1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/mm.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/pci.h> 54 #include <linux/kernel.h> 55 #include <linux/netdevice.h> 56 #include <linux/etherdevice.h> 57 #include <linux/skbuff.h> 58 #include <linux/delay.h> 59 #include <linux/timer.h> 60 #include <linux/slab.h> 61 #include <linux/interrupt.h> 62 #include <linux/string.h> 63 #include <linux/wait.h> 64 #include <linux/io.h> 65 #include <linux/if.h> 66 #include <linux/uaccess.h> 67 #include <linux/proc_fs.h> 68 #include <linux/of_address.h> 69 #include <linux/of_device.h> 70 #include <linux/of_irq.h> 71 #include <linux/inetdevice.h> 72 #include <linux/platform_device.h> 73 #include <linux/reboot.h> 74 #include <linux/ethtool.h> 75 #include <linux/mii.h> 76 #include <linux/in.h> 77 #include <linux/if_arp.h> 78 #include <linux/if_vlan.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/crc-ccitt.h> 83 #include <linux/crc32.h> 84 85 #include "via-velocity.h" 86 87 enum velocity_bus_type { 88 BUS_PCI, 89 BUS_PLATFORM, 90 }; 91 92 static int velocity_nics; 93 static int msglevel = MSG_LEVEL_INFO; 94 95 static void velocity_set_power_state(struct velocity_info *vptr, char state) 96 { 97 void *addr = vptr->mac_regs; 98 99 if (vptr->pdev) 100 pci_set_power_state(vptr->pdev, state); 101 else 102 writeb(state, addr + 0x154); 103 } 104 105 /** 106 * mac_get_cam_mask - Read a CAM mask 107 * @regs: register block for this velocity 108 * @mask: buffer to store mask 109 * 110 * Fetch the mask bits of the selected CAM and store them into the 111 * provided mask buffer. 112 */ 113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 114 { 115 int i; 116 117 /* Select CAM mask */ 118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 119 120 writeb(0, ®s->CAMADDR); 121 122 /* read mask */ 123 for (i = 0; i < 8; i++) 124 *mask++ = readb(&(regs->MARCAM[i])); 125 126 /* disable CAMEN */ 127 writeb(0, ®s->CAMADDR); 128 129 /* Select mar */ 130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 131 } 132 133 /** 134 * mac_set_cam_mask - Set a CAM mask 135 * @regs: register block for this velocity 136 * @mask: CAM mask to load 137 * 138 * Store a new mask into a CAM 139 */ 140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 141 { 142 int i; 143 /* Select CAM mask */ 144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 145 146 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 147 148 for (i = 0; i < 8; i++) 149 writeb(*mask++, &(regs->MARCAM[i])); 150 151 /* disable CAMEN */ 152 writeb(0, ®s->CAMADDR); 153 154 /* Select mar */ 155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 156 } 157 158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 159 { 160 int i; 161 /* Select CAM mask */ 162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 163 164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 165 166 for (i = 0; i < 8; i++) 167 writeb(*mask++, &(regs->MARCAM[i])); 168 169 /* disable CAMEN */ 170 writeb(0, ®s->CAMADDR); 171 172 /* Select mar */ 173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 174 } 175 176 /** 177 * mac_set_cam - set CAM data 178 * @regs: register block of this velocity 179 * @idx: Cam index 180 * @addr: 2 or 6 bytes of CAM data 181 * 182 * Load an address or vlan tag into a CAM 183 */ 184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 185 { 186 int i; 187 188 /* Select CAM mask */ 189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 190 191 idx &= (64 - 1); 192 193 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 194 195 for (i = 0; i < 6; i++) 196 writeb(*addr++, &(regs->MARCAM[i])); 197 198 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 199 200 udelay(10); 201 202 writeb(0, ®s->CAMADDR); 203 204 /* Select mar */ 205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 206 } 207 208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 209 const u8 *addr) 210 { 211 212 /* Select CAM mask */ 213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 214 215 idx &= (64 - 1); 216 217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 218 writew(*((u16 *) addr), ®s->MARCAM[0]); 219 220 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 221 222 udelay(10); 223 224 writeb(0, ®s->CAMADDR); 225 226 /* Select mar */ 227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 228 } 229 230 231 /** 232 * mac_wol_reset - reset WOL after exiting low power 233 * @regs: register block of this velocity 234 * 235 * Called after we drop out of wake on lan mode in order to 236 * reset the Wake on lan features. This function doesn't restore 237 * the rest of the logic from the result of sleep/wakeup 238 */ 239 static void mac_wol_reset(struct mac_regs __iomem *regs) 240 { 241 242 /* Turn off SWPTAG right after leaving power mode */ 243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 244 /* clear sticky bits */ 245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 246 247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 249 /* disable force PME-enable */ 250 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 251 /* disable power-event config bit */ 252 writew(0xFFFF, ®s->WOLCRClr); 253 /* clear power status */ 254 writew(0xFFFF, ®s->WOLSRClr); 255 } 256 257 static const struct ethtool_ops velocity_ethtool_ops; 258 259 /* 260 Define module options 261 */ 262 263 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 264 MODULE_LICENSE("GPL"); 265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 266 267 #define VELOCITY_PARAM(N, D) \ 268 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 269 module_param_array(N, int, NULL, 0); \ 270 MODULE_PARM_DESC(N, D); 271 272 #define RX_DESC_MIN 64 273 #define RX_DESC_MAX 255 274 #define RX_DESC_DEF 64 275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 276 277 #define TX_DESC_MIN 16 278 #define TX_DESC_MAX 256 279 #define TX_DESC_DEF 64 280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 281 282 #define RX_THRESH_MIN 0 283 #define RX_THRESH_MAX 3 284 #define RX_THRESH_DEF 0 285 /* rx_thresh[] is used for controlling the receive fifo threshold. 286 0: indicate the rxfifo threshold is 128 bytes. 287 1: indicate the rxfifo threshold is 512 bytes. 288 2: indicate the rxfifo threshold is 1024 bytes. 289 3: indicate the rxfifo threshold is store & forward. 290 */ 291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 292 293 #define DMA_LENGTH_MIN 0 294 #define DMA_LENGTH_MAX 7 295 #define DMA_LENGTH_DEF 6 296 297 /* DMA_length[] is used for controlling the DMA length 298 0: 8 DWORDs 299 1: 16 DWORDs 300 2: 32 DWORDs 301 3: 64 DWORDs 302 4: 128 DWORDs 303 5: 256 DWORDs 304 6: SF(flush till emply) 305 7: SF(flush till emply) 306 */ 307 VELOCITY_PARAM(DMA_length, "DMA length"); 308 309 #define IP_ALIG_DEF 0 310 /* IP_byte_align[] is used for IP header DWORD byte aligned 311 0: indicate the IP header won't be DWORD byte aligned.(Default) . 312 1: indicate the IP header will be DWORD byte aligned. 313 In some environment, the IP header should be DWORD byte aligned, 314 or the packet will be droped when we receive it. (eg: IPVS) 315 */ 316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 317 318 #define FLOW_CNTL_DEF 1 319 #define FLOW_CNTL_MIN 1 320 #define FLOW_CNTL_MAX 5 321 322 /* flow_control[] is used for setting the flow control ability of NIC. 323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 324 2: enable TX flow control. 325 3: enable RX flow control. 326 4: enable RX/TX flow control. 327 5: disable 328 */ 329 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 330 331 #define MED_LNK_DEF 0 332 #define MED_LNK_MIN 0 333 #define MED_LNK_MAX 5 334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 335 0: indicate autonegotiation for both speed and duplex mode 336 1: indicate 100Mbps half duplex mode 337 2: indicate 100Mbps full duplex mode 338 3: indicate 10Mbps half duplex mode 339 4: indicate 10Mbps full duplex mode 340 5: indicate 1000Mbps full duplex mode 341 342 Note: 343 if EEPROM have been set to the force mode, this option is ignored 344 by driver. 345 */ 346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 347 348 #define VAL_PKT_LEN_DEF 0 349 /* ValPktLen[] is used for setting the checksum offload ability of NIC. 350 0: Receive frame with invalid layer 2 length (Default) 351 1: Drop frame with invalid layer 2 length 352 */ 353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame"); 354 355 #define WOL_OPT_DEF 0 356 #define WOL_OPT_MIN 0 357 #define WOL_OPT_MAX 7 358 /* wol_opts[] is used for controlling wake on lan behavior. 359 0: Wake up if recevied a magic packet. (Default) 360 1: Wake up if link status is on/off. 361 2: Wake up if recevied an arp packet. 362 4: Wake up if recevied any unicast packet. 363 Those value can be sumed up to support more than one option. 364 */ 365 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 366 367 static int rx_copybreak = 200; 368 module_param(rx_copybreak, int, 0644); 369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 370 371 /* 372 * Internal board variants. At the moment we have only one 373 */ 374 static struct velocity_info_tbl chip_info_table[] = { 375 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 376 { } 377 }; 378 379 /* 380 * Describe the PCI device identifiers that we support in this 381 * device driver. Used for hotplug autoloading. 382 */ 383 384 static const struct pci_device_id velocity_pci_id_table[] = { 385 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 386 { } 387 }; 388 389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 390 391 /** 392 * Describe the OF device identifiers that we support in this 393 * device driver. Used for devicetree nodes. 394 */ 395 static const struct of_device_id velocity_of_ids[] = { 396 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 397 { /* Sentinel */ }, 398 }; 399 MODULE_DEVICE_TABLE(of, velocity_of_ids); 400 401 /** 402 * get_chip_name - identifier to name 403 * @id: chip identifier 404 * 405 * Given a chip identifier return a suitable description. Returns 406 * a pointer a static string valid while the driver is loaded. 407 */ 408 static const char *get_chip_name(enum chip_type chip_id) 409 { 410 int i; 411 for (i = 0; chip_info_table[i].name != NULL; i++) 412 if (chip_info_table[i].chip_id == chip_id) 413 break; 414 return chip_info_table[i].name; 415 } 416 417 /** 418 * velocity_set_int_opt - parser for integer options 419 * @opt: pointer to option value 420 * @val: value the user requested (or -1 for default) 421 * @min: lowest value allowed 422 * @max: highest value allowed 423 * @def: default value 424 * @name: property name 425 * @dev: device name 426 * 427 * Set an integer property in the module options. This function does 428 * all the verification and checking as well as reporting so that 429 * we don't duplicate code for each option. 430 */ 431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 432 char *name, const char *devname) 433 { 434 if (val == -1) 435 *opt = def; 436 else if (val < min || val > max) { 437 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 438 devname, name, min, max); 439 *opt = def; 440 } else { 441 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 442 devname, name, val); 443 *opt = val; 444 } 445 } 446 447 /** 448 * velocity_set_bool_opt - parser for boolean options 449 * @opt: pointer to option value 450 * @val: value the user requested (or -1 for default) 451 * @def: default value (yes/no) 452 * @flag: numeric value to set for true. 453 * @name: property name 454 * @dev: device name 455 * 456 * Set a boolean property in the module options. This function does 457 * all the verification and checking as well as reporting so that 458 * we don't duplicate code for each option. 459 */ 460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 461 char *name, const char *devname) 462 { 463 (*opt) &= (~flag); 464 if (val == -1) 465 *opt |= (def ? flag : 0); 466 else if (val < 0 || val > 1) { 467 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 468 devname, name); 469 *opt |= (def ? flag : 0); 470 } else { 471 printk(KERN_INFO "%s: set parameter %s to %s\n", 472 devname, name, val ? "TRUE" : "FALSE"); 473 *opt |= (val ? flag : 0); 474 } 475 } 476 477 /** 478 * velocity_get_options - set options on device 479 * @opts: option structure for the device 480 * @index: index of option to use in module options array 481 * @devname: device name 482 * 483 * Turn the module and command options into a single structure 484 * for the current device 485 */ 486 static void velocity_get_options(struct velocity_opt *opts, int index, 487 const char *devname) 488 { 489 490 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 491 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 492 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 493 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 494 495 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 496 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 497 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname); 498 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 499 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 500 opts->numrx = (opts->numrx & ~3); 501 } 502 503 /** 504 * velocity_init_cam_filter - initialise CAM 505 * @vptr: velocity to program 506 * 507 * Initialize the content addressable memory used for filters. Load 508 * appropriately according to the presence of VLAN 509 */ 510 static void velocity_init_cam_filter(struct velocity_info *vptr) 511 { 512 struct mac_regs __iomem *regs = vptr->mac_regs; 513 unsigned int vid, i = 0; 514 515 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 516 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 517 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 518 519 /* Disable all CAMs */ 520 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 521 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 523 mac_set_cam_mask(regs, vptr->mCAMmask); 524 525 /* Enable VCAMs */ 526 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 527 mac_set_vlan_cam(regs, i, (u8 *) &vid); 528 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 529 if (++i >= VCAM_SIZE) 530 break; 531 } 532 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 533 } 534 535 static int velocity_vlan_rx_add_vid(struct net_device *dev, 536 __be16 proto, u16 vid) 537 { 538 struct velocity_info *vptr = netdev_priv(dev); 539 540 spin_lock_irq(&vptr->lock); 541 set_bit(vid, vptr->active_vlans); 542 velocity_init_cam_filter(vptr); 543 spin_unlock_irq(&vptr->lock); 544 return 0; 545 } 546 547 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 548 __be16 proto, u16 vid) 549 { 550 struct velocity_info *vptr = netdev_priv(dev); 551 552 spin_lock_irq(&vptr->lock); 553 clear_bit(vid, vptr->active_vlans); 554 velocity_init_cam_filter(vptr); 555 spin_unlock_irq(&vptr->lock); 556 return 0; 557 } 558 559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 560 { 561 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 562 } 563 564 /** 565 * velocity_rx_reset - handle a receive reset 566 * @vptr: velocity we are resetting 567 * 568 * Reset the ownership and status for the receive ring side. 569 * Hand all the receive queue to the NIC. 570 */ 571 static void velocity_rx_reset(struct velocity_info *vptr) 572 { 573 574 struct mac_regs __iomem *regs = vptr->mac_regs; 575 int i; 576 577 velocity_init_rx_ring_indexes(vptr); 578 579 /* 580 * Init state, all RD entries belong to the NIC 581 */ 582 for (i = 0; i < vptr->options.numrx; ++i) 583 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 584 585 writew(vptr->options.numrx, ®s->RBRDU); 586 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 587 writew(0, ®s->RDIdx); 588 writew(vptr->options.numrx - 1, ®s->RDCSize); 589 } 590 591 /** 592 * velocity_get_opt_media_mode - get media selection 593 * @vptr: velocity adapter 594 * 595 * Get the media mode stored in EEPROM or module options and load 596 * mii_status accordingly. The requested link state information 597 * is also returned. 598 */ 599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 600 { 601 u32 status = 0; 602 603 switch (vptr->options.spd_dpx) { 604 case SPD_DPX_AUTO: 605 status = VELOCITY_AUTONEG_ENABLE; 606 break; 607 case SPD_DPX_100_FULL: 608 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 609 break; 610 case SPD_DPX_10_FULL: 611 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 612 break; 613 case SPD_DPX_100_HALF: 614 status = VELOCITY_SPEED_100; 615 break; 616 case SPD_DPX_10_HALF: 617 status = VELOCITY_SPEED_10; 618 break; 619 case SPD_DPX_1000_FULL: 620 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 621 break; 622 } 623 vptr->mii_status = status; 624 return status; 625 } 626 627 /** 628 * safe_disable_mii_autopoll - autopoll off 629 * @regs: velocity registers 630 * 631 * Turn off the autopoll and wait for it to disable on the chip 632 */ 633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 634 { 635 u16 ww; 636 637 /* turn off MAUTO */ 638 writeb(0, ®s->MIICR); 639 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 640 udelay(1); 641 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 642 break; 643 } 644 } 645 646 /** 647 * enable_mii_autopoll - turn on autopolling 648 * @regs: velocity registers 649 * 650 * Enable the MII link status autopoll feature on the Velocity 651 * hardware. Wait for it to enable. 652 */ 653 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 654 { 655 int ii; 656 657 writeb(0, &(regs->MIICR)); 658 writeb(MIIADR_SWMPL, ®s->MIIADR); 659 660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 661 udelay(1); 662 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 663 break; 664 } 665 666 writeb(MIICR_MAUTO, ®s->MIICR); 667 668 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 669 udelay(1); 670 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 671 break; 672 } 673 674 } 675 676 /** 677 * velocity_mii_read - read MII data 678 * @regs: velocity registers 679 * @index: MII register index 680 * @data: buffer for received data 681 * 682 * Perform a single read of an MII 16bit register. Returns zero 683 * on success or -ETIMEDOUT if the PHY did not respond. 684 */ 685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 686 { 687 u16 ww; 688 689 /* 690 * Disable MIICR_MAUTO, so that mii addr can be set normally 691 */ 692 safe_disable_mii_autopoll(regs); 693 694 writeb(index, ®s->MIIADR); 695 696 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 697 698 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 699 if (!(readb(®s->MIICR) & MIICR_RCMD)) 700 break; 701 } 702 703 *data = readw(®s->MIIDATA); 704 705 enable_mii_autopoll(regs); 706 if (ww == W_MAX_TIMEOUT) 707 return -ETIMEDOUT; 708 return 0; 709 } 710 711 /** 712 * mii_check_media_mode - check media state 713 * @regs: velocity registers 714 * 715 * Check the current MII status and determine the link status 716 * accordingly 717 */ 718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 719 { 720 u32 status = 0; 721 u16 ANAR; 722 723 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 724 status |= VELOCITY_LINK_FAIL; 725 726 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 727 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 728 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 729 status |= (VELOCITY_SPEED_1000); 730 else { 731 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 732 if (ANAR & ADVERTISE_100FULL) 733 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 734 else if (ANAR & ADVERTISE_100HALF) 735 status |= VELOCITY_SPEED_100; 736 else if (ANAR & ADVERTISE_10FULL) 737 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 738 else 739 status |= (VELOCITY_SPEED_10); 740 } 741 742 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 743 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 744 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 745 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 746 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 747 status |= VELOCITY_AUTONEG_ENABLE; 748 } 749 } 750 751 return status; 752 } 753 754 /** 755 * velocity_mii_write - write MII data 756 * @regs: velocity registers 757 * @index: MII register index 758 * @data: 16bit data for the MII register 759 * 760 * Perform a single write to an MII 16bit register. Returns zero 761 * on success or -ETIMEDOUT if the PHY did not respond. 762 */ 763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 764 { 765 u16 ww; 766 767 /* 768 * Disable MIICR_MAUTO, so that mii addr can be set normally 769 */ 770 safe_disable_mii_autopoll(regs); 771 772 /* MII reg offset */ 773 writeb(mii_addr, ®s->MIIADR); 774 /* set MII data */ 775 writew(data, ®s->MIIDATA); 776 777 /* turn on MIICR_WCMD */ 778 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 779 780 /* W_MAX_TIMEOUT is the timeout period */ 781 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 782 udelay(5); 783 if (!(readb(®s->MIICR) & MIICR_WCMD)) 784 break; 785 } 786 enable_mii_autopoll(regs); 787 788 if (ww == W_MAX_TIMEOUT) 789 return -ETIMEDOUT; 790 return 0; 791 } 792 793 /** 794 * set_mii_flow_control - flow control setup 795 * @vptr: velocity interface 796 * 797 * Set up the flow control on this interface according to 798 * the supplied user/eeprom options. 799 */ 800 static void set_mii_flow_control(struct velocity_info *vptr) 801 { 802 /*Enable or Disable PAUSE in ANAR */ 803 switch (vptr->options.flow_cntl) { 804 case FLOW_CNTL_TX: 805 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 806 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 807 break; 808 809 case FLOW_CNTL_RX: 810 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 811 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 812 break; 813 814 case FLOW_CNTL_TX_RX: 815 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 816 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 817 break; 818 819 case FLOW_CNTL_DISABLE: 820 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 821 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 822 break; 823 default: 824 break; 825 } 826 } 827 828 /** 829 * mii_set_auto_on - autonegotiate on 830 * @vptr: velocity 831 * 832 * Enable autonegotation on this interface 833 */ 834 static void mii_set_auto_on(struct velocity_info *vptr) 835 { 836 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 837 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 838 else 839 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 840 } 841 842 static u32 check_connection_type(struct mac_regs __iomem *regs) 843 { 844 u32 status = 0; 845 u8 PHYSR0; 846 u16 ANAR; 847 PHYSR0 = readb(®s->PHYSR0); 848 849 /* 850 if (!(PHYSR0 & PHYSR0_LINKGD)) 851 status|=VELOCITY_LINK_FAIL; 852 */ 853 854 if (PHYSR0 & PHYSR0_FDPX) 855 status |= VELOCITY_DUPLEX_FULL; 856 857 if (PHYSR0 & PHYSR0_SPDG) 858 status |= VELOCITY_SPEED_1000; 859 else if (PHYSR0 & PHYSR0_SPD10) 860 status |= VELOCITY_SPEED_10; 861 else 862 status |= VELOCITY_SPEED_100; 863 864 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 865 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 866 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 867 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 868 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 869 status |= VELOCITY_AUTONEG_ENABLE; 870 } 871 } 872 873 return status; 874 } 875 876 /** 877 * velocity_set_media_mode - set media mode 878 * @mii_status: old MII link state 879 * 880 * Check the media link state and configure the flow control 881 * PHY and also velocity hardware setup accordingly. In particular 882 * we need to set up CD polling and frame bursting. 883 */ 884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 885 { 886 u32 curr_status; 887 struct mac_regs __iomem *regs = vptr->mac_regs; 888 889 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 890 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 891 892 /* Set mii link status */ 893 set_mii_flow_control(vptr); 894 895 /* 896 Check if new status is consistent with current status 897 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 898 (mii_status==curr_status)) { 899 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 900 vptr->mii_status=check_connection_type(vptr->mac_regs); 901 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 902 return 0; 903 } 904 */ 905 906 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 907 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 908 909 /* 910 * If connection type is AUTO 911 */ 912 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 913 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 914 /* clear force MAC mode bit */ 915 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 916 /* set duplex mode of MAC according to duplex mode of MII */ 917 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 918 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 919 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 920 921 /* enable AUTO-NEGO mode */ 922 mii_set_auto_on(vptr); 923 } else { 924 u16 CTRL1000; 925 u16 ANAR; 926 u8 CHIPGCR; 927 928 /* 929 * 1. if it's 3119, disable frame bursting in halfduplex mode 930 * and enable it in fullduplex mode 931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 932 * 3. only enable CD heart beat counter in 10HD mode 933 */ 934 935 /* set force MAC mode bit */ 936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 937 938 CHIPGCR = readb(®s->CHIPGCR); 939 940 if (mii_status & VELOCITY_SPEED_1000) 941 CHIPGCR |= CHIPGCR_FCGMII; 942 else 943 CHIPGCR &= ~CHIPGCR_FCGMII; 944 945 if (mii_status & VELOCITY_DUPLEX_FULL) { 946 CHIPGCR |= CHIPGCR_FCFDX; 947 writeb(CHIPGCR, ®s->CHIPGCR); 948 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 949 if (vptr->rev_id < REV_ID_VT3216_A0) 950 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 951 } else { 952 CHIPGCR &= ~CHIPGCR_FCFDX; 953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 954 writeb(CHIPGCR, ®s->CHIPGCR); 955 if (vptr->rev_id < REV_ID_VT3216_A0) 956 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 957 } 958 959 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 960 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 961 if ((mii_status & VELOCITY_SPEED_1000) && 962 (mii_status & VELOCITY_DUPLEX_FULL)) { 963 CTRL1000 |= ADVERTISE_1000FULL; 964 } 965 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 966 967 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 968 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 969 else 970 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 971 972 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 973 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 974 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 975 if (mii_status & VELOCITY_SPEED_100) { 976 if (mii_status & VELOCITY_DUPLEX_FULL) 977 ANAR |= ADVERTISE_100FULL; 978 else 979 ANAR |= ADVERTISE_100HALF; 980 } else if (mii_status & VELOCITY_SPEED_10) { 981 if (mii_status & VELOCITY_DUPLEX_FULL) 982 ANAR |= ADVERTISE_10FULL; 983 else 984 ANAR |= ADVERTISE_10HALF; 985 } 986 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 987 /* enable AUTO-NEGO mode */ 988 mii_set_auto_on(vptr); 989 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 990 } 991 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 992 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 993 return VELOCITY_LINK_CHANGE; 994 } 995 996 /** 997 * velocity_print_link_status - link status reporting 998 * @vptr: velocity to report on 999 * 1000 * Turn the link status of the velocity card into a kernel log 1001 * description of the new link state, detailing speed and duplex 1002 * status 1003 */ 1004 static void velocity_print_link_status(struct velocity_info *vptr) 1005 { 1006 1007 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1008 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 1009 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1010 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 1011 1012 if (vptr->mii_status & VELOCITY_SPEED_1000) 1013 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1014 else if (vptr->mii_status & VELOCITY_SPEED_100) 1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1016 else 1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1018 1019 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1020 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1021 else 1022 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1023 } else { 1024 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1025 switch (vptr->options.spd_dpx) { 1026 case SPD_DPX_1000_FULL: 1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1028 break; 1029 case SPD_DPX_100_HALF: 1030 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1031 break; 1032 case SPD_DPX_100_FULL: 1033 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1034 break; 1035 case SPD_DPX_10_HALF: 1036 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1037 break; 1038 case SPD_DPX_10_FULL: 1039 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1040 break; 1041 default: 1042 break; 1043 } 1044 } 1045 } 1046 1047 /** 1048 * enable_flow_control_ability - flow control 1049 * @vptr: veloity to configure 1050 * 1051 * Set up flow control according to the flow control options 1052 * determined by the eeprom/configuration. 1053 */ 1054 static void enable_flow_control_ability(struct velocity_info *vptr) 1055 { 1056 1057 struct mac_regs __iomem *regs = vptr->mac_regs; 1058 1059 switch (vptr->options.flow_cntl) { 1060 1061 case FLOW_CNTL_DEFAULT: 1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1063 writel(CR0_FDXRFCEN, ®s->CR0Set); 1064 else 1065 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1066 1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1068 writel(CR0_FDXTFCEN, ®s->CR0Set); 1069 else 1070 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1071 break; 1072 1073 case FLOW_CNTL_TX: 1074 writel(CR0_FDXTFCEN, ®s->CR0Set); 1075 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1076 break; 1077 1078 case FLOW_CNTL_RX: 1079 writel(CR0_FDXRFCEN, ®s->CR0Set); 1080 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1081 break; 1082 1083 case FLOW_CNTL_TX_RX: 1084 writel(CR0_FDXTFCEN, ®s->CR0Set); 1085 writel(CR0_FDXRFCEN, ®s->CR0Set); 1086 break; 1087 1088 case FLOW_CNTL_DISABLE: 1089 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1090 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 1097 } 1098 1099 /** 1100 * velocity_soft_reset - soft reset 1101 * @vptr: velocity to reset 1102 * 1103 * Kick off a soft reset of the velocity adapter and then poll 1104 * until the reset sequence has completed before returning. 1105 */ 1106 static int velocity_soft_reset(struct velocity_info *vptr) 1107 { 1108 struct mac_regs __iomem *regs = vptr->mac_regs; 1109 int i = 0; 1110 1111 writel(CR0_SFRST, ®s->CR0Set); 1112 1113 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1114 udelay(5); 1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1116 break; 1117 } 1118 1119 if (i == W_MAX_TIMEOUT) { 1120 writel(CR0_FORSRST, ®s->CR0Set); 1121 /* FIXME: PCI POSTING */ 1122 /* delay 2ms */ 1123 mdelay(2); 1124 } 1125 return 0; 1126 } 1127 1128 /** 1129 * velocity_set_multi - filter list change callback 1130 * @dev: network device 1131 * 1132 * Called by the network layer when the filter lists need to change 1133 * for a velocity adapter. Reload the CAMs with the new address 1134 * filter ruleset. 1135 */ 1136 static void velocity_set_multi(struct net_device *dev) 1137 { 1138 struct velocity_info *vptr = netdev_priv(dev); 1139 struct mac_regs __iomem *regs = vptr->mac_regs; 1140 u8 rx_mode; 1141 int i; 1142 struct netdev_hw_addr *ha; 1143 1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1145 writel(0xffffffff, ®s->MARCAM[0]); 1146 writel(0xffffffff, ®s->MARCAM[4]); 1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1149 (dev->flags & IFF_ALLMULTI)) { 1150 writel(0xffffffff, ®s->MARCAM[0]); 1151 writel(0xffffffff, ®s->MARCAM[4]); 1152 rx_mode = (RCR_AM | RCR_AB); 1153 } else { 1154 int offset = MCAM_SIZE - vptr->multicast_limit; 1155 mac_get_cam_mask(regs, vptr->mCAMmask); 1156 1157 i = 0; 1158 netdev_for_each_mc_addr(ha, dev) { 1159 mac_set_cam(regs, i + offset, ha->addr); 1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1161 i++; 1162 } 1163 1164 mac_set_cam_mask(regs, vptr->mCAMmask); 1165 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1166 } 1167 if (dev->mtu > 1500) 1168 rx_mode |= RCR_AL; 1169 1170 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1171 1172 } 1173 1174 /* 1175 * MII access , media link mode setting functions 1176 */ 1177 1178 /** 1179 * mii_init - set up MII 1180 * @vptr: velocity adapter 1181 * @mii_status: links tatus 1182 * 1183 * Set up the PHY for the current link state. 1184 */ 1185 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1186 { 1187 u16 BMCR; 1188 1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1190 case PHYID_ICPLUS_IP101A: 1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1192 MII_ADVERTISE, vptr->mac_regs); 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1195 vptr->mac_regs); 1196 else 1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1198 vptr->mac_regs); 1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1200 break; 1201 case PHYID_CICADA_CS8201: 1202 /* 1203 * Reset to hardware default 1204 */ 1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1206 /* 1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1208 * off it in NWay-forced half mode for NWay-forced v.s. 1209 * legacy-forced issue. 1210 */ 1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1213 else 1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 /* 1216 * Turn on Link/Activity LED enable bit for CIS8201 1217 */ 1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1219 break; 1220 case PHYID_VT3216_32BIT: 1221 case PHYID_VT3216_64BIT: 1222 /* 1223 * Reset to hardware default 1224 */ 1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1226 /* 1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1228 * off it in NWay-forced half mode for NWay-forced v.s. 1229 * legacy-forced issue 1230 */ 1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1233 else 1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1235 break; 1236 1237 case PHYID_MARVELL_1000: 1238 case PHYID_MARVELL_1000S: 1239 /* 1240 * Assert CRS on Transmit 1241 */ 1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1243 /* 1244 * Reset to hardware default 1245 */ 1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1247 break; 1248 default: 1249 ; 1250 } 1251 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1252 if (BMCR & BMCR_ISOLATE) { 1253 BMCR &= ~BMCR_ISOLATE; 1254 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1255 } 1256 } 1257 1258 /** 1259 * setup_queue_timers - Setup interrupt timers 1260 * 1261 * Setup interrupt frequency during suppression (timeout if the frame 1262 * count isn't filled). 1263 */ 1264 static void setup_queue_timers(struct velocity_info *vptr) 1265 { 1266 /* Only for newer revisions */ 1267 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1268 u8 txqueue_timer = 0; 1269 u8 rxqueue_timer = 0; 1270 1271 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1272 VELOCITY_SPEED_100)) { 1273 txqueue_timer = vptr->options.txqueue_timer; 1274 rxqueue_timer = vptr->options.rxqueue_timer; 1275 } 1276 1277 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1278 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1279 } 1280 } 1281 1282 /** 1283 * setup_adaptive_interrupts - Setup interrupt suppression 1284 * 1285 * @vptr velocity adapter 1286 * 1287 * The velocity is able to suppress interrupt during high interrupt load. 1288 * This function turns on that feature. 1289 */ 1290 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1291 { 1292 struct mac_regs __iomem *regs = vptr->mac_regs; 1293 u16 tx_intsup = vptr->options.tx_intsup; 1294 u16 rx_intsup = vptr->options.rx_intsup; 1295 1296 /* Setup default interrupt mask (will be changed below) */ 1297 vptr->int_mask = INT_MASK_DEF; 1298 1299 /* Set Tx Interrupt Suppression Threshold */ 1300 writeb(CAMCR_PS0, ®s->CAMCR); 1301 if (tx_intsup != 0) { 1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1303 ISR_PTX2I | ISR_PTX3I); 1304 writew(tx_intsup, ®s->ISRCTL); 1305 } else 1306 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1307 1308 /* Set Rx Interrupt Suppression Threshold */ 1309 writeb(CAMCR_PS1, ®s->CAMCR); 1310 if (rx_intsup != 0) { 1311 vptr->int_mask &= ~ISR_PRXI; 1312 writew(rx_intsup, ®s->ISRCTL); 1313 } else 1314 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1315 1316 /* Select page to interrupt hold timer */ 1317 writeb(0, ®s->CAMCR); 1318 } 1319 1320 /** 1321 * velocity_init_registers - initialise MAC registers 1322 * @vptr: velocity to init 1323 * @type: type of initialisation (hot or cold) 1324 * 1325 * Initialise the MAC on a reset or on first set up on the 1326 * hardware. 1327 */ 1328 static void velocity_init_registers(struct velocity_info *vptr, 1329 enum velocity_init_type type) 1330 { 1331 struct mac_regs __iomem *regs = vptr->mac_regs; 1332 struct net_device *netdev = vptr->netdev; 1333 int i, mii_status; 1334 1335 mac_wol_reset(regs); 1336 1337 switch (type) { 1338 case VELOCITY_INIT_RESET: 1339 case VELOCITY_INIT_WOL: 1340 1341 netif_stop_queue(netdev); 1342 1343 /* 1344 * Reset RX to prevent RX pointer not on the 4X location 1345 */ 1346 velocity_rx_reset(vptr); 1347 mac_rx_queue_run(regs); 1348 mac_rx_queue_wake(regs); 1349 1350 mii_status = velocity_get_opt_media_mode(vptr); 1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1352 velocity_print_link_status(vptr); 1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1354 netif_wake_queue(netdev); 1355 } 1356 1357 enable_flow_control_ability(vptr); 1358 1359 mac_clear_isr(regs); 1360 writel(CR0_STOP, ®s->CR0Clr); 1361 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1362 ®s->CR0Set); 1363 1364 break; 1365 1366 case VELOCITY_INIT_COLD: 1367 default: 1368 /* 1369 * Do reset 1370 */ 1371 velocity_soft_reset(vptr); 1372 mdelay(5); 1373 1374 if (!vptr->no_eeprom) { 1375 mac_eeprom_reload(regs); 1376 for (i = 0; i < 6; i++) 1377 writeb(netdev->dev_addr[i], regs->PAR + i); 1378 } 1379 1380 /* 1381 * clear Pre_ACPI bit. 1382 */ 1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1385 mac_set_dma_length(regs, vptr->options.DMA_length); 1386 1387 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1388 /* 1389 * Back off algorithm use original IEEE standard 1390 */ 1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1392 1393 /* 1394 * Init CAM filter 1395 */ 1396 velocity_init_cam_filter(vptr); 1397 1398 /* 1399 * Set packet filter: Receive directed and broadcast address 1400 */ 1401 velocity_set_multi(netdev); 1402 1403 /* 1404 * Enable MII auto-polling 1405 */ 1406 enable_mii_autopoll(regs); 1407 1408 setup_adaptive_interrupts(vptr); 1409 1410 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1411 writew(vptr->options.numrx - 1, ®s->RDCSize); 1412 mac_rx_queue_run(regs); 1413 mac_rx_queue_wake(regs); 1414 1415 writew(vptr->options.numtx - 1, ®s->TDCSize); 1416 1417 for (i = 0; i < vptr->tx.numq; i++) { 1418 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1419 mac_tx_queue_run(regs, i); 1420 } 1421 1422 init_flow_control_register(vptr); 1423 1424 writel(CR0_STOP, ®s->CR0Clr); 1425 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1426 1427 mii_status = velocity_get_opt_media_mode(vptr); 1428 netif_stop_queue(netdev); 1429 1430 mii_init(vptr, mii_status); 1431 1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1433 velocity_print_link_status(vptr); 1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1435 netif_wake_queue(netdev); 1436 } 1437 1438 enable_flow_control_ability(vptr); 1439 mac_hw_mibs_init(regs); 1440 mac_write_int_mask(vptr->int_mask, regs); 1441 mac_clear_isr(regs); 1442 1443 } 1444 } 1445 1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1447 { 1448 struct mac_regs __iomem *regs = vptr->mac_regs; 1449 int avail, dirty, unusable; 1450 1451 /* 1452 * RD number must be equal to 4X per hardware spec 1453 * (programming guide rev 1.20, p.13) 1454 */ 1455 if (vptr->rx.filled < 4) 1456 return; 1457 1458 wmb(); 1459 1460 unusable = vptr->rx.filled & 0x0003; 1461 dirty = vptr->rx.dirty - unusable; 1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1465 } 1466 1467 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1468 vptr->rx.filled = unusable; 1469 } 1470 1471 /** 1472 * velocity_init_dma_rings - set up DMA rings 1473 * @vptr: Velocity to set up 1474 * 1475 * Allocate PCI mapped DMA rings for the receive and transmit layer 1476 * to use. 1477 */ 1478 static int velocity_init_dma_rings(struct velocity_info *vptr) 1479 { 1480 struct velocity_opt *opt = &vptr->options; 1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1483 dma_addr_t pool_dma; 1484 void *pool; 1485 unsigned int i; 1486 1487 /* 1488 * Allocate all RD/TD rings a single pool. 1489 * 1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1491 * alignment 1492 */ 1493 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1494 rx_ring_size, &pool_dma, GFP_ATOMIC); 1495 if (!pool) { 1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1497 vptr->netdev->name); 1498 return -ENOMEM; 1499 } 1500 1501 vptr->rx.ring = pool; 1502 vptr->rx.pool_dma = pool_dma; 1503 1504 pool += rx_ring_size; 1505 pool_dma += rx_ring_size; 1506 1507 for (i = 0; i < vptr->tx.numq; i++) { 1508 vptr->tx.rings[i] = pool; 1509 vptr->tx.pool_dma[i] = pool_dma; 1510 pool += tx_ring_size; 1511 pool_dma += tx_ring_size; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1518 { 1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1520 } 1521 1522 /** 1523 * velocity_alloc_rx_buf - allocate aligned receive buffer 1524 * @vptr: velocity 1525 * @idx: ring index 1526 * 1527 * Allocate a new full sized buffer for the reception of a frame and 1528 * map it into PCI space for the hardware to use. The hardware 1529 * requires *64* byte alignment of the buffer which makes life 1530 * less fun than would be ideal. 1531 */ 1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1533 { 1534 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1536 1537 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1538 if (rd_info->skb == NULL) 1539 return -ENOMEM; 1540 1541 /* 1542 * Do the gymnastics to get the buffer head for data at 1543 * 64byte alignment. 1544 */ 1545 skb_reserve(rd_info->skb, 1546 64 - ((unsigned long) rd_info->skb->data & 63)); 1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1548 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1549 1550 /* 1551 * Fill in the descriptor to match 1552 */ 1553 1554 *((u32 *) & (rd->rdesc0)) = 0; 1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1557 rd->pa_high = 0; 1558 return 0; 1559 } 1560 1561 1562 static int velocity_rx_refill(struct velocity_info *vptr) 1563 { 1564 int dirty = vptr->rx.dirty, done = 0; 1565 1566 do { 1567 struct rx_desc *rd = vptr->rx.ring + dirty; 1568 1569 /* Fine for an all zero Rx desc at init time as well */ 1570 if (rd->rdesc0.len & OWNED_BY_NIC) 1571 break; 1572 1573 if (!vptr->rx.info[dirty].skb) { 1574 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1575 break; 1576 } 1577 done++; 1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1579 } while (dirty != vptr->rx.curr); 1580 1581 if (done) { 1582 vptr->rx.dirty = dirty; 1583 vptr->rx.filled += done; 1584 } 1585 1586 return done; 1587 } 1588 1589 /** 1590 * velocity_free_rd_ring - free receive ring 1591 * @vptr: velocity to clean up 1592 * 1593 * Free the receive buffers for each ring slot and any 1594 * attached socket buffers that need to go away. 1595 */ 1596 static void velocity_free_rd_ring(struct velocity_info *vptr) 1597 { 1598 int i; 1599 1600 if (vptr->rx.info == NULL) 1601 return; 1602 1603 for (i = 0; i < vptr->options.numrx; i++) { 1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1605 struct rx_desc *rd = vptr->rx.ring + i; 1606 1607 memset(rd, 0, sizeof(*rd)); 1608 1609 if (!rd_info->skb) 1610 continue; 1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1612 DMA_FROM_DEVICE); 1613 rd_info->skb_dma = 0; 1614 1615 dev_kfree_skb(rd_info->skb); 1616 rd_info->skb = NULL; 1617 } 1618 1619 kfree(vptr->rx.info); 1620 vptr->rx.info = NULL; 1621 } 1622 1623 /** 1624 * velocity_init_rd_ring - set up receive ring 1625 * @vptr: velocity to configure 1626 * 1627 * Allocate and set up the receive buffers for each ring slot and 1628 * assign them to the network adapter. 1629 */ 1630 static int velocity_init_rd_ring(struct velocity_info *vptr) 1631 { 1632 int ret = -ENOMEM; 1633 1634 vptr->rx.info = kcalloc(vptr->options.numrx, 1635 sizeof(struct velocity_rd_info), GFP_KERNEL); 1636 if (!vptr->rx.info) 1637 goto out; 1638 1639 velocity_init_rx_ring_indexes(vptr); 1640 1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1642 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1643 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1644 velocity_free_rd_ring(vptr); 1645 goto out; 1646 } 1647 1648 ret = 0; 1649 out: 1650 return ret; 1651 } 1652 1653 /** 1654 * velocity_init_td_ring - set up transmit ring 1655 * @vptr: velocity 1656 * 1657 * Set up the transmit ring and chain the ring pointers together. 1658 * Returns zero on success or a negative posix errno code for 1659 * failure. 1660 */ 1661 static int velocity_init_td_ring(struct velocity_info *vptr) 1662 { 1663 int j; 1664 1665 /* Init the TD ring entries */ 1666 for (j = 0; j < vptr->tx.numq; j++) { 1667 1668 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1669 sizeof(struct velocity_td_info), 1670 GFP_KERNEL); 1671 if (!vptr->tx.infos[j]) { 1672 while (--j >= 0) 1673 kfree(vptr->tx.infos[j]); 1674 return -ENOMEM; 1675 } 1676 1677 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1678 } 1679 return 0; 1680 } 1681 1682 /** 1683 * velocity_free_dma_rings - free PCI ring pointers 1684 * @vptr: Velocity to free from 1685 * 1686 * Clean up the PCI ring buffers allocated to this velocity. 1687 */ 1688 static void velocity_free_dma_rings(struct velocity_info *vptr) 1689 { 1690 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1691 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1692 1693 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1694 } 1695 1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1697 { 1698 int ret; 1699 1700 velocity_set_rxbufsize(vptr, mtu); 1701 1702 ret = velocity_init_dma_rings(vptr); 1703 if (ret < 0) 1704 goto out; 1705 1706 ret = velocity_init_rd_ring(vptr); 1707 if (ret < 0) 1708 goto err_free_dma_rings_0; 1709 1710 ret = velocity_init_td_ring(vptr); 1711 if (ret < 0) 1712 goto err_free_rd_ring_1; 1713 out: 1714 return ret; 1715 1716 err_free_rd_ring_1: 1717 velocity_free_rd_ring(vptr); 1718 err_free_dma_rings_0: 1719 velocity_free_dma_rings(vptr); 1720 goto out; 1721 } 1722 1723 /** 1724 * velocity_free_tx_buf - free transmit buffer 1725 * @vptr: velocity 1726 * @tdinfo: buffer 1727 * 1728 * Release an transmit buffer. If the buffer was preallocated then 1729 * recycle it, if not then unmap the buffer. 1730 */ 1731 static void velocity_free_tx_buf(struct velocity_info *vptr, 1732 struct velocity_td_info *tdinfo, struct tx_desc *td) 1733 { 1734 struct sk_buff *skb = tdinfo->skb; 1735 1736 /* 1737 * Don't unmap the pre-allocated tx_bufs 1738 */ 1739 if (tdinfo->skb_dma) { 1740 int i; 1741 1742 for (i = 0; i < tdinfo->nskb_dma; i++) { 1743 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1744 1745 /* For scatter-gather */ 1746 if (skb_shinfo(skb)->nr_frags > 0) 1747 pktlen = max_t(size_t, pktlen, 1748 td->td_buf[i].size & ~TD_QUEUE); 1749 1750 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1751 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1752 } 1753 } 1754 dev_kfree_skb_irq(skb); 1755 tdinfo->skb = NULL; 1756 } 1757 1758 /* 1759 * FIXME: could we merge this with velocity_free_tx_buf ? 1760 */ 1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1762 int q, int n) 1763 { 1764 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1765 int i; 1766 1767 if (td_info == NULL) 1768 return; 1769 1770 if (td_info->skb) { 1771 for (i = 0; i < td_info->nskb_dma; i++) { 1772 if (td_info->skb_dma[i]) { 1773 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1774 td_info->skb->len, DMA_TO_DEVICE); 1775 td_info->skb_dma[i] = 0; 1776 } 1777 } 1778 dev_kfree_skb(td_info->skb); 1779 td_info->skb = NULL; 1780 } 1781 } 1782 1783 /** 1784 * velocity_free_td_ring - free td ring 1785 * @vptr: velocity 1786 * 1787 * Free up the transmit ring for this particular velocity adapter. 1788 * We free the ring contents but not the ring itself. 1789 */ 1790 static void velocity_free_td_ring(struct velocity_info *vptr) 1791 { 1792 int i, j; 1793 1794 for (j = 0; j < vptr->tx.numq; j++) { 1795 if (vptr->tx.infos[j] == NULL) 1796 continue; 1797 for (i = 0; i < vptr->options.numtx; i++) 1798 velocity_free_td_ring_entry(vptr, j, i); 1799 1800 kfree(vptr->tx.infos[j]); 1801 vptr->tx.infos[j] = NULL; 1802 } 1803 } 1804 1805 static void velocity_free_rings(struct velocity_info *vptr) 1806 { 1807 velocity_free_td_ring(vptr); 1808 velocity_free_rd_ring(vptr); 1809 velocity_free_dma_rings(vptr); 1810 } 1811 1812 /** 1813 * velocity_error - handle error from controller 1814 * @vptr: velocity 1815 * @status: card status 1816 * 1817 * Process an error report from the hardware and attempt to recover 1818 * the card itself. At the moment we cannot recover from some 1819 * theoretically impossible errors but this could be fixed using 1820 * the pci_device_failed logic to bounce the hardware 1821 * 1822 */ 1823 static void velocity_error(struct velocity_info *vptr, int status) 1824 { 1825 1826 if (status & ISR_TXSTLI) { 1827 struct mac_regs __iomem *regs = vptr->mac_regs; 1828 1829 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1830 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1831 writew(TRDCSR_RUN, ®s->TDCSRClr); 1832 netif_stop_queue(vptr->netdev); 1833 1834 /* FIXME: port over the pci_device_failed code and use it 1835 here */ 1836 } 1837 1838 if (status & ISR_SRCI) { 1839 struct mac_regs __iomem *regs = vptr->mac_regs; 1840 int linked; 1841 1842 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1843 vptr->mii_status = check_connection_type(regs); 1844 1845 /* 1846 * If it is a 3119, disable frame bursting in 1847 * halfduplex mode and enable it in fullduplex 1848 * mode 1849 */ 1850 if (vptr->rev_id < REV_ID_VT3216_A0) { 1851 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1852 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1853 else 1854 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1855 } 1856 /* 1857 * Only enable CD heart beat counter in 10HD mode 1858 */ 1859 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1860 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1861 else 1862 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1863 1864 setup_queue_timers(vptr); 1865 } 1866 /* 1867 * Get link status from PHYSR0 1868 */ 1869 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1870 1871 if (linked) { 1872 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1873 netif_carrier_on(vptr->netdev); 1874 } else { 1875 vptr->mii_status |= VELOCITY_LINK_FAIL; 1876 netif_carrier_off(vptr->netdev); 1877 } 1878 1879 velocity_print_link_status(vptr); 1880 enable_flow_control_ability(vptr); 1881 1882 /* 1883 * Re-enable auto-polling because SRCI will disable 1884 * auto-polling 1885 */ 1886 1887 enable_mii_autopoll(regs); 1888 1889 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1890 netif_stop_queue(vptr->netdev); 1891 else 1892 netif_wake_queue(vptr->netdev); 1893 1894 } 1895 if (status & ISR_MIBFI) 1896 velocity_update_hw_mibs(vptr); 1897 if (status & ISR_LSTEI) 1898 mac_rx_queue_wake(vptr->mac_regs); 1899 } 1900 1901 /** 1902 * tx_srv - transmit interrupt service 1903 * @vptr; Velocity 1904 * 1905 * Scan the queues looking for transmitted packets that 1906 * we can complete and clean up. Update any statistics as 1907 * necessary/ 1908 */ 1909 static int velocity_tx_srv(struct velocity_info *vptr) 1910 { 1911 struct tx_desc *td; 1912 int qnum; 1913 int full = 0; 1914 int idx; 1915 int works = 0; 1916 struct velocity_td_info *tdinfo; 1917 struct net_device_stats *stats = &vptr->netdev->stats; 1918 1919 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1920 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1921 idx = (idx + 1) % vptr->options.numtx) { 1922 1923 /* 1924 * Get Tx Descriptor 1925 */ 1926 td = &(vptr->tx.rings[qnum][idx]); 1927 tdinfo = &(vptr->tx.infos[qnum][idx]); 1928 1929 if (td->tdesc0.len & OWNED_BY_NIC) 1930 break; 1931 1932 if ((works++ > 15)) 1933 break; 1934 1935 if (td->tdesc0.TSR & TSR0_TERR) { 1936 stats->tx_errors++; 1937 stats->tx_dropped++; 1938 if (td->tdesc0.TSR & TSR0_CDH) 1939 stats->tx_heartbeat_errors++; 1940 if (td->tdesc0.TSR & TSR0_CRS) 1941 stats->tx_carrier_errors++; 1942 if (td->tdesc0.TSR & TSR0_ABT) 1943 stats->tx_aborted_errors++; 1944 if (td->tdesc0.TSR & TSR0_OWC) 1945 stats->tx_window_errors++; 1946 } else { 1947 stats->tx_packets++; 1948 stats->tx_bytes += tdinfo->skb->len; 1949 } 1950 velocity_free_tx_buf(vptr, tdinfo, td); 1951 vptr->tx.used[qnum]--; 1952 } 1953 vptr->tx.tail[qnum] = idx; 1954 1955 if (AVAIL_TD(vptr, qnum) < 1) 1956 full = 1; 1957 } 1958 /* 1959 * Look to see if we should kick the transmit network 1960 * layer for more work. 1961 */ 1962 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1963 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1964 netif_wake_queue(vptr->netdev); 1965 } 1966 return works; 1967 } 1968 1969 /** 1970 * velocity_rx_csum - checksum process 1971 * @rd: receive packet descriptor 1972 * @skb: network layer packet buffer 1973 * 1974 * Process the status bits for the received packet and determine 1975 * if the checksum was computed and verified by the hardware 1976 */ 1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1978 { 1979 skb_checksum_none_assert(skb); 1980 1981 if (rd->rdesc1.CSM & CSM_IPKT) { 1982 if (rd->rdesc1.CSM & CSM_IPOK) { 1983 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1984 (rd->rdesc1.CSM & CSM_UDPKT)) { 1985 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1986 return; 1987 } 1988 skb->ip_summed = CHECKSUM_UNNECESSARY; 1989 } 1990 } 1991 } 1992 1993 /** 1994 * velocity_rx_copy - in place Rx copy for small packets 1995 * @rx_skb: network layer packet buffer candidate 1996 * @pkt_size: received data size 1997 * @rd: receive packet descriptor 1998 * @dev: network device 1999 * 2000 * Replace the current skb that is scheduled for Rx processing by a 2001 * shorter, immediately allocated skb, if the received packet is small 2002 * enough. This function returns a negative value if the received 2003 * packet is too big or if memory is exhausted. 2004 */ 2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 2006 struct velocity_info *vptr) 2007 { 2008 int ret = -1; 2009 if (pkt_size < rx_copybreak) { 2010 struct sk_buff *new_skb; 2011 2012 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 2013 if (new_skb) { 2014 new_skb->ip_summed = rx_skb[0]->ip_summed; 2015 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 2016 *rx_skb = new_skb; 2017 ret = 0; 2018 } 2019 2020 } 2021 return ret; 2022 } 2023 2024 /** 2025 * velocity_iph_realign - IP header alignment 2026 * @vptr: velocity we are handling 2027 * @skb: network layer packet buffer 2028 * @pkt_size: received data size 2029 * 2030 * Align IP header on a 2 bytes boundary. This behavior can be 2031 * configured by the user. 2032 */ 2033 static inline void velocity_iph_realign(struct velocity_info *vptr, 2034 struct sk_buff *skb, int pkt_size) 2035 { 2036 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2037 memmove(skb->data + 2, skb->data, pkt_size); 2038 skb_reserve(skb, 2); 2039 } 2040 } 2041 2042 /** 2043 * velocity_receive_frame - received packet processor 2044 * @vptr: velocity we are handling 2045 * @idx: ring index 2046 * 2047 * A packet has arrived. We process the packet and if appropriate 2048 * pass the frame up the network stack 2049 */ 2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2051 { 2052 struct net_device_stats *stats = &vptr->netdev->stats; 2053 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2054 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2055 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2056 struct sk_buff *skb; 2057 2058 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) { 2059 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name); 2060 stats->rx_length_errors++; 2061 return -EINVAL; 2062 } 2063 2064 if (rd->rdesc0.RSR & RSR_MAR) 2065 stats->multicast++; 2066 2067 skb = rd_info->skb; 2068 2069 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2070 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2071 2072 /* 2073 * Drop frame not meeting IEEE 802.3 2074 */ 2075 2076 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) { 2077 if (rd->rdesc0.RSR & RSR_RL) { 2078 stats->rx_length_errors++; 2079 return -EINVAL; 2080 } 2081 } 2082 2083 velocity_rx_csum(rd, skb); 2084 2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2086 velocity_iph_realign(vptr, skb, pkt_len); 2087 rd_info->skb = NULL; 2088 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2089 DMA_FROM_DEVICE); 2090 } else { 2091 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2092 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2093 } 2094 2095 skb_put(skb, pkt_len - 4); 2096 skb->protocol = eth_type_trans(skb, vptr->netdev); 2097 2098 if (rd->rdesc0.RSR & RSR_DETAG) { 2099 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2100 2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2102 } 2103 netif_receive_skb(skb); 2104 2105 stats->rx_bytes += pkt_len; 2106 stats->rx_packets++; 2107 2108 return 0; 2109 } 2110 2111 /** 2112 * velocity_rx_srv - service RX interrupt 2113 * @vptr: velocity 2114 * 2115 * Walk the receive ring of the velocity adapter and remove 2116 * any received packets from the receive queue. Hand the ring 2117 * slots back to the adapter for reuse. 2118 */ 2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2120 { 2121 struct net_device_stats *stats = &vptr->netdev->stats; 2122 int rd_curr = vptr->rx.curr; 2123 int works = 0; 2124 2125 while (works < budget_left) { 2126 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2127 2128 if (!vptr->rx.info[rd_curr].skb) 2129 break; 2130 2131 if (rd->rdesc0.len & OWNED_BY_NIC) 2132 break; 2133 2134 rmb(); 2135 2136 /* 2137 * Don't drop CE or RL error frame although RXOK is off 2138 */ 2139 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2140 if (velocity_receive_frame(vptr, rd_curr) < 0) 2141 stats->rx_dropped++; 2142 } else { 2143 if (rd->rdesc0.RSR & RSR_CRC) 2144 stats->rx_crc_errors++; 2145 if (rd->rdesc0.RSR & RSR_FAE) 2146 stats->rx_frame_errors++; 2147 2148 stats->rx_dropped++; 2149 } 2150 2151 rd->size |= RX_INTEN; 2152 2153 rd_curr++; 2154 if (rd_curr >= vptr->options.numrx) 2155 rd_curr = 0; 2156 works++; 2157 } 2158 2159 vptr->rx.curr = rd_curr; 2160 2161 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2162 velocity_give_many_rx_descs(vptr); 2163 2164 VAR_USED(stats); 2165 return works; 2166 } 2167 2168 static int velocity_poll(struct napi_struct *napi, int budget) 2169 { 2170 struct velocity_info *vptr = container_of(napi, 2171 struct velocity_info, napi); 2172 unsigned int rx_done; 2173 unsigned long flags; 2174 2175 /* 2176 * Do rx and tx twice for performance (taken from the VIA 2177 * out-of-tree driver). 2178 */ 2179 rx_done = velocity_rx_srv(vptr, budget); 2180 spin_lock_irqsave(&vptr->lock, flags); 2181 velocity_tx_srv(vptr); 2182 /* If budget not fully consumed, exit the polling mode */ 2183 if (rx_done < budget) { 2184 napi_complete(napi); 2185 mac_enable_int(vptr->mac_regs); 2186 } 2187 spin_unlock_irqrestore(&vptr->lock, flags); 2188 2189 return rx_done; 2190 } 2191 2192 /** 2193 * velocity_intr - interrupt callback 2194 * @irq: interrupt number 2195 * @dev_instance: interrupting device 2196 * 2197 * Called whenever an interrupt is generated by the velocity 2198 * adapter IRQ line. We may not be the source of the interrupt 2199 * and need to identify initially if we are, and if not exit as 2200 * efficiently as possible. 2201 */ 2202 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2203 { 2204 struct net_device *dev = dev_instance; 2205 struct velocity_info *vptr = netdev_priv(dev); 2206 u32 isr_status; 2207 2208 spin_lock(&vptr->lock); 2209 isr_status = mac_read_isr(vptr->mac_regs); 2210 2211 /* Not us ? */ 2212 if (isr_status == 0) { 2213 spin_unlock(&vptr->lock); 2214 return IRQ_NONE; 2215 } 2216 2217 /* Ack the interrupt */ 2218 mac_write_isr(vptr->mac_regs, isr_status); 2219 2220 if (likely(napi_schedule_prep(&vptr->napi))) { 2221 mac_disable_int(vptr->mac_regs); 2222 __napi_schedule(&vptr->napi); 2223 } 2224 2225 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2226 velocity_error(vptr, isr_status); 2227 2228 spin_unlock(&vptr->lock); 2229 2230 return IRQ_HANDLED; 2231 } 2232 2233 /** 2234 * velocity_open - interface activation callback 2235 * @dev: network layer device to open 2236 * 2237 * Called when the network layer brings the interface up. Returns 2238 * a negative posix error code on failure, or zero on success. 2239 * 2240 * All the ring allocation and set up is done on open for this 2241 * adapter to minimise memory usage when inactive 2242 */ 2243 static int velocity_open(struct net_device *dev) 2244 { 2245 struct velocity_info *vptr = netdev_priv(dev); 2246 int ret; 2247 2248 ret = velocity_init_rings(vptr, dev->mtu); 2249 if (ret < 0) 2250 goto out; 2251 2252 /* Ensure chip is running */ 2253 velocity_set_power_state(vptr, PCI_D0); 2254 2255 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2256 2257 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2258 dev->name, dev); 2259 if (ret < 0) { 2260 /* Power down the chip */ 2261 velocity_set_power_state(vptr, PCI_D3hot); 2262 velocity_free_rings(vptr); 2263 goto out; 2264 } 2265 2266 velocity_give_many_rx_descs(vptr); 2267 2268 mac_enable_int(vptr->mac_regs); 2269 netif_start_queue(dev); 2270 napi_enable(&vptr->napi); 2271 vptr->flags |= VELOCITY_FLAGS_OPENED; 2272 out: 2273 return ret; 2274 } 2275 2276 /** 2277 * velocity_shutdown - shut down the chip 2278 * @vptr: velocity to deactivate 2279 * 2280 * Shuts down the internal operations of the velocity and 2281 * disables interrupts, autopolling, transmit and receive 2282 */ 2283 static void velocity_shutdown(struct velocity_info *vptr) 2284 { 2285 struct mac_regs __iomem *regs = vptr->mac_regs; 2286 mac_disable_int(regs); 2287 writel(CR0_STOP, ®s->CR0Set); 2288 writew(0xFFFF, ®s->TDCSRClr); 2289 writeb(0xFF, ®s->RDCSRClr); 2290 safe_disable_mii_autopoll(regs); 2291 mac_clear_isr(regs); 2292 } 2293 2294 /** 2295 * velocity_change_mtu - MTU change callback 2296 * @dev: network device 2297 * @new_mtu: desired MTU 2298 * 2299 * Handle requests from the networking layer for MTU change on 2300 * this interface. It gets called on a change by the network layer. 2301 * Return zero for success or negative posix error code. 2302 */ 2303 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2304 { 2305 struct velocity_info *vptr = netdev_priv(dev); 2306 int ret = 0; 2307 2308 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) { 2309 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n", 2310 vptr->netdev->name); 2311 ret = -EINVAL; 2312 goto out_0; 2313 } 2314 2315 if (!netif_running(dev)) { 2316 dev->mtu = new_mtu; 2317 goto out_0; 2318 } 2319 2320 if (dev->mtu != new_mtu) { 2321 struct velocity_info *tmp_vptr; 2322 unsigned long flags; 2323 struct rx_info rx; 2324 struct tx_info tx; 2325 2326 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2327 if (!tmp_vptr) { 2328 ret = -ENOMEM; 2329 goto out_0; 2330 } 2331 2332 tmp_vptr->netdev = dev; 2333 tmp_vptr->pdev = vptr->pdev; 2334 tmp_vptr->dev = vptr->dev; 2335 tmp_vptr->options = vptr->options; 2336 tmp_vptr->tx.numq = vptr->tx.numq; 2337 2338 ret = velocity_init_rings(tmp_vptr, new_mtu); 2339 if (ret < 0) 2340 goto out_free_tmp_vptr_1; 2341 2342 napi_disable(&vptr->napi); 2343 2344 spin_lock_irqsave(&vptr->lock, flags); 2345 2346 netif_stop_queue(dev); 2347 velocity_shutdown(vptr); 2348 2349 rx = vptr->rx; 2350 tx = vptr->tx; 2351 2352 vptr->rx = tmp_vptr->rx; 2353 vptr->tx = tmp_vptr->tx; 2354 2355 tmp_vptr->rx = rx; 2356 tmp_vptr->tx = tx; 2357 2358 dev->mtu = new_mtu; 2359 2360 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2361 2362 velocity_give_many_rx_descs(vptr); 2363 2364 napi_enable(&vptr->napi); 2365 2366 mac_enable_int(vptr->mac_regs); 2367 netif_start_queue(dev); 2368 2369 spin_unlock_irqrestore(&vptr->lock, flags); 2370 2371 velocity_free_rings(tmp_vptr); 2372 2373 out_free_tmp_vptr_1: 2374 kfree(tmp_vptr); 2375 } 2376 out_0: 2377 return ret; 2378 } 2379 2380 #ifdef CONFIG_NET_POLL_CONTROLLER 2381 /** 2382 * velocity_poll_controller - Velocity Poll controller function 2383 * @dev: network device 2384 * 2385 * 2386 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2387 * with interrupts disabled. 2388 */ 2389 static void velocity_poll_controller(struct net_device *dev) 2390 { 2391 disable_irq(dev->irq); 2392 velocity_intr(dev->irq, dev); 2393 enable_irq(dev->irq); 2394 } 2395 #endif 2396 2397 /** 2398 * velocity_mii_ioctl - MII ioctl handler 2399 * @dev: network device 2400 * @ifr: the ifreq block for the ioctl 2401 * @cmd: the command 2402 * 2403 * Process MII requests made via ioctl from the network layer. These 2404 * are used by tools like kudzu to interrogate the link state of the 2405 * hardware 2406 */ 2407 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2408 { 2409 struct velocity_info *vptr = netdev_priv(dev); 2410 struct mac_regs __iomem *regs = vptr->mac_regs; 2411 unsigned long flags; 2412 struct mii_ioctl_data *miidata = if_mii(ifr); 2413 int err; 2414 2415 switch (cmd) { 2416 case SIOCGMIIPHY: 2417 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2418 break; 2419 case SIOCGMIIREG: 2420 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2421 return -ETIMEDOUT; 2422 break; 2423 case SIOCSMIIREG: 2424 spin_lock_irqsave(&vptr->lock, flags); 2425 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2426 spin_unlock_irqrestore(&vptr->lock, flags); 2427 check_connection_type(vptr->mac_regs); 2428 if (err) 2429 return err; 2430 break; 2431 default: 2432 return -EOPNOTSUPP; 2433 } 2434 return 0; 2435 } 2436 2437 /** 2438 * velocity_ioctl - ioctl entry point 2439 * @dev: network device 2440 * @rq: interface request ioctl 2441 * @cmd: command code 2442 * 2443 * Called when the user issues an ioctl request to the network 2444 * device in question. The velocity interface supports MII. 2445 */ 2446 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2447 { 2448 struct velocity_info *vptr = netdev_priv(dev); 2449 int ret; 2450 2451 /* If we are asked for information and the device is power 2452 saving then we need to bring the device back up to talk to it */ 2453 2454 if (!netif_running(dev)) 2455 velocity_set_power_state(vptr, PCI_D0); 2456 2457 switch (cmd) { 2458 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2459 case SIOCGMIIREG: /* Read MII PHY register. */ 2460 case SIOCSMIIREG: /* Write to MII PHY register. */ 2461 ret = velocity_mii_ioctl(dev, rq, cmd); 2462 break; 2463 2464 default: 2465 ret = -EOPNOTSUPP; 2466 } 2467 if (!netif_running(dev)) 2468 velocity_set_power_state(vptr, PCI_D3hot); 2469 2470 2471 return ret; 2472 } 2473 2474 /** 2475 * velocity_get_status - statistics callback 2476 * @dev: network device 2477 * 2478 * Callback from the network layer to allow driver statistics 2479 * to be resynchronized with hardware collected state. In the 2480 * case of the velocity we need to pull the MIB counters from 2481 * the hardware into the counters before letting the network 2482 * layer display them. 2483 */ 2484 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2485 { 2486 struct velocity_info *vptr = netdev_priv(dev); 2487 2488 /* If the hardware is down, don't touch MII */ 2489 if (!netif_running(dev)) 2490 return &dev->stats; 2491 2492 spin_lock_irq(&vptr->lock); 2493 velocity_update_hw_mibs(vptr); 2494 spin_unlock_irq(&vptr->lock); 2495 2496 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2497 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2498 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2499 2500 // unsigned long rx_dropped; /* no space in linux buffers */ 2501 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2502 /* detailed rx_errors: */ 2503 // unsigned long rx_length_errors; 2504 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2505 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2506 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2507 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2508 // unsigned long rx_missed_errors; /* receiver missed packet */ 2509 2510 /* detailed tx_errors */ 2511 // unsigned long tx_fifo_errors; 2512 2513 return &dev->stats; 2514 } 2515 2516 /** 2517 * velocity_close - close adapter callback 2518 * @dev: network device 2519 * 2520 * Callback from the network layer when the velocity is being 2521 * deactivated by the network layer 2522 */ 2523 static int velocity_close(struct net_device *dev) 2524 { 2525 struct velocity_info *vptr = netdev_priv(dev); 2526 2527 napi_disable(&vptr->napi); 2528 netif_stop_queue(dev); 2529 velocity_shutdown(vptr); 2530 2531 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2532 velocity_get_ip(vptr); 2533 2534 free_irq(dev->irq, dev); 2535 2536 velocity_free_rings(vptr); 2537 2538 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2539 return 0; 2540 } 2541 2542 /** 2543 * velocity_xmit - transmit packet callback 2544 * @skb: buffer to transmit 2545 * @dev: network device 2546 * 2547 * Called by the networ layer to request a packet is queued to 2548 * the velocity. Returns zero on success. 2549 */ 2550 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2551 struct net_device *dev) 2552 { 2553 struct velocity_info *vptr = netdev_priv(dev); 2554 int qnum = 0; 2555 struct tx_desc *td_ptr; 2556 struct velocity_td_info *tdinfo; 2557 unsigned long flags; 2558 int pktlen; 2559 int index, prev; 2560 int i = 0; 2561 2562 if (skb_padto(skb, ETH_ZLEN)) 2563 goto out; 2564 2565 /* The hardware can handle at most 7 memory segments, so merge 2566 * the skb if there are more */ 2567 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2568 dev_kfree_skb_any(skb); 2569 return NETDEV_TX_OK; 2570 } 2571 2572 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2573 max_t(unsigned int, skb->len, ETH_ZLEN) : 2574 skb_headlen(skb); 2575 2576 spin_lock_irqsave(&vptr->lock, flags); 2577 2578 index = vptr->tx.curr[qnum]; 2579 td_ptr = &(vptr->tx.rings[qnum][index]); 2580 tdinfo = &(vptr->tx.infos[qnum][index]); 2581 2582 td_ptr->tdesc1.TCR = TCR0_TIC; 2583 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2584 2585 /* 2586 * Map the linear network buffer into PCI space and 2587 * add it to the transmit ring. 2588 */ 2589 tdinfo->skb = skb; 2590 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2591 DMA_TO_DEVICE); 2592 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2593 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2594 td_ptr->td_buf[0].pa_high = 0; 2595 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2596 2597 /* Handle fragments */ 2598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2599 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2600 2601 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2602 frag, 0, 2603 skb_frag_size(frag), 2604 DMA_TO_DEVICE); 2605 2606 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2607 td_ptr->td_buf[i + 1].pa_high = 0; 2608 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2609 } 2610 tdinfo->nskb_dma = i + 1; 2611 2612 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2613 2614 if (skb_vlan_tag_present(skb)) { 2615 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 2616 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2617 } 2618 2619 /* 2620 * Handle hardware checksum 2621 */ 2622 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2623 const struct iphdr *ip = ip_hdr(skb); 2624 if (ip->protocol == IPPROTO_TCP) 2625 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2626 else if (ip->protocol == IPPROTO_UDP) 2627 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2628 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2629 } 2630 2631 prev = index - 1; 2632 if (prev < 0) 2633 prev = vptr->options.numtx - 1; 2634 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2635 vptr->tx.used[qnum]++; 2636 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2637 2638 if (AVAIL_TD(vptr, qnum) < 1) 2639 netif_stop_queue(dev); 2640 2641 td_ptr = &(vptr->tx.rings[qnum][prev]); 2642 td_ptr->td_buf[0].size |= TD_QUEUE; 2643 mac_tx_queue_wake(vptr->mac_regs, qnum); 2644 2645 spin_unlock_irqrestore(&vptr->lock, flags); 2646 out: 2647 return NETDEV_TX_OK; 2648 } 2649 2650 static const struct net_device_ops velocity_netdev_ops = { 2651 .ndo_open = velocity_open, 2652 .ndo_stop = velocity_close, 2653 .ndo_start_xmit = velocity_xmit, 2654 .ndo_get_stats = velocity_get_stats, 2655 .ndo_validate_addr = eth_validate_addr, 2656 .ndo_set_mac_address = eth_mac_addr, 2657 .ndo_set_rx_mode = velocity_set_multi, 2658 .ndo_change_mtu = velocity_change_mtu, 2659 .ndo_do_ioctl = velocity_ioctl, 2660 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2661 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2662 #ifdef CONFIG_NET_POLL_CONTROLLER 2663 .ndo_poll_controller = velocity_poll_controller, 2664 #endif 2665 }; 2666 2667 /** 2668 * velocity_init_info - init private data 2669 * @pdev: PCI device 2670 * @vptr: Velocity info 2671 * @info: Board type 2672 * 2673 * Set up the initial velocity_info struct for the device that has been 2674 * discovered. 2675 */ 2676 static void velocity_init_info(struct velocity_info *vptr, 2677 const struct velocity_info_tbl *info) 2678 { 2679 vptr->chip_id = info->chip_id; 2680 vptr->tx.numq = info->txqueue; 2681 vptr->multicast_limit = MCAM_SIZE; 2682 spin_lock_init(&vptr->lock); 2683 } 2684 2685 /** 2686 * velocity_get_pci_info - retrieve PCI info for device 2687 * @vptr: velocity device 2688 * @pdev: PCI device it matches 2689 * 2690 * Retrieve the PCI configuration space data that interests us from 2691 * the kernel PCI layer 2692 */ 2693 static int velocity_get_pci_info(struct velocity_info *vptr) 2694 { 2695 struct pci_dev *pdev = vptr->pdev; 2696 2697 pci_set_master(pdev); 2698 2699 vptr->ioaddr = pci_resource_start(pdev, 0); 2700 vptr->memaddr = pci_resource_start(pdev, 1); 2701 2702 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2703 dev_err(&pdev->dev, 2704 "region #0 is not an I/O resource, aborting.\n"); 2705 return -EINVAL; 2706 } 2707 2708 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2709 dev_err(&pdev->dev, 2710 "region #1 is an I/O resource, aborting.\n"); 2711 return -EINVAL; 2712 } 2713 2714 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2715 dev_err(&pdev->dev, "region #1 is too small.\n"); 2716 return -EINVAL; 2717 } 2718 2719 return 0; 2720 } 2721 2722 /** 2723 * velocity_get_platform_info - retrieve platform info for device 2724 * @vptr: velocity device 2725 * @pdev: platform device it matches 2726 * 2727 * Retrieve the Platform configuration data that interests us 2728 */ 2729 static int velocity_get_platform_info(struct velocity_info *vptr) 2730 { 2731 struct resource res; 2732 int ret; 2733 2734 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2735 vptr->no_eeprom = 1; 2736 2737 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2738 if (ret) { 2739 dev_err(vptr->dev, "unable to find memory address\n"); 2740 return ret; 2741 } 2742 2743 vptr->memaddr = res.start; 2744 2745 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2746 dev_err(vptr->dev, "memory region is too small.\n"); 2747 return -EINVAL; 2748 } 2749 2750 return 0; 2751 } 2752 2753 /** 2754 * velocity_print_info - per driver data 2755 * @vptr: velocity 2756 * 2757 * Print per driver data as the kernel driver finds Velocity 2758 * hardware 2759 */ 2760 static void velocity_print_info(struct velocity_info *vptr) 2761 { 2762 struct net_device *dev = vptr->netdev; 2763 2764 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2765 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2766 dev->name, dev->dev_addr); 2767 } 2768 2769 static u32 velocity_get_link(struct net_device *dev) 2770 { 2771 struct velocity_info *vptr = netdev_priv(dev); 2772 struct mac_regs __iomem *regs = vptr->mac_regs; 2773 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2774 } 2775 2776 /** 2777 * velocity_probe - set up discovered velocity device 2778 * @pdev: PCI device 2779 * @ent: PCI device table entry that matched 2780 * @bustype: bus that device is connected to 2781 * 2782 * Configure a discovered adapter from scratch. Return a negative 2783 * errno error code on failure paths. 2784 */ 2785 static int velocity_probe(struct device *dev, int irq, 2786 const struct velocity_info_tbl *info, 2787 enum velocity_bus_type bustype) 2788 { 2789 static int first = 1; 2790 struct net_device *netdev; 2791 int i; 2792 const char *drv_string; 2793 struct velocity_info *vptr; 2794 struct mac_regs __iomem *regs; 2795 int ret = -ENOMEM; 2796 2797 /* FIXME: this driver, like almost all other ethernet drivers, 2798 * can support more than MAX_UNITS. 2799 */ 2800 if (velocity_nics >= MAX_UNITS) { 2801 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2802 return -ENODEV; 2803 } 2804 2805 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2806 if (!netdev) 2807 goto out; 2808 2809 /* Chain it all together */ 2810 2811 SET_NETDEV_DEV(netdev, dev); 2812 vptr = netdev_priv(netdev); 2813 2814 if (first) { 2815 printk(KERN_INFO "%s Ver. %s\n", 2816 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2817 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2818 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2819 first = 0; 2820 } 2821 2822 netdev->irq = irq; 2823 vptr->netdev = netdev; 2824 vptr->dev = dev; 2825 2826 velocity_init_info(vptr, info); 2827 2828 if (bustype == BUS_PCI) { 2829 vptr->pdev = to_pci_dev(dev); 2830 2831 ret = velocity_get_pci_info(vptr); 2832 if (ret < 0) 2833 goto err_free_dev; 2834 } else { 2835 vptr->pdev = NULL; 2836 ret = velocity_get_platform_info(vptr); 2837 if (ret < 0) 2838 goto err_free_dev; 2839 } 2840 2841 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2842 if (regs == NULL) { 2843 ret = -EIO; 2844 goto err_free_dev; 2845 } 2846 2847 vptr->mac_regs = regs; 2848 vptr->rev_id = readb(®s->rev_id); 2849 2850 mac_wol_reset(regs); 2851 2852 for (i = 0; i < 6; i++) 2853 netdev->dev_addr[i] = readb(®s->PAR[i]); 2854 2855 2856 drv_string = dev_driver_string(dev); 2857 2858 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2859 2860 /* 2861 * Mask out the options cannot be set to the chip 2862 */ 2863 2864 vptr->options.flags &= info->flags; 2865 2866 /* 2867 * Enable the chip specified capbilities 2868 */ 2869 2870 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2871 2872 vptr->wol_opts = vptr->options.wol_opts; 2873 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2874 2875 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2876 2877 netdev->netdev_ops = &velocity_netdev_ops; 2878 netdev->ethtool_ops = &velocity_ethtool_ops; 2879 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2880 VELOCITY_NAPI_WEIGHT); 2881 2882 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2883 NETIF_F_HW_VLAN_CTAG_TX; 2884 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2885 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2886 NETIF_F_IP_CSUM; 2887 2888 ret = register_netdev(netdev); 2889 if (ret < 0) 2890 goto err_iounmap; 2891 2892 if (!velocity_get_link(netdev)) { 2893 netif_carrier_off(netdev); 2894 vptr->mii_status |= VELOCITY_LINK_FAIL; 2895 } 2896 2897 velocity_print_info(vptr); 2898 dev_set_drvdata(vptr->dev, netdev); 2899 2900 /* and leave the chip powered down */ 2901 2902 velocity_set_power_state(vptr, PCI_D3hot); 2903 velocity_nics++; 2904 out: 2905 return ret; 2906 2907 err_iounmap: 2908 netif_napi_del(&vptr->napi); 2909 iounmap(regs); 2910 err_free_dev: 2911 free_netdev(netdev); 2912 goto out; 2913 } 2914 2915 /** 2916 * velocity_remove - device unplug 2917 * @dev: device being removed 2918 * 2919 * Device unload callback. Called on an unplug or on module 2920 * unload for each active device that is present. Disconnects 2921 * the device from the network layer and frees all the resources 2922 */ 2923 static int velocity_remove(struct device *dev) 2924 { 2925 struct net_device *netdev = dev_get_drvdata(dev); 2926 struct velocity_info *vptr = netdev_priv(netdev); 2927 2928 unregister_netdev(netdev); 2929 netif_napi_del(&vptr->napi); 2930 iounmap(vptr->mac_regs); 2931 free_netdev(netdev); 2932 velocity_nics--; 2933 2934 return 0; 2935 } 2936 2937 static int velocity_pci_probe(struct pci_dev *pdev, 2938 const struct pci_device_id *ent) 2939 { 2940 const struct velocity_info_tbl *info = 2941 &chip_info_table[ent->driver_data]; 2942 int ret; 2943 2944 ret = pci_enable_device(pdev); 2945 if (ret < 0) 2946 return ret; 2947 2948 ret = pci_request_regions(pdev, VELOCITY_NAME); 2949 if (ret < 0) { 2950 dev_err(&pdev->dev, "No PCI resources.\n"); 2951 goto fail1; 2952 } 2953 2954 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2955 if (ret == 0) 2956 return 0; 2957 2958 pci_release_regions(pdev); 2959 fail1: 2960 pci_disable_device(pdev); 2961 return ret; 2962 } 2963 2964 static void velocity_pci_remove(struct pci_dev *pdev) 2965 { 2966 velocity_remove(&pdev->dev); 2967 2968 pci_release_regions(pdev); 2969 pci_disable_device(pdev); 2970 } 2971 2972 static int velocity_platform_probe(struct platform_device *pdev) 2973 { 2974 const struct of_device_id *of_id; 2975 const struct velocity_info_tbl *info; 2976 int irq; 2977 2978 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2979 if (!of_id) 2980 return -EINVAL; 2981 info = of_id->data; 2982 2983 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2984 if (!irq) 2985 return -EINVAL; 2986 2987 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2988 } 2989 2990 static int velocity_platform_remove(struct platform_device *pdev) 2991 { 2992 velocity_remove(&pdev->dev); 2993 2994 return 0; 2995 } 2996 2997 #ifdef CONFIG_PM_SLEEP 2998 /** 2999 * wol_calc_crc - WOL CRC 3000 * @pattern: data pattern 3001 * @mask_pattern: mask 3002 * 3003 * Compute the wake on lan crc hashes for the packet header 3004 * we are interested in. 3005 */ 3006 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 3007 { 3008 u16 crc = 0xFFFF; 3009 u8 mask; 3010 int i, j; 3011 3012 for (i = 0; i < size; i++) { 3013 mask = mask_pattern[i]; 3014 3015 /* Skip this loop if the mask equals to zero */ 3016 if (mask == 0x00) 3017 continue; 3018 3019 for (j = 0; j < 8; j++) { 3020 if ((mask & 0x01) == 0) { 3021 mask >>= 1; 3022 continue; 3023 } 3024 mask >>= 1; 3025 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 3026 } 3027 } 3028 /* Finally, invert the result once to get the correct data */ 3029 crc = ~crc; 3030 return bitrev32(crc) >> 16; 3031 } 3032 3033 /** 3034 * velocity_set_wol - set up for wake on lan 3035 * @vptr: velocity to set WOL status on 3036 * 3037 * Set a card up for wake on lan either by unicast or by 3038 * ARP packet. 3039 * 3040 * FIXME: check static buffer is safe here 3041 */ 3042 static int velocity_set_wol(struct velocity_info *vptr) 3043 { 3044 struct mac_regs __iomem *regs = vptr->mac_regs; 3045 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3046 static u8 buf[256]; 3047 int i; 3048 3049 static u32 mask_pattern[2][4] = { 3050 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3051 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3052 }; 3053 3054 writew(0xFFFF, ®s->WOLCRClr); 3055 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3056 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3057 3058 /* 3059 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3060 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3061 */ 3062 3063 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3064 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3065 3066 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3067 struct arp_packet *arp = (struct arp_packet *) buf; 3068 u16 crc; 3069 memset(buf, 0, sizeof(struct arp_packet) + 7); 3070 3071 for (i = 0; i < 4; i++) 3072 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3073 3074 arp->type = htons(ETH_P_ARP); 3075 arp->ar_op = htons(1); 3076 3077 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3078 3079 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3080 (u8 *) & mask_pattern[0][0]); 3081 3082 writew(crc, ®s->PatternCRC[0]); 3083 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3084 } 3085 3086 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3087 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3088 3089 writew(0x0FFF, ®s->WOLSRClr); 3090 3091 if (spd_dpx == SPD_DPX_1000_FULL) 3092 goto mac_done; 3093 3094 if (spd_dpx != SPD_DPX_AUTO) 3095 goto advertise_done; 3096 3097 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3098 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3099 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3100 3101 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3102 } 3103 3104 if (vptr->mii_status & VELOCITY_SPEED_1000) 3105 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3106 3107 advertise_done: 3108 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3109 3110 { 3111 u8 GCR; 3112 GCR = readb(®s->CHIPGCR); 3113 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3114 writeb(GCR, ®s->CHIPGCR); 3115 } 3116 3117 mac_done: 3118 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3119 /* Turn on SWPTAG just before entering power mode */ 3120 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3121 /* Go to bed ..... */ 3122 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3123 3124 return 0; 3125 } 3126 3127 /** 3128 * velocity_save_context - save registers 3129 * @vptr: velocity 3130 * @context: buffer for stored context 3131 * 3132 * Retrieve the current configuration from the velocity hardware 3133 * and stash it in the context structure, for use by the context 3134 * restore functions. This allows us to save things we need across 3135 * power down states 3136 */ 3137 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3138 { 3139 struct mac_regs __iomem *regs = vptr->mac_regs; 3140 u16 i; 3141 u8 __iomem *ptr = (u8 __iomem *)regs; 3142 3143 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3144 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3145 3146 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3147 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3148 3149 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3150 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3151 3152 } 3153 3154 static int velocity_suspend(struct device *dev) 3155 { 3156 struct net_device *netdev = dev_get_drvdata(dev); 3157 struct velocity_info *vptr = netdev_priv(netdev); 3158 unsigned long flags; 3159 3160 if (!netif_running(vptr->netdev)) 3161 return 0; 3162 3163 netif_device_detach(vptr->netdev); 3164 3165 spin_lock_irqsave(&vptr->lock, flags); 3166 if (vptr->pdev) 3167 pci_save_state(vptr->pdev); 3168 3169 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3170 velocity_get_ip(vptr); 3171 velocity_save_context(vptr, &vptr->context); 3172 velocity_shutdown(vptr); 3173 velocity_set_wol(vptr); 3174 if (vptr->pdev) 3175 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3176 velocity_set_power_state(vptr, PCI_D3hot); 3177 } else { 3178 velocity_save_context(vptr, &vptr->context); 3179 velocity_shutdown(vptr); 3180 if (vptr->pdev) 3181 pci_disable_device(vptr->pdev); 3182 velocity_set_power_state(vptr, PCI_D3hot); 3183 } 3184 3185 spin_unlock_irqrestore(&vptr->lock, flags); 3186 return 0; 3187 } 3188 3189 /** 3190 * velocity_restore_context - restore registers 3191 * @vptr: velocity 3192 * @context: buffer for stored context 3193 * 3194 * Reload the register configuration from the velocity context 3195 * created by velocity_save_context. 3196 */ 3197 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3198 { 3199 struct mac_regs __iomem *regs = vptr->mac_regs; 3200 int i; 3201 u8 __iomem *ptr = (u8 __iomem *)regs; 3202 3203 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3204 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3205 3206 /* Just skip cr0 */ 3207 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3208 /* Clear */ 3209 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3210 /* Set */ 3211 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3212 } 3213 3214 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3215 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3216 3217 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3218 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3219 3220 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3221 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3222 } 3223 3224 static int velocity_resume(struct device *dev) 3225 { 3226 struct net_device *netdev = dev_get_drvdata(dev); 3227 struct velocity_info *vptr = netdev_priv(netdev); 3228 unsigned long flags; 3229 int i; 3230 3231 if (!netif_running(vptr->netdev)) 3232 return 0; 3233 3234 velocity_set_power_state(vptr, PCI_D0); 3235 3236 if (vptr->pdev) { 3237 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3238 pci_restore_state(vptr->pdev); 3239 } 3240 3241 mac_wol_reset(vptr->mac_regs); 3242 3243 spin_lock_irqsave(&vptr->lock, flags); 3244 velocity_restore_context(vptr, &vptr->context); 3245 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3246 mac_disable_int(vptr->mac_regs); 3247 3248 velocity_tx_srv(vptr); 3249 3250 for (i = 0; i < vptr->tx.numq; i++) { 3251 if (vptr->tx.used[i]) 3252 mac_tx_queue_wake(vptr->mac_regs, i); 3253 } 3254 3255 mac_enable_int(vptr->mac_regs); 3256 spin_unlock_irqrestore(&vptr->lock, flags); 3257 netif_device_attach(vptr->netdev); 3258 3259 return 0; 3260 } 3261 #endif /* CONFIG_PM_SLEEP */ 3262 3263 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3264 3265 /* 3266 * Definition for our device driver. The PCI layer interface 3267 * uses this to handle all our card discover and plugging 3268 */ 3269 static struct pci_driver velocity_pci_driver = { 3270 .name = VELOCITY_NAME, 3271 .id_table = velocity_pci_id_table, 3272 .probe = velocity_pci_probe, 3273 .remove = velocity_pci_remove, 3274 .driver = { 3275 .pm = &velocity_pm_ops, 3276 }, 3277 }; 3278 3279 static struct platform_driver velocity_platform_driver = { 3280 .probe = velocity_platform_probe, 3281 .remove = velocity_platform_remove, 3282 .driver = { 3283 .name = "via-velocity", 3284 .of_match_table = velocity_of_ids, 3285 .pm = &velocity_pm_ops, 3286 }, 3287 }; 3288 3289 /** 3290 * velocity_ethtool_up - pre hook for ethtool 3291 * @dev: network device 3292 * 3293 * Called before an ethtool operation. We need to make sure the 3294 * chip is out of D3 state before we poke at it. 3295 */ 3296 static int velocity_ethtool_up(struct net_device *dev) 3297 { 3298 struct velocity_info *vptr = netdev_priv(dev); 3299 if (!netif_running(dev)) 3300 velocity_set_power_state(vptr, PCI_D0); 3301 return 0; 3302 } 3303 3304 /** 3305 * velocity_ethtool_down - post hook for ethtool 3306 * @dev: network device 3307 * 3308 * Called after an ethtool operation. Restore the chip back to D3 3309 * state if it isn't running. 3310 */ 3311 static void velocity_ethtool_down(struct net_device *dev) 3312 { 3313 struct velocity_info *vptr = netdev_priv(dev); 3314 if (!netif_running(dev)) 3315 velocity_set_power_state(vptr, PCI_D3hot); 3316 } 3317 3318 static int velocity_get_settings(struct net_device *dev, 3319 struct ethtool_cmd *cmd) 3320 { 3321 struct velocity_info *vptr = netdev_priv(dev); 3322 struct mac_regs __iomem *regs = vptr->mac_regs; 3323 u32 status; 3324 status = check_connection_type(vptr->mac_regs); 3325 3326 cmd->supported = SUPPORTED_TP | 3327 SUPPORTED_Autoneg | 3328 SUPPORTED_10baseT_Half | 3329 SUPPORTED_10baseT_Full | 3330 SUPPORTED_100baseT_Half | 3331 SUPPORTED_100baseT_Full | 3332 SUPPORTED_1000baseT_Half | 3333 SUPPORTED_1000baseT_Full; 3334 3335 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3336 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3337 cmd->advertising |= 3338 ADVERTISED_10baseT_Half | 3339 ADVERTISED_10baseT_Full | 3340 ADVERTISED_100baseT_Half | 3341 ADVERTISED_100baseT_Full | 3342 ADVERTISED_1000baseT_Half | 3343 ADVERTISED_1000baseT_Full; 3344 } else { 3345 switch (vptr->options.spd_dpx) { 3346 case SPD_DPX_1000_FULL: 3347 cmd->advertising |= ADVERTISED_1000baseT_Full; 3348 break; 3349 case SPD_DPX_100_HALF: 3350 cmd->advertising |= ADVERTISED_100baseT_Half; 3351 break; 3352 case SPD_DPX_100_FULL: 3353 cmd->advertising |= ADVERTISED_100baseT_Full; 3354 break; 3355 case SPD_DPX_10_HALF: 3356 cmd->advertising |= ADVERTISED_10baseT_Half; 3357 break; 3358 case SPD_DPX_10_FULL: 3359 cmd->advertising |= ADVERTISED_10baseT_Full; 3360 break; 3361 default: 3362 break; 3363 } 3364 } 3365 3366 if (status & VELOCITY_SPEED_1000) 3367 ethtool_cmd_speed_set(cmd, SPEED_1000); 3368 else if (status & VELOCITY_SPEED_100) 3369 ethtool_cmd_speed_set(cmd, SPEED_100); 3370 else 3371 ethtool_cmd_speed_set(cmd, SPEED_10); 3372 3373 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3374 cmd->port = PORT_TP; 3375 cmd->transceiver = XCVR_INTERNAL; 3376 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3377 3378 if (status & VELOCITY_DUPLEX_FULL) 3379 cmd->duplex = DUPLEX_FULL; 3380 else 3381 cmd->duplex = DUPLEX_HALF; 3382 3383 return 0; 3384 } 3385 3386 static int velocity_set_settings(struct net_device *dev, 3387 struct ethtool_cmd *cmd) 3388 { 3389 struct velocity_info *vptr = netdev_priv(dev); 3390 u32 speed = ethtool_cmd_speed(cmd); 3391 u32 curr_status; 3392 u32 new_status = 0; 3393 int ret = 0; 3394 3395 curr_status = check_connection_type(vptr->mac_regs); 3396 curr_status &= (~VELOCITY_LINK_FAIL); 3397 3398 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3399 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3400 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3401 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3402 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3403 3404 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3405 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3406 ret = -EINVAL; 3407 } else { 3408 enum speed_opt spd_dpx; 3409 3410 if (new_status & VELOCITY_AUTONEG_ENABLE) 3411 spd_dpx = SPD_DPX_AUTO; 3412 else if ((new_status & VELOCITY_SPEED_1000) && 3413 (new_status & VELOCITY_DUPLEX_FULL)) { 3414 spd_dpx = SPD_DPX_1000_FULL; 3415 } else if (new_status & VELOCITY_SPEED_100) 3416 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3417 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3418 else if (new_status & VELOCITY_SPEED_10) 3419 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3420 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3421 else 3422 return -EOPNOTSUPP; 3423 3424 vptr->options.spd_dpx = spd_dpx; 3425 3426 velocity_set_media_mode(vptr, new_status); 3427 } 3428 3429 return ret; 3430 } 3431 3432 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3433 { 3434 struct velocity_info *vptr = netdev_priv(dev); 3435 3436 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3437 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3438 if (vptr->pdev) 3439 strlcpy(info->bus_info, pci_name(vptr->pdev), 3440 sizeof(info->bus_info)); 3441 else 3442 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3443 } 3444 3445 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3446 { 3447 struct velocity_info *vptr = netdev_priv(dev); 3448 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3449 wol->wolopts |= WAKE_MAGIC; 3450 /* 3451 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3452 wol.wolopts|=WAKE_PHY; 3453 */ 3454 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3455 wol->wolopts |= WAKE_UCAST; 3456 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3457 wol->wolopts |= WAKE_ARP; 3458 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3459 } 3460 3461 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3462 { 3463 struct velocity_info *vptr = netdev_priv(dev); 3464 3465 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3466 return -EFAULT; 3467 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3468 3469 /* 3470 if (wol.wolopts & WAKE_PHY) { 3471 vptr->wol_opts|=VELOCITY_WOL_PHY; 3472 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3473 } 3474 */ 3475 3476 if (wol->wolopts & WAKE_MAGIC) { 3477 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3478 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3479 } 3480 if (wol->wolopts & WAKE_UCAST) { 3481 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3482 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3483 } 3484 if (wol->wolopts & WAKE_ARP) { 3485 vptr->wol_opts |= VELOCITY_WOL_ARP; 3486 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3487 } 3488 memcpy(vptr->wol_passwd, wol->sopass, 6); 3489 return 0; 3490 } 3491 3492 static u32 velocity_get_msglevel(struct net_device *dev) 3493 { 3494 return msglevel; 3495 } 3496 3497 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3498 { 3499 msglevel = value; 3500 } 3501 3502 static int get_pending_timer_val(int val) 3503 { 3504 int mult_bits = val >> 6; 3505 int mult = 1; 3506 3507 switch (mult_bits) 3508 { 3509 case 1: 3510 mult = 4; break; 3511 case 2: 3512 mult = 16; break; 3513 case 3: 3514 mult = 64; break; 3515 case 0: 3516 default: 3517 break; 3518 } 3519 3520 return (val & 0x3f) * mult; 3521 } 3522 3523 static void set_pending_timer_val(int *val, u32 us) 3524 { 3525 u8 mult = 0; 3526 u8 shift = 0; 3527 3528 if (us >= 0x3f) { 3529 mult = 1; /* mult with 4 */ 3530 shift = 2; 3531 } 3532 if (us >= 0x3f * 4) { 3533 mult = 2; /* mult with 16 */ 3534 shift = 4; 3535 } 3536 if (us >= 0x3f * 16) { 3537 mult = 3; /* mult with 64 */ 3538 shift = 6; 3539 } 3540 3541 *val = (mult << 6) | ((us >> shift) & 0x3f); 3542 } 3543 3544 3545 static int velocity_get_coalesce(struct net_device *dev, 3546 struct ethtool_coalesce *ecmd) 3547 { 3548 struct velocity_info *vptr = netdev_priv(dev); 3549 3550 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3551 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3552 3553 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3554 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3555 3556 return 0; 3557 } 3558 3559 static int velocity_set_coalesce(struct net_device *dev, 3560 struct ethtool_coalesce *ecmd) 3561 { 3562 struct velocity_info *vptr = netdev_priv(dev); 3563 int max_us = 0x3f * 64; 3564 unsigned long flags; 3565 3566 /* 6 bits of */ 3567 if (ecmd->tx_coalesce_usecs > max_us) 3568 return -EINVAL; 3569 if (ecmd->rx_coalesce_usecs > max_us) 3570 return -EINVAL; 3571 3572 if (ecmd->tx_max_coalesced_frames > 0xff) 3573 return -EINVAL; 3574 if (ecmd->rx_max_coalesced_frames > 0xff) 3575 return -EINVAL; 3576 3577 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3578 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3579 3580 set_pending_timer_val(&vptr->options.rxqueue_timer, 3581 ecmd->rx_coalesce_usecs); 3582 set_pending_timer_val(&vptr->options.txqueue_timer, 3583 ecmd->tx_coalesce_usecs); 3584 3585 /* Setup the interrupt suppression and queue timers */ 3586 spin_lock_irqsave(&vptr->lock, flags); 3587 mac_disable_int(vptr->mac_regs); 3588 setup_adaptive_interrupts(vptr); 3589 setup_queue_timers(vptr); 3590 3591 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3592 mac_clear_isr(vptr->mac_regs); 3593 mac_enable_int(vptr->mac_regs); 3594 spin_unlock_irqrestore(&vptr->lock, flags); 3595 3596 return 0; 3597 } 3598 3599 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3600 "rx_all", 3601 "rx_ok", 3602 "tx_ok", 3603 "rx_error", 3604 "rx_runt_ok", 3605 "rx_runt_err", 3606 "rx_64", 3607 "tx_64", 3608 "rx_65_to_127", 3609 "tx_65_to_127", 3610 "rx_128_to_255", 3611 "tx_128_to_255", 3612 "rx_256_to_511", 3613 "tx_256_to_511", 3614 "rx_512_to_1023", 3615 "tx_512_to_1023", 3616 "rx_1024_to_1518", 3617 "tx_1024_to_1518", 3618 "tx_ether_collisions", 3619 "rx_crc_errors", 3620 "rx_jumbo", 3621 "tx_jumbo", 3622 "rx_mac_control_frames", 3623 "tx_mac_control_frames", 3624 "rx_frame_alignement_errors", 3625 "rx_long_ok", 3626 "rx_long_err", 3627 "tx_sqe_errors", 3628 "rx_no_buf", 3629 "rx_symbol_errors", 3630 "in_range_length_errors", 3631 "late_collisions" 3632 }; 3633 3634 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3635 { 3636 switch (sset) { 3637 case ETH_SS_STATS: 3638 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3639 break; 3640 } 3641 } 3642 3643 static int velocity_get_sset_count(struct net_device *dev, int sset) 3644 { 3645 switch (sset) { 3646 case ETH_SS_STATS: 3647 return ARRAY_SIZE(velocity_gstrings); 3648 default: 3649 return -EOPNOTSUPP; 3650 } 3651 } 3652 3653 static void velocity_get_ethtool_stats(struct net_device *dev, 3654 struct ethtool_stats *stats, u64 *data) 3655 { 3656 if (netif_running(dev)) { 3657 struct velocity_info *vptr = netdev_priv(dev); 3658 u32 *p = vptr->mib_counter; 3659 int i; 3660 3661 spin_lock_irq(&vptr->lock); 3662 velocity_update_hw_mibs(vptr); 3663 spin_unlock_irq(&vptr->lock); 3664 3665 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3666 *data++ = *p++; 3667 } 3668 } 3669 3670 static const struct ethtool_ops velocity_ethtool_ops = { 3671 .get_settings = velocity_get_settings, 3672 .set_settings = velocity_set_settings, 3673 .get_drvinfo = velocity_get_drvinfo, 3674 .get_wol = velocity_ethtool_get_wol, 3675 .set_wol = velocity_ethtool_set_wol, 3676 .get_msglevel = velocity_get_msglevel, 3677 .set_msglevel = velocity_set_msglevel, 3678 .get_link = velocity_get_link, 3679 .get_strings = velocity_get_strings, 3680 .get_sset_count = velocity_get_sset_count, 3681 .get_ethtool_stats = velocity_get_ethtool_stats, 3682 .get_coalesce = velocity_get_coalesce, 3683 .set_coalesce = velocity_set_coalesce, 3684 .begin = velocity_ethtool_up, 3685 .complete = velocity_ethtool_down 3686 }; 3687 3688 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3689 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3690 { 3691 struct in_ifaddr *ifa = ptr; 3692 struct net_device *dev = ifa->ifa_dev->dev; 3693 3694 if (dev_net(dev) == &init_net && 3695 dev->netdev_ops == &velocity_netdev_ops) 3696 velocity_get_ip(netdev_priv(dev)); 3697 3698 return NOTIFY_DONE; 3699 } 3700 3701 static struct notifier_block velocity_inetaddr_notifier = { 3702 .notifier_call = velocity_netdev_event, 3703 }; 3704 3705 static void velocity_register_notifier(void) 3706 { 3707 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3708 } 3709 3710 static void velocity_unregister_notifier(void) 3711 { 3712 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3713 } 3714 3715 #else 3716 3717 #define velocity_register_notifier() do {} while (0) 3718 #define velocity_unregister_notifier() do {} while (0) 3719 3720 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3721 3722 /** 3723 * velocity_init_module - load time function 3724 * 3725 * Called when the velocity module is loaded. The PCI driver 3726 * is registered with the PCI layer, and in turn will call 3727 * the probe functions for each velocity adapter installed 3728 * in the system. 3729 */ 3730 static int __init velocity_init_module(void) 3731 { 3732 int ret_pci, ret_platform; 3733 3734 velocity_register_notifier(); 3735 3736 ret_pci = pci_register_driver(&velocity_pci_driver); 3737 ret_platform = platform_driver_register(&velocity_platform_driver); 3738 3739 /* if both_registers failed, remove the notifier */ 3740 if ((ret_pci < 0) && (ret_platform < 0)) { 3741 velocity_unregister_notifier(); 3742 return ret_pci; 3743 } 3744 3745 return 0; 3746 } 3747 3748 /** 3749 * velocity_cleanup - module unload 3750 * 3751 * When the velocity hardware is unloaded this function is called. 3752 * It will clean up the notifiers and the unregister the PCI 3753 * driver interface for this hardware. This in turn cleans up 3754 * all discovered interfaces before returning from the function 3755 */ 3756 static void __exit velocity_cleanup_module(void) 3757 { 3758 velocity_unregister_notifier(); 3759 3760 pci_unregister_driver(&velocity_pci_driver); 3761 platform_driver_unregister(&velocity_platform_driver); 3762 } 3763 3764 module_init(velocity_init_module); 3765 module_exit(velocity_cleanup_module); 3766