  *	Called before an ethtool operation. We need to make sure the
3270  *	chip is out of D3 state before we poke at it.
3271  */
3272 static int velocity_ethtool_up(struct net_device *dev)
3273 {
3274 	struct velocity_info *vptr = netdev_priv(dev);
3275 	if (!netif_running(dev))
3276 		velocity_set_power_state(vptr, PCI_D0);
3277 	return 0;
3278 }
3279 
3280 /**
3281  *	velocity_ethtool_down	-	post hook for ethtool
3282  *	@dev: network device
3283  *
3284  *	Called after an ethtool operation. Restore the chip back to D3
3285  *	state if it isn't running.
3286  */
3287 static void velocity_ethtool_down(struct net_device *dev)
3288 {
3289 	struct velocity_info *vptr = netdev_priv(dev);
3290 	if (!netif_running(dev))
3291 		velocity_set_power_state(vptr, PCI_D3hot);
3292 }
3293 
3294 static int velocity_get_link_ksettings(struct net_device *dev,
3295 				       struct ethtool_link_ksettings *cmd)
3296 {
3297 	struct velocity_info *vptr = netdev_priv(dev);
3298 	struct mac_regs __iomem *regs = vptr->mac_regs;
3299 	u32 status;
3300 	u32 supported, advertising;
3301 
3302 	status = check_connection_type(vptr->mac_regs);
3303 
3304 	supported = SUPPORTED_TP |
3305 			SUPPORTED_Autoneg |
3306 			SUPPORTED_10baseT_Half |
3307 			SUPPORTED_10baseT_Full |
3308 			SUPPORTED_100baseT_Half |
3309 			SUPPORTED_100baseT_Full |
3310 			SUPPORTED_1000baseT_Half |
3311 			SUPPORTED_1000baseT_Full;
3312 
3313 	advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3314 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3315 		advertising |=
3316 			ADVERTISED_10baseT_Half |
3317 			ADVERTISED_10baseT_Full |
3318 			ADVERTISED_100baseT_Half |
3319 			ADVERTISED_100baseT_Full |
3320 			ADVERTISED_1000baseT_Half |
3321 			ADVERTISED_1000baseT_Full;
3322 	} else {
3323 		switch (vptr->options.spd_dpx) {
3324 		case SPD_DPX_1000_FULL:
3325 			advertising |= ADVERTISED_1000baseT_Full;
3326 			break;
3327 		case SPD_DPX_100_HALF:
3328 			advertising |= ADVERTISED_100baseT_Half;
3329 			break;
3330 		case SPD_DPX_100_FULL:
3331 			advertising |= ADVERTISED_100baseT_Full;
3332 			break;
3333 		case SPD_DPX_10_HALF:
3334 			advertising |= ADVERTISED_10baseT_Half;
3335 			break;
3336 		case SPD_DPX_10_FULL:
3337 			advertising |= ADVERTISED_10baseT_Full;
3338 			break;
3339 		default:
3340 			break;
3341 		}
3342 	}
3343 
3344 	if (status & VELOCITY_SPEED_1000)
3345 		cmd->base.speed = SPEED_1000;
3346 	else if (status & VELOCITY_SPEED_100)
3347 		cmd->base.speed = SPEED_100;
3348 	else
3349 		cmd->base.speed = SPEED_10;
3350 
3351 	cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ?
3352 		AUTONEG_ENABLE : AUTONEG_DISABLE;
3353 	cmd->base.port = PORT_TP;
3354 	cmd->base.phy_address = readb(&regs->MIIADR) & 0x1F;
3355 
3356 	if (status & VELOCITY_DUPLEX_FULL)
3357 		cmd->base.duplex = DUPLEX_FULL;
3358 	else
3359 		cmd->base.duplex = DUPLEX_HALF;
3360 
3361 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3362 						supported);
3363 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3364 						advertising);
3365 
3366 	return 0;
3367 }
3368 
3369 static int velocity_set_link_ksettings(struct net_device *dev,
3370 				       const struct ethtool_link_ksettings *cmd)
3371 {
3372 	struct velocity_info *vptr = netdev_priv(dev);
3373 	u32 speed = cmd->base.speed;
3374 	u32 curr_status;
3375 	u32 new_status = 0;
3376 	int ret = 0;
3377 
3378 	curr_status = check_connection_type(vptr->mac_regs);
3379 	curr_status &= (~VELOCITY_LINK_FAIL);
3380 
3381 	new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3382 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3383 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3384 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3385 	new_status |= ((cmd->base.duplex == DUPLEX_FULL) ?
3386 		       VELOCITY_DUPLEX_FULL : 0);
3387 
3388 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3389 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3390 		ret = -EINVAL;
3391 	} else {
3392 		enum speed_opt spd_dpx;
3393 
3394 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3395 			spd_dpx = SPD_DPX_AUTO;
3396 		else if ((new_status & VELOCITY_SPEED_1000) &&
3397 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3398 			spd_dpx = SPD_DPX_1000_FULL;
3399 		} else if (new_status & VELOCITY_SPEED_100)
3400 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3401 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3402 		else if (new_status & VELOCITY_SPEED_10)
3403 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3404 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3405 		else
3406 			return -EOPNOTSUPP;
3407 
3408 		vptr->options.spd_dpx = spd_dpx;
3409 
3410 		velocity_set_media_mode(vptr, new_status);
3411 	}
3412 
3413 	return ret;
3414 }
3415 
3416 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3417 {
3418 	struct velocity_info *vptr = netdev_priv(dev);
3419 
3420 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3421 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3422 	if (vptr->pdev)
3423 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3424 						sizeof(info->bus_info));
3425 	else
3426 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3427 }
3428 
3429 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3430 {
3431 	struct velocity_info *vptr = netdev_priv(dev);
3432 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3433 	wol->wolopts |= WAKE_MAGIC;
3434 	/*
3435 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3436 		   wol.wolopts|=WAKE_PHY;
3437 			 */
3438 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3439 		wol->wolopts |= WAKE_UCAST;
3440 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3441 		wol->wolopts |= WAKE_ARP;
3442 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3443 }
3444 
3445 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3446 {
3447 	struct velocity_info *vptr = netdev_priv(dev);
3448 
3449 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3450 		return -EFAULT;
3451 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3452 
3453 	/*
3454 	   if (wol.wolopts & WAKE_PHY) {
3455 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3456 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3457 	   }
3458 	 */
3459 
3460 	if (wol->wolopts & WAKE_MAGIC) {
3461 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3462 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3463 	}
3464 	if (wol->wolopts & WAKE_UCAST) {
3465 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3466 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3467 	}
3468 	if (wol->wolopts & WAKE_ARP) {
3469 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3470 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3471 	}
3472 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3473 	return 0;
3474 }
3475 
3476 static u32 velocity_get_msglevel(struct net_device *dev)
3477 {
3478 	return msglevel;
3479 }
3480 
3481 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3482 {
3483 	 msglevel = value;
3484 }
3485 
3486 static int get_pending_timer_val(int val)
3487 {
3488 	int mult_bits = val >> 6;
3489 	int mult = 1;
3490 
3491 	switch (mult_bits)
3492 	{
3493 	case 1:
3494 		mult = 4; break;
3495 	case 2:
3496 		mult = 16; break;
3497 	case 3:
3498 		mult = 64; break;
3499 	case 0:
3500 	default:
3501 		break;
3502 	}
3503 
3504 	return (val & 0x3f) * mult;
3505 }
3506 
3507 static void set_pending_timer_val(int *val, u32 us)
3508 {
3509 	u8 mult = 0;
3510 	u8 shift = 0;
3511 
3512 	if (us >= 0x3f) {
3513 		mult = 1; /* mult with 4 */
3514 		shift = 2;
3515 	}
3516 	if (us >= 0x3f * 4) {
3517 		mult = 2; /* mult with 16 */
3518 		shift = 4;
3519 	}
3520 	if (us >= 0x3f * 16) {
3521 		mult = 3; /* mult with 64 */
3522 		shift = 6;
3523 	}
3524 
3525 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3526 }
3527 
3528 
3529 static int velocity_get_coalesce(struct net_device *dev,
3530 		struct ethtool_coalesce *ecmd)
3531 {
3532 	struct velocity_info *vptr = netdev_priv(dev);
3533 
3534 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3535 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3536 
3537 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3538 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3539 
3540 	return 0;
3541 }
3542 
3543 static int velocity_set_coalesce(struct net_device *dev,
3544 		struct ethtool_coalesce *ecmd)
3545 {
3546 	struct velocity_info *vptr = netdev_priv(dev);
3547 	int max_us = 0x3f * 64;
3548 	unsigned long flags;
3549 
3550 	/* 6 bits of  */
3551 	if (ecmd->tx_coalesce_usecs > max_us)
3552 		return -EINVAL;
3553 	if (ecmd->rx_coalesce_usecs > max_us)
3554 		return -EINVAL;
3555 
3556 	if (ecmd->tx_max_coalesced_frames > 0xff)
3557 		return -EINVAL;
3558 	if (ecmd->rx_max_coalesced_frames > 0xff)
3559 		return -EINVAL;
3560 
3561 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3562 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3563 
3564 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3565 			ecmd->rx_coalesce_usecs);
3566 	set_pending_timer_val(&vptr->options.txqueue_timer,
3567 			ecmd->tx_coalesce_usecs);
3568 
3569 	/* Setup the interrupt suppression and queue timers */
3570 	spin_lock_irqsave(&vptr->lock, flags);
3571 	mac_disable_int(vptr->mac_regs);
3572 	setup_adaptive_interrupts(vptr);
3573 	setup_queue_timers(vptr);
3574 
3575 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3576 	mac_clear_isr(vptr->mac_regs);
3577 	mac_enable_int(vptr->mac_regs);
3578 	spin_unlock_irqrestore(&vptr->lock, flags);
3579 
3580 	return 0;
3581 }
3582 
3583 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3584 	"rx_all",
3585 	"rx_ok",
3586 	"tx_ok",
3587 	"rx_error",
3588 	"rx_runt_ok",
3589 	"rx_runt_err",
3590 	"rx_64",
3591 	"tx_64",
3592 	"rx_65_to_127",
3593 	"tx_65_to_127",
3594 	"rx_128_to_255",
3595 	"tx_128_to_255",
3596 	"rx_256_to_511",
3597 	"tx_256_to_511",
3598 	"rx_512_to_1023",
3599 	"tx_512_to_1023",
3600 	"rx_1024_to_1518",
3601 	"tx_1024_to_1518",
3602 	"tx_ether_collisions",
3603 	"rx_crc_errors",
3604 	"rx_jumbo",
3605 	"tx_jumbo",
3606 	"rx_mac_control_frames",
3607 	"tx_mac_control_frames",
3608 	"rx_frame_alignement_errors",
3609 	"rx_long_ok",
3610 	"rx_long_err",
3611 	"tx_sqe_errors",
3612 	"rx_no_buf",
3613 	"rx_symbol_errors",
3614 	"in_range_length_errors",
3615 	"late_collisions"
3616 };
3617 
3618 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3619 {
3620 	switch (sset) {
3621 	case ETH_SS_STATS:
3622 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3623 		break;
3624 	}
3625 }
3626 
3627 static int velocity_get_sset_count(struct net_device *dev, int sset)
3628 {
3629 	switch (sset) {
3630 	case ETH_SS_STATS:
3631 		return ARRAY_SIZE(velocity_gstrings);
3632 	default:
3633 		return -EOPNOTSUPP;
3634 	}
3635 }
3636 
3637 static void velocity_get_ethtool_stats(struct net_device *dev,
3638 				       struct ethtool_stats *stats, u64 *data)
3639 {
3640 	if (netif_running(dev)) {
3641 		struct velocity_info *vptr = netdev_priv(dev);
3642 		u32 *p = vptr->mib_counter;
3643 		int i;
3644 
3645 		spin_lock_irq(&vptr->lock);
3646 		velocity_update_hw_mibs(vptr);
3647 		spin_unlock_irq(&vptr->lock);
3648 
3649 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3650 			*data++ = *p++;
3651 	}
3652 }
3653 
3654 static const struct ethtool_ops velocity_ethtool_ops = {
3655 	.get_drvinfo		= velocity_get_drvinfo,
3656 	.get_wol		= velocity_ethtool_get_wol,
3657 	.set_wol		= velocity_ethtool_set_wol,
3658 	.get_msglevel		= velocity_get_msglevel,
3659 	.set_msglevel		= velocity_set_msglevel,
3660 	.get_link		= velocity_get_link,
3661 	.get_strings		= velocity_get_strings,
3662 	.get_sset_count		= velocity_get_sset_count,
3663 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3664 	.get_coalesce		= velocity_get_coalesce,
3665 	.set_coalesce		= velocity_set_coalesce,
3666 	.begin			= velocity_ethtool_up,
3667 	.complete		= velocity_ethtool_down,
3668 	.get_link_ksettings	= velocity_get_link_ksettings,
3669 	.set_link_ksettings	= velocity_set_link_ksettings,
3670 };
3671 
3672 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3673 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3674 {
3675 	struct in_ifaddr *ifa = ptr;
3676 	struct net_device *dev = ifa->ifa_dev->dev;
3677 
3678 	if (dev_net(dev) == &init_net &&
3679 	    dev->netdev_ops == &velocity_netdev_ops)
3680 		velocity_get_ip(netdev_priv(dev));
3681 
3682 	return NOTIFY_DONE;
3683 }
3684 
3685 static struct notifier_block velocity_inetaddr_notifier = {
3686 	.notifier_call	= velocity_netdev_event,
3687 };
3688 
3689 static void velocity_register_notifier(void)
3690 {
3691 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3692 }
3693 
3694 static void velocity_unregister_notifier(void)
3695 {
3696 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3697 }
3698 
3699 #else
3700 
3701 #define velocity_register_notifier()	do {} while (0)
3702 #define velocity_unregister_notifier()	do {} while (0)
3703 
3704 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3705 
3706 /**
3707  *	velocity_init_module	-	load time function
3708  *
3709  *	Called when the velocity module is loaded. The PCI driver
3710  *	is registered with the PCI layer, and in turn will call
3711  *	the probe functions for each velocity adapter installed
3712  *	in the system.
3713  */
3714 static int __init velocity_init_module(void)
3715 {
3716 	int ret_pci, ret_platform;
3717 
3718 	velocity_register_notifier();
3719 
3720 	ret_pci = pci_register_driver(&velocity_pci_driver);
3721 	ret_platform = platform_driver_register(&velocity_platform_driver);
3722 
3723 	/* if both_registers failed, remove the notifier */
3724 	if ((ret_pci < 0) && (ret_platform < 0)) {
3725 		velocity_unregister_notifier();
3726 		return ret_pci;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 /**
3733  *	velocity_cleanup	-	module unload
3734  *
3735  *	When the velocity hardware is unloaded this function is called.
3736  *	It will clean up the notifiers and the unregister the PCI
3737  *	driver interface for this hardware. This in turn cleans up
3738  *	all discovered interfaces before returning from the function
3739  */
3740 static void __exit velocity_cleanup_module(void)
3741 {
3742 	velocity_unregister_notifier();
3743 
3744 	pci_unregister_driver(&velocity_pci_driver);
3745 	platform_driver_unregister(&velocity_platform_driver);
3746 }
3747 
3748 module_init(velocity_init_module);
3749 module_exit(velocity_cleanup_module);
3750