1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79 
80 #include "via-velocity.h"
81 
82 
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85 
86 /**
87  *	mac_get_cam_mask	-	Read a CAM mask
88  *	@regs: register block for this velocity
89  *	@mask: buffer to store mask
90  *
91  *	Fetch the mask bits of the selected CAM and store them into the
92  *	provided mask buffer.
93  */
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 	int i;
97 
98 	/* Select CAM mask */
99 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100 
101 	writeb(0, &regs->CAMADDR);
102 
103 	/* read mask */
104 	for (i = 0; i < 8; i++)
105 		*mask++ = readb(&(regs->MARCAM[i]));
106 
107 	/* disable CAMEN */
108 	writeb(0, &regs->CAMADDR);
109 
110 	/* Select mar */
111 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112 }
113 
114 /**
115  *	mac_set_cam_mask	-	Set a CAM mask
116  *	@regs: register block for this velocity
117  *	@mask: CAM mask to load
118  *
119  *	Store a new mask into a CAM
120  */
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122 {
123 	int i;
124 	/* Select CAM mask */
125 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
126 
127 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
128 
129 	for (i = 0; i < 8; i++)
130 		writeb(*mask++, &(regs->MARCAM[i]));
131 
132 	/* disable CAMEN */
133 	writeb(0, &regs->CAMADDR);
134 
135 	/* Select mar */
136 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
137 }
138 
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140 {
141 	int i;
142 	/* Select CAM mask */
143 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 
145 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
146 
147 	for (i = 0; i < 8; i++)
148 		writeb(*mask++, &(regs->MARCAM[i]));
149 
150 	/* disable CAMEN */
151 	writeb(0, &regs->CAMADDR);
152 
153 	/* Select mar */
154 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
155 }
156 
157 /**
158  *	mac_set_cam	-	set CAM data
159  *	@regs: register block of this velocity
160  *	@idx: Cam index
161  *	@addr: 2 or 6 bytes of CAM data
162  *
163  *	Load an address or vlan tag into a CAM
164  */
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166 {
167 	int i;
168 
169 	/* Select CAM mask */
170 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
171 
172 	idx &= (64 - 1);
173 
174 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
175 
176 	for (i = 0; i < 6; i++)
177 		writeb(*addr++, &(regs->MARCAM[i]));
178 
179 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
180 
181 	udelay(10);
182 
183 	writeb(0, &regs->CAMADDR);
184 
185 	/* Select mar */
186 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
187 }
188 
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 			     const u8 *addr)
191 {
192 
193 	/* Select CAM mask */
194 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 
196 	idx &= (64 - 1);
197 
198 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 	writew(*((u16 *) addr), &regs->MARCAM[0]);
200 
201 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
202 
203 	udelay(10);
204 
205 	writeb(0, &regs->CAMADDR);
206 
207 	/* Select mar */
208 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
209 }
210 
211 
212 /**
213  *	mac_wol_reset	-	reset WOL after exiting low power
214  *	@regs: register block of this velocity
215  *
216  *	Called after we drop out of wake on lan mode in order to
217  *	reset the Wake on lan features. This function doesn't restore
218  *	the rest of the logic from the result of sleep/wakeup
219  */
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
221 {
222 
223 	/* Turn off SWPTAG right after leaving power mode */
224 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 	/* clear sticky bits */
226 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
227 
228 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 	/* disable force PME-enable */
231 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 	/* disable power-event config bit */
233 	writew(0xFFFF, &regs->WOLCRClr);
234 	/* clear power status */
235 	writew(0xFFFF, &regs->WOLSRClr);
236 }
237 
238 static const struct ethtool_ops velocity_ethtool_ops;
239 
240 /*
241     Define module options
242 */
243 
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247 
248 #define VELOCITY_PARAM(N, D) \
249 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 	module_param_array(N, int, NULL, 0); \
251 	MODULE_PARM_DESC(N, D);
252 
253 #define RX_DESC_MIN     64
254 #define RX_DESC_MAX     255
255 #define RX_DESC_DEF     64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257 
258 #define TX_DESC_MIN     16
259 #define TX_DESC_MAX     256
260 #define TX_DESC_DEF     64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262 
263 #define RX_THRESH_MIN   0
264 #define RX_THRESH_MAX   3
265 #define RX_THRESH_DEF   0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267    0: indicate the rxfifo threshold is 128 bytes.
268    1: indicate the rxfifo threshold is 512 bytes.
269    2: indicate the rxfifo threshold is 1024 bytes.
270    3: indicate the rxfifo threshold is store & forward.
271 */
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273 
274 #define DMA_LENGTH_MIN  0
275 #define DMA_LENGTH_MAX  7
276 #define DMA_LENGTH_DEF  6
277 
278 /* DMA_length[] is used for controlling the DMA length
279    0: 8 DWORDs
280    1: 16 DWORDs
281    2: 32 DWORDs
282    3: 64 DWORDs
283    4: 128 DWORDs
284    5: 256 DWORDs
285    6: SF(flush till emply)
286    7: SF(flush till emply)
287 */
288 VELOCITY_PARAM(DMA_length, "DMA length");
289 
290 #define IP_ALIG_DEF     0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292    0: indicate the IP header won't be DWORD byte aligned.(Default) .
293    1: indicate the IP header will be DWORD byte aligned.
294       In some environment, the IP header should be DWORD byte aligned,
295       or the packet will be droped when we receive it. (eg: IPVS)
296 */
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298 
299 #define FLOW_CNTL_DEF   1
300 #define FLOW_CNTL_MIN   1
301 #define FLOW_CNTL_MAX   5
302 
303 /* flow_control[] is used for setting the flow control ability of NIC.
304    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305    2: enable TX flow control.
306    3: enable RX flow control.
307    4: enable RX/TX flow control.
308    5: disable
309 */
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
311 
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316    0: indicate autonegotiation for both speed and duplex mode
317    1: indicate 100Mbps half duplex mode
318    2: indicate 100Mbps full duplex mode
319    3: indicate 10Mbps half duplex mode
320    4: indicate 10Mbps full duplex mode
321    5: indicate 1000Mbps full duplex mode
322 
323    Note:
324    if EEPROM have been set to the force mode, this option is ignored
325    by driver.
326 */
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328 
329 #define VAL_PKT_LEN_DEF     0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331    0: Receive frame with invalid layer 2 length (Default)
332    1: Drop frame with invalid layer 2 length
333 */
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335 
336 #define WOL_OPT_DEF     0
337 #define WOL_OPT_MIN     0
338 #define WOL_OPT_MAX     7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340    0: Wake up if recevied a magic packet. (Default)
341    1: Wake up if link status is on/off.
342    2: Wake up if recevied an arp packet.
343    4: Wake up if recevied any unicast packet.
344    Those value can be sumed up to support more than one option.
345 */
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347 
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351 
352 /*
353  *	Internal board variants. At the moment we have only one
354  */
355 static struct velocity_info_tbl chip_info_table[] = {
356 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 	{ }
358 };
359 
360 /*
361  *	Describe the PCI device identifiers that we support in this
362  *	device driver. Used for hotplug autoloading.
363  */
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 	{ }
367 };
368 
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
370 
371 /**
372  *	get_chip_name	- 	identifier to name
373  *	@id: chip identifier
374  *
375  *	Given a chip identifier return a suitable description. Returns
376  *	a pointer a static string valid while the driver is loaded.
377  */
378 static const char *get_chip_name(enum chip_type chip_id)
379 {
380 	int i;
381 	for (i = 0; chip_info_table[i].name != NULL; i++)
382 		if (chip_info_table[i].chip_id == chip_id)
383 			break;
384 	return chip_info_table[i].name;
385 }
386 
387 /**
388  *	velocity_remove1	-	device unplug
389  *	@pdev: PCI device being removed
390  *
391  *	Device unload callback. Called on an unplug or on module
392  *	unload for each active device that is present. Disconnects
393  *	the device from the network layer and frees all the resources
394  */
395 static void velocity_remove1(struct pci_dev *pdev)
396 {
397 	struct net_device *dev = pci_get_drvdata(pdev);
398 	struct velocity_info *vptr = netdev_priv(dev);
399 
400 	unregister_netdev(dev);
401 	iounmap(vptr->mac_regs);
402 	pci_release_regions(pdev);
403 	pci_disable_device(pdev);
404 	pci_set_drvdata(pdev, NULL);
405 	free_netdev(dev);
406 
407 	velocity_nics--;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 				 char *name, const char *devname)
426 {
427 	if (val == -1)
428 		*opt = def;
429 	else if (val < min || val > max) {
430 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 					devname, name, min, max);
432 		*opt = def;
433 	} else {
434 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 					devname, name, val);
436 		*opt = val;
437 	}
438 }
439 
440 /**
441  *	velocity_set_bool_opt	-	parser for boolean options
442  *	@opt: pointer to option value
443  *	@val: value the user requested (or -1 for default)
444  *	@def: default value (yes/no)
445  *	@flag: numeric value to set for true.
446  *	@name: property name
447  *	@dev: device name
448  *
449  *	Set a boolean property in the module options. This function does
450  *	all the verification and checking as well as reporting so that
451  *	we don't duplicate code for each option.
452  */
453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 				  char *name, const char *devname)
455 {
456 	(*opt) &= (~flag);
457 	if (val == -1)
458 		*opt |= (def ? flag : 0);
459 	else if (val < 0 || val > 1) {
460 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 			devname, name);
462 		*opt |= (def ? flag : 0);
463 	} else {
464 		printk(KERN_INFO "%s: set parameter %s to %s\n",
465 			devname, name, val ? "TRUE" : "FALSE");
466 		*opt |= (val ? flag : 0);
467 	}
468 }
469 
470 /**
471  *	velocity_get_options	-	set options on device
472  *	@opts: option structure for the device
473  *	@index: index of option to use in module options array
474  *	@devname: device name
475  *
476  *	Turn the module and command options into a single structure
477  *	for the current device
478  */
479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 				 const char *devname)
481 {
482 
483 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487 
488 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
491 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
492 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
493 	opts->numrx = (opts->numrx & ~3);
494 }
495 
496 /**
497  *	velocity_init_cam_filter	-	initialise CAM
498  *	@vptr: velocity to program
499  *
500  *	Initialize the content addressable memory used for filters. Load
501  *	appropriately according to the presence of VLAN
502  */
503 static void velocity_init_cam_filter(struct velocity_info *vptr)
504 {
505 	struct mac_regs __iomem *regs = vptr->mac_regs;
506 	unsigned int vid, i = 0;
507 
508 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
509 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
510 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
511 
512 	/* Disable all CAMs */
513 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
514 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
515 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
516 	mac_set_cam_mask(regs, vptr->mCAMmask);
517 
518 	/* Enable VCAMs */
519 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
520 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
521 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
522 		if (++i >= VCAM_SIZE)
523 			break;
524 	}
525 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
526 }
527 
528 static int velocity_vlan_rx_add_vid(struct net_device *dev,
529 				    __be16 proto, u16 vid)
530 {
531 	struct velocity_info *vptr = netdev_priv(dev);
532 
533 	spin_lock_irq(&vptr->lock);
534 	set_bit(vid, vptr->active_vlans);
535 	velocity_init_cam_filter(vptr);
536 	spin_unlock_irq(&vptr->lock);
537 	return 0;
538 }
539 
540 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
541 				     __be16 proto, u16 vid)
542 {
543 	struct velocity_info *vptr = netdev_priv(dev);
544 
545 	spin_lock_irq(&vptr->lock);
546 	clear_bit(vid, vptr->active_vlans);
547 	velocity_init_cam_filter(vptr);
548 	spin_unlock_irq(&vptr->lock);
549 	return 0;
550 }
551 
552 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
553 {
554 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
555 }
556 
557 /**
558  *	velocity_rx_reset	-	handle a receive reset
559  *	@vptr: velocity we are resetting
560  *
561  *	Reset the ownership and status for the receive ring side.
562  *	Hand all the receive queue to the NIC.
563  */
564 static void velocity_rx_reset(struct velocity_info *vptr)
565 {
566 
567 	struct mac_regs __iomem *regs = vptr->mac_regs;
568 	int i;
569 
570 	velocity_init_rx_ring_indexes(vptr);
571 
572 	/*
573 	 *	Init state, all RD entries belong to the NIC
574 	 */
575 	for (i = 0; i < vptr->options.numrx; ++i)
576 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
577 
578 	writew(vptr->options.numrx, &regs->RBRDU);
579 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
580 	writew(0, &regs->RDIdx);
581 	writew(vptr->options.numrx - 1, &regs->RDCSize);
582 }
583 
584 /**
585  *	velocity_get_opt_media_mode	-	get media selection
586  *	@vptr: velocity adapter
587  *
588  *	Get the media mode stored in EEPROM or module options and load
589  *	mii_status accordingly. The requested link state information
590  *	is also returned.
591  */
592 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
593 {
594 	u32 status = 0;
595 
596 	switch (vptr->options.spd_dpx) {
597 	case SPD_DPX_AUTO:
598 		status = VELOCITY_AUTONEG_ENABLE;
599 		break;
600 	case SPD_DPX_100_FULL:
601 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
602 		break;
603 	case SPD_DPX_10_FULL:
604 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
605 		break;
606 	case SPD_DPX_100_HALF:
607 		status = VELOCITY_SPEED_100;
608 		break;
609 	case SPD_DPX_10_HALF:
610 		status = VELOCITY_SPEED_10;
611 		break;
612 	case SPD_DPX_1000_FULL:
613 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
614 		break;
615 	}
616 	vptr->mii_status = status;
617 	return status;
618 }
619 
620 /**
621  *	safe_disable_mii_autopoll	-	autopoll off
622  *	@regs: velocity registers
623  *
624  *	Turn off the autopoll and wait for it to disable on the chip
625  */
626 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
627 {
628 	u16 ww;
629 
630 	/*  turn off MAUTO */
631 	writeb(0, &regs->MIICR);
632 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
633 		udelay(1);
634 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
635 			break;
636 	}
637 }
638 
639 /**
640  *	enable_mii_autopoll	-	turn on autopolling
641  *	@regs: velocity registers
642  *
643  *	Enable the MII link status autopoll feature on the Velocity
644  *	hardware. Wait for it to enable.
645  */
646 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
647 {
648 	int ii;
649 
650 	writeb(0, &(regs->MIICR));
651 	writeb(MIIADR_SWMPL, &regs->MIIADR);
652 
653 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
654 		udelay(1);
655 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
656 			break;
657 	}
658 
659 	writeb(MIICR_MAUTO, &regs->MIICR);
660 
661 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
662 		udelay(1);
663 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
664 			break;
665 	}
666 
667 }
668 
669 /**
670  *	velocity_mii_read	-	read MII data
671  *	@regs: velocity registers
672  *	@index: MII register index
673  *	@data: buffer for received data
674  *
675  *	Perform a single read of an MII 16bit register. Returns zero
676  *	on success or -ETIMEDOUT if the PHY did not respond.
677  */
678 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
679 {
680 	u16 ww;
681 
682 	/*
683 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
684 	 */
685 	safe_disable_mii_autopoll(regs);
686 
687 	writeb(index, &regs->MIIADR);
688 
689 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
690 
691 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
692 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
693 			break;
694 	}
695 
696 	*data = readw(&regs->MIIDATA);
697 
698 	enable_mii_autopoll(regs);
699 	if (ww == W_MAX_TIMEOUT)
700 		return -ETIMEDOUT;
701 	return 0;
702 }
703 
704 /**
705  *	mii_check_media_mode	-	check media state
706  *	@regs: velocity registers
707  *
708  *	Check the current MII status and determine the link status
709  *	accordingly
710  */
711 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
712 {
713 	u32 status = 0;
714 	u16 ANAR;
715 
716 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
717 		status |= VELOCITY_LINK_FAIL;
718 
719 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
720 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
721 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
722 		status |= (VELOCITY_SPEED_1000);
723 	else {
724 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
725 		if (ANAR & ADVERTISE_100FULL)
726 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
727 		else if (ANAR & ADVERTISE_100HALF)
728 			status |= VELOCITY_SPEED_100;
729 		else if (ANAR & ADVERTISE_10FULL)
730 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
731 		else
732 			status |= (VELOCITY_SPEED_10);
733 	}
734 
735 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
736 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
737 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
738 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
739 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
740 				status |= VELOCITY_AUTONEG_ENABLE;
741 		}
742 	}
743 
744 	return status;
745 }
746 
747 /**
748  *	velocity_mii_write	-	write MII data
749  *	@regs: velocity registers
750  *	@index: MII register index
751  *	@data: 16bit data for the MII register
752  *
753  *	Perform a single write to an MII 16bit register. Returns zero
754  *	on success or -ETIMEDOUT if the PHY did not respond.
755  */
756 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
757 {
758 	u16 ww;
759 
760 	/*
761 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
762 	 */
763 	safe_disable_mii_autopoll(regs);
764 
765 	/* MII reg offset */
766 	writeb(mii_addr, &regs->MIIADR);
767 	/* set MII data */
768 	writew(data, &regs->MIIDATA);
769 
770 	/* turn on MIICR_WCMD */
771 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
772 
773 	/* W_MAX_TIMEOUT is the timeout period */
774 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
775 		udelay(5);
776 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
777 			break;
778 	}
779 	enable_mii_autopoll(regs);
780 
781 	if (ww == W_MAX_TIMEOUT)
782 		return -ETIMEDOUT;
783 	return 0;
784 }
785 
786 /**
787  *	set_mii_flow_control	-	flow control setup
788  *	@vptr: velocity interface
789  *
790  *	Set up the flow control on this interface according to
791  *	the supplied user/eeprom options.
792  */
793 static void set_mii_flow_control(struct velocity_info *vptr)
794 {
795 	/*Enable or Disable PAUSE in ANAR */
796 	switch (vptr->options.flow_cntl) {
797 	case FLOW_CNTL_TX:
798 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
799 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
800 		break;
801 
802 	case FLOW_CNTL_RX:
803 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
804 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
805 		break;
806 
807 	case FLOW_CNTL_TX_RX:
808 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 		break;
811 
812 	case FLOW_CNTL_DISABLE:
813 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
814 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
815 		break;
816 	default:
817 		break;
818 	}
819 }
820 
821 /**
822  *	mii_set_auto_on		-	autonegotiate on
823  *	@vptr: velocity
824  *
825  *	Enable autonegotation on this interface
826  */
827 static void mii_set_auto_on(struct velocity_info *vptr)
828 {
829 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
830 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
831 	else
832 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
833 }
834 
835 static u32 check_connection_type(struct mac_regs __iomem *regs)
836 {
837 	u32 status = 0;
838 	u8 PHYSR0;
839 	u16 ANAR;
840 	PHYSR0 = readb(&regs->PHYSR0);
841 
842 	/*
843 	   if (!(PHYSR0 & PHYSR0_LINKGD))
844 	   status|=VELOCITY_LINK_FAIL;
845 	 */
846 
847 	if (PHYSR0 & PHYSR0_FDPX)
848 		status |= VELOCITY_DUPLEX_FULL;
849 
850 	if (PHYSR0 & PHYSR0_SPDG)
851 		status |= VELOCITY_SPEED_1000;
852 	else if (PHYSR0 & PHYSR0_SPD10)
853 		status |= VELOCITY_SPEED_10;
854 	else
855 		status |= VELOCITY_SPEED_100;
856 
857 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
858 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
859 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
860 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
861 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
862 				status |= VELOCITY_AUTONEG_ENABLE;
863 		}
864 	}
865 
866 	return status;
867 }
868 
869 /**
870  *	velocity_set_media_mode		-	set media mode
871  *	@mii_status: old MII link state
872  *
873  *	Check the media link state and configure the flow control
874  *	PHY and also velocity hardware setup accordingly. In particular
875  *	we need to set up CD polling and frame bursting.
876  */
877 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
878 {
879 	u32 curr_status;
880 	struct mac_regs __iomem *regs = vptr->mac_regs;
881 
882 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
883 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
884 
885 	/* Set mii link status */
886 	set_mii_flow_control(vptr);
887 
888 	/*
889 	   Check if new status is consistent with current status
890 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
891 	       (mii_status==curr_status)) {
892 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
893 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
894 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
895 	   return 0;
896 	   }
897 	 */
898 
899 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
900 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
901 
902 	/*
903 	 *	If connection type is AUTO
904 	 */
905 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
906 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
907 		/* clear force MAC mode bit */
908 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
909 		/* set duplex mode of MAC according to duplex mode of MII */
910 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
911 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
912 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
913 
914 		/* enable AUTO-NEGO mode */
915 		mii_set_auto_on(vptr);
916 	} else {
917 		u16 CTRL1000;
918 		u16 ANAR;
919 		u8 CHIPGCR;
920 
921 		/*
922 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
923 		 *    and enable it in fullduplex mode
924 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
925 		 * 3. only enable CD heart beat counter in 10HD mode
926 		 */
927 
928 		/* set force MAC mode bit */
929 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
930 
931 		CHIPGCR = readb(&regs->CHIPGCR);
932 
933 		if (mii_status & VELOCITY_SPEED_1000)
934 			CHIPGCR |= CHIPGCR_FCGMII;
935 		else
936 			CHIPGCR &= ~CHIPGCR_FCGMII;
937 
938 		if (mii_status & VELOCITY_DUPLEX_FULL) {
939 			CHIPGCR |= CHIPGCR_FCFDX;
940 			writeb(CHIPGCR, &regs->CHIPGCR);
941 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
942 			if (vptr->rev_id < REV_ID_VT3216_A0)
943 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
944 		} else {
945 			CHIPGCR &= ~CHIPGCR_FCFDX;
946 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
947 			writeb(CHIPGCR, &regs->CHIPGCR);
948 			if (vptr->rev_id < REV_ID_VT3216_A0)
949 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
950 		}
951 
952 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
953 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
954 		if ((mii_status & VELOCITY_SPEED_1000) &&
955 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
956 			CTRL1000 |= ADVERTISE_1000FULL;
957 		}
958 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
959 
960 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
961 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
962 		else
963 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
964 
965 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
966 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
967 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
968 		if (mii_status & VELOCITY_SPEED_100) {
969 			if (mii_status & VELOCITY_DUPLEX_FULL)
970 				ANAR |= ADVERTISE_100FULL;
971 			else
972 				ANAR |= ADVERTISE_100HALF;
973 		} else if (mii_status & VELOCITY_SPEED_10) {
974 			if (mii_status & VELOCITY_DUPLEX_FULL)
975 				ANAR |= ADVERTISE_10FULL;
976 			else
977 				ANAR |= ADVERTISE_10HALF;
978 		}
979 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
980 		/* enable AUTO-NEGO mode */
981 		mii_set_auto_on(vptr);
982 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
983 	}
984 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
985 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
986 	return VELOCITY_LINK_CHANGE;
987 }
988 
989 /**
990  *	velocity_print_link_status	-	link status reporting
991  *	@vptr: velocity to report on
992  *
993  *	Turn the link status of the velocity card into a kernel log
994  *	description of the new link state, detailing speed and duplex
995  *	status
996  */
997 static void velocity_print_link_status(struct velocity_info *vptr)
998 {
999 
1000 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1001 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1002 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1003 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1004 
1005 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1006 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1007 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1008 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1009 		else
1010 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1011 
1012 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1013 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1014 		else
1015 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1016 	} else {
1017 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1018 		switch (vptr->options.spd_dpx) {
1019 		case SPD_DPX_1000_FULL:
1020 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1021 			break;
1022 		case SPD_DPX_100_HALF:
1023 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1024 			break;
1025 		case SPD_DPX_100_FULL:
1026 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1027 			break;
1028 		case SPD_DPX_10_HALF:
1029 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1030 			break;
1031 		case SPD_DPX_10_FULL:
1032 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1033 			break;
1034 		default:
1035 			break;
1036 		}
1037 	}
1038 }
1039 
1040 /**
1041  *	enable_flow_control_ability	-	flow control
1042  *	@vptr: veloity to configure
1043  *
1044  *	Set up flow control according to the flow control options
1045  *	determined by the eeprom/configuration.
1046  */
1047 static void enable_flow_control_ability(struct velocity_info *vptr)
1048 {
1049 
1050 	struct mac_regs __iomem *regs = vptr->mac_regs;
1051 
1052 	switch (vptr->options.flow_cntl) {
1053 
1054 	case FLOW_CNTL_DEFAULT:
1055 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1056 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1057 		else
1058 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1059 
1060 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1061 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1062 		else
1063 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1064 		break;
1065 
1066 	case FLOW_CNTL_TX:
1067 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1068 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1069 		break;
1070 
1071 	case FLOW_CNTL_RX:
1072 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1073 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1074 		break;
1075 
1076 	case FLOW_CNTL_TX_RX:
1077 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1078 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1079 		break;
1080 
1081 	case FLOW_CNTL_DISABLE:
1082 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1083 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1084 		break;
1085 
1086 	default:
1087 		break;
1088 	}
1089 
1090 }
1091 
1092 /**
1093  *	velocity_soft_reset	-	soft reset
1094  *	@vptr: velocity to reset
1095  *
1096  *	Kick off a soft reset of the velocity adapter and then poll
1097  *	until the reset sequence has completed before returning.
1098  */
1099 static int velocity_soft_reset(struct velocity_info *vptr)
1100 {
1101 	struct mac_regs __iomem *regs = vptr->mac_regs;
1102 	int i = 0;
1103 
1104 	writel(CR0_SFRST, &regs->CR0Set);
1105 
1106 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1107 		udelay(5);
1108 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1109 			break;
1110 	}
1111 
1112 	if (i == W_MAX_TIMEOUT) {
1113 		writel(CR0_FORSRST, &regs->CR0Set);
1114 		/* FIXME: PCI POSTING */
1115 		/* delay 2ms */
1116 		mdelay(2);
1117 	}
1118 	return 0;
1119 }
1120 
1121 /**
1122  *	velocity_set_multi	-	filter list change callback
1123  *	@dev: network device
1124  *
1125  *	Called by the network layer when the filter lists need to change
1126  *	for a velocity adapter. Reload the CAMs with the new address
1127  *	filter ruleset.
1128  */
1129 static void velocity_set_multi(struct net_device *dev)
1130 {
1131 	struct velocity_info *vptr = netdev_priv(dev);
1132 	struct mac_regs __iomem *regs = vptr->mac_regs;
1133 	u8 rx_mode;
1134 	int i;
1135 	struct netdev_hw_addr *ha;
1136 
1137 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1138 		writel(0xffffffff, &regs->MARCAM[0]);
1139 		writel(0xffffffff, &regs->MARCAM[4]);
1140 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1141 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1142 		   (dev->flags & IFF_ALLMULTI)) {
1143 		writel(0xffffffff, &regs->MARCAM[0]);
1144 		writel(0xffffffff, &regs->MARCAM[4]);
1145 		rx_mode = (RCR_AM | RCR_AB);
1146 	} else {
1147 		int offset = MCAM_SIZE - vptr->multicast_limit;
1148 		mac_get_cam_mask(regs, vptr->mCAMmask);
1149 
1150 		i = 0;
1151 		netdev_for_each_mc_addr(ha, dev) {
1152 			mac_set_cam(regs, i + offset, ha->addr);
1153 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1154 			i++;
1155 		}
1156 
1157 		mac_set_cam_mask(regs, vptr->mCAMmask);
1158 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1159 	}
1160 	if (dev->mtu > 1500)
1161 		rx_mode |= RCR_AL;
1162 
1163 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1164 
1165 }
1166 
1167 /*
1168  * MII access , media link mode setting functions
1169  */
1170 
1171 /**
1172  *	mii_init	-	set up MII
1173  *	@vptr: velocity adapter
1174  *	@mii_status:  links tatus
1175  *
1176  *	Set up the PHY for the current link state.
1177  */
1178 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1179 {
1180 	u16 BMCR;
1181 
1182 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1183 	case PHYID_CICADA_CS8201:
1184 		/*
1185 		 *	Reset to hardware default
1186 		 */
1187 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1188 		/*
1189 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1190 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1191 		 *	legacy-forced issue.
1192 		 */
1193 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1195 		else
1196 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1197 		/*
1198 		 *	Turn on Link/Activity LED enable bit for CIS8201
1199 		 */
1200 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1201 		break;
1202 	case PHYID_VT3216_32BIT:
1203 	case PHYID_VT3216_64BIT:
1204 		/*
1205 		 *	Reset to hardware default
1206 		 */
1207 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1208 		/*
1209 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1210 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1211 		 *	legacy-forced issue
1212 		 */
1213 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1214 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 		else
1216 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1217 		break;
1218 
1219 	case PHYID_MARVELL_1000:
1220 	case PHYID_MARVELL_1000S:
1221 		/*
1222 		 *	Assert CRS on Transmit
1223 		 */
1224 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1225 		/*
1226 		 *	Reset to hardware default
1227 		 */
1228 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1229 		break;
1230 	default:
1231 		;
1232 	}
1233 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1234 	if (BMCR & BMCR_ISOLATE) {
1235 		BMCR &= ~BMCR_ISOLATE;
1236 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1237 	}
1238 }
1239 
1240 /**
1241  * setup_queue_timers	-	Setup interrupt timers
1242  *
1243  * Setup interrupt frequency during suppression (timeout if the frame
1244  * count isn't filled).
1245  */
1246 static void setup_queue_timers(struct velocity_info *vptr)
1247 {
1248 	/* Only for newer revisions */
1249 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1250 		u8 txqueue_timer = 0;
1251 		u8 rxqueue_timer = 0;
1252 
1253 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1254 				VELOCITY_SPEED_100)) {
1255 			txqueue_timer = vptr->options.txqueue_timer;
1256 			rxqueue_timer = vptr->options.rxqueue_timer;
1257 		}
1258 
1259 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1260 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1261 	}
1262 }
1263 
1264 /**
1265  * setup_adaptive_interrupts  -  Setup interrupt suppression
1266  *
1267  * @vptr velocity adapter
1268  *
1269  * The velocity is able to suppress interrupt during high interrupt load.
1270  * This function turns on that feature.
1271  */
1272 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1273 {
1274 	struct mac_regs __iomem *regs = vptr->mac_regs;
1275 	u16 tx_intsup = vptr->options.tx_intsup;
1276 	u16 rx_intsup = vptr->options.rx_intsup;
1277 
1278 	/* Setup default interrupt mask (will be changed below) */
1279 	vptr->int_mask = INT_MASK_DEF;
1280 
1281 	/* Set Tx Interrupt Suppression Threshold */
1282 	writeb(CAMCR_PS0, &regs->CAMCR);
1283 	if (tx_intsup != 0) {
1284 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1285 				ISR_PTX2I | ISR_PTX3I);
1286 		writew(tx_intsup, &regs->ISRCTL);
1287 	} else
1288 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1289 
1290 	/* Set Rx Interrupt Suppression Threshold */
1291 	writeb(CAMCR_PS1, &regs->CAMCR);
1292 	if (rx_intsup != 0) {
1293 		vptr->int_mask &= ~ISR_PRXI;
1294 		writew(rx_intsup, &regs->ISRCTL);
1295 	} else
1296 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1297 
1298 	/* Select page to interrupt hold timer */
1299 	writeb(0, &regs->CAMCR);
1300 }
1301 
1302 /**
1303  *	velocity_init_registers	-	initialise MAC registers
1304  *	@vptr: velocity to init
1305  *	@type: type of initialisation (hot or cold)
1306  *
1307  *	Initialise the MAC on a reset or on first set up on the
1308  *	hardware.
1309  */
1310 static void velocity_init_registers(struct velocity_info *vptr,
1311 				    enum velocity_init_type type)
1312 {
1313 	struct mac_regs __iomem *regs = vptr->mac_regs;
1314 	int i, mii_status;
1315 
1316 	mac_wol_reset(regs);
1317 
1318 	switch (type) {
1319 	case VELOCITY_INIT_RESET:
1320 	case VELOCITY_INIT_WOL:
1321 
1322 		netif_stop_queue(vptr->dev);
1323 
1324 		/*
1325 		 *	Reset RX to prevent RX pointer not on the 4X location
1326 		 */
1327 		velocity_rx_reset(vptr);
1328 		mac_rx_queue_run(regs);
1329 		mac_rx_queue_wake(regs);
1330 
1331 		mii_status = velocity_get_opt_media_mode(vptr);
1332 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1333 			velocity_print_link_status(vptr);
1334 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1335 				netif_wake_queue(vptr->dev);
1336 		}
1337 
1338 		enable_flow_control_ability(vptr);
1339 
1340 		mac_clear_isr(regs);
1341 		writel(CR0_STOP, &regs->CR0Clr);
1342 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1343 							&regs->CR0Set);
1344 
1345 		break;
1346 
1347 	case VELOCITY_INIT_COLD:
1348 	default:
1349 		/*
1350 		 *	Do reset
1351 		 */
1352 		velocity_soft_reset(vptr);
1353 		mdelay(5);
1354 
1355 		mac_eeprom_reload(regs);
1356 		for (i = 0; i < 6; i++)
1357 			writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1358 
1359 		/*
1360 		 *	clear Pre_ACPI bit.
1361 		 */
1362 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1363 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1364 		mac_set_dma_length(regs, vptr->options.DMA_length);
1365 
1366 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1367 		/*
1368 		 *	Back off algorithm use original IEEE standard
1369 		 */
1370 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1371 
1372 		/*
1373 		 *	Init CAM filter
1374 		 */
1375 		velocity_init_cam_filter(vptr);
1376 
1377 		/*
1378 		 *	Set packet filter: Receive directed and broadcast address
1379 		 */
1380 		velocity_set_multi(vptr->dev);
1381 
1382 		/*
1383 		 *	Enable MII auto-polling
1384 		 */
1385 		enable_mii_autopoll(regs);
1386 
1387 		setup_adaptive_interrupts(vptr);
1388 
1389 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1390 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1391 		mac_rx_queue_run(regs);
1392 		mac_rx_queue_wake(regs);
1393 
1394 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1395 
1396 		for (i = 0; i < vptr->tx.numq; i++) {
1397 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1398 			mac_tx_queue_run(regs, i);
1399 		}
1400 
1401 		init_flow_control_register(vptr);
1402 
1403 		writel(CR0_STOP, &regs->CR0Clr);
1404 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1405 
1406 		mii_status = velocity_get_opt_media_mode(vptr);
1407 		netif_stop_queue(vptr->dev);
1408 
1409 		mii_init(vptr, mii_status);
1410 
1411 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1412 			velocity_print_link_status(vptr);
1413 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1414 				netif_wake_queue(vptr->dev);
1415 		}
1416 
1417 		enable_flow_control_ability(vptr);
1418 		mac_hw_mibs_init(regs);
1419 		mac_write_int_mask(vptr->int_mask, regs);
1420 		mac_clear_isr(regs);
1421 
1422 	}
1423 }
1424 
1425 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1426 {
1427 	struct mac_regs __iomem *regs = vptr->mac_regs;
1428 	int avail, dirty, unusable;
1429 
1430 	/*
1431 	 * RD number must be equal to 4X per hardware spec
1432 	 * (programming guide rev 1.20, p.13)
1433 	 */
1434 	if (vptr->rx.filled < 4)
1435 		return;
1436 
1437 	wmb();
1438 
1439 	unusable = vptr->rx.filled & 0x0003;
1440 	dirty = vptr->rx.dirty - unusable;
1441 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1442 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1443 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1444 	}
1445 
1446 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1447 	vptr->rx.filled = unusable;
1448 }
1449 
1450 /**
1451  *	velocity_init_dma_rings	-	set up DMA rings
1452  *	@vptr: Velocity to set up
1453  *
1454  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1455  *	to use.
1456  */
1457 static int velocity_init_dma_rings(struct velocity_info *vptr)
1458 {
1459 	struct velocity_opt *opt = &vptr->options;
1460 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1461 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1462 	struct pci_dev *pdev = vptr->pdev;
1463 	dma_addr_t pool_dma;
1464 	void *pool;
1465 	unsigned int i;
1466 
1467 	/*
1468 	 * Allocate all RD/TD rings a single pool.
1469 	 *
1470 	 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1471 	 * alignment
1472 	 */
1473 	pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1474 				    rx_ring_size, &pool_dma);
1475 	if (!pool) {
1476 		dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1477 			vptr->dev->name);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	vptr->rx.ring = pool;
1482 	vptr->rx.pool_dma = pool_dma;
1483 
1484 	pool += rx_ring_size;
1485 	pool_dma += rx_ring_size;
1486 
1487 	for (i = 0; i < vptr->tx.numq; i++) {
1488 		vptr->tx.rings[i] = pool;
1489 		vptr->tx.pool_dma[i] = pool_dma;
1490 		pool += tx_ring_size;
1491 		pool_dma += tx_ring_size;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1498 {
1499 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1500 }
1501 
1502 /**
1503  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1504  *	@vptr: velocity
1505  *	@idx: ring index
1506  *
1507  *	Allocate a new full sized buffer for the reception of a frame and
1508  *	map it into PCI space for the hardware to use. The hardware
1509  *	requires *64* byte alignment of the buffer which makes life
1510  *	less fun than would be ideal.
1511  */
1512 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1513 {
1514 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1515 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1516 
1517 	rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64);
1518 	if (rd_info->skb == NULL)
1519 		return -ENOMEM;
1520 
1521 	/*
1522 	 *	Do the gymnastics to get the buffer head for data at
1523 	 *	64byte alignment.
1524 	 */
1525 	skb_reserve(rd_info->skb,
1526 			64 - ((unsigned long) rd_info->skb->data & 63));
1527 	rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1528 					vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1529 
1530 	/*
1531 	 *	Fill in the descriptor to match
1532 	 */
1533 
1534 	*((u32 *) & (rd->rdesc0)) = 0;
1535 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1536 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1537 	rd->pa_high = 0;
1538 	return 0;
1539 }
1540 
1541 
1542 static int velocity_rx_refill(struct velocity_info *vptr)
1543 {
1544 	int dirty = vptr->rx.dirty, done = 0;
1545 
1546 	do {
1547 		struct rx_desc *rd = vptr->rx.ring + dirty;
1548 
1549 		/* Fine for an all zero Rx desc at init time as well */
1550 		if (rd->rdesc0.len & OWNED_BY_NIC)
1551 			break;
1552 
1553 		if (!vptr->rx.info[dirty].skb) {
1554 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1555 				break;
1556 		}
1557 		done++;
1558 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1559 	} while (dirty != vptr->rx.curr);
1560 
1561 	if (done) {
1562 		vptr->rx.dirty = dirty;
1563 		vptr->rx.filled += done;
1564 	}
1565 
1566 	return done;
1567 }
1568 
1569 /**
1570  *	velocity_free_rd_ring	-	free receive ring
1571  *	@vptr: velocity to clean up
1572  *
1573  *	Free the receive buffers for each ring slot and any
1574  *	attached socket buffers that need to go away.
1575  */
1576 static void velocity_free_rd_ring(struct velocity_info *vptr)
1577 {
1578 	int i;
1579 
1580 	if (vptr->rx.info == NULL)
1581 		return;
1582 
1583 	for (i = 0; i < vptr->options.numrx; i++) {
1584 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1585 		struct rx_desc *rd = vptr->rx.ring + i;
1586 
1587 		memset(rd, 0, sizeof(*rd));
1588 
1589 		if (!rd_info->skb)
1590 			continue;
1591 		pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1592 				 PCI_DMA_FROMDEVICE);
1593 		rd_info->skb_dma = 0;
1594 
1595 		dev_kfree_skb(rd_info->skb);
1596 		rd_info->skb = NULL;
1597 	}
1598 
1599 	kfree(vptr->rx.info);
1600 	vptr->rx.info = NULL;
1601 }
1602 
1603 /**
1604  *	velocity_init_rd_ring	-	set up receive ring
1605  *	@vptr: velocity to configure
1606  *
1607  *	Allocate and set up the receive buffers for each ring slot and
1608  *	assign them to the network adapter.
1609  */
1610 static int velocity_init_rd_ring(struct velocity_info *vptr)
1611 {
1612 	int ret = -ENOMEM;
1613 
1614 	vptr->rx.info = kcalloc(vptr->options.numrx,
1615 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1616 	if (!vptr->rx.info)
1617 		goto out;
1618 
1619 	velocity_init_rx_ring_indexes(vptr);
1620 
1621 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1622 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1623 			"%s: failed to allocate RX buffer.\n", vptr->dev->name);
1624 		velocity_free_rd_ring(vptr);
1625 		goto out;
1626 	}
1627 
1628 	ret = 0;
1629 out:
1630 	return ret;
1631 }
1632 
1633 /**
1634  *	velocity_init_td_ring	-	set up transmit ring
1635  *	@vptr:	velocity
1636  *
1637  *	Set up the transmit ring and chain the ring pointers together.
1638  *	Returns zero on success or a negative posix errno code for
1639  *	failure.
1640  */
1641 static int velocity_init_td_ring(struct velocity_info *vptr)
1642 {
1643 	int j;
1644 
1645 	/* Init the TD ring entries */
1646 	for (j = 0; j < vptr->tx.numq; j++) {
1647 
1648 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1649 					    sizeof(struct velocity_td_info),
1650 					    GFP_KERNEL);
1651 		if (!vptr->tx.infos[j])	{
1652 			while (--j >= 0)
1653 				kfree(vptr->tx.infos[j]);
1654 			return -ENOMEM;
1655 		}
1656 
1657 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1658 	}
1659 	return 0;
1660 }
1661 
1662 /**
1663  *	velocity_free_dma_rings	-	free PCI ring pointers
1664  *	@vptr: Velocity to free from
1665  *
1666  *	Clean up the PCI ring buffers allocated to this velocity.
1667  */
1668 static void velocity_free_dma_rings(struct velocity_info *vptr)
1669 {
1670 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1671 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1672 
1673 	pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1674 }
1675 
1676 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1677 {
1678 	int ret;
1679 
1680 	velocity_set_rxbufsize(vptr, mtu);
1681 
1682 	ret = velocity_init_dma_rings(vptr);
1683 	if (ret < 0)
1684 		goto out;
1685 
1686 	ret = velocity_init_rd_ring(vptr);
1687 	if (ret < 0)
1688 		goto err_free_dma_rings_0;
1689 
1690 	ret = velocity_init_td_ring(vptr);
1691 	if (ret < 0)
1692 		goto err_free_rd_ring_1;
1693 out:
1694 	return ret;
1695 
1696 err_free_rd_ring_1:
1697 	velocity_free_rd_ring(vptr);
1698 err_free_dma_rings_0:
1699 	velocity_free_dma_rings(vptr);
1700 	goto out;
1701 }
1702 
1703 /**
1704  *	velocity_free_tx_buf	-	free transmit buffer
1705  *	@vptr: velocity
1706  *	@tdinfo: buffer
1707  *
1708  *	Release an transmit buffer. If the buffer was preallocated then
1709  *	recycle it, if not then unmap the buffer.
1710  */
1711 static void velocity_free_tx_buf(struct velocity_info *vptr,
1712 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1713 {
1714 	struct sk_buff *skb = tdinfo->skb;
1715 
1716 	/*
1717 	 *	Don't unmap the pre-allocated tx_bufs
1718 	 */
1719 	if (tdinfo->skb_dma) {
1720 		int i;
1721 
1722 		for (i = 0; i < tdinfo->nskb_dma; i++) {
1723 			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1724 
1725 			/* For scatter-gather */
1726 			if (skb_shinfo(skb)->nr_frags > 0)
1727 				pktlen = max_t(size_t, pktlen,
1728 						td->td_buf[i].size & ~TD_QUEUE);
1729 
1730 			pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1731 					le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1732 		}
1733 	}
1734 	dev_kfree_skb_irq(skb);
1735 	tdinfo->skb = NULL;
1736 }
1737 
1738 /*
1739  *	FIXME: could we merge this with velocity_free_tx_buf ?
1740  */
1741 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1742 							 int q, int n)
1743 {
1744 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1745 	int i;
1746 
1747 	if (td_info == NULL)
1748 		return;
1749 
1750 	if (td_info->skb) {
1751 		for (i = 0; i < td_info->nskb_dma; i++) {
1752 			if (td_info->skb_dma[i]) {
1753 				pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1754 					td_info->skb->len, PCI_DMA_TODEVICE);
1755 				td_info->skb_dma[i] = 0;
1756 			}
1757 		}
1758 		dev_kfree_skb(td_info->skb);
1759 		td_info->skb = NULL;
1760 	}
1761 }
1762 
1763 /**
1764  *	velocity_free_td_ring	-	free td ring
1765  *	@vptr: velocity
1766  *
1767  *	Free up the transmit ring for this particular velocity adapter.
1768  *	We free the ring contents but not the ring itself.
1769  */
1770 static void velocity_free_td_ring(struct velocity_info *vptr)
1771 {
1772 	int i, j;
1773 
1774 	for (j = 0; j < vptr->tx.numq; j++) {
1775 		if (vptr->tx.infos[j] == NULL)
1776 			continue;
1777 		for (i = 0; i < vptr->options.numtx; i++)
1778 			velocity_free_td_ring_entry(vptr, j, i);
1779 
1780 		kfree(vptr->tx.infos[j]);
1781 		vptr->tx.infos[j] = NULL;
1782 	}
1783 }
1784 
1785 static void velocity_free_rings(struct velocity_info *vptr)
1786 {
1787 	velocity_free_td_ring(vptr);
1788 	velocity_free_rd_ring(vptr);
1789 	velocity_free_dma_rings(vptr);
1790 }
1791 
1792 /**
1793  *	velocity_error	-	handle error from controller
1794  *	@vptr: velocity
1795  *	@status: card status
1796  *
1797  *	Process an error report from the hardware and attempt to recover
1798  *	the card itself. At the moment we cannot recover from some
1799  *	theoretically impossible errors but this could be fixed using
1800  *	the pci_device_failed logic to bounce the hardware
1801  *
1802  */
1803 static void velocity_error(struct velocity_info *vptr, int status)
1804 {
1805 
1806 	if (status & ISR_TXSTLI) {
1807 		struct mac_regs __iomem *regs = vptr->mac_regs;
1808 
1809 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1810 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1811 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1812 		netif_stop_queue(vptr->dev);
1813 
1814 		/* FIXME: port over the pci_device_failed code and use it
1815 		   here */
1816 	}
1817 
1818 	if (status & ISR_SRCI) {
1819 		struct mac_regs __iomem *regs = vptr->mac_regs;
1820 		int linked;
1821 
1822 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1823 			vptr->mii_status = check_connection_type(regs);
1824 
1825 			/*
1826 			 *	If it is a 3119, disable frame bursting in
1827 			 *	halfduplex mode and enable it in fullduplex
1828 			 *	 mode
1829 			 */
1830 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1831 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1832 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1833 				else
1834 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1835 			}
1836 			/*
1837 			 *	Only enable CD heart beat counter in 10HD mode
1838 			 */
1839 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1840 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1841 			else
1842 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1843 
1844 			setup_queue_timers(vptr);
1845 		}
1846 		/*
1847 		 *	Get link status from PHYSR0
1848 		 */
1849 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1850 
1851 		if (linked) {
1852 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1853 			netif_carrier_on(vptr->dev);
1854 		} else {
1855 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1856 			netif_carrier_off(vptr->dev);
1857 		}
1858 
1859 		velocity_print_link_status(vptr);
1860 		enable_flow_control_ability(vptr);
1861 
1862 		/*
1863 		 *	Re-enable auto-polling because SRCI will disable
1864 		 *	auto-polling
1865 		 */
1866 
1867 		enable_mii_autopoll(regs);
1868 
1869 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1870 			netif_stop_queue(vptr->dev);
1871 		else
1872 			netif_wake_queue(vptr->dev);
1873 
1874 	}
1875 	if (status & ISR_MIBFI)
1876 		velocity_update_hw_mibs(vptr);
1877 	if (status & ISR_LSTEI)
1878 		mac_rx_queue_wake(vptr->mac_regs);
1879 }
1880 
1881 /**
1882  *	tx_srv		-	transmit interrupt service
1883  *	@vptr; Velocity
1884  *
1885  *	Scan the queues looking for transmitted packets that
1886  *	we can complete and clean up. Update any statistics as
1887  *	necessary/
1888  */
1889 static int velocity_tx_srv(struct velocity_info *vptr)
1890 {
1891 	struct tx_desc *td;
1892 	int qnum;
1893 	int full = 0;
1894 	int idx;
1895 	int works = 0;
1896 	struct velocity_td_info *tdinfo;
1897 	struct net_device_stats *stats = &vptr->dev->stats;
1898 
1899 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1900 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1901 			idx = (idx + 1) % vptr->options.numtx) {
1902 
1903 			/*
1904 			 *	Get Tx Descriptor
1905 			 */
1906 			td = &(vptr->tx.rings[qnum][idx]);
1907 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1908 
1909 			if (td->tdesc0.len & OWNED_BY_NIC)
1910 				break;
1911 
1912 			if ((works++ > 15))
1913 				break;
1914 
1915 			if (td->tdesc0.TSR & TSR0_TERR) {
1916 				stats->tx_errors++;
1917 				stats->tx_dropped++;
1918 				if (td->tdesc0.TSR & TSR0_CDH)
1919 					stats->tx_heartbeat_errors++;
1920 				if (td->tdesc0.TSR & TSR0_CRS)
1921 					stats->tx_carrier_errors++;
1922 				if (td->tdesc0.TSR & TSR0_ABT)
1923 					stats->tx_aborted_errors++;
1924 				if (td->tdesc0.TSR & TSR0_OWC)
1925 					stats->tx_window_errors++;
1926 			} else {
1927 				stats->tx_packets++;
1928 				stats->tx_bytes += tdinfo->skb->len;
1929 			}
1930 			velocity_free_tx_buf(vptr, tdinfo, td);
1931 			vptr->tx.used[qnum]--;
1932 		}
1933 		vptr->tx.tail[qnum] = idx;
1934 
1935 		if (AVAIL_TD(vptr, qnum) < 1)
1936 			full = 1;
1937 	}
1938 	/*
1939 	 *	Look to see if we should kick the transmit network
1940 	 *	layer for more work.
1941 	 */
1942 	if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1943 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1944 		netif_wake_queue(vptr->dev);
1945 	}
1946 	return works;
1947 }
1948 
1949 /**
1950  *	velocity_rx_csum	-	checksum process
1951  *	@rd: receive packet descriptor
1952  *	@skb: network layer packet buffer
1953  *
1954  *	Process the status bits for the received packet and determine
1955  *	if the checksum was computed and verified by the hardware
1956  */
1957 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1958 {
1959 	skb_checksum_none_assert(skb);
1960 
1961 	if (rd->rdesc1.CSM & CSM_IPKT) {
1962 		if (rd->rdesc1.CSM & CSM_IPOK) {
1963 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1964 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1965 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1966 					return;
1967 			}
1968 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1969 		}
1970 	}
1971 }
1972 
1973 /**
1974  *	velocity_rx_copy	-	in place Rx copy for small packets
1975  *	@rx_skb: network layer packet buffer candidate
1976  *	@pkt_size: received data size
1977  *	@rd: receive packet descriptor
1978  *	@dev: network device
1979  *
1980  *	Replace the current skb that is scheduled for Rx processing by a
1981  *	shorter, immediately allocated skb, if the received packet is small
1982  *	enough. This function returns a negative value if the received
1983  *	packet is too big or if memory is exhausted.
1984  */
1985 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1986 			    struct velocity_info *vptr)
1987 {
1988 	int ret = -1;
1989 	if (pkt_size < rx_copybreak) {
1990 		struct sk_buff *new_skb;
1991 
1992 		new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1993 		if (new_skb) {
1994 			new_skb->ip_summed = rx_skb[0]->ip_summed;
1995 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1996 			*rx_skb = new_skb;
1997 			ret = 0;
1998 		}
1999 
2000 	}
2001 	return ret;
2002 }
2003 
2004 /**
2005  *	velocity_iph_realign	-	IP header alignment
2006  *	@vptr: velocity we are handling
2007  *	@skb: network layer packet buffer
2008  *	@pkt_size: received data size
2009  *
2010  *	Align IP header on a 2 bytes boundary. This behavior can be
2011  *	configured by the user.
2012  */
2013 static inline void velocity_iph_realign(struct velocity_info *vptr,
2014 					struct sk_buff *skb, int pkt_size)
2015 {
2016 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2017 		memmove(skb->data + 2, skb->data, pkt_size);
2018 		skb_reserve(skb, 2);
2019 	}
2020 }
2021 
2022 /**
2023  *	velocity_receive_frame	-	received packet processor
2024  *	@vptr: velocity we are handling
2025  *	@idx: ring index
2026  *
2027  *	A packet has arrived. We process the packet and if appropriate
2028  *	pass the frame up the network stack
2029  */
2030 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2031 {
2032 	void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2033 	struct net_device_stats *stats = &vptr->dev->stats;
2034 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2035 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2036 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2037 	struct sk_buff *skb;
2038 
2039 	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2040 		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2041 		stats->rx_length_errors++;
2042 		return -EINVAL;
2043 	}
2044 
2045 	if (rd->rdesc0.RSR & RSR_MAR)
2046 		stats->multicast++;
2047 
2048 	skb = rd_info->skb;
2049 
2050 	pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2051 				    vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2052 
2053 	/*
2054 	 *	Drop frame not meeting IEEE 802.3
2055 	 */
2056 
2057 	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2058 		if (rd->rdesc0.RSR & RSR_RL) {
2059 			stats->rx_length_errors++;
2060 			return -EINVAL;
2061 		}
2062 	}
2063 
2064 	pci_action = pci_dma_sync_single_for_device;
2065 
2066 	velocity_rx_csum(rd, skb);
2067 
2068 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2069 		velocity_iph_realign(vptr, skb, pkt_len);
2070 		pci_action = pci_unmap_single;
2071 		rd_info->skb = NULL;
2072 	}
2073 
2074 	pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2075 		   PCI_DMA_FROMDEVICE);
2076 
2077 	skb_put(skb, pkt_len - 4);
2078 	skb->protocol = eth_type_trans(skb, vptr->dev);
2079 
2080 	if (rd->rdesc0.RSR & RSR_DETAG) {
2081 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2082 
2083 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2084 	}
2085 	netif_rx(skb);
2086 
2087 	stats->rx_bytes += pkt_len;
2088 	stats->rx_packets++;
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  *	velocity_rx_srv		-	service RX interrupt
2095  *	@vptr: velocity
2096  *
2097  *	Walk the receive ring of the velocity adapter and remove
2098  *	any received packets from the receive queue. Hand the ring
2099  *	slots back to the adapter for reuse.
2100  */
2101 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2102 {
2103 	struct net_device_stats *stats = &vptr->dev->stats;
2104 	int rd_curr = vptr->rx.curr;
2105 	int works = 0;
2106 
2107 	while (works < budget_left) {
2108 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2109 
2110 		if (!vptr->rx.info[rd_curr].skb)
2111 			break;
2112 
2113 		if (rd->rdesc0.len & OWNED_BY_NIC)
2114 			break;
2115 
2116 		rmb();
2117 
2118 		/*
2119 		 *	Don't drop CE or RL error frame although RXOK is off
2120 		 */
2121 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2122 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2123 				stats->rx_dropped++;
2124 		} else {
2125 			if (rd->rdesc0.RSR & RSR_CRC)
2126 				stats->rx_crc_errors++;
2127 			if (rd->rdesc0.RSR & RSR_FAE)
2128 				stats->rx_frame_errors++;
2129 
2130 			stats->rx_dropped++;
2131 		}
2132 
2133 		rd->size |= RX_INTEN;
2134 
2135 		rd_curr++;
2136 		if (rd_curr >= vptr->options.numrx)
2137 			rd_curr = 0;
2138 		works++;
2139 	}
2140 
2141 	vptr->rx.curr = rd_curr;
2142 
2143 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2144 		velocity_give_many_rx_descs(vptr);
2145 
2146 	VAR_USED(stats);
2147 	return works;
2148 }
2149 
2150 static int velocity_poll(struct napi_struct *napi, int budget)
2151 {
2152 	struct velocity_info *vptr = container_of(napi,
2153 			struct velocity_info, napi);
2154 	unsigned int rx_done;
2155 	unsigned long flags;
2156 
2157 	spin_lock_irqsave(&vptr->lock, flags);
2158 	/*
2159 	 * Do rx and tx twice for performance (taken from the VIA
2160 	 * out-of-tree driver).
2161 	 */
2162 	rx_done = velocity_rx_srv(vptr, budget / 2);
2163 	velocity_tx_srv(vptr);
2164 	rx_done += velocity_rx_srv(vptr, budget - rx_done);
2165 	velocity_tx_srv(vptr);
2166 
2167 	/* If budget not fully consumed, exit the polling mode */
2168 	if (rx_done < budget) {
2169 		napi_complete(napi);
2170 		mac_enable_int(vptr->mac_regs);
2171 	}
2172 	spin_unlock_irqrestore(&vptr->lock, flags);
2173 
2174 	return rx_done;
2175 }
2176 
2177 /**
2178  *	velocity_intr		-	interrupt callback
2179  *	@irq: interrupt number
2180  *	@dev_instance: interrupting device
2181  *
2182  *	Called whenever an interrupt is generated by the velocity
2183  *	adapter IRQ line. We may not be the source of the interrupt
2184  *	and need to identify initially if we are, and if not exit as
2185  *	efficiently as possible.
2186  */
2187 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2188 {
2189 	struct net_device *dev = dev_instance;
2190 	struct velocity_info *vptr = netdev_priv(dev);
2191 	u32 isr_status;
2192 
2193 	spin_lock(&vptr->lock);
2194 	isr_status = mac_read_isr(vptr->mac_regs);
2195 
2196 	/* Not us ? */
2197 	if (isr_status == 0) {
2198 		spin_unlock(&vptr->lock);
2199 		return IRQ_NONE;
2200 	}
2201 
2202 	/* Ack the interrupt */
2203 	mac_write_isr(vptr->mac_regs, isr_status);
2204 
2205 	if (likely(napi_schedule_prep(&vptr->napi))) {
2206 		mac_disable_int(vptr->mac_regs);
2207 		__napi_schedule(&vptr->napi);
2208 	}
2209 
2210 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2211 		velocity_error(vptr, isr_status);
2212 
2213 	spin_unlock(&vptr->lock);
2214 
2215 	return IRQ_HANDLED;
2216 }
2217 
2218 /**
2219  *	velocity_open		-	interface activation callback
2220  *	@dev: network layer device to open
2221  *
2222  *	Called when the network layer brings the interface up. Returns
2223  *	a negative posix error code on failure, or zero on success.
2224  *
2225  *	All the ring allocation and set up is done on open for this
2226  *	adapter to minimise memory usage when inactive
2227  */
2228 static int velocity_open(struct net_device *dev)
2229 {
2230 	struct velocity_info *vptr = netdev_priv(dev);
2231 	int ret;
2232 
2233 	ret = velocity_init_rings(vptr, dev->mtu);
2234 	if (ret < 0)
2235 		goto out;
2236 
2237 	/* Ensure chip is running */
2238 	pci_set_power_state(vptr->pdev, PCI_D0);
2239 
2240 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2241 
2242 	ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2243 			  dev->name, dev);
2244 	if (ret < 0) {
2245 		/* Power down the chip */
2246 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2247 		velocity_free_rings(vptr);
2248 		goto out;
2249 	}
2250 
2251 	velocity_give_many_rx_descs(vptr);
2252 
2253 	mac_enable_int(vptr->mac_regs);
2254 	netif_start_queue(dev);
2255 	napi_enable(&vptr->napi);
2256 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2257 out:
2258 	return ret;
2259 }
2260 
2261 /**
2262  *	velocity_shutdown	-	shut down the chip
2263  *	@vptr: velocity to deactivate
2264  *
2265  *	Shuts down the internal operations of the velocity and
2266  *	disables interrupts, autopolling, transmit and receive
2267  */
2268 static void velocity_shutdown(struct velocity_info *vptr)
2269 {
2270 	struct mac_regs __iomem *regs = vptr->mac_regs;
2271 	mac_disable_int(regs);
2272 	writel(CR0_STOP, &regs->CR0Set);
2273 	writew(0xFFFF, &regs->TDCSRClr);
2274 	writeb(0xFF, &regs->RDCSRClr);
2275 	safe_disable_mii_autopoll(regs);
2276 	mac_clear_isr(regs);
2277 }
2278 
2279 /**
2280  *	velocity_change_mtu	-	MTU change callback
2281  *	@dev: network device
2282  *	@new_mtu: desired MTU
2283  *
2284  *	Handle requests from the networking layer for MTU change on
2285  *	this interface. It gets called on a change by the network layer.
2286  *	Return zero for success or negative posix error code.
2287  */
2288 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2289 {
2290 	struct velocity_info *vptr = netdev_priv(dev);
2291 	int ret = 0;
2292 
2293 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2294 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2295 				vptr->dev->name);
2296 		ret = -EINVAL;
2297 		goto out_0;
2298 	}
2299 
2300 	if (!netif_running(dev)) {
2301 		dev->mtu = new_mtu;
2302 		goto out_0;
2303 	}
2304 
2305 	if (dev->mtu != new_mtu) {
2306 		struct velocity_info *tmp_vptr;
2307 		unsigned long flags;
2308 		struct rx_info rx;
2309 		struct tx_info tx;
2310 
2311 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2312 		if (!tmp_vptr) {
2313 			ret = -ENOMEM;
2314 			goto out_0;
2315 		}
2316 
2317 		tmp_vptr->dev = dev;
2318 		tmp_vptr->pdev = vptr->pdev;
2319 		tmp_vptr->options = vptr->options;
2320 		tmp_vptr->tx.numq = vptr->tx.numq;
2321 
2322 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2323 		if (ret < 0)
2324 			goto out_free_tmp_vptr_1;
2325 
2326 		spin_lock_irqsave(&vptr->lock, flags);
2327 
2328 		netif_stop_queue(dev);
2329 		velocity_shutdown(vptr);
2330 
2331 		rx = vptr->rx;
2332 		tx = vptr->tx;
2333 
2334 		vptr->rx = tmp_vptr->rx;
2335 		vptr->tx = tmp_vptr->tx;
2336 
2337 		tmp_vptr->rx = rx;
2338 		tmp_vptr->tx = tx;
2339 
2340 		dev->mtu = new_mtu;
2341 
2342 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2343 
2344 		velocity_give_many_rx_descs(vptr);
2345 
2346 		mac_enable_int(vptr->mac_regs);
2347 		netif_start_queue(dev);
2348 
2349 		spin_unlock_irqrestore(&vptr->lock, flags);
2350 
2351 		velocity_free_rings(tmp_vptr);
2352 
2353 out_free_tmp_vptr_1:
2354 		kfree(tmp_vptr);
2355 	}
2356 out_0:
2357 	return ret;
2358 }
2359 
2360 /**
2361  *	velocity_mii_ioctl		-	MII ioctl handler
2362  *	@dev: network device
2363  *	@ifr: the ifreq block for the ioctl
2364  *	@cmd: the command
2365  *
2366  *	Process MII requests made via ioctl from the network layer. These
2367  *	are used by tools like kudzu to interrogate the link state of the
2368  *	hardware
2369  */
2370 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2371 {
2372 	struct velocity_info *vptr = netdev_priv(dev);
2373 	struct mac_regs __iomem *regs = vptr->mac_regs;
2374 	unsigned long flags;
2375 	struct mii_ioctl_data *miidata = if_mii(ifr);
2376 	int err;
2377 
2378 	switch (cmd) {
2379 	case SIOCGMIIPHY:
2380 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2381 		break;
2382 	case SIOCGMIIREG:
2383 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2384 			return -ETIMEDOUT;
2385 		break;
2386 	case SIOCSMIIREG:
2387 		spin_lock_irqsave(&vptr->lock, flags);
2388 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2389 		spin_unlock_irqrestore(&vptr->lock, flags);
2390 		check_connection_type(vptr->mac_regs);
2391 		if (err)
2392 			return err;
2393 		break;
2394 	default:
2395 		return -EOPNOTSUPP;
2396 	}
2397 	return 0;
2398 }
2399 
2400 /**
2401  *	velocity_ioctl		-	ioctl entry point
2402  *	@dev: network device
2403  *	@rq: interface request ioctl
2404  *	@cmd: command code
2405  *
2406  *	Called when the user issues an ioctl request to the network
2407  *	device in question. The velocity interface supports MII.
2408  */
2409 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2410 {
2411 	struct velocity_info *vptr = netdev_priv(dev);
2412 	int ret;
2413 
2414 	/* If we are asked for information and the device is power
2415 	   saving then we need to bring the device back up to talk to it */
2416 
2417 	if (!netif_running(dev))
2418 		pci_set_power_state(vptr->pdev, PCI_D0);
2419 
2420 	switch (cmd) {
2421 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2422 	case SIOCGMIIREG:	/* Read MII PHY register. */
2423 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2424 		ret = velocity_mii_ioctl(dev, rq, cmd);
2425 		break;
2426 
2427 	default:
2428 		ret = -EOPNOTSUPP;
2429 	}
2430 	if (!netif_running(dev))
2431 		pci_set_power_state(vptr->pdev, PCI_D3hot);
2432 
2433 
2434 	return ret;
2435 }
2436 
2437 /**
2438  *	velocity_get_status	-	statistics callback
2439  *	@dev: network device
2440  *
2441  *	Callback from the network layer to allow driver statistics
2442  *	to be resynchronized with hardware collected state. In the
2443  *	case of the velocity we need to pull the MIB counters from
2444  *	the hardware into the counters before letting the network
2445  *	layer display them.
2446  */
2447 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2448 {
2449 	struct velocity_info *vptr = netdev_priv(dev);
2450 
2451 	/* If the hardware is down, don't touch MII */
2452 	if (!netif_running(dev))
2453 		return &dev->stats;
2454 
2455 	spin_lock_irq(&vptr->lock);
2456 	velocity_update_hw_mibs(vptr);
2457 	spin_unlock_irq(&vptr->lock);
2458 
2459 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2460 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2461 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2462 
2463 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2464 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2465 	/* detailed rx_errors: */
2466 //  unsigned long   rx_length_errors;
2467 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2468 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2469 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2470 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2471 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2472 
2473 	/* detailed tx_errors */
2474 //  unsigned long   tx_fifo_errors;
2475 
2476 	return &dev->stats;
2477 }
2478 
2479 /**
2480  *	velocity_close		-	close adapter callback
2481  *	@dev: network device
2482  *
2483  *	Callback from the network layer when the velocity is being
2484  *	deactivated by the network layer
2485  */
2486 static int velocity_close(struct net_device *dev)
2487 {
2488 	struct velocity_info *vptr = netdev_priv(dev);
2489 
2490 	napi_disable(&vptr->napi);
2491 	netif_stop_queue(dev);
2492 	velocity_shutdown(vptr);
2493 
2494 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2495 		velocity_get_ip(vptr);
2496 
2497 	free_irq(vptr->pdev->irq, dev);
2498 
2499 	velocity_free_rings(vptr);
2500 
2501 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2502 	return 0;
2503 }
2504 
2505 /**
2506  *	velocity_xmit		-	transmit packet callback
2507  *	@skb: buffer to transmit
2508  *	@dev: network device
2509  *
2510  *	Called by the networ layer to request a packet is queued to
2511  *	the velocity. Returns zero on success.
2512  */
2513 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2514 				 struct net_device *dev)
2515 {
2516 	struct velocity_info *vptr = netdev_priv(dev);
2517 	int qnum = 0;
2518 	struct tx_desc *td_ptr;
2519 	struct velocity_td_info *tdinfo;
2520 	unsigned long flags;
2521 	int pktlen;
2522 	int index, prev;
2523 	int i = 0;
2524 
2525 	if (skb_padto(skb, ETH_ZLEN))
2526 		goto out;
2527 
2528 	/* The hardware can handle at most 7 memory segments, so merge
2529 	 * the skb if there are more */
2530 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2531 		kfree_skb(skb);
2532 		return NETDEV_TX_OK;
2533 	}
2534 
2535 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2536 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2537 				skb_headlen(skb);
2538 
2539 	spin_lock_irqsave(&vptr->lock, flags);
2540 
2541 	index = vptr->tx.curr[qnum];
2542 	td_ptr = &(vptr->tx.rings[qnum][index]);
2543 	tdinfo = &(vptr->tx.infos[qnum][index]);
2544 
2545 	td_ptr->tdesc1.TCR = TCR0_TIC;
2546 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2547 
2548 	/*
2549 	 *	Map the linear network buffer into PCI space and
2550 	 *	add it to the transmit ring.
2551 	 */
2552 	tdinfo->skb = skb;
2553 	tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2554 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2555 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2556 	td_ptr->td_buf[0].pa_high = 0;
2557 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2558 
2559 	/* Handle fragments */
2560 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2562 
2563 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2564 							  frag, 0,
2565 							  skb_frag_size(frag),
2566 							  DMA_TO_DEVICE);
2567 
2568 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2569 		td_ptr->td_buf[i + 1].pa_high = 0;
2570 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2571 	}
2572 	tdinfo->nskb_dma = i + 1;
2573 
2574 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2575 
2576 	if (vlan_tx_tag_present(skb)) {
2577 		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2578 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2579 	}
2580 
2581 	/*
2582 	 *	Handle hardware checksum
2583 	 */
2584 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2585 		const struct iphdr *ip = ip_hdr(skb);
2586 		if (ip->protocol == IPPROTO_TCP)
2587 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2588 		else if (ip->protocol == IPPROTO_UDP)
2589 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2590 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2591 	}
2592 
2593 	prev = index - 1;
2594 	if (prev < 0)
2595 		prev = vptr->options.numtx - 1;
2596 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2597 	vptr->tx.used[qnum]++;
2598 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2599 
2600 	if (AVAIL_TD(vptr, qnum) < 1)
2601 		netif_stop_queue(dev);
2602 
2603 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2604 	td_ptr->td_buf[0].size |= TD_QUEUE;
2605 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2606 
2607 	spin_unlock_irqrestore(&vptr->lock, flags);
2608 out:
2609 	return NETDEV_TX_OK;
2610 }
2611 
2612 static const struct net_device_ops velocity_netdev_ops = {
2613 	.ndo_open		= velocity_open,
2614 	.ndo_stop		= velocity_close,
2615 	.ndo_start_xmit		= velocity_xmit,
2616 	.ndo_get_stats		= velocity_get_stats,
2617 	.ndo_validate_addr	= eth_validate_addr,
2618 	.ndo_set_mac_address	= eth_mac_addr,
2619 	.ndo_set_rx_mode	= velocity_set_multi,
2620 	.ndo_change_mtu		= velocity_change_mtu,
2621 	.ndo_do_ioctl		= velocity_ioctl,
2622 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2623 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2624 };
2625 
2626 /**
2627  *	velocity_init_info	-	init private data
2628  *	@pdev: PCI device
2629  *	@vptr: Velocity info
2630  *	@info: Board type
2631  *
2632  *	Set up the initial velocity_info struct for the device that has been
2633  *	discovered.
2634  */
2635 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
2636 			       const struct velocity_info_tbl *info)
2637 {
2638 	memset(vptr, 0, sizeof(struct velocity_info));
2639 
2640 	vptr->pdev = pdev;
2641 	vptr->chip_id = info->chip_id;
2642 	vptr->tx.numq = info->txqueue;
2643 	vptr->multicast_limit = MCAM_SIZE;
2644 	spin_lock_init(&vptr->lock);
2645 }
2646 
2647 /**
2648  *	velocity_get_pci_info	-	retrieve PCI info for device
2649  *	@vptr: velocity device
2650  *	@pdev: PCI device it matches
2651  *
2652  *	Retrieve the PCI configuration space data that interests us from
2653  *	the kernel PCI layer
2654  */
2655 static int velocity_get_pci_info(struct velocity_info *vptr,
2656 				 struct pci_dev *pdev)
2657 {
2658 	vptr->rev_id = pdev->revision;
2659 
2660 	pci_set_master(pdev);
2661 
2662 	vptr->ioaddr = pci_resource_start(pdev, 0);
2663 	vptr->memaddr = pci_resource_start(pdev, 1);
2664 
2665 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2666 		dev_err(&pdev->dev,
2667 			   "region #0 is not an I/O resource, aborting.\n");
2668 		return -EINVAL;
2669 	}
2670 
2671 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2672 		dev_err(&pdev->dev,
2673 			   "region #1 is an I/O resource, aborting.\n");
2674 		return -EINVAL;
2675 	}
2676 
2677 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2678 		dev_err(&pdev->dev, "region #1 is too small.\n");
2679 		return -EINVAL;
2680 	}
2681 	vptr->pdev = pdev;
2682 
2683 	return 0;
2684 }
2685 
2686 /**
2687  *	velocity_print_info	-	per driver data
2688  *	@vptr: velocity
2689  *
2690  *	Print per driver data as the kernel driver finds Velocity
2691  *	hardware
2692  */
2693 static void velocity_print_info(struct velocity_info *vptr)
2694 {
2695 	struct net_device *dev = vptr->dev;
2696 
2697 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2698 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2699 		dev->name, dev->dev_addr);
2700 }
2701 
2702 static u32 velocity_get_link(struct net_device *dev)
2703 {
2704 	struct velocity_info *vptr = netdev_priv(dev);
2705 	struct mac_regs __iomem *regs = vptr->mac_regs;
2706 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2707 }
2708 
2709 /**
2710  *	velocity_found1		-	set up discovered velocity card
2711  *	@pdev: PCI device
2712  *	@ent: PCI device table entry that matched
2713  *
2714  *	Configure a discovered adapter from scratch. Return a negative
2715  *	errno error code on failure paths.
2716  */
2717 static int velocity_found1(struct pci_dev *pdev,
2718 			   const struct pci_device_id *ent)
2719 {
2720 	static int first = 1;
2721 	struct net_device *dev;
2722 	int i;
2723 	const char *drv_string;
2724 	const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2725 	struct velocity_info *vptr;
2726 	struct mac_regs __iomem *regs;
2727 	int ret = -ENOMEM;
2728 
2729 	/* FIXME: this driver, like almost all other ethernet drivers,
2730 	 * can support more than MAX_UNITS.
2731 	 */
2732 	if (velocity_nics >= MAX_UNITS) {
2733 		dev_notice(&pdev->dev, "already found %d NICs.\n",
2734 			   velocity_nics);
2735 		return -ENODEV;
2736 	}
2737 
2738 	dev = alloc_etherdev(sizeof(struct velocity_info));
2739 	if (!dev)
2740 		goto out;
2741 
2742 	/* Chain it all together */
2743 
2744 	SET_NETDEV_DEV(dev, &pdev->dev);
2745 	vptr = netdev_priv(dev);
2746 
2747 
2748 	if (first) {
2749 		printk(KERN_INFO "%s Ver. %s\n",
2750 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2751 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2752 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2753 		first = 0;
2754 	}
2755 
2756 	velocity_init_info(pdev, vptr, info);
2757 
2758 	vptr->dev = dev;
2759 
2760 	ret = pci_enable_device(pdev);
2761 	if (ret < 0)
2762 		goto err_free_dev;
2763 
2764 	ret = velocity_get_pci_info(vptr, pdev);
2765 	if (ret < 0) {
2766 		/* error message already printed */
2767 		goto err_disable;
2768 	}
2769 
2770 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2771 	if (ret < 0) {
2772 		dev_err(&pdev->dev, "No PCI resources.\n");
2773 		goto err_disable;
2774 	}
2775 
2776 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2777 	if (regs == NULL) {
2778 		ret = -EIO;
2779 		goto err_release_res;
2780 	}
2781 
2782 	vptr->mac_regs = regs;
2783 
2784 	mac_wol_reset(regs);
2785 
2786 	for (i = 0; i < 6; i++)
2787 		dev->dev_addr[i] = readb(&regs->PAR[i]);
2788 
2789 
2790 	drv_string = dev_driver_string(&pdev->dev);
2791 
2792 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2793 
2794 	/*
2795 	 *	Mask out the options cannot be set to the chip
2796 	 */
2797 
2798 	vptr->options.flags &= info->flags;
2799 
2800 	/*
2801 	 *	Enable the chip specified capbilities
2802 	 */
2803 
2804 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2805 
2806 	vptr->wol_opts = vptr->options.wol_opts;
2807 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2808 
2809 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2810 
2811 	dev->netdev_ops = &velocity_netdev_ops;
2812 	dev->ethtool_ops = &velocity_ethtool_ops;
2813 	netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2814 
2815 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2816 			   NETIF_F_HW_VLAN_CTAG_TX;
2817 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_FILTER |
2818 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_IP_CSUM;
2819 
2820 	ret = register_netdev(dev);
2821 	if (ret < 0)
2822 		goto err_iounmap;
2823 
2824 	if (!velocity_get_link(dev)) {
2825 		netif_carrier_off(dev);
2826 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2827 	}
2828 
2829 	velocity_print_info(vptr);
2830 	pci_set_drvdata(pdev, dev);
2831 
2832 	/* and leave the chip powered down */
2833 
2834 	pci_set_power_state(pdev, PCI_D3hot);
2835 	velocity_nics++;
2836 out:
2837 	return ret;
2838 
2839 err_iounmap:
2840 	iounmap(regs);
2841 err_release_res:
2842 	pci_release_regions(pdev);
2843 err_disable:
2844 	pci_disable_device(pdev);
2845 err_free_dev:
2846 	free_netdev(dev);
2847 	goto out;
2848 }
2849 
2850 #ifdef CONFIG_PM
2851 /**
2852  *	wol_calc_crc		-	WOL CRC
2853  *	@pattern: data pattern
2854  *	@mask_pattern: mask
2855  *
2856  *	Compute the wake on lan crc hashes for the packet header
2857  *	we are interested in.
2858  */
2859 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2860 {
2861 	u16 crc = 0xFFFF;
2862 	u8 mask;
2863 	int i, j;
2864 
2865 	for (i = 0; i < size; i++) {
2866 		mask = mask_pattern[i];
2867 
2868 		/* Skip this loop if the mask equals to zero */
2869 		if (mask == 0x00)
2870 			continue;
2871 
2872 		for (j = 0; j < 8; j++) {
2873 			if ((mask & 0x01) == 0) {
2874 				mask >>= 1;
2875 				continue;
2876 			}
2877 			mask >>= 1;
2878 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2879 		}
2880 	}
2881 	/*	Finally, invert the result once to get the correct data */
2882 	crc = ~crc;
2883 	return bitrev32(crc) >> 16;
2884 }
2885 
2886 /**
2887  *	velocity_set_wol	-	set up for wake on lan
2888  *	@vptr: velocity to set WOL status on
2889  *
2890  *	Set a card up for wake on lan either by unicast or by
2891  *	ARP packet.
2892  *
2893  *	FIXME: check static buffer is safe here
2894  */
2895 static int velocity_set_wol(struct velocity_info *vptr)
2896 {
2897 	struct mac_regs __iomem *regs = vptr->mac_regs;
2898 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
2899 	static u8 buf[256];
2900 	int i;
2901 
2902 	static u32 mask_pattern[2][4] = {
2903 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2904 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
2905 	};
2906 
2907 	writew(0xFFFF, &regs->WOLCRClr);
2908 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2909 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2910 
2911 	/*
2912 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
2913 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2914 	 */
2915 
2916 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2917 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2918 
2919 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2920 		struct arp_packet *arp = (struct arp_packet *) buf;
2921 		u16 crc;
2922 		memset(buf, 0, sizeof(struct arp_packet) + 7);
2923 
2924 		for (i = 0; i < 4; i++)
2925 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2926 
2927 		arp->type = htons(ETH_P_ARP);
2928 		arp->ar_op = htons(1);
2929 
2930 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
2931 
2932 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2933 				(u8 *) & mask_pattern[0][0]);
2934 
2935 		writew(crc, &regs->PatternCRC[0]);
2936 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2937 	}
2938 
2939 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2940 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2941 
2942 	writew(0x0FFF, &regs->WOLSRClr);
2943 
2944 	if (spd_dpx == SPD_DPX_1000_FULL)
2945 		goto mac_done;
2946 
2947 	if (spd_dpx != SPD_DPX_AUTO)
2948 		goto advertise_done;
2949 
2950 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2951 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2952 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2953 
2954 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2955 	}
2956 
2957 	if (vptr->mii_status & VELOCITY_SPEED_1000)
2958 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2959 
2960 advertise_done:
2961 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2962 
2963 	{
2964 		u8 GCR;
2965 		GCR = readb(&regs->CHIPGCR);
2966 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2967 		writeb(GCR, &regs->CHIPGCR);
2968 	}
2969 
2970 mac_done:
2971 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2972 	/* Turn on SWPTAG just before entering power mode */
2973 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2974 	/* Go to bed ..... */
2975 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2976 
2977 	return 0;
2978 }
2979 
2980 /**
2981  *	velocity_save_context	-	save registers
2982  *	@vptr: velocity
2983  *	@context: buffer for stored context
2984  *
2985  *	Retrieve the current configuration from the velocity hardware
2986  *	and stash it in the context structure, for use by the context
2987  *	restore functions. This allows us to save things we need across
2988  *	power down states
2989  */
2990 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2991 {
2992 	struct mac_regs __iomem *regs = vptr->mac_regs;
2993 	u16 i;
2994 	u8 __iomem *ptr = (u8 __iomem *)regs;
2995 
2996 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2997 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2998 
2999 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3000 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3001 
3002 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3003 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3004 
3005 }
3006 
3007 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3008 {
3009 	struct net_device *dev = pci_get_drvdata(pdev);
3010 	struct velocity_info *vptr = netdev_priv(dev);
3011 	unsigned long flags;
3012 
3013 	if (!netif_running(vptr->dev))
3014 		return 0;
3015 
3016 	netif_device_detach(vptr->dev);
3017 
3018 	spin_lock_irqsave(&vptr->lock, flags);
3019 	pci_save_state(pdev);
3020 
3021 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3022 		velocity_get_ip(vptr);
3023 		velocity_save_context(vptr, &vptr->context);
3024 		velocity_shutdown(vptr);
3025 		velocity_set_wol(vptr);
3026 		pci_enable_wake(pdev, PCI_D3hot, 1);
3027 		pci_set_power_state(pdev, PCI_D3hot);
3028 	} else {
3029 		velocity_save_context(vptr, &vptr->context);
3030 		velocity_shutdown(vptr);
3031 		pci_disable_device(pdev);
3032 		pci_set_power_state(pdev, pci_choose_state(pdev, state));
3033 	}
3034 
3035 	spin_unlock_irqrestore(&vptr->lock, flags);
3036 	return 0;
3037 }
3038 
3039 /**
3040  *	velocity_restore_context	-	restore registers
3041  *	@vptr: velocity
3042  *	@context: buffer for stored context
3043  *
3044  *	Reload the register configuration from the velocity context
3045  *	created by velocity_save_context.
3046  */
3047 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3048 {
3049 	struct mac_regs __iomem *regs = vptr->mac_regs;
3050 	int i;
3051 	u8 __iomem *ptr = (u8 __iomem *)regs;
3052 
3053 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3054 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3055 
3056 	/* Just skip cr0 */
3057 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3058 		/* Clear */
3059 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3060 		/* Set */
3061 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3062 	}
3063 
3064 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3065 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3066 
3067 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3068 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3069 
3070 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3071 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3072 }
3073 
3074 static int velocity_resume(struct pci_dev *pdev)
3075 {
3076 	struct net_device *dev = pci_get_drvdata(pdev);
3077 	struct velocity_info *vptr = netdev_priv(dev);
3078 	unsigned long flags;
3079 	int i;
3080 
3081 	if (!netif_running(vptr->dev))
3082 		return 0;
3083 
3084 	pci_set_power_state(pdev, PCI_D0);
3085 	pci_enable_wake(pdev, 0, 0);
3086 	pci_restore_state(pdev);
3087 
3088 	mac_wol_reset(vptr->mac_regs);
3089 
3090 	spin_lock_irqsave(&vptr->lock, flags);
3091 	velocity_restore_context(vptr, &vptr->context);
3092 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3093 	mac_disable_int(vptr->mac_regs);
3094 
3095 	velocity_tx_srv(vptr);
3096 
3097 	for (i = 0; i < vptr->tx.numq; i++) {
3098 		if (vptr->tx.used[i])
3099 			mac_tx_queue_wake(vptr->mac_regs, i);
3100 	}
3101 
3102 	mac_enable_int(vptr->mac_regs);
3103 	spin_unlock_irqrestore(&vptr->lock, flags);
3104 	netif_device_attach(vptr->dev);
3105 
3106 	return 0;
3107 }
3108 #endif
3109 
3110 /*
3111  *	Definition for our device driver. The PCI layer interface
3112  *	uses this to handle all our card discover and plugging
3113  */
3114 static struct pci_driver velocity_driver = {
3115 	.name		= VELOCITY_NAME,
3116 	.id_table	= velocity_id_table,
3117 	.probe		= velocity_found1,
3118 	.remove		= velocity_remove1,
3119 #ifdef CONFIG_PM
3120 	.suspend	= velocity_suspend,
3121 	.resume		= velocity_resume,
3122 #endif
3123 };
3124 
3125 
3126 /**
3127  *	velocity_ethtool_up	-	pre hook for ethtool
3128  *	@dev: network device
3129  *
3130  *	Called before an ethtool operation. We need to make sure the
3131  *	chip is out of D3 state before we poke at it.
3132  */
3133 static int velocity_ethtool_up(struct net_device *dev)
3134 {
3135 	struct velocity_info *vptr = netdev_priv(dev);
3136 	if (!netif_running(dev))
3137 		pci_set_power_state(vptr->pdev, PCI_D0);
3138 	return 0;
3139 }
3140 
3141 /**
3142  *	velocity_ethtool_down	-	post hook for ethtool
3143  *	@dev: network device
3144  *
3145  *	Called after an ethtool operation. Restore the chip back to D3
3146  *	state if it isn't running.
3147  */
3148 static void velocity_ethtool_down(struct net_device *dev)
3149 {
3150 	struct velocity_info *vptr = netdev_priv(dev);
3151 	if (!netif_running(dev))
3152 		pci_set_power_state(vptr->pdev, PCI_D3hot);
3153 }
3154 
3155 static int velocity_get_settings(struct net_device *dev,
3156 				 struct ethtool_cmd *cmd)
3157 {
3158 	struct velocity_info *vptr = netdev_priv(dev);
3159 	struct mac_regs __iomem *regs = vptr->mac_regs;
3160 	u32 status;
3161 	status = check_connection_type(vptr->mac_regs);
3162 
3163 	cmd->supported = SUPPORTED_TP |
3164 			SUPPORTED_Autoneg |
3165 			SUPPORTED_10baseT_Half |
3166 			SUPPORTED_10baseT_Full |
3167 			SUPPORTED_100baseT_Half |
3168 			SUPPORTED_100baseT_Full |
3169 			SUPPORTED_1000baseT_Half |
3170 			SUPPORTED_1000baseT_Full;
3171 
3172 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3173 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3174 		cmd->advertising |=
3175 			ADVERTISED_10baseT_Half |
3176 			ADVERTISED_10baseT_Full |
3177 			ADVERTISED_100baseT_Half |
3178 			ADVERTISED_100baseT_Full |
3179 			ADVERTISED_1000baseT_Half |
3180 			ADVERTISED_1000baseT_Full;
3181 	} else {
3182 		switch (vptr->options.spd_dpx) {
3183 		case SPD_DPX_1000_FULL:
3184 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3185 			break;
3186 		case SPD_DPX_100_HALF:
3187 			cmd->advertising |= ADVERTISED_100baseT_Half;
3188 			break;
3189 		case SPD_DPX_100_FULL:
3190 			cmd->advertising |= ADVERTISED_100baseT_Full;
3191 			break;
3192 		case SPD_DPX_10_HALF:
3193 			cmd->advertising |= ADVERTISED_10baseT_Half;
3194 			break;
3195 		case SPD_DPX_10_FULL:
3196 			cmd->advertising |= ADVERTISED_10baseT_Full;
3197 			break;
3198 		default:
3199 			break;
3200 		}
3201 	}
3202 
3203 	if (status & VELOCITY_SPEED_1000)
3204 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3205 	else if (status & VELOCITY_SPEED_100)
3206 		ethtool_cmd_speed_set(cmd, SPEED_100);
3207 	else
3208 		ethtool_cmd_speed_set(cmd, SPEED_10);
3209 
3210 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3211 	cmd->port = PORT_TP;
3212 	cmd->transceiver = XCVR_INTERNAL;
3213 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3214 
3215 	if (status & VELOCITY_DUPLEX_FULL)
3216 		cmd->duplex = DUPLEX_FULL;
3217 	else
3218 		cmd->duplex = DUPLEX_HALF;
3219 
3220 	return 0;
3221 }
3222 
3223 static int velocity_set_settings(struct net_device *dev,
3224 				 struct ethtool_cmd *cmd)
3225 {
3226 	struct velocity_info *vptr = netdev_priv(dev);
3227 	u32 speed = ethtool_cmd_speed(cmd);
3228 	u32 curr_status;
3229 	u32 new_status = 0;
3230 	int ret = 0;
3231 
3232 	curr_status = check_connection_type(vptr->mac_regs);
3233 	curr_status &= (~VELOCITY_LINK_FAIL);
3234 
3235 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3236 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3237 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3238 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3239 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3240 
3241 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3242 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3243 		ret = -EINVAL;
3244 	} else {
3245 		enum speed_opt spd_dpx;
3246 
3247 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3248 			spd_dpx = SPD_DPX_AUTO;
3249 		else if ((new_status & VELOCITY_SPEED_1000) &&
3250 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3251 			spd_dpx = SPD_DPX_1000_FULL;
3252 		} else if (new_status & VELOCITY_SPEED_100)
3253 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3254 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3255 		else if (new_status & VELOCITY_SPEED_10)
3256 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3257 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3258 		else
3259 			return -EOPNOTSUPP;
3260 
3261 		vptr->options.spd_dpx = spd_dpx;
3262 
3263 		velocity_set_media_mode(vptr, new_status);
3264 	}
3265 
3266 	return ret;
3267 }
3268 
3269 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3270 {
3271 	struct velocity_info *vptr = netdev_priv(dev);
3272 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3273 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3274 	strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3275 }
3276 
3277 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3278 {
3279 	struct velocity_info *vptr = netdev_priv(dev);
3280 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3281 	wol->wolopts |= WAKE_MAGIC;
3282 	/*
3283 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3284 		   wol.wolopts|=WAKE_PHY;
3285 			 */
3286 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3287 		wol->wolopts |= WAKE_UCAST;
3288 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3289 		wol->wolopts |= WAKE_ARP;
3290 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3291 }
3292 
3293 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3294 {
3295 	struct velocity_info *vptr = netdev_priv(dev);
3296 
3297 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3298 		return -EFAULT;
3299 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3300 
3301 	/*
3302 	   if (wol.wolopts & WAKE_PHY) {
3303 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3304 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3305 	   }
3306 	 */
3307 
3308 	if (wol->wolopts & WAKE_MAGIC) {
3309 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3310 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3311 	}
3312 	if (wol->wolopts & WAKE_UCAST) {
3313 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3314 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3315 	}
3316 	if (wol->wolopts & WAKE_ARP) {
3317 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3318 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3319 	}
3320 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3321 	return 0;
3322 }
3323 
3324 static u32 velocity_get_msglevel(struct net_device *dev)
3325 {
3326 	return msglevel;
3327 }
3328 
3329 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3330 {
3331 	 msglevel = value;
3332 }
3333 
3334 static int get_pending_timer_val(int val)
3335 {
3336 	int mult_bits = val >> 6;
3337 	int mult = 1;
3338 
3339 	switch (mult_bits)
3340 	{
3341 	case 1:
3342 		mult = 4; break;
3343 	case 2:
3344 		mult = 16; break;
3345 	case 3:
3346 		mult = 64; break;
3347 	case 0:
3348 	default:
3349 		break;
3350 	}
3351 
3352 	return (val & 0x3f) * mult;
3353 }
3354 
3355 static void set_pending_timer_val(int *val, u32 us)
3356 {
3357 	u8 mult = 0;
3358 	u8 shift = 0;
3359 
3360 	if (us >= 0x3f) {
3361 		mult = 1; /* mult with 4 */
3362 		shift = 2;
3363 	}
3364 	if (us >= 0x3f * 4) {
3365 		mult = 2; /* mult with 16 */
3366 		shift = 4;
3367 	}
3368 	if (us >= 0x3f * 16) {
3369 		mult = 3; /* mult with 64 */
3370 		shift = 6;
3371 	}
3372 
3373 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3374 }
3375 
3376 
3377 static int velocity_get_coalesce(struct net_device *dev,
3378 		struct ethtool_coalesce *ecmd)
3379 {
3380 	struct velocity_info *vptr = netdev_priv(dev);
3381 
3382 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3383 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3384 
3385 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3386 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3387 
3388 	return 0;
3389 }
3390 
3391 static int velocity_set_coalesce(struct net_device *dev,
3392 		struct ethtool_coalesce *ecmd)
3393 {
3394 	struct velocity_info *vptr = netdev_priv(dev);
3395 	int max_us = 0x3f * 64;
3396 	unsigned long flags;
3397 
3398 	/* 6 bits of  */
3399 	if (ecmd->tx_coalesce_usecs > max_us)
3400 		return -EINVAL;
3401 	if (ecmd->rx_coalesce_usecs > max_us)
3402 		return -EINVAL;
3403 
3404 	if (ecmd->tx_max_coalesced_frames > 0xff)
3405 		return -EINVAL;
3406 	if (ecmd->rx_max_coalesced_frames > 0xff)
3407 		return -EINVAL;
3408 
3409 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3410 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3411 
3412 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3413 			ecmd->rx_coalesce_usecs);
3414 	set_pending_timer_val(&vptr->options.txqueue_timer,
3415 			ecmd->tx_coalesce_usecs);
3416 
3417 	/* Setup the interrupt suppression and queue timers */
3418 	spin_lock_irqsave(&vptr->lock, flags);
3419 	mac_disable_int(vptr->mac_regs);
3420 	setup_adaptive_interrupts(vptr);
3421 	setup_queue_timers(vptr);
3422 
3423 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3424 	mac_clear_isr(vptr->mac_regs);
3425 	mac_enable_int(vptr->mac_regs);
3426 	spin_unlock_irqrestore(&vptr->lock, flags);
3427 
3428 	return 0;
3429 }
3430 
3431 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3432 	"rx_all",
3433 	"rx_ok",
3434 	"tx_ok",
3435 	"rx_error",
3436 	"rx_runt_ok",
3437 	"rx_runt_err",
3438 	"rx_64",
3439 	"tx_64",
3440 	"rx_65_to_127",
3441 	"tx_65_to_127",
3442 	"rx_128_to_255",
3443 	"tx_128_to_255",
3444 	"rx_256_to_511",
3445 	"tx_256_to_511",
3446 	"rx_512_to_1023",
3447 	"tx_512_to_1023",
3448 	"rx_1024_to_1518",
3449 	"tx_1024_to_1518",
3450 	"tx_ether_collisions",
3451 	"rx_crc_errors",
3452 	"rx_jumbo",
3453 	"tx_jumbo",
3454 	"rx_mac_control_frames",
3455 	"tx_mac_control_frames",
3456 	"rx_frame_alignement_errors",
3457 	"rx_long_ok",
3458 	"rx_long_err",
3459 	"tx_sqe_errors",
3460 	"rx_no_buf",
3461 	"rx_symbol_errors",
3462 	"in_range_length_errors",
3463 	"late_collisions"
3464 };
3465 
3466 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3467 {
3468 	switch (sset) {
3469 	case ETH_SS_STATS:
3470 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3471 		break;
3472 	}
3473 }
3474 
3475 static int velocity_get_sset_count(struct net_device *dev, int sset)
3476 {
3477 	switch (sset) {
3478 	case ETH_SS_STATS:
3479 		return ARRAY_SIZE(velocity_gstrings);
3480 	default:
3481 		return -EOPNOTSUPP;
3482 	}
3483 }
3484 
3485 static void velocity_get_ethtool_stats(struct net_device *dev,
3486 				       struct ethtool_stats *stats, u64 *data)
3487 {
3488 	if (netif_running(dev)) {
3489 		struct velocity_info *vptr = netdev_priv(dev);
3490 		u32 *p = vptr->mib_counter;
3491 		int i;
3492 
3493 		spin_lock_irq(&vptr->lock);
3494 		velocity_update_hw_mibs(vptr);
3495 		spin_unlock_irq(&vptr->lock);
3496 
3497 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3498 			*data++ = *p++;
3499 	}
3500 }
3501 
3502 static const struct ethtool_ops velocity_ethtool_ops = {
3503 	.get_settings		= velocity_get_settings,
3504 	.set_settings		= velocity_set_settings,
3505 	.get_drvinfo		= velocity_get_drvinfo,
3506 	.get_wol		= velocity_ethtool_get_wol,
3507 	.set_wol		= velocity_ethtool_set_wol,
3508 	.get_msglevel		= velocity_get_msglevel,
3509 	.set_msglevel		= velocity_set_msglevel,
3510 	.get_link		= velocity_get_link,
3511 	.get_strings		= velocity_get_strings,
3512 	.get_sset_count		= velocity_get_sset_count,
3513 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3514 	.get_coalesce		= velocity_get_coalesce,
3515 	.set_coalesce		= velocity_set_coalesce,
3516 	.begin			= velocity_ethtool_up,
3517 	.complete		= velocity_ethtool_down
3518 };
3519 
3520 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3521 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3522 {
3523 	struct in_ifaddr *ifa = ptr;
3524 	struct net_device *dev = ifa->ifa_dev->dev;
3525 
3526 	if (dev_net(dev) == &init_net &&
3527 	    dev->netdev_ops == &velocity_netdev_ops)
3528 		velocity_get_ip(netdev_priv(dev));
3529 
3530 	return NOTIFY_DONE;
3531 }
3532 
3533 static struct notifier_block velocity_inetaddr_notifier = {
3534 	.notifier_call	= velocity_netdev_event,
3535 };
3536 
3537 static void velocity_register_notifier(void)
3538 {
3539 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3540 }
3541 
3542 static void velocity_unregister_notifier(void)
3543 {
3544 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3545 }
3546 
3547 #else
3548 
3549 #define velocity_register_notifier()	do {} while (0)
3550 #define velocity_unregister_notifier()	do {} while (0)
3551 
3552 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3553 
3554 /**
3555  *	velocity_init_module	-	load time function
3556  *
3557  *	Called when the velocity module is loaded. The PCI driver
3558  *	is registered with the PCI layer, and in turn will call
3559  *	the probe functions for each velocity adapter installed
3560  *	in the system.
3561  */
3562 static int __init velocity_init_module(void)
3563 {
3564 	int ret;
3565 
3566 	velocity_register_notifier();
3567 	ret = pci_register_driver(&velocity_driver);
3568 	if (ret < 0)
3569 		velocity_unregister_notifier();
3570 	return ret;
3571 }
3572 
3573 /**
3574  *	velocity_cleanup	-	module unload
3575  *
3576  *	When the velocity hardware is unloaded this function is called.
3577  *	It will clean up the notifiers and the unregister the PCI
3578  *	driver interface for this hardware. This in turn cleans up
3579  *	all discovered interfaces before returning from the function
3580  */
3581 static void __exit velocity_cleanup_module(void)
3582 {
3583 	velocity_unregister_notifier();
3584 	pci_unregister_driver(&velocity_driver);
3585 }
3586 
3587 module_init(velocity_init_module);
3588 module_exit(velocity_cleanup_module);
3589