1 /* 2 * This code is derived from the VIA reference driver (copyright message 3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 4 * addition to the Linux kernel. 5 * 6 * The code has been merged into one source file, cleaned up to follow 7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 8 * for 64bit hardware platforms. 9 * 10 * TODO 11 * rx_copybreak/alignment 12 * More testing 13 * 14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 15 * Additional fixes and clean up: Francois Romieu 16 * 17 * This source has not been verified for use in safety critical systems. 18 * 19 * Please direct queries about the revamped driver to the linux-kernel 20 * list not VIA. 21 * 22 * Original code: 23 * 24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 25 * All rights reserved. 26 * 27 * This software may be redistributed and/or modified under 28 * the terms of the GNU General Public License as published by the Free 29 * Software Foundation; either version 2 of the License, or 30 * any later version. 31 * 32 * This program is distributed in the hope that it will be useful, but 33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 35 * for more details. 36 * 37 * Author: Chuang Liang-Shing, AJ Jiang 38 * 39 * Date: Jan 24, 2003 40 * 41 * MODULE_LICENSE("GPL"); 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/types.h> 47 #include <linux/bitops.h> 48 #include <linux/init.h> 49 #include <linux/mm.h> 50 #include <linux/errno.h> 51 #include <linux/ioport.h> 52 #include <linux/pci.h> 53 #include <linux/kernel.h> 54 #include <linux/netdevice.h> 55 #include <linux/etherdevice.h> 56 #include <linux/skbuff.h> 57 #include <linux/delay.h> 58 #include <linux/timer.h> 59 #include <linux/slab.h> 60 #include <linux/interrupt.h> 61 #include <linux/string.h> 62 #include <linux/wait.h> 63 #include <linux/io.h> 64 #include <linux/if.h> 65 #include <linux/uaccess.h> 66 #include <linux/proc_fs.h> 67 #include <linux/inetdevice.h> 68 #include <linux/reboot.h> 69 #include <linux/ethtool.h> 70 #include <linux/mii.h> 71 #include <linux/in.h> 72 #include <linux/if_arp.h> 73 #include <linux/if_vlan.h> 74 #include <linux/ip.h> 75 #include <linux/tcp.h> 76 #include <linux/udp.h> 77 #include <linux/crc-ccitt.h> 78 #include <linux/crc32.h> 79 80 #include "via-velocity.h" 81 82 83 static int velocity_nics; 84 static int msglevel = MSG_LEVEL_INFO; 85 86 /** 87 * mac_get_cam_mask - Read a CAM mask 88 * @regs: register block for this velocity 89 * @mask: buffer to store mask 90 * 91 * Fetch the mask bits of the selected CAM and store them into the 92 * provided mask buffer. 93 */ 94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 95 { 96 int i; 97 98 /* Select CAM mask */ 99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 100 101 writeb(0, ®s->CAMADDR); 102 103 /* read mask */ 104 for (i = 0; i < 8; i++) 105 *mask++ = readb(&(regs->MARCAM[i])); 106 107 /* disable CAMEN */ 108 writeb(0, ®s->CAMADDR); 109 110 /* Select mar */ 111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 112 } 113 114 /** 115 * mac_set_cam_mask - Set a CAM mask 116 * @regs: register block for this velocity 117 * @mask: CAM mask to load 118 * 119 * Store a new mask into a CAM 120 */ 121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 122 { 123 int i; 124 /* Select CAM mask */ 125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 126 127 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 128 129 for (i = 0; i < 8; i++) 130 writeb(*mask++, &(regs->MARCAM[i])); 131 132 /* disable CAMEN */ 133 writeb(0, ®s->CAMADDR); 134 135 /* Select mar */ 136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 137 } 138 139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 140 { 141 int i; 142 /* Select CAM mask */ 143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 144 145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 146 147 for (i = 0; i < 8; i++) 148 writeb(*mask++, &(regs->MARCAM[i])); 149 150 /* disable CAMEN */ 151 writeb(0, ®s->CAMADDR); 152 153 /* Select mar */ 154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 155 } 156 157 /** 158 * mac_set_cam - set CAM data 159 * @regs: register block of this velocity 160 * @idx: Cam index 161 * @addr: 2 or 6 bytes of CAM data 162 * 163 * Load an address or vlan tag into a CAM 164 */ 165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 166 { 167 int i; 168 169 /* Select CAM mask */ 170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 171 172 idx &= (64 - 1); 173 174 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 175 176 for (i = 0; i < 6; i++) 177 writeb(*addr++, &(regs->MARCAM[i])); 178 179 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 180 181 udelay(10); 182 183 writeb(0, ®s->CAMADDR); 184 185 /* Select mar */ 186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 187 } 188 189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 190 const u8 *addr) 191 { 192 193 /* Select CAM mask */ 194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 195 196 idx &= (64 - 1); 197 198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 199 writew(*((u16 *) addr), ®s->MARCAM[0]); 200 201 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 202 203 udelay(10); 204 205 writeb(0, ®s->CAMADDR); 206 207 /* Select mar */ 208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 209 } 210 211 212 /** 213 * mac_wol_reset - reset WOL after exiting low power 214 * @regs: register block of this velocity 215 * 216 * Called after we drop out of wake on lan mode in order to 217 * reset the Wake on lan features. This function doesn't restore 218 * the rest of the logic from the result of sleep/wakeup 219 */ 220 static void mac_wol_reset(struct mac_regs __iomem *regs) 221 { 222 223 /* Turn off SWPTAG right after leaving power mode */ 224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 225 /* clear sticky bits */ 226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 227 228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 230 /* disable force PME-enable */ 231 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 232 /* disable power-event config bit */ 233 writew(0xFFFF, ®s->WOLCRClr); 234 /* clear power status */ 235 writew(0xFFFF, ®s->WOLSRClr); 236 } 237 238 static const struct ethtool_ops velocity_ethtool_ops; 239 240 /* 241 Define module options 242 */ 243 244 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 245 MODULE_LICENSE("GPL"); 246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 247 248 #define VELOCITY_PARAM(N, D) \ 249 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 250 module_param_array(N, int, NULL, 0); \ 251 MODULE_PARM_DESC(N, D); 252 253 #define RX_DESC_MIN 64 254 #define RX_DESC_MAX 255 255 #define RX_DESC_DEF 64 256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 257 258 #define TX_DESC_MIN 16 259 #define TX_DESC_MAX 256 260 #define TX_DESC_DEF 64 261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 262 263 #define RX_THRESH_MIN 0 264 #define RX_THRESH_MAX 3 265 #define RX_THRESH_DEF 0 266 /* rx_thresh[] is used for controlling the receive fifo threshold. 267 0: indicate the rxfifo threshold is 128 bytes. 268 1: indicate the rxfifo threshold is 512 bytes. 269 2: indicate the rxfifo threshold is 1024 bytes. 270 3: indicate the rxfifo threshold is store & forward. 271 */ 272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 273 274 #define DMA_LENGTH_MIN 0 275 #define DMA_LENGTH_MAX 7 276 #define DMA_LENGTH_DEF 6 277 278 /* DMA_length[] is used for controlling the DMA length 279 0: 8 DWORDs 280 1: 16 DWORDs 281 2: 32 DWORDs 282 3: 64 DWORDs 283 4: 128 DWORDs 284 5: 256 DWORDs 285 6: SF(flush till emply) 286 7: SF(flush till emply) 287 */ 288 VELOCITY_PARAM(DMA_length, "DMA length"); 289 290 #define IP_ALIG_DEF 0 291 /* IP_byte_align[] is used for IP header DWORD byte aligned 292 0: indicate the IP header won't be DWORD byte aligned.(Default) . 293 1: indicate the IP header will be DWORD byte aligned. 294 In some environment, the IP header should be DWORD byte aligned, 295 or the packet will be droped when we receive it. (eg: IPVS) 296 */ 297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 298 299 #define FLOW_CNTL_DEF 1 300 #define FLOW_CNTL_MIN 1 301 #define FLOW_CNTL_MAX 5 302 303 /* flow_control[] is used for setting the flow control ability of NIC. 304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 305 2: enable TX flow control. 306 3: enable RX flow control. 307 4: enable RX/TX flow control. 308 5: disable 309 */ 310 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 311 312 #define MED_LNK_DEF 0 313 #define MED_LNK_MIN 0 314 #define MED_LNK_MAX 5 315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 316 0: indicate autonegotiation for both speed and duplex mode 317 1: indicate 100Mbps half duplex mode 318 2: indicate 100Mbps full duplex mode 319 3: indicate 10Mbps half duplex mode 320 4: indicate 10Mbps full duplex mode 321 5: indicate 1000Mbps full duplex mode 322 323 Note: 324 if EEPROM have been set to the force mode, this option is ignored 325 by driver. 326 */ 327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 328 329 #define VAL_PKT_LEN_DEF 0 330 /* ValPktLen[] is used for setting the checksum offload ability of NIC. 331 0: Receive frame with invalid layer 2 length (Default) 332 1: Drop frame with invalid layer 2 length 333 */ 334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame"); 335 336 #define WOL_OPT_DEF 0 337 #define WOL_OPT_MIN 0 338 #define WOL_OPT_MAX 7 339 /* wol_opts[] is used for controlling wake on lan behavior. 340 0: Wake up if recevied a magic packet. (Default) 341 1: Wake up if link status is on/off. 342 2: Wake up if recevied an arp packet. 343 4: Wake up if recevied any unicast packet. 344 Those value can be sumed up to support more than one option. 345 */ 346 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 347 348 static int rx_copybreak = 200; 349 module_param(rx_copybreak, int, 0644); 350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 351 352 /* 353 * Internal board variants. At the moment we have only one 354 */ 355 static struct velocity_info_tbl chip_info_table[] = { 356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 357 { } 358 }; 359 360 /* 361 * Describe the PCI device identifiers that we support in this 362 * device driver. Used for hotplug autoloading. 363 */ 364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = { 365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 366 { } 367 }; 368 369 MODULE_DEVICE_TABLE(pci, velocity_id_table); 370 371 /** 372 * get_chip_name - identifier to name 373 * @id: chip identifier 374 * 375 * Given a chip identifier return a suitable description. Returns 376 * a pointer a static string valid while the driver is loaded. 377 */ 378 static const char *get_chip_name(enum chip_type chip_id) 379 { 380 int i; 381 for (i = 0; chip_info_table[i].name != NULL; i++) 382 if (chip_info_table[i].chip_id == chip_id) 383 break; 384 return chip_info_table[i].name; 385 } 386 387 /** 388 * velocity_remove1 - device unplug 389 * @pdev: PCI device being removed 390 * 391 * Device unload callback. Called on an unplug or on module 392 * unload for each active device that is present. Disconnects 393 * the device from the network layer and frees all the resources 394 */ 395 static void velocity_remove1(struct pci_dev *pdev) 396 { 397 struct net_device *dev = pci_get_drvdata(pdev); 398 struct velocity_info *vptr = netdev_priv(dev); 399 400 unregister_netdev(dev); 401 iounmap(vptr->mac_regs); 402 pci_release_regions(pdev); 403 pci_disable_device(pdev); 404 pci_set_drvdata(pdev, NULL); 405 free_netdev(dev); 406 407 velocity_nics--; 408 } 409 410 /** 411 * velocity_set_int_opt - parser for integer options 412 * @opt: pointer to option value 413 * @val: value the user requested (or -1 for default) 414 * @min: lowest value allowed 415 * @max: highest value allowed 416 * @def: default value 417 * @name: property name 418 * @dev: device name 419 * 420 * Set an integer property in the module options. This function does 421 * all the verification and checking as well as reporting so that 422 * we don't duplicate code for each option. 423 */ 424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 425 char *name, const char *devname) 426 { 427 if (val == -1) 428 *opt = def; 429 else if (val < min || val > max) { 430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 431 devname, name, min, max); 432 *opt = def; 433 } else { 434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 435 devname, name, val); 436 *opt = val; 437 } 438 } 439 440 /** 441 * velocity_set_bool_opt - parser for boolean options 442 * @opt: pointer to option value 443 * @val: value the user requested (or -1 for default) 444 * @def: default value (yes/no) 445 * @flag: numeric value to set for true. 446 * @name: property name 447 * @dev: device name 448 * 449 * Set a boolean property in the module options. This function does 450 * all the verification and checking as well as reporting so that 451 * we don't duplicate code for each option. 452 */ 453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 454 char *name, const char *devname) 455 { 456 (*opt) &= (~flag); 457 if (val == -1) 458 *opt |= (def ? flag : 0); 459 else if (val < 0 || val > 1) { 460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 461 devname, name); 462 *opt |= (def ? flag : 0); 463 } else { 464 printk(KERN_INFO "%s: set parameter %s to %s\n", 465 devname, name, val ? "TRUE" : "FALSE"); 466 *opt |= (val ? flag : 0); 467 } 468 } 469 470 /** 471 * velocity_get_options - set options on device 472 * @opts: option structure for the device 473 * @index: index of option to use in module options array 474 * @devname: device name 475 * 476 * Turn the module and command options into a single structure 477 * for the current device 478 */ 479 static void velocity_get_options(struct velocity_opt *opts, int index, 480 const char *devname) 481 { 482 483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 487 488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 490 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname); 491 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 492 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 493 opts->numrx = (opts->numrx & ~3); 494 } 495 496 /** 497 * velocity_init_cam_filter - initialise CAM 498 * @vptr: velocity to program 499 * 500 * Initialize the content addressable memory used for filters. Load 501 * appropriately according to the presence of VLAN 502 */ 503 static void velocity_init_cam_filter(struct velocity_info *vptr) 504 { 505 struct mac_regs __iomem *regs = vptr->mac_regs; 506 unsigned int vid, i = 0; 507 508 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 509 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 510 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 511 512 /* Disable all CAMs */ 513 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 514 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 515 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 516 mac_set_cam_mask(regs, vptr->mCAMmask); 517 518 /* Enable VCAMs */ 519 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 520 mac_set_vlan_cam(regs, i, (u8 *) &vid); 521 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 522 if (++i >= VCAM_SIZE) 523 break; 524 } 525 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 526 } 527 528 static int velocity_vlan_rx_add_vid(struct net_device *dev, 529 __be16 proto, u16 vid) 530 { 531 struct velocity_info *vptr = netdev_priv(dev); 532 533 spin_lock_irq(&vptr->lock); 534 set_bit(vid, vptr->active_vlans); 535 velocity_init_cam_filter(vptr); 536 spin_unlock_irq(&vptr->lock); 537 return 0; 538 } 539 540 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 541 __be16 proto, u16 vid) 542 { 543 struct velocity_info *vptr = netdev_priv(dev); 544 545 spin_lock_irq(&vptr->lock); 546 clear_bit(vid, vptr->active_vlans); 547 velocity_init_cam_filter(vptr); 548 spin_unlock_irq(&vptr->lock); 549 return 0; 550 } 551 552 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 553 { 554 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 555 } 556 557 /** 558 * velocity_rx_reset - handle a receive reset 559 * @vptr: velocity we are resetting 560 * 561 * Reset the ownership and status for the receive ring side. 562 * Hand all the receive queue to the NIC. 563 */ 564 static void velocity_rx_reset(struct velocity_info *vptr) 565 { 566 567 struct mac_regs __iomem *regs = vptr->mac_regs; 568 int i; 569 570 velocity_init_rx_ring_indexes(vptr); 571 572 /* 573 * Init state, all RD entries belong to the NIC 574 */ 575 for (i = 0; i < vptr->options.numrx; ++i) 576 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 577 578 writew(vptr->options.numrx, ®s->RBRDU); 579 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 580 writew(0, ®s->RDIdx); 581 writew(vptr->options.numrx - 1, ®s->RDCSize); 582 } 583 584 /** 585 * velocity_get_opt_media_mode - get media selection 586 * @vptr: velocity adapter 587 * 588 * Get the media mode stored in EEPROM or module options and load 589 * mii_status accordingly. The requested link state information 590 * is also returned. 591 */ 592 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 593 { 594 u32 status = 0; 595 596 switch (vptr->options.spd_dpx) { 597 case SPD_DPX_AUTO: 598 status = VELOCITY_AUTONEG_ENABLE; 599 break; 600 case SPD_DPX_100_FULL: 601 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 602 break; 603 case SPD_DPX_10_FULL: 604 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 605 break; 606 case SPD_DPX_100_HALF: 607 status = VELOCITY_SPEED_100; 608 break; 609 case SPD_DPX_10_HALF: 610 status = VELOCITY_SPEED_10; 611 break; 612 case SPD_DPX_1000_FULL: 613 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 614 break; 615 } 616 vptr->mii_status = status; 617 return status; 618 } 619 620 /** 621 * safe_disable_mii_autopoll - autopoll off 622 * @regs: velocity registers 623 * 624 * Turn off the autopoll and wait for it to disable on the chip 625 */ 626 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 627 { 628 u16 ww; 629 630 /* turn off MAUTO */ 631 writeb(0, ®s->MIICR); 632 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 633 udelay(1); 634 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 635 break; 636 } 637 } 638 639 /** 640 * enable_mii_autopoll - turn on autopolling 641 * @regs: velocity registers 642 * 643 * Enable the MII link status autopoll feature on the Velocity 644 * hardware. Wait for it to enable. 645 */ 646 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 647 { 648 int ii; 649 650 writeb(0, &(regs->MIICR)); 651 writeb(MIIADR_SWMPL, ®s->MIIADR); 652 653 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 654 udelay(1); 655 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 656 break; 657 } 658 659 writeb(MIICR_MAUTO, ®s->MIICR); 660 661 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 662 udelay(1); 663 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 664 break; 665 } 666 667 } 668 669 /** 670 * velocity_mii_read - read MII data 671 * @regs: velocity registers 672 * @index: MII register index 673 * @data: buffer for received data 674 * 675 * Perform a single read of an MII 16bit register. Returns zero 676 * on success or -ETIMEDOUT if the PHY did not respond. 677 */ 678 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 679 { 680 u16 ww; 681 682 /* 683 * Disable MIICR_MAUTO, so that mii addr can be set normally 684 */ 685 safe_disable_mii_autopoll(regs); 686 687 writeb(index, ®s->MIIADR); 688 689 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 690 691 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 692 if (!(readb(®s->MIICR) & MIICR_RCMD)) 693 break; 694 } 695 696 *data = readw(®s->MIIDATA); 697 698 enable_mii_autopoll(regs); 699 if (ww == W_MAX_TIMEOUT) 700 return -ETIMEDOUT; 701 return 0; 702 } 703 704 /** 705 * mii_check_media_mode - check media state 706 * @regs: velocity registers 707 * 708 * Check the current MII status and determine the link status 709 * accordingly 710 */ 711 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 712 { 713 u32 status = 0; 714 u16 ANAR; 715 716 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 717 status |= VELOCITY_LINK_FAIL; 718 719 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 720 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 721 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 722 status |= (VELOCITY_SPEED_1000); 723 else { 724 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 725 if (ANAR & ADVERTISE_100FULL) 726 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 727 else if (ANAR & ADVERTISE_100HALF) 728 status |= VELOCITY_SPEED_100; 729 else if (ANAR & ADVERTISE_10FULL) 730 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 731 else 732 status |= (VELOCITY_SPEED_10); 733 } 734 735 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 736 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 737 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 738 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 739 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 740 status |= VELOCITY_AUTONEG_ENABLE; 741 } 742 } 743 744 return status; 745 } 746 747 /** 748 * velocity_mii_write - write MII data 749 * @regs: velocity registers 750 * @index: MII register index 751 * @data: 16bit data for the MII register 752 * 753 * Perform a single write to an MII 16bit register. Returns zero 754 * on success or -ETIMEDOUT if the PHY did not respond. 755 */ 756 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 757 { 758 u16 ww; 759 760 /* 761 * Disable MIICR_MAUTO, so that mii addr can be set normally 762 */ 763 safe_disable_mii_autopoll(regs); 764 765 /* MII reg offset */ 766 writeb(mii_addr, ®s->MIIADR); 767 /* set MII data */ 768 writew(data, ®s->MIIDATA); 769 770 /* turn on MIICR_WCMD */ 771 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 772 773 /* W_MAX_TIMEOUT is the timeout period */ 774 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 775 udelay(5); 776 if (!(readb(®s->MIICR) & MIICR_WCMD)) 777 break; 778 } 779 enable_mii_autopoll(regs); 780 781 if (ww == W_MAX_TIMEOUT) 782 return -ETIMEDOUT; 783 return 0; 784 } 785 786 /** 787 * set_mii_flow_control - flow control setup 788 * @vptr: velocity interface 789 * 790 * Set up the flow control on this interface according to 791 * the supplied user/eeprom options. 792 */ 793 static void set_mii_flow_control(struct velocity_info *vptr) 794 { 795 /*Enable or Disable PAUSE in ANAR */ 796 switch (vptr->options.flow_cntl) { 797 case FLOW_CNTL_TX: 798 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 799 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 800 break; 801 802 case FLOW_CNTL_RX: 803 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 804 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 805 break; 806 807 case FLOW_CNTL_TX_RX: 808 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 809 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 810 break; 811 812 case FLOW_CNTL_DISABLE: 813 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 814 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 815 break; 816 default: 817 break; 818 } 819 } 820 821 /** 822 * mii_set_auto_on - autonegotiate on 823 * @vptr: velocity 824 * 825 * Enable autonegotation on this interface 826 */ 827 static void mii_set_auto_on(struct velocity_info *vptr) 828 { 829 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 830 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 831 else 832 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 833 } 834 835 static u32 check_connection_type(struct mac_regs __iomem *regs) 836 { 837 u32 status = 0; 838 u8 PHYSR0; 839 u16 ANAR; 840 PHYSR0 = readb(®s->PHYSR0); 841 842 /* 843 if (!(PHYSR0 & PHYSR0_LINKGD)) 844 status|=VELOCITY_LINK_FAIL; 845 */ 846 847 if (PHYSR0 & PHYSR0_FDPX) 848 status |= VELOCITY_DUPLEX_FULL; 849 850 if (PHYSR0 & PHYSR0_SPDG) 851 status |= VELOCITY_SPEED_1000; 852 else if (PHYSR0 & PHYSR0_SPD10) 853 status |= VELOCITY_SPEED_10; 854 else 855 status |= VELOCITY_SPEED_100; 856 857 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 858 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 859 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 860 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 861 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 862 status |= VELOCITY_AUTONEG_ENABLE; 863 } 864 } 865 866 return status; 867 } 868 869 /** 870 * velocity_set_media_mode - set media mode 871 * @mii_status: old MII link state 872 * 873 * Check the media link state and configure the flow control 874 * PHY and also velocity hardware setup accordingly. In particular 875 * we need to set up CD polling and frame bursting. 876 */ 877 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 878 { 879 u32 curr_status; 880 struct mac_regs __iomem *regs = vptr->mac_regs; 881 882 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 883 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 884 885 /* Set mii link status */ 886 set_mii_flow_control(vptr); 887 888 /* 889 Check if new status is consistent with current status 890 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 891 (mii_status==curr_status)) { 892 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 893 vptr->mii_status=check_connection_type(vptr->mac_regs); 894 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 895 return 0; 896 } 897 */ 898 899 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 900 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 901 902 /* 903 * If connection type is AUTO 904 */ 905 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 906 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 907 /* clear force MAC mode bit */ 908 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 909 /* set duplex mode of MAC according to duplex mode of MII */ 910 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 911 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 912 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 913 914 /* enable AUTO-NEGO mode */ 915 mii_set_auto_on(vptr); 916 } else { 917 u16 CTRL1000; 918 u16 ANAR; 919 u8 CHIPGCR; 920 921 /* 922 * 1. if it's 3119, disable frame bursting in halfduplex mode 923 * and enable it in fullduplex mode 924 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 925 * 3. only enable CD heart beat counter in 10HD mode 926 */ 927 928 /* set force MAC mode bit */ 929 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 930 931 CHIPGCR = readb(®s->CHIPGCR); 932 933 if (mii_status & VELOCITY_SPEED_1000) 934 CHIPGCR |= CHIPGCR_FCGMII; 935 else 936 CHIPGCR &= ~CHIPGCR_FCGMII; 937 938 if (mii_status & VELOCITY_DUPLEX_FULL) { 939 CHIPGCR |= CHIPGCR_FCFDX; 940 writeb(CHIPGCR, ®s->CHIPGCR); 941 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 942 if (vptr->rev_id < REV_ID_VT3216_A0) 943 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 944 } else { 945 CHIPGCR &= ~CHIPGCR_FCFDX; 946 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 947 writeb(CHIPGCR, ®s->CHIPGCR); 948 if (vptr->rev_id < REV_ID_VT3216_A0) 949 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 950 } 951 952 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 953 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 954 if ((mii_status & VELOCITY_SPEED_1000) && 955 (mii_status & VELOCITY_DUPLEX_FULL)) { 956 CTRL1000 |= ADVERTISE_1000FULL; 957 } 958 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 959 960 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 961 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 962 else 963 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 964 965 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 966 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 967 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 968 if (mii_status & VELOCITY_SPEED_100) { 969 if (mii_status & VELOCITY_DUPLEX_FULL) 970 ANAR |= ADVERTISE_100FULL; 971 else 972 ANAR |= ADVERTISE_100HALF; 973 } else if (mii_status & VELOCITY_SPEED_10) { 974 if (mii_status & VELOCITY_DUPLEX_FULL) 975 ANAR |= ADVERTISE_10FULL; 976 else 977 ANAR |= ADVERTISE_10HALF; 978 } 979 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 980 /* enable AUTO-NEGO mode */ 981 mii_set_auto_on(vptr); 982 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 983 } 984 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 985 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 986 return VELOCITY_LINK_CHANGE; 987 } 988 989 /** 990 * velocity_print_link_status - link status reporting 991 * @vptr: velocity to report on 992 * 993 * Turn the link status of the velocity card into a kernel log 994 * description of the new link state, detailing speed and duplex 995 * status 996 */ 997 static void velocity_print_link_status(struct velocity_info *vptr) 998 { 999 1000 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 1001 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name); 1002 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1003 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name); 1004 1005 if (vptr->mii_status & VELOCITY_SPEED_1000) 1006 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 1007 else if (vptr->mii_status & VELOCITY_SPEED_100) 1008 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 1009 else 1010 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1011 1012 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1013 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1014 else 1015 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1016 } else { 1017 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name); 1018 switch (vptr->options.spd_dpx) { 1019 case SPD_DPX_1000_FULL: 1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1021 break; 1022 case SPD_DPX_100_HALF: 1023 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1024 break; 1025 case SPD_DPX_100_FULL: 1026 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1027 break; 1028 case SPD_DPX_10_HALF: 1029 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1030 break; 1031 case SPD_DPX_10_FULL: 1032 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1033 break; 1034 default: 1035 break; 1036 } 1037 } 1038 } 1039 1040 /** 1041 * enable_flow_control_ability - flow control 1042 * @vptr: veloity to configure 1043 * 1044 * Set up flow control according to the flow control options 1045 * determined by the eeprom/configuration. 1046 */ 1047 static void enable_flow_control_ability(struct velocity_info *vptr) 1048 { 1049 1050 struct mac_regs __iomem *regs = vptr->mac_regs; 1051 1052 switch (vptr->options.flow_cntl) { 1053 1054 case FLOW_CNTL_DEFAULT: 1055 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1056 writel(CR0_FDXRFCEN, ®s->CR0Set); 1057 else 1058 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1059 1060 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1061 writel(CR0_FDXTFCEN, ®s->CR0Set); 1062 else 1063 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1064 break; 1065 1066 case FLOW_CNTL_TX: 1067 writel(CR0_FDXTFCEN, ®s->CR0Set); 1068 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1069 break; 1070 1071 case FLOW_CNTL_RX: 1072 writel(CR0_FDXRFCEN, ®s->CR0Set); 1073 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1074 break; 1075 1076 case FLOW_CNTL_TX_RX: 1077 writel(CR0_FDXTFCEN, ®s->CR0Set); 1078 writel(CR0_FDXRFCEN, ®s->CR0Set); 1079 break; 1080 1081 case FLOW_CNTL_DISABLE: 1082 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1083 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1084 break; 1085 1086 default: 1087 break; 1088 } 1089 1090 } 1091 1092 /** 1093 * velocity_soft_reset - soft reset 1094 * @vptr: velocity to reset 1095 * 1096 * Kick off a soft reset of the velocity adapter and then poll 1097 * until the reset sequence has completed before returning. 1098 */ 1099 static int velocity_soft_reset(struct velocity_info *vptr) 1100 { 1101 struct mac_regs __iomem *regs = vptr->mac_regs; 1102 int i = 0; 1103 1104 writel(CR0_SFRST, ®s->CR0Set); 1105 1106 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1107 udelay(5); 1108 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1109 break; 1110 } 1111 1112 if (i == W_MAX_TIMEOUT) { 1113 writel(CR0_FORSRST, ®s->CR0Set); 1114 /* FIXME: PCI POSTING */ 1115 /* delay 2ms */ 1116 mdelay(2); 1117 } 1118 return 0; 1119 } 1120 1121 /** 1122 * velocity_set_multi - filter list change callback 1123 * @dev: network device 1124 * 1125 * Called by the network layer when the filter lists need to change 1126 * for a velocity adapter. Reload the CAMs with the new address 1127 * filter ruleset. 1128 */ 1129 static void velocity_set_multi(struct net_device *dev) 1130 { 1131 struct velocity_info *vptr = netdev_priv(dev); 1132 struct mac_regs __iomem *regs = vptr->mac_regs; 1133 u8 rx_mode; 1134 int i; 1135 struct netdev_hw_addr *ha; 1136 1137 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1138 writel(0xffffffff, ®s->MARCAM[0]); 1139 writel(0xffffffff, ®s->MARCAM[4]); 1140 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1141 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1142 (dev->flags & IFF_ALLMULTI)) { 1143 writel(0xffffffff, ®s->MARCAM[0]); 1144 writel(0xffffffff, ®s->MARCAM[4]); 1145 rx_mode = (RCR_AM | RCR_AB); 1146 } else { 1147 int offset = MCAM_SIZE - vptr->multicast_limit; 1148 mac_get_cam_mask(regs, vptr->mCAMmask); 1149 1150 i = 0; 1151 netdev_for_each_mc_addr(ha, dev) { 1152 mac_set_cam(regs, i + offset, ha->addr); 1153 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1154 i++; 1155 } 1156 1157 mac_set_cam_mask(regs, vptr->mCAMmask); 1158 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1159 } 1160 if (dev->mtu > 1500) 1161 rx_mode |= RCR_AL; 1162 1163 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1164 1165 } 1166 1167 /* 1168 * MII access , media link mode setting functions 1169 */ 1170 1171 /** 1172 * mii_init - set up MII 1173 * @vptr: velocity adapter 1174 * @mii_status: links tatus 1175 * 1176 * Set up the PHY for the current link state. 1177 */ 1178 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1179 { 1180 u16 BMCR; 1181 1182 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1183 case PHYID_CICADA_CS8201: 1184 /* 1185 * Reset to hardware default 1186 */ 1187 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1188 /* 1189 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1190 * off it in NWay-forced half mode for NWay-forced v.s. 1191 * legacy-forced issue. 1192 */ 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1195 else 1196 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1197 /* 1198 * Turn on Link/Activity LED enable bit for CIS8201 1199 */ 1200 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1201 break; 1202 case PHYID_VT3216_32BIT: 1203 case PHYID_VT3216_64BIT: 1204 /* 1205 * Reset to hardware default 1206 */ 1207 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1208 /* 1209 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1210 * off it in NWay-forced half mode for NWay-forced v.s. 1211 * legacy-forced issue 1212 */ 1213 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1214 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 else 1216 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1217 break; 1218 1219 case PHYID_MARVELL_1000: 1220 case PHYID_MARVELL_1000S: 1221 /* 1222 * Assert CRS on Transmit 1223 */ 1224 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1225 /* 1226 * Reset to hardware default 1227 */ 1228 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1229 break; 1230 default: 1231 ; 1232 } 1233 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1234 if (BMCR & BMCR_ISOLATE) { 1235 BMCR &= ~BMCR_ISOLATE; 1236 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1237 } 1238 } 1239 1240 /** 1241 * setup_queue_timers - Setup interrupt timers 1242 * 1243 * Setup interrupt frequency during suppression (timeout if the frame 1244 * count isn't filled). 1245 */ 1246 static void setup_queue_timers(struct velocity_info *vptr) 1247 { 1248 /* Only for newer revisions */ 1249 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1250 u8 txqueue_timer = 0; 1251 u8 rxqueue_timer = 0; 1252 1253 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1254 VELOCITY_SPEED_100)) { 1255 txqueue_timer = vptr->options.txqueue_timer; 1256 rxqueue_timer = vptr->options.rxqueue_timer; 1257 } 1258 1259 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1260 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1261 } 1262 } 1263 1264 /** 1265 * setup_adaptive_interrupts - Setup interrupt suppression 1266 * 1267 * @vptr velocity adapter 1268 * 1269 * The velocity is able to suppress interrupt during high interrupt load. 1270 * This function turns on that feature. 1271 */ 1272 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1273 { 1274 struct mac_regs __iomem *regs = vptr->mac_regs; 1275 u16 tx_intsup = vptr->options.tx_intsup; 1276 u16 rx_intsup = vptr->options.rx_intsup; 1277 1278 /* Setup default interrupt mask (will be changed below) */ 1279 vptr->int_mask = INT_MASK_DEF; 1280 1281 /* Set Tx Interrupt Suppression Threshold */ 1282 writeb(CAMCR_PS0, ®s->CAMCR); 1283 if (tx_intsup != 0) { 1284 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1285 ISR_PTX2I | ISR_PTX3I); 1286 writew(tx_intsup, ®s->ISRCTL); 1287 } else 1288 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1289 1290 /* Set Rx Interrupt Suppression Threshold */ 1291 writeb(CAMCR_PS1, ®s->CAMCR); 1292 if (rx_intsup != 0) { 1293 vptr->int_mask &= ~ISR_PRXI; 1294 writew(rx_intsup, ®s->ISRCTL); 1295 } else 1296 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1297 1298 /* Select page to interrupt hold timer */ 1299 writeb(0, ®s->CAMCR); 1300 } 1301 1302 /** 1303 * velocity_init_registers - initialise MAC registers 1304 * @vptr: velocity to init 1305 * @type: type of initialisation (hot or cold) 1306 * 1307 * Initialise the MAC on a reset or on first set up on the 1308 * hardware. 1309 */ 1310 static void velocity_init_registers(struct velocity_info *vptr, 1311 enum velocity_init_type type) 1312 { 1313 struct mac_regs __iomem *regs = vptr->mac_regs; 1314 int i, mii_status; 1315 1316 mac_wol_reset(regs); 1317 1318 switch (type) { 1319 case VELOCITY_INIT_RESET: 1320 case VELOCITY_INIT_WOL: 1321 1322 netif_stop_queue(vptr->dev); 1323 1324 /* 1325 * Reset RX to prevent RX pointer not on the 4X location 1326 */ 1327 velocity_rx_reset(vptr); 1328 mac_rx_queue_run(regs); 1329 mac_rx_queue_wake(regs); 1330 1331 mii_status = velocity_get_opt_media_mode(vptr); 1332 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1333 velocity_print_link_status(vptr); 1334 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1335 netif_wake_queue(vptr->dev); 1336 } 1337 1338 enable_flow_control_ability(vptr); 1339 1340 mac_clear_isr(regs); 1341 writel(CR0_STOP, ®s->CR0Clr); 1342 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1343 ®s->CR0Set); 1344 1345 break; 1346 1347 case VELOCITY_INIT_COLD: 1348 default: 1349 /* 1350 * Do reset 1351 */ 1352 velocity_soft_reset(vptr); 1353 mdelay(5); 1354 1355 mac_eeprom_reload(regs); 1356 for (i = 0; i < 6; i++) 1357 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i])); 1358 1359 /* 1360 * clear Pre_ACPI bit. 1361 */ 1362 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1363 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1364 mac_set_dma_length(regs, vptr->options.DMA_length); 1365 1366 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1367 /* 1368 * Back off algorithm use original IEEE standard 1369 */ 1370 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1371 1372 /* 1373 * Init CAM filter 1374 */ 1375 velocity_init_cam_filter(vptr); 1376 1377 /* 1378 * Set packet filter: Receive directed and broadcast address 1379 */ 1380 velocity_set_multi(vptr->dev); 1381 1382 /* 1383 * Enable MII auto-polling 1384 */ 1385 enable_mii_autopoll(regs); 1386 1387 setup_adaptive_interrupts(vptr); 1388 1389 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1390 writew(vptr->options.numrx - 1, ®s->RDCSize); 1391 mac_rx_queue_run(regs); 1392 mac_rx_queue_wake(regs); 1393 1394 writew(vptr->options.numtx - 1, ®s->TDCSize); 1395 1396 for (i = 0; i < vptr->tx.numq; i++) { 1397 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1398 mac_tx_queue_run(regs, i); 1399 } 1400 1401 init_flow_control_register(vptr); 1402 1403 writel(CR0_STOP, ®s->CR0Clr); 1404 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1405 1406 mii_status = velocity_get_opt_media_mode(vptr); 1407 netif_stop_queue(vptr->dev); 1408 1409 mii_init(vptr, mii_status); 1410 1411 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1412 velocity_print_link_status(vptr); 1413 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1414 netif_wake_queue(vptr->dev); 1415 } 1416 1417 enable_flow_control_ability(vptr); 1418 mac_hw_mibs_init(regs); 1419 mac_write_int_mask(vptr->int_mask, regs); 1420 mac_clear_isr(regs); 1421 1422 } 1423 } 1424 1425 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1426 { 1427 struct mac_regs __iomem *regs = vptr->mac_regs; 1428 int avail, dirty, unusable; 1429 1430 /* 1431 * RD number must be equal to 4X per hardware spec 1432 * (programming guide rev 1.20, p.13) 1433 */ 1434 if (vptr->rx.filled < 4) 1435 return; 1436 1437 wmb(); 1438 1439 unusable = vptr->rx.filled & 0x0003; 1440 dirty = vptr->rx.dirty - unusable; 1441 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1442 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1443 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1444 } 1445 1446 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1447 vptr->rx.filled = unusable; 1448 } 1449 1450 /** 1451 * velocity_init_dma_rings - set up DMA rings 1452 * @vptr: Velocity to set up 1453 * 1454 * Allocate PCI mapped DMA rings for the receive and transmit layer 1455 * to use. 1456 */ 1457 static int velocity_init_dma_rings(struct velocity_info *vptr) 1458 { 1459 struct velocity_opt *opt = &vptr->options; 1460 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1461 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1462 struct pci_dev *pdev = vptr->pdev; 1463 dma_addr_t pool_dma; 1464 void *pool; 1465 unsigned int i; 1466 1467 /* 1468 * Allocate all RD/TD rings a single pool. 1469 * 1470 * pci_alloc_consistent() fulfills the requirement for 64 bytes 1471 * alignment 1472 */ 1473 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq + 1474 rx_ring_size, &pool_dma); 1475 if (!pool) { 1476 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n", 1477 vptr->dev->name); 1478 return -ENOMEM; 1479 } 1480 1481 vptr->rx.ring = pool; 1482 vptr->rx.pool_dma = pool_dma; 1483 1484 pool += rx_ring_size; 1485 pool_dma += rx_ring_size; 1486 1487 for (i = 0; i < vptr->tx.numq; i++) { 1488 vptr->tx.rings[i] = pool; 1489 vptr->tx.pool_dma[i] = pool_dma; 1490 pool += tx_ring_size; 1491 pool_dma += tx_ring_size; 1492 } 1493 1494 return 0; 1495 } 1496 1497 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1498 { 1499 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1500 } 1501 1502 /** 1503 * velocity_alloc_rx_buf - allocate aligned receive buffer 1504 * @vptr: velocity 1505 * @idx: ring index 1506 * 1507 * Allocate a new full sized buffer for the reception of a frame and 1508 * map it into PCI space for the hardware to use. The hardware 1509 * requires *64* byte alignment of the buffer which makes life 1510 * less fun than would be ideal. 1511 */ 1512 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1513 { 1514 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1515 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1516 1517 rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64); 1518 if (rd_info->skb == NULL) 1519 return -ENOMEM; 1520 1521 /* 1522 * Do the gymnastics to get the buffer head for data at 1523 * 64byte alignment. 1524 */ 1525 skb_reserve(rd_info->skb, 1526 64 - ((unsigned long) rd_info->skb->data & 63)); 1527 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, 1528 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE); 1529 1530 /* 1531 * Fill in the descriptor to match 1532 */ 1533 1534 *((u32 *) & (rd->rdesc0)) = 0; 1535 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1536 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1537 rd->pa_high = 0; 1538 return 0; 1539 } 1540 1541 1542 static int velocity_rx_refill(struct velocity_info *vptr) 1543 { 1544 int dirty = vptr->rx.dirty, done = 0; 1545 1546 do { 1547 struct rx_desc *rd = vptr->rx.ring + dirty; 1548 1549 /* Fine for an all zero Rx desc at init time as well */ 1550 if (rd->rdesc0.len & OWNED_BY_NIC) 1551 break; 1552 1553 if (!vptr->rx.info[dirty].skb) { 1554 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1555 break; 1556 } 1557 done++; 1558 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1559 } while (dirty != vptr->rx.curr); 1560 1561 if (done) { 1562 vptr->rx.dirty = dirty; 1563 vptr->rx.filled += done; 1564 } 1565 1566 return done; 1567 } 1568 1569 /** 1570 * velocity_free_rd_ring - free receive ring 1571 * @vptr: velocity to clean up 1572 * 1573 * Free the receive buffers for each ring slot and any 1574 * attached socket buffers that need to go away. 1575 */ 1576 static void velocity_free_rd_ring(struct velocity_info *vptr) 1577 { 1578 int i; 1579 1580 if (vptr->rx.info == NULL) 1581 return; 1582 1583 for (i = 0; i < vptr->options.numrx; i++) { 1584 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1585 struct rx_desc *rd = vptr->rx.ring + i; 1586 1587 memset(rd, 0, sizeof(*rd)); 1588 1589 if (!rd_info->skb) 1590 continue; 1591 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz, 1592 PCI_DMA_FROMDEVICE); 1593 rd_info->skb_dma = 0; 1594 1595 dev_kfree_skb(rd_info->skb); 1596 rd_info->skb = NULL; 1597 } 1598 1599 kfree(vptr->rx.info); 1600 vptr->rx.info = NULL; 1601 } 1602 1603 /** 1604 * velocity_init_rd_ring - set up receive ring 1605 * @vptr: velocity to configure 1606 * 1607 * Allocate and set up the receive buffers for each ring slot and 1608 * assign them to the network adapter. 1609 */ 1610 static int velocity_init_rd_ring(struct velocity_info *vptr) 1611 { 1612 int ret = -ENOMEM; 1613 1614 vptr->rx.info = kcalloc(vptr->options.numrx, 1615 sizeof(struct velocity_rd_info), GFP_KERNEL); 1616 if (!vptr->rx.info) 1617 goto out; 1618 1619 velocity_init_rx_ring_indexes(vptr); 1620 1621 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1622 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1623 "%s: failed to allocate RX buffer.\n", vptr->dev->name); 1624 velocity_free_rd_ring(vptr); 1625 goto out; 1626 } 1627 1628 ret = 0; 1629 out: 1630 return ret; 1631 } 1632 1633 /** 1634 * velocity_init_td_ring - set up transmit ring 1635 * @vptr: velocity 1636 * 1637 * Set up the transmit ring and chain the ring pointers together. 1638 * Returns zero on success or a negative posix errno code for 1639 * failure. 1640 */ 1641 static int velocity_init_td_ring(struct velocity_info *vptr) 1642 { 1643 int j; 1644 1645 /* Init the TD ring entries */ 1646 for (j = 0; j < vptr->tx.numq; j++) { 1647 1648 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1649 sizeof(struct velocity_td_info), 1650 GFP_KERNEL); 1651 if (!vptr->tx.infos[j]) { 1652 while (--j >= 0) 1653 kfree(vptr->tx.infos[j]); 1654 return -ENOMEM; 1655 } 1656 1657 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1658 } 1659 return 0; 1660 } 1661 1662 /** 1663 * velocity_free_dma_rings - free PCI ring pointers 1664 * @vptr: Velocity to free from 1665 * 1666 * Clean up the PCI ring buffers allocated to this velocity. 1667 */ 1668 static void velocity_free_dma_rings(struct velocity_info *vptr) 1669 { 1670 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1671 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1672 1673 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma); 1674 } 1675 1676 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1677 { 1678 int ret; 1679 1680 velocity_set_rxbufsize(vptr, mtu); 1681 1682 ret = velocity_init_dma_rings(vptr); 1683 if (ret < 0) 1684 goto out; 1685 1686 ret = velocity_init_rd_ring(vptr); 1687 if (ret < 0) 1688 goto err_free_dma_rings_0; 1689 1690 ret = velocity_init_td_ring(vptr); 1691 if (ret < 0) 1692 goto err_free_rd_ring_1; 1693 out: 1694 return ret; 1695 1696 err_free_rd_ring_1: 1697 velocity_free_rd_ring(vptr); 1698 err_free_dma_rings_0: 1699 velocity_free_dma_rings(vptr); 1700 goto out; 1701 } 1702 1703 /** 1704 * velocity_free_tx_buf - free transmit buffer 1705 * @vptr: velocity 1706 * @tdinfo: buffer 1707 * 1708 * Release an transmit buffer. If the buffer was preallocated then 1709 * recycle it, if not then unmap the buffer. 1710 */ 1711 static void velocity_free_tx_buf(struct velocity_info *vptr, 1712 struct velocity_td_info *tdinfo, struct tx_desc *td) 1713 { 1714 struct sk_buff *skb = tdinfo->skb; 1715 1716 /* 1717 * Don't unmap the pre-allocated tx_bufs 1718 */ 1719 if (tdinfo->skb_dma) { 1720 int i; 1721 1722 for (i = 0; i < tdinfo->nskb_dma; i++) { 1723 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1724 1725 /* For scatter-gather */ 1726 if (skb_shinfo(skb)->nr_frags > 0) 1727 pktlen = max_t(size_t, pktlen, 1728 td->td_buf[i].size & ~TD_QUEUE); 1729 1730 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], 1731 le16_to_cpu(pktlen), PCI_DMA_TODEVICE); 1732 } 1733 } 1734 dev_kfree_skb_irq(skb); 1735 tdinfo->skb = NULL; 1736 } 1737 1738 /* 1739 * FIXME: could we merge this with velocity_free_tx_buf ? 1740 */ 1741 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1742 int q, int n) 1743 { 1744 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1745 int i; 1746 1747 if (td_info == NULL) 1748 return; 1749 1750 if (td_info->skb) { 1751 for (i = 0; i < td_info->nskb_dma; i++) { 1752 if (td_info->skb_dma[i]) { 1753 pci_unmap_single(vptr->pdev, td_info->skb_dma[i], 1754 td_info->skb->len, PCI_DMA_TODEVICE); 1755 td_info->skb_dma[i] = 0; 1756 } 1757 } 1758 dev_kfree_skb(td_info->skb); 1759 td_info->skb = NULL; 1760 } 1761 } 1762 1763 /** 1764 * velocity_free_td_ring - free td ring 1765 * @vptr: velocity 1766 * 1767 * Free up the transmit ring for this particular velocity adapter. 1768 * We free the ring contents but not the ring itself. 1769 */ 1770 static void velocity_free_td_ring(struct velocity_info *vptr) 1771 { 1772 int i, j; 1773 1774 for (j = 0; j < vptr->tx.numq; j++) { 1775 if (vptr->tx.infos[j] == NULL) 1776 continue; 1777 for (i = 0; i < vptr->options.numtx; i++) 1778 velocity_free_td_ring_entry(vptr, j, i); 1779 1780 kfree(vptr->tx.infos[j]); 1781 vptr->tx.infos[j] = NULL; 1782 } 1783 } 1784 1785 static void velocity_free_rings(struct velocity_info *vptr) 1786 { 1787 velocity_free_td_ring(vptr); 1788 velocity_free_rd_ring(vptr); 1789 velocity_free_dma_rings(vptr); 1790 } 1791 1792 /** 1793 * velocity_error - handle error from controller 1794 * @vptr: velocity 1795 * @status: card status 1796 * 1797 * Process an error report from the hardware and attempt to recover 1798 * the card itself. At the moment we cannot recover from some 1799 * theoretically impossible errors but this could be fixed using 1800 * the pci_device_failed logic to bounce the hardware 1801 * 1802 */ 1803 static void velocity_error(struct velocity_info *vptr, int status) 1804 { 1805 1806 if (status & ISR_TXSTLI) { 1807 struct mac_regs __iomem *regs = vptr->mac_regs; 1808 1809 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1810 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1811 writew(TRDCSR_RUN, ®s->TDCSRClr); 1812 netif_stop_queue(vptr->dev); 1813 1814 /* FIXME: port over the pci_device_failed code and use it 1815 here */ 1816 } 1817 1818 if (status & ISR_SRCI) { 1819 struct mac_regs __iomem *regs = vptr->mac_regs; 1820 int linked; 1821 1822 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1823 vptr->mii_status = check_connection_type(regs); 1824 1825 /* 1826 * If it is a 3119, disable frame bursting in 1827 * halfduplex mode and enable it in fullduplex 1828 * mode 1829 */ 1830 if (vptr->rev_id < REV_ID_VT3216_A0) { 1831 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1832 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1833 else 1834 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1835 } 1836 /* 1837 * Only enable CD heart beat counter in 10HD mode 1838 */ 1839 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1840 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1841 else 1842 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1843 1844 setup_queue_timers(vptr); 1845 } 1846 /* 1847 * Get link status from PHYSR0 1848 */ 1849 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1850 1851 if (linked) { 1852 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1853 netif_carrier_on(vptr->dev); 1854 } else { 1855 vptr->mii_status |= VELOCITY_LINK_FAIL; 1856 netif_carrier_off(vptr->dev); 1857 } 1858 1859 velocity_print_link_status(vptr); 1860 enable_flow_control_ability(vptr); 1861 1862 /* 1863 * Re-enable auto-polling because SRCI will disable 1864 * auto-polling 1865 */ 1866 1867 enable_mii_autopoll(regs); 1868 1869 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1870 netif_stop_queue(vptr->dev); 1871 else 1872 netif_wake_queue(vptr->dev); 1873 1874 } 1875 if (status & ISR_MIBFI) 1876 velocity_update_hw_mibs(vptr); 1877 if (status & ISR_LSTEI) 1878 mac_rx_queue_wake(vptr->mac_regs); 1879 } 1880 1881 /** 1882 * tx_srv - transmit interrupt service 1883 * @vptr; Velocity 1884 * 1885 * Scan the queues looking for transmitted packets that 1886 * we can complete and clean up. Update any statistics as 1887 * necessary/ 1888 */ 1889 static int velocity_tx_srv(struct velocity_info *vptr) 1890 { 1891 struct tx_desc *td; 1892 int qnum; 1893 int full = 0; 1894 int idx; 1895 int works = 0; 1896 struct velocity_td_info *tdinfo; 1897 struct net_device_stats *stats = &vptr->dev->stats; 1898 1899 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1900 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1901 idx = (idx + 1) % vptr->options.numtx) { 1902 1903 /* 1904 * Get Tx Descriptor 1905 */ 1906 td = &(vptr->tx.rings[qnum][idx]); 1907 tdinfo = &(vptr->tx.infos[qnum][idx]); 1908 1909 if (td->tdesc0.len & OWNED_BY_NIC) 1910 break; 1911 1912 if ((works++ > 15)) 1913 break; 1914 1915 if (td->tdesc0.TSR & TSR0_TERR) { 1916 stats->tx_errors++; 1917 stats->tx_dropped++; 1918 if (td->tdesc0.TSR & TSR0_CDH) 1919 stats->tx_heartbeat_errors++; 1920 if (td->tdesc0.TSR & TSR0_CRS) 1921 stats->tx_carrier_errors++; 1922 if (td->tdesc0.TSR & TSR0_ABT) 1923 stats->tx_aborted_errors++; 1924 if (td->tdesc0.TSR & TSR0_OWC) 1925 stats->tx_window_errors++; 1926 } else { 1927 stats->tx_packets++; 1928 stats->tx_bytes += tdinfo->skb->len; 1929 } 1930 velocity_free_tx_buf(vptr, tdinfo, td); 1931 vptr->tx.used[qnum]--; 1932 } 1933 vptr->tx.tail[qnum] = idx; 1934 1935 if (AVAIL_TD(vptr, qnum) < 1) 1936 full = 1; 1937 } 1938 /* 1939 * Look to see if we should kick the transmit network 1940 * layer for more work. 1941 */ 1942 if (netif_queue_stopped(vptr->dev) && (full == 0) && 1943 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1944 netif_wake_queue(vptr->dev); 1945 } 1946 return works; 1947 } 1948 1949 /** 1950 * velocity_rx_csum - checksum process 1951 * @rd: receive packet descriptor 1952 * @skb: network layer packet buffer 1953 * 1954 * Process the status bits for the received packet and determine 1955 * if the checksum was computed and verified by the hardware 1956 */ 1957 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1958 { 1959 skb_checksum_none_assert(skb); 1960 1961 if (rd->rdesc1.CSM & CSM_IPKT) { 1962 if (rd->rdesc1.CSM & CSM_IPOK) { 1963 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1964 (rd->rdesc1.CSM & CSM_UDPKT)) { 1965 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1966 return; 1967 } 1968 skb->ip_summed = CHECKSUM_UNNECESSARY; 1969 } 1970 } 1971 } 1972 1973 /** 1974 * velocity_rx_copy - in place Rx copy for small packets 1975 * @rx_skb: network layer packet buffer candidate 1976 * @pkt_size: received data size 1977 * @rd: receive packet descriptor 1978 * @dev: network device 1979 * 1980 * Replace the current skb that is scheduled for Rx processing by a 1981 * shorter, immediately allocated skb, if the received packet is small 1982 * enough. This function returns a negative value if the received 1983 * packet is too big or if memory is exhausted. 1984 */ 1985 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 1986 struct velocity_info *vptr) 1987 { 1988 int ret = -1; 1989 if (pkt_size < rx_copybreak) { 1990 struct sk_buff *new_skb; 1991 1992 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size); 1993 if (new_skb) { 1994 new_skb->ip_summed = rx_skb[0]->ip_summed; 1995 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 1996 *rx_skb = new_skb; 1997 ret = 0; 1998 } 1999 2000 } 2001 return ret; 2002 } 2003 2004 /** 2005 * velocity_iph_realign - IP header alignment 2006 * @vptr: velocity we are handling 2007 * @skb: network layer packet buffer 2008 * @pkt_size: received data size 2009 * 2010 * Align IP header on a 2 bytes boundary. This behavior can be 2011 * configured by the user. 2012 */ 2013 static inline void velocity_iph_realign(struct velocity_info *vptr, 2014 struct sk_buff *skb, int pkt_size) 2015 { 2016 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2017 memmove(skb->data + 2, skb->data, pkt_size); 2018 skb_reserve(skb, 2); 2019 } 2020 } 2021 2022 /** 2023 * velocity_receive_frame - received packet processor 2024 * @vptr: velocity we are handling 2025 * @idx: ring index 2026 * 2027 * A packet has arrived. We process the packet and if appropriate 2028 * pass the frame up the network stack 2029 */ 2030 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2031 { 2032 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int); 2033 struct net_device_stats *stats = &vptr->dev->stats; 2034 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2035 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2036 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2037 struct sk_buff *skb; 2038 2039 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) { 2040 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name); 2041 stats->rx_length_errors++; 2042 return -EINVAL; 2043 } 2044 2045 if (rd->rdesc0.RSR & RSR_MAR) 2046 stats->multicast++; 2047 2048 skb = rd_info->skb; 2049 2050 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma, 2051 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE); 2052 2053 /* 2054 * Drop frame not meeting IEEE 802.3 2055 */ 2056 2057 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) { 2058 if (rd->rdesc0.RSR & RSR_RL) { 2059 stats->rx_length_errors++; 2060 return -EINVAL; 2061 } 2062 } 2063 2064 pci_action = pci_dma_sync_single_for_device; 2065 2066 velocity_rx_csum(rd, skb); 2067 2068 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2069 velocity_iph_realign(vptr, skb, pkt_len); 2070 pci_action = pci_unmap_single; 2071 rd_info->skb = NULL; 2072 } 2073 2074 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz, 2075 PCI_DMA_FROMDEVICE); 2076 2077 skb_put(skb, pkt_len - 4); 2078 skb->protocol = eth_type_trans(skb, vptr->dev); 2079 2080 if (rd->rdesc0.RSR & RSR_DETAG) { 2081 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2082 2083 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2084 } 2085 netif_rx(skb); 2086 2087 stats->rx_bytes += pkt_len; 2088 stats->rx_packets++; 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * velocity_rx_srv - service RX interrupt 2095 * @vptr: velocity 2096 * 2097 * Walk the receive ring of the velocity adapter and remove 2098 * any received packets from the receive queue. Hand the ring 2099 * slots back to the adapter for reuse. 2100 */ 2101 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2102 { 2103 struct net_device_stats *stats = &vptr->dev->stats; 2104 int rd_curr = vptr->rx.curr; 2105 int works = 0; 2106 2107 while (works < budget_left) { 2108 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2109 2110 if (!vptr->rx.info[rd_curr].skb) 2111 break; 2112 2113 if (rd->rdesc0.len & OWNED_BY_NIC) 2114 break; 2115 2116 rmb(); 2117 2118 /* 2119 * Don't drop CE or RL error frame although RXOK is off 2120 */ 2121 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2122 if (velocity_receive_frame(vptr, rd_curr) < 0) 2123 stats->rx_dropped++; 2124 } else { 2125 if (rd->rdesc0.RSR & RSR_CRC) 2126 stats->rx_crc_errors++; 2127 if (rd->rdesc0.RSR & RSR_FAE) 2128 stats->rx_frame_errors++; 2129 2130 stats->rx_dropped++; 2131 } 2132 2133 rd->size |= RX_INTEN; 2134 2135 rd_curr++; 2136 if (rd_curr >= vptr->options.numrx) 2137 rd_curr = 0; 2138 works++; 2139 } 2140 2141 vptr->rx.curr = rd_curr; 2142 2143 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2144 velocity_give_many_rx_descs(vptr); 2145 2146 VAR_USED(stats); 2147 return works; 2148 } 2149 2150 static int velocity_poll(struct napi_struct *napi, int budget) 2151 { 2152 struct velocity_info *vptr = container_of(napi, 2153 struct velocity_info, napi); 2154 unsigned int rx_done; 2155 unsigned long flags; 2156 2157 spin_lock_irqsave(&vptr->lock, flags); 2158 /* 2159 * Do rx and tx twice for performance (taken from the VIA 2160 * out-of-tree driver). 2161 */ 2162 rx_done = velocity_rx_srv(vptr, budget / 2); 2163 velocity_tx_srv(vptr); 2164 rx_done += velocity_rx_srv(vptr, budget - rx_done); 2165 velocity_tx_srv(vptr); 2166 2167 /* If budget not fully consumed, exit the polling mode */ 2168 if (rx_done < budget) { 2169 napi_complete(napi); 2170 mac_enable_int(vptr->mac_regs); 2171 } 2172 spin_unlock_irqrestore(&vptr->lock, flags); 2173 2174 return rx_done; 2175 } 2176 2177 /** 2178 * velocity_intr - interrupt callback 2179 * @irq: interrupt number 2180 * @dev_instance: interrupting device 2181 * 2182 * Called whenever an interrupt is generated by the velocity 2183 * adapter IRQ line. We may not be the source of the interrupt 2184 * and need to identify initially if we are, and if not exit as 2185 * efficiently as possible. 2186 */ 2187 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2188 { 2189 struct net_device *dev = dev_instance; 2190 struct velocity_info *vptr = netdev_priv(dev); 2191 u32 isr_status; 2192 2193 spin_lock(&vptr->lock); 2194 isr_status = mac_read_isr(vptr->mac_regs); 2195 2196 /* Not us ? */ 2197 if (isr_status == 0) { 2198 spin_unlock(&vptr->lock); 2199 return IRQ_NONE; 2200 } 2201 2202 /* Ack the interrupt */ 2203 mac_write_isr(vptr->mac_regs, isr_status); 2204 2205 if (likely(napi_schedule_prep(&vptr->napi))) { 2206 mac_disable_int(vptr->mac_regs); 2207 __napi_schedule(&vptr->napi); 2208 } 2209 2210 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2211 velocity_error(vptr, isr_status); 2212 2213 spin_unlock(&vptr->lock); 2214 2215 return IRQ_HANDLED; 2216 } 2217 2218 /** 2219 * velocity_open - interface activation callback 2220 * @dev: network layer device to open 2221 * 2222 * Called when the network layer brings the interface up. Returns 2223 * a negative posix error code on failure, or zero on success. 2224 * 2225 * All the ring allocation and set up is done on open for this 2226 * adapter to minimise memory usage when inactive 2227 */ 2228 static int velocity_open(struct net_device *dev) 2229 { 2230 struct velocity_info *vptr = netdev_priv(dev); 2231 int ret; 2232 2233 ret = velocity_init_rings(vptr, dev->mtu); 2234 if (ret < 0) 2235 goto out; 2236 2237 /* Ensure chip is running */ 2238 pci_set_power_state(vptr->pdev, PCI_D0); 2239 2240 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2241 2242 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED, 2243 dev->name, dev); 2244 if (ret < 0) { 2245 /* Power down the chip */ 2246 pci_set_power_state(vptr->pdev, PCI_D3hot); 2247 velocity_free_rings(vptr); 2248 goto out; 2249 } 2250 2251 velocity_give_many_rx_descs(vptr); 2252 2253 mac_enable_int(vptr->mac_regs); 2254 netif_start_queue(dev); 2255 napi_enable(&vptr->napi); 2256 vptr->flags |= VELOCITY_FLAGS_OPENED; 2257 out: 2258 return ret; 2259 } 2260 2261 /** 2262 * velocity_shutdown - shut down the chip 2263 * @vptr: velocity to deactivate 2264 * 2265 * Shuts down the internal operations of the velocity and 2266 * disables interrupts, autopolling, transmit and receive 2267 */ 2268 static void velocity_shutdown(struct velocity_info *vptr) 2269 { 2270 struct mac_regs __iomem *regs = vptr->mac_regs; 2271 mac_disable_int(regs); 2272 writel(CR0_STOP, ®s->CR0Set); 2273 writew(0xFFFF, ®s->TDCSRClr); 2274 writeb(0xFF, ®s->RDCSRClr); 2275 safe_disable_mii_autopoll(regs); 2276 mac_clear_isr(regs); 2277 } 2278 2279 /** 2280 * velocity_change_mtu - MTU change callback 2281 * @dev: network device 2282 * @new_mtu: desired MTU 2283 * 2284 * Handle requests from the networking layer for MTU change on 2285 * this interface. It gets called on a change by the network layer. 2286 * Return zero for success or negative posix error code. 2287 */ 2288 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2289 { 2290 struct velocity_info *vptr = netdev_priv(dev); 2291 int ret = 0; 2292 2293 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) { 2294 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n", 2295 vptr->dev->name); 2296 ret = -EINVAL; 2297 goto out_0; 2298 } 2299 2300 if (!netif_running(dev)) { 2301 dev->mtu = new_mtu; 2302 goto out_0; 2303 } 2304 2305 if (dev->mtu != new_mtu) { 2306 struct velocity_info *tmp_vptr; 2307 unsigned long flags; 2308 struct rx_info rx; 2309 struct tx_info tx; 2310 2311 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2312 if (!tmp_vptr) { 2313 ret = -ENOMEM; 2314 goto out_0; 2315 } 2316 2317 tmp_vptr->dev = dev; 2318 tmp_vptr->pdev = vptr->pdev; 2319 tmp_vptr->options = vptr->options; 2320 tmp_vptr->tx.numq = vptr->tx.numq; 2321 2322 ret = velocity_init_rings(tmp_vptr, new_mtu); 2323 if (ret < 0) 2324 goto out_free_tmp_vptr_1; 2325 2326 spin_lock_irqsave(&vptr->lock, flags); 2327 2328 netif_stop_queue(dev); 2329 velocity_shutdown(vptr); 2330 2331 rx = vptr->rx; 2332 tx = vptr->tx; 2333 2334 vptr->rx = tmp_vptr->rx; 2335 vptr->tx = tmp_vptr->tx; 2336 2337 tmp_vptr->rx = rx; 2338 tmp_vptr->tx = tx; 2339 2340 dev->mtu = new_mtu; 2341 2342 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2343 2344 velocity_give_many_rx_descs(vptr); 2345 2346 mac_enable_int(vptr->mac_regs); 2347 netif_start_queue(dev); 2348 2349 spin_unlock_irqrestore(&vptr->lock, flags); 2350 2351 velocity_free_rings(tmp_vptr); 2352 2353 out_free_tmp_vptr_1: 2354 kfree(tmp_vptr); 2355 } 2356 out_0: 2357 return ret; 2358 } 2359 2360 /** 2361 * velocity_mii_ioctl - MII ioctl handler 2362 * @dev: network device 2363 * @ifr: the ifreq block for the ioctl 2364 * @cmd: the command 2365 * 2366 * Process MII requests made via ioctl from the network layer. These 2367 * are used by tools like kudzu to interrogate the link state of the 2368 * hardware 2369 */ 2370 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2371 { 2372 struct velocity_info *vptr = netdev_priv(dev); 2373 struct mac_regs __iomem *regs = vptr->mac_regs; 2374 unsigned long flags; 2375 struct mii_ioctl_data *miidata = if_mii(ifr); 2376 int err; 2377 2378 switch (cmd) { 2379 case SIOCGMIIPHY: 2380 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2381 break; 2382 case SIOCGMIIREG: 2383 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2384 return -ETIMEDOUT; 2385 break; 2386 case SIOCSMIIREG: 2387 spin_lock_irqsave(&vptr->lock, flags); 2388 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2389 spin_unlock_irqrestore(&vptr->lock, flags); 2390 check_connection_type(vptr->mac_regs); 2391 if (err) 2392 return err; 2393 break; 2394 default: 2395 return -EOPNOTSUPP; 2396 } 2397 return 0; 2398 } 2399 2400 /** 2401 * velocity_ioctl - ioctl entry point 2402 * @dev: network device 2403 * @rq: interface request ioctl 2404 * @cmd: command code 2405 * 2406 * Called when the user issues an ioctl request to the network 2407 * device in question. The velocity interface supports MII. 2408 */ 2409 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2410 { 2411 struct velocity_info *vptr = netdev_priv(dev); 2412 int ret; 2413 2414 /* If we are asked for information and the device is power 2415 saving then we need to bring the device back up to talk to it */ 2416 2417 if (!netif_running(dev)) 2418 pci_set_power_state(vptr->pdev, PCI_D0); 2419 2420 switch (cmd) { 2421 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2422 case SIOCGMIIREG: /* Read MII PHY register. */ 2423 case SIOCSMIIREG: /* Write to MII PHY register. */ 2424 ret = velocity_mii_ioctl(dev, rq, cmd); 2425 break; 2426 2427 default: 2428 ret = -EOPNOTSUPP; 2429 } 2430 if (!netif_running(dev)) 2431 pci_set_power_state(vptr->pdev, PCI_D3hot); 2432 2433 2434 return ret; 2435 } 2436 2437 /** 2438 * velocity_get_status - statistics callback 2439 * @dev: network device 2440 * 2441 * Callback from the network layer to allow driver statistics 2442 * to be resynchronized with hardware collected state. In the 2443 * case of the velocity we need to pull the MIB counters from 2444 * the hardware into the counters before letting the network 2445 * layer display them. 2446 */ 2447 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2448 { 2449 struct velocity_info *vptr = netdev_priv(dev); 2450 2451 /* If the hardware is down, don't touch MII */ 2452 if (!netif_running(dev)) 2453 return &dev->stats; 2454 2455 spin_lock_irq(&vptr->lock); 2456 velocity_update_hw_mibs(vptr); 2457 spin_unlock_irq(&vptr->lock); 2458 2459 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2460 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2461 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2462 2463 // unsigned long rx_dropped; /* no space in linux buffers */ 2464 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2465 /* detailed rx_errors: */ 2466 // unsigned long rx_length_errors; 2467 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2468 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2469 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2470 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2471 // unsigned long rx_missed_errors; /* receiver missed packet */ 2472 2473 /* detailed tx_errors */ 2474 // unsigned long tx_fifo_errors; 2475 2476 return &dev->stats; 2477 } 2478 2479 /** 2480 * velocity_close - close adapter callback 2481 * @dev: network device 2482 * 2483 * Callback from the network layer when the velocity is being 2484 * deactivated by the network layer 2485 */ 2486 static int velocity_close(struct net_device *dev) 2487 { 2488 struct velocity_info *vptr = netdev_priv(dev); 2489 2490 napi_disable(&vptr->napi); 2491 netif_stop_queue(dev); 2492 velocity_shutdown(vptr); 2493 2494 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2495 velocity_get_ip(vptr); 2496 2497 free_irq(vptr->pdev->irq, dev); 2498 2499 velocity_free_rings(vptr); 2500 2501 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2502 return 0; 2503 } 2504 2505 /** 2506 * velocity_xmit - transmit packet callback 2507 * @skb: buffer to transmit 2508 * @dev: network device 2509 * 2510 * Called by the networ layer to request a packet is queued to 2511 * the velocity. Returns zero on success. 2512 */ 2513 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2514 struct net_device *dev) 2515 { 2516 struct velocity_info *vptr = netdev_priv(dev); 2517 int qnum = 0; 2518 struct tx_desc *td_ptr; 2519 struct velocity_td_info *tdinfo; 2520 unsigned long flags; 2521 int pktlen; 2522 int index, prev; 2523 int i = 0; 2524 2525 if (skb_padto(skb, ETH_ZLEN)) 2526 goto out; 2527 2528 /* The hardware can handle at most 7 memory segments, so merge 2529 * the skb if there are more */ 2530 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2531 kfree_skb(skb); 2532 return NETDEV_TX_OK; 2533 } 2534 2535 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2536 max_t(unsigned int, skb->len, ETH_ZLEN) : 2537 skb_headlen(skb); 2538 2539 spin_lock_irqsave(&vptr->lock, flags); 2540 2541 index = vptr->tx.curr[qnum]; 2542 td_ptr = &(vptr->tx.rings[qnum][index]); 2543 tdinfo = &(vptr->tx.infos[qnum][index]); 2544 2545 td_ptr->tdesc1.TCR = TCR0_TIC; 2546 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2547 2548 /* 2549 * Map the linear network buffer into PCI space and 2550 * add it to the transmit ring. 2551 */ 2552 tdinfo->skb = skb; 2553 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE); 2554 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2555 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2556 td_ptr->td_buf[0].pa_high = 0; 2557 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2558 2559 /* Handle fragments */ 2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2561 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2562 2563 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev, 2564 frag, 0, 2565 skb_frag_size(frag), 2566 DMA_TO_DEVICE); 2567 2568 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2569 td_ptr->td_buf[i + 1].pa_high = 0; 2570 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2571 } 2572 tdinfo->nskb_dma = i + 1; 2573 2574 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2575 2576 if (vlan_tx_tag_present(skb)) { 2577 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb)); 2578 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2579 } 2580 2581 /* 2582 * Handle hardware checksum 2583 */ 2584 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2585 const struct iphdr *ip = ip_hdr(skb); 2586 if (ip->protocol == IPPROTO_TCP) 2587 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2588 else if (ip->protocol == IPPROTO_UDP) 2589 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2590 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2591 } 2592 2593 prev = index - 1; 2594 if (prev < 0) 2595 prev = vptr->options.numtx - 1; 2596 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2597 vptr->tx.used[qnum]++; 2598 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2599 2600 if (AVAIL_TD(vptr, qnum) < 1) 2601 netif_stop_queue(dev); 2602 2603 td_ptr = &(vptr->tx.rings[qnum][prev]); 2604 td_ptr->td_buf[0].size |= TD_QUEUE; 2605 mac_tx_queue_wake(vptr->mac_regs, qnum); 2606 2607 spin_unlock_irqrestore(&vptr->lock, flags); 2608 out: 2609 return NETDEV_TX_OK; 2610 } 2611 2612 static const struct net_device_ops velocity_netdev_ops = { 2613 .ndo_open = velocity_open, 2614 .ndo_stop = velocity_close, 2615 .ndo_start_xmit = velocity_xmit, 2616 .ndo_get_stats = velocity_get_stats, 2617 .ndo_validate_addr = eth_validate_addr, 2618 .ndo_set_mac_address = eth_mac_addr, 2619 .ndo_set_rx_mode = velocity_set_multi, 2620 .ndo_change_mtu = velocity_change_mtu, 2621 .ndo_do_ioctl = velocity_ioctl, 2622 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2623 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2624 }; 2625 2626 /** 2627 * velocity_init_info - init private data 2628 * @pdev: PCI device 2629 * @vptr: Velocity info 2630 * @info: Board type 2631 * 2632 * Set up the initial velocity_info struct for the device that has been 2633 * discovered. 2634 */ 2635 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, 2636 const struct velocity_info_tbl *info) 2637 { 2638 memset(vptr, 0, sizeof(struct velocity_info)); 2639 2640 vptr->pdev = pdev; 2641 vptr->chip_id = info->chip_id; 2642 vptr->tx.numq = info->txqueue; 2643 vptr->multicast_limit = MCAM_SIZE; 2644 spin_lock_init(&vptr->lock); 2645 } 2646 2647 /** 2648 * velocity_get_pci_info - retrieve PCI info for device 2649 * @vptr: velocity device 2650 * @pdev: PCI device it matches 2651 * 2652 * Retrieve the PCI configuration space data that interests us from 2653 * the kernel PCI layer 2654 */ 2655 static int velocity_get_pci_info(struct velocity_info *vptr, 2656 struct pci_dev *pdev) 2657 { 2658 vptr->rev_id = pdev->revision; 2659 2660 pci_set_master(pdev); 2661 2662 vptr->ioaddr = pci_resource_start(pdev, 0); 2663 vptr->memaddr = pci_resource_start(pdev, 1); 2664 2665 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2666 dev_err(&pdev->dev, 2667 "region #0 is not an I/O resource, aborting.\n"); 2668 return -EINVAL; 2669 } 2670 2671 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2672 dev_err(&pdev->dev, 2673 "region #1 is an I/O resource, aborting.\n"); 2674 return -EINVAL; 2675 } 2676 2677 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2678 dev_err(&pdev->dev, "region #1 is too small.\n"); 2679 return -EINVAL; 2680 } 2681 vptr->pdev = pdev; 2682 2683 return 0; 2684 } 2685 2686 /** 2687 * velocity_print_info - per driver data 2688 * @vptr: velocity 2689 * 2690 * Print per driver data as the kernel driver finds Velocity 2691 * hardware 2692 */ 2693 static void velocity_print_info(struct velocity_info *vptr) 2694 { 2695 struct net_device *dev = vptr->dev; 2696 2697 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2698 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2699 dev->name, dev->dev_addr); 2700 } 2701 2702 static u32 velocity_get_link(struct net_device *dev) 2703 { 2704 struct velocity_info *vptr = netdev_priv(dev); 2705 struct mac_regs __iomem *regs = vptr->mac_regs; 2706 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2707 } 2708 2709 /** 2710 * velocity_found1 - set up discovered velocity card 2711 * @pdev: PCI device 2712 * @ent: PCI device table entry that matched 2713 * 2714 * Configure a discovered adapter from scratch. Return a negative 2715 * errno error code on failure paths. 2716 */ 2717 static int velocity_found1(struct pci_dev *pdev, 2718 const struct pci_device_id *ent) 2719 { 2720 static int first = 1; 2721 struct net_device *dev; 2722 int i; 2723 const char *drv_string; 2724 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data]; 2725 struct velocity_info *vptr; 2726 struct mac_regs __iomem *regs; 2727 int ret = -ENOMEM; 2728 2729 /* FIXME: this driver, like almost all other ethernet drivers, 2730 * can support more than MAX_UNITS. 2731 */ 2732 if (velocity_nics >= MAX_UNITS) { 2733 dev_notice(&pdev->dev, "already found %d NICs.\n", 2734 velocity_nics); 2735 return -ENODEV; 2736 } 2737 2738 dev = alloc_etherdev(sizeof(struct velocity_info)); 2739 if (!dev) 2740 goto out; 2741 2742 /* Chain it all together */ 2743 2744 SET_NETDEV_DEV(dev, &pdev->dev); 2745 vptr = netdev_priv(dev); 2746 2747 2748 if (first) { 2749 printk(KERN_INFO "%s Ver. %s\n", 2750 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2751 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2752 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2753 first = 0; 2754 } 2755 2756 velocity_init_info(pdev, vptr, info); 2757 2758 vptr->dev = dev; 2759 2760 ret = pci_enable_device(pdev); 2761 if (ret < 0) 2762 goto err_free_dev; 2763 2764 ret = velocity_get_pci_info(vptr, pdev); 2765 if (ret < 0) { 2766 /* error message already printed */ 2767 goto err_disable; 2768 } 2769 2770 ret = pci_request_regions(pdev, VELOCITY_NAME); 2771 if (ret < 0) { 2772 dev_err(&pdev->dev, "No PCI resources.\n"); 2773 goto err_disable; 2774 } 2775 2776 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2777 if (regs == NULL) { 2778 ret = -EIO; 2779 goto err_release_res; 2780 } 2781 2782 vptr->mac_regs = regs; 2783 2784 mac_wol_reset(regs); 2785 2786 for (i = 0; i < 6; i++) 2787 dev->dev_addr[i] = readb(®s->PAR[i]); 2788 2789 2790 drv_string = dev_driver_string(&pdev->dev); 2791 2792 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2793 2794 /* 2795 * Mask out the options cannot be set to the chip 2796 */ 2797 2798 vptr->options.flags &= info->flags; 2799 2800 /* 2801 * Enable the chip specified capbilities 2802 */ 2803 2804 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2805 2806 vptr->wol_opts = vptr->options.wol_opts; 2807 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2808 2809 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2810 2811 dev->netdev_ops = &velocity_netdev_ops; 2812 dev->ethtool_ops = &velocity_ethtool_ops; 2813 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT); 2814 2815 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2816 NETIF_F_HW_VLAN_CTAG_TX; 2817 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_FILTER | 2818 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_IP_CSUM; 2819 2820 ret = register_netdev(dev); 2821 if (ret < 0) 2822 goto err_iounmap; 2823 2824 if (!velocity_get_link(dev)) { 2825 netif_carrier_off(dev); 2826 vptr->mii_status |= VELOCITY_LINK_FAIL; 2827 } 2828 2829 velocity_print_info(vptr); 2830 pci_set_drvdata(pdev, dev); 2831 2832 /* and leave the chip powered down */ 2833 2834 pci_set_power_state(pdev, PCI_D3hot); 2835 velocity_nics++; 2836 out: 2837 return ret; 2838 2839 err_iounmap: 2840 iounmap(regs); 2841 err_release_res: 2842 pci_release_regions(pdev); 2843 err_disable: 2844 pci_disable_device(pdev); 2845 err_free_dev: 2846 free_netdev(dev); 2847 goto out; 2848 } 2849 2850 #ifdef CONFIG_PM 2851 /** 2852 * wol_calc_crc - WOL CRC 2853 * @pattern: data pattern 2854 * @mask_pattern: mask 2855 * 2856 * Compute the wake on lan crc hashes for the packet header 2857 * we are interested in. 2858 */ 2859 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2860 { 2861 u16 crc = 0xFFFF; 2862 u8 mask; 2863 int i, j; 2864 2865 for (i = 0; i < size; i++) { 2866 mask = mask_pattern[i]; 2867 2868 /* Skip this loop if the mask equals to zero */ 2869 if (mask == 0x00) 2870 continue; 2871 2872 for (j = 0; j < 8; j++) { 2873 if ((mask & 0x01) == 0) { 2874 mask >>= 1; 2875 continue; 2876 } 2877 mask >>= 1; 2878 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 2879 } 2880 } 2881 /* Finally, invert the result once to get the correct data */ 2882 crc = ~crc; 2883 return bitrev32(crc) >> 16; 2884 } 2885 2886 /** 2887 * velocity_set_wol - set up for wake on lan 2888 * @vptr: velocity to set WOL status on 2889 * 2890 * Set a card up for wake on lan either by unicast or by 2891 * ARP packet. 2892 * 2893 * FIXME: check static buffer is safe here 2894 */ 2895 static int velocity_set_wol(struct velocity_info *vptr) 2896 { 2897 struct mac_regs __iomem *regs = vptr->mac_regs; 2898 enum speed_opt spd_dpx = vptr->options.spd_dpx; 2899 static u8 buf[256]; 2900 int i; 2901 2902 static u32 mask_pattern[2][4] = { 2903 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 2904 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 2905 }; 2906 2907 writew(0xFFFF, ®s->WOLCRClr); 2908 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 2909 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 2910 2911 /* 2912 if (vptr->wol_opts & VELOCITY_WOL_PHY) 2913 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 2914 */ 2915 2916 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 2917 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 2918 2919 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 2920 struct arp_packet *arp = (struct arp_packet *) buf; 2921 u16 crc; 2922 memset(buf, 0, sizeof(struct arp_packet) + 7); 2923 2924 for (i = 0; i < 4; i++) 2925 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 2926 2927 arp->type = htons(ETH_P_ARP); 2928 arp->ar_op = htons(1); 2929 2930 memcpy(arp->ar_tip, vptr->ip_addr, 4); 2931 2932 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 2933 (u8 *) & mask_pattern[0][0]); 2934 2935 writew(crc, ®s->PatternCRC[0]); 2936 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 2937 } 2938 2939 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 2940 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 2941 2942 writew(0x0FFF, ®s->WOLSRClr); 2943 2944 if (spd_dpx == SPD_DPX_1000_FULL) 2945 goto mac_done; 2946 2947 if (spd_dpx != SPD_DPX_AUTO) 2948 goto advertise_done; 2949 2950 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 2951 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 2952 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 2953 2954 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 2955 } 2956 2957 if (vptr->mii_status & VELOCITY_SPEED_1000) 2958 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 2959 2960 advertise_done: 2961 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 2962 2963 { 2964 u8 GCR; 2965 GCR = readb(®s->CHIPGCR); 2966 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 2967 writeb(GCR, ®s->CHIPGCR); 2968 } 2969 2970 mac_done: 2971 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 2972 /* Turn on SWPTAG just before entering power mode */ 2973 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 2974 /* Go to bed ..... */ 2975 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * velocity_save_context - save registers 2982 * @vptr: velocity 2983 * @context: buffer for stored context 2984 * 2985 * Retrieve the current configuration from the velocity hardware 2986 * and stash it in the context structure, for use by the context 2987 * restore functions. This allows us to save things we need across 2988 * power down states 2989 */ 2990 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 2991 { 2992 struct mac_regs __iomem *regs = vptr->mac_regs; 2993 u16 i; 2994 u8 __iomem *ptr = (u8 __iomem *)regs; 2995 2996 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 2997 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 2998 2999 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3000 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3001 3002 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3003 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3004 3005 } 3006 3007 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state) 3008 { 3009 struct net_device *dev = pci_get_drvdata(pdev); 3010 struct velocity_info *vptr = netdev_priv(dev); 3011 unsigned long flags; 3012 3013 if (!netif_running(vptr->dev)) 3014 return 0; 3015 3016 netif_device_detach(vptr->dev); 3017 3018 spin_lock_irqsave(&vptr->lock, flags); 3019 pci_save_state(pdev); 3020 3021 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3022 velocity_get_ip(vptr); 3023 velocity_save_context(vptr, &vptr->context); 3024 velocity_shutdown(vptr); 3025 velocity_set_wol(vptr); 3026 pci_enable_wake(pdev, PCI_D3hot, 1); 3027 pci_set_power_state(pdev, PCI_D3hot); 3028 } else { 3029 velocity_save_context(vptr, &vptr->context); 3030 velocity_shutdown(vptr); 3031 pci_disable_device(pdev); 3032 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3033 } 3034 3035 spin_unlock_irqrestore(&vptr->lock, flags); 3036 return 0; 3037 } 3038 3039 /** 3040 * velocity_restore_context - restore registers 3041 * @vptr: velocity 3042 * @context: buffer for stored context 3043 * 3044 * Reload the register configuration from the velocity context 3045 * created by velocity_save_context. 3046 */ 3047 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3048 { 3049 struct mac_regs __iomem *regs = vptr->mac_regs; 3050 int i; 3051 u8 __iomem *ptr = (u8 __iomem *)regs; 3052 3053 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3054 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3055 3056 /* Just skip cr0 */ 3057 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3058 /* Clear */ 3059 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3060 /* Set */ 3061 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3062 } 3063 3064 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3065 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3066 3067 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3068 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3069 3070 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3071 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3072 } 3073 3074 static int velocity_resume(struct pci_dev *pdev) 3075 { 3076 struct net_device *dev = pci_get_drvdata(pdev); 3077 struct velocity_info *vptr = netdev_priv(dev); 3078 unsigned long flags; 3079 int i; 3080 3081 if (!netif_running(vptr->dev)) 3082 return 0; 3083 3084 pci_set_power_state(pdev, PCI_D0); 3085 pci_enable_wake(pdev, 0, 0); 3086 pci_restore_state(pdev); 3087 3088 mac_wol_reset(vptr->mac_regs); 3089 3090 spin_lock_irqsave(&vptr->lock, flags); 3091 velocity_restore_context(vptr, &vptr->context); 3092 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3093 mac_disable_int(vptr->mac_regs); 3094 3095 velocity_tx_srv(vptr); 3096 3097 for (i = 0; i < vptr->tx.numq; i++) { 3098 if (vptr->tx.used[i]) 3099 mac_tx_queue_wake(vptr->mac_regs, i); 3100 } 3101 3102 mac_enable_int(vptr->mac_regs); 3103 spin_unlock_irqrestore(&vptr->lock, flags); 3104 netif_device_attach(vptr->dev); 3105 3106 return 0; 3107 } 3108 #endif 3109 3110 /* 3111 * Definition for our device driver. The PCI layer interface 3112 * uses this to handle all our card discover and plugging 3113 */ 3114 static struct pci_driver velocity_driver = { 3115 .name = VELOCITY_NAME, 3116 .id_table = velocity_id_table, 3117 .probe = velocity_found1, 3118 .remove = velocity_remove1, 3119 #ifdef CONFIG_PM 3120 .suspend = velocity_suspend, 3121 .resume = velocity_resume, 3122 #endif 3123 }; 3124 3125 3126 /** 3127 * velocity_ethtool_up - pre hook for ethtool 3128 * @dev: network device 3129 * 3130 * Called before an ethtool operation. We need to make sure the 3131 * chip is out of D3 state before we poke at it. 3132 */ 3133 static int velocity_ethtool_up(struct net_device *dev) 3134 { 3135 struct velocity_info *vptr = netdev_priv(dev); 3136 if (!netif_running(dev)) 3137 pci_set_power_state(vptr->pdev, PCI_D0); 3138 return 0; 3139 } 3140 3141 /** 3142 * velocity_ethtool_down - post hook for ethtool 3143 * @dev: network device 3144 * 3145 * Called after an ethtool operation. Restore the chip back to D3 3146 * state if it isn't running. 3147 */ 3148 static void velocity_ethtool_down(struct net_device *dev) 3149 { 3150 struct velocity_info *vptr = netdev_priv(dev); 3151 if (!netif_running(dev)) 3152 pci_set_power_state(vptr->pdev, PCI_D3hot); 3153 } 3154 3155 static int velocity_get_settings(struct net_device *dev, 3156 struct ethtool_cmd *cmd) 3157 { 3158 struct velocity_info *vptr = netdev_priv(dev); 3159 struct mac_regs __iomem *regs = vptr->mac_regs; 3160 u32 status; 3161 status = check_connection_type(vptr->mac_regs); 3162 3163 cmd->supported = SUPPORTED_TP | 3164 SUPPORTED_Autoneg | 3165 SUPPORTED_10baseT_Half | 3166 SUPPORTED_10baseT_Full | 3167 SUPPORTED_100baseT_Half | 3168 SUPPORTED_100baseT_Full | 3169 SUPPORTED_1000baseT_Half | 3170 SUPPORTED_1000baseT_Full; 3171 3172 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3173 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3174 cmd->advertising |= 3175 ADVERTISED_10baseT_Half | 3176 ADVERTISED_10baseT_Full | 3177 ADVERTISED_100baseT_Half | 3178 ADVERTISED_100baseT_Full | 3179 ADVERTISED_1000baseT_Half | 3180 ADVERTISED_1000baseT_Full; 3181 } else { 3182 switch (vptr->options.spd_dpx) { 3183 case SPD_DPX_1000_FULL: 3184 cmd->advertising |= ADVERTISED_1000baseT_Full; 3185 break; 3186 case SPD_DPX_100_HALF: 3187 cmd->advertising |= ADVERTISED_100baseT_Half; 3188 break; 3189 case SPD_DPX_100_FULL: 3190 cmd->advertising |= ADVERTISED_100baseT_Full; 3191 break; 3192 case SPD_DPX_10_HALF: 3193 cmd->advertising |= ADVERTISED_10baseT_Half; 3194 break; 3195 case SPD_DPX_10_FULL: 3196 cmd->advertising |= ADVERTISED_10baseT_Full; 3197 break; 3198 default: 3199 break; 3200 } 3201 } 3202 3203 if (status & VELOCITY_SPEED_1000) 3204 ethtool_cmd_speed_set(cmd, SPEED_1000); 3205 else if (status & VELOCITY_SPEED_100) 3206 ethtool_cmd_speed_set(cmd, SPEED_100); 3207 else 3208 ethtool_cmd_speed_set(cmd, SPEED_10); 3209 3210 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 3211 cmd->port = PORT_TP; 3212 cmd->transceiver = XCVR_INTERNAL; 3213 cmd->phy_address = readb(®s->MIIADR) & 0x1F; 3214 3215 if (status & VELOCITY_DUPLEX_FULL) 3216 cmd->duplex = DUPLEX_FULL; 3217 else 3218 cmd->duplex = DUPLEX_HALF; 3219 3220 return 0; 3221 } 3222 3223 static int velocity_set_settings(struct net_device *dev, 3224 struct ethtool_cmd *cmd) 3225 { 3226 struct velocity_info *vptr = netdev_priv(dev); 3227 u32 speed = ethtool_cmd_speed(cmd); 3228 u32 curr_status; 3229 u32 new_status = 0; 3230 int ret = 0; 3231 3232 curr_status = check_connection_type(vptr->mac_regs); 3233 curr_status &= (~VELOCITY_LINK_FAIL); 3234 3235 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3236 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3237 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3238 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3239 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0); 3240 3241 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3242 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3243 ret = -EINVAL; 3244 } else { 3245 enum speed_opt spd_dpx; 3246 3247 if (new_status & VELOCITY_AUTONEG_ENABLE) 3248 spd_dpx = SPD_DPX_AUTO; 3249 else if ((new_status & VELOCITY_SPEED_1000) && 3250 (new_status & VELOCITY_DUPLEX_FULL)) { 3251 spd_dpx = SPD_DPX_1000_FULL; 3252 } else if (new_status & VELOCITY_SPEED_100) 3253 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3254 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3255 else if (new_status & VELOCITY_SPEED_10) 3256 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3257 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3258 else 3259 return -EOPNOTSUPP; 3260 3261 vptr->options.spd_dpx = spd_dpx; 3262 3263 velocity_set_media_mode(vptr, new_status); 3264 } 3265 3266 return ret; 3267 } 3268 3269 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3270 { 3271 struct velocity_info *vptr = netdev_priv(dev); 3272 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3273 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3274 strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info)); 3275 } 3276 3277 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3278 { 3279 struct velocity_info *vptr = netdev_priv(dev); 3280 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3281 wol->wolopts |= WAKE_MAGIC; 3282 /* 3283 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3284 wol.wolopts|=WAKE_PHY; 3285 */ 3286 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3287 wol->wolopts |= WAKE_UCAST; 3288 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3289 wol->wolopts |= WAKE_ARP; 3290 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3291 } 3292 3293 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3294 { 3295 struct velocity_info *vptr = netdev_priv(dev); 3296 3297 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3298 return -EFAULT; 3299 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3300 3301 /* 3302 if (wol.wolopts & WAKE_PHY) { 3303 vptr->wol_opts|=VELOCITY_WOL_PHY; 3304 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3305 } 3306 */ 3307 3308 if (wol->wolopts & WAKE_MAGIC) { 3309 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3310 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3311 } 3312 if (wol->wolopts & WAKE_UCAST) { 3313 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3314 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3315 } 3316 if (wol->wolopts & WAKE_ARP) { 3317 vptr->wol_opts |= VELOCITY_WOL_ARP; 3318 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3319 } 3320 memcpy(vptr->wol_passwd, wol->sopass, 6); 3321 return 0; 3322 } 3323 3324 static u32 velocity_get_msglevel(struct net_device *dev) 3325 { 3326 return msglevel; 3327 } 3328 3329 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3330 { 3331 msglevel = value; 3332 } 3333 3334 static int get_pending_timer_val(int val) 3335 { 3336 int mult_bits = val >> 6; 3337 int mult = 1; 3338 3339 switch (mult_bits) 3340 { 3341 case 1: 3342 mult = 4; break; 3343 case 2: 3344 mult = 16; break; 3345 case 3: 3346 mult = 64; break; 3347 case 0: 3348 default: 3349 break; 3350 } 3351 3352 return (val & 0x3f) * mult; 3353 } 3354 3355 static void set_pending_timer_val(int *val, u32 us) 3356 { 3357 u8 mult = 0; 3358 u8 shift = 0; 3359 3360 if (us >= 0x3f) { 3361 mult = 1; /* mult with 4 */ 3362 shift = 2; 3363 } 3364 if (us >= 0x3f * 4) { 3365 mult = 2; /* mult with 16 */ 3366 shift = 4; 3367 } 3368 if (us >= 0x3f * 16) { 3369 mult = 3; /* mult with 64 */ 3370 shift = 6; 3371 } 3372 3373 *val = (mult << 6) | ((us >> shift) & 0x3f); 3374 } 3375 3376 3377 static int velocity_get_coalesce(struct net_device *dev, 3378 struct ethtool_coalesce *ecmd) 3379 { 3380 struct velocity_info *vptr = netdev_priv(dev); 3381 3382 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3383 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3384 3385 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3386 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3387 3388 return 0; 3389 } 3390 3391 static int velocity_set_coalesce(struct net_device *dev, 3392 struct ethtool_coalesce *ecmd) 3393 { 3394 struct velocity_info *vptr = netdev_priv(dev); 3395 int max_us = 0x3f * 64; 3396 unsigned long flags; 3397 3398 /* 6 bits of */ 3399 if (ecmd->tx_coalesce_usecs > max_us) 3400 return -EINVAL; 3401 if (ecmd->rx_coalesce_usecs > max_us) 3402 return -EINVAL; 3403 3404 if (ecmd->tx_max_coalesced_frames > 0xff) 3405 return -EINVAL; 3406 if (ecmd->rx_max_coalesced_frames > 0xff) 3407 return -EINVAL; 3408 3409 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3410 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3411 3412 set_pending_timer_val(&vptr->options.rxqueue_timer, 3413 ecmd->rx_coalesce_usecs); 3414 set_pending_timer_val(&vptr->options.txqueue_timer, 3415 ecmd->tx_coalesce_usecs); 3416 3417 /* Setup the interrupt suppression and queue timers */ 3418 spin_lock_irqsave(&vptr->lock, flags); 3419 mac_disable_int(vptr->mac_regs); 3420 setup_adaptive_interrupts(vptr); 3421 setup_queue_timers(vptr); 3422 3423 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3424 mac_clear_isr(vptr->mac_regs); 3425 mac_enable_int(vptr->mac_regs); 3426 spin_unlock_irqrestore(&vptr->lock, flags); 3427 3428 return 0; 3429 } 3430 3431 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3432 "rx_all", 3433 "rx_ok", 3434 "tx_ok", 3435 "rx_error", 3436 "rx_runt_ok", 3437 "rx_runt_err", 3438 "rx_64", 3439 "tx_64", 3440 "rx_65_to_127", 3441 "tx_65_to_127", 3442 "rx_128_to_255", 3443 "tx_128_to_255", 3444 "rx_256_to_511", 3445 "tx_256_to_511", 3446 "rx_512_to_1023", 3447 "tx_512_to_1023", 3448 "rx_1024_to_1518", 3449 "tx_1024_to_1518", 3450 "tx_ether_collisions", 3451 "rx_crc_errors", 3452 "rx_jumbo", 3453 "tx_jumbo", 3454 "rx_mac_control_frames", 3455 "tx_mac_control_frames", 3456 "rx_frame_alignement_errors", 3457 "rx_long_ok", 3458 "rx_long_err", 3459 "tx_sqe_errors", 3460 "rx_no_buf", 3461 "rx_symbol_errors", 3462 "in_range_length_errors", 3463 "late_collisions" 3464 }; 3465 3466 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3467 { 3468 switch (sset) { 3469 case ETH_SS_STATS: 3470 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3471 break; 3472 } 3473 } 3474 3475 static int velocity_get_sset_count(struct net_device *dev, int sset) 3476 { 3477 switch (sset) { 3478 case ETH_SS_STATS: 3479 return ARRAY_SIZE(velocity_gstrings); 3480 default: 3481 return -EOPNOTSUPP; 3482 } 3483 } 3484 3485 static void velocity_get_ethtool_stats(struct net_device *dev, 3486 struct ethtool_stats *stats, u64 *data) 3487 { 3488 if (netif_running(dev)) { 3489 struct velocity_info *vptr = netdev_priv(dev); 3490 u32 *p = vptr->mib_counter; 3491 int i; 3492 3493 spin_lock_irq(&vptr->lock); 3494 velocity_update_hw_mibs(vptr); 3495 spin_unlock_irq(&vptr->lock); 3496 3497 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3498 *data++ = *p++; 3499 } 3500 } 3501 3502 static const struct ethtool_ops velocity_ethtool_ops = { 3503 .get_settings = velocity_get_settings, 3504 .set_settings = velocity_set_settings, 3505 .get_drvinfo = velocity_get_drvinfo, 3506 .get_wol = velocity_ethtool_get_wol, 3507 .set_wol = velocity_ethtool_set_wol, 3508 .get_msglevel = velocity_get_msglevel, 3509 .set_msglevel = velocity_set_msglevel, 3510 .get_link = velocity_get_link, 3511 .get_strings = velocity_get_strings, 3512 .get_sset_count = velocity_get_sset_count, 3513 .get_ethtool_stats = velocity_get_ethtool_stats, 3514 .get_coalesce = velocity_get_coalesce, 3515 .set_coalesce = velocity_set_coalesce, 3516 .begin = velocity_ethtool_up, 3517 .complete = velocity_ethtool_down 3518 }; 3519 3520 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3521 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3522 { 3523 struct in_ifaddr *ifa = ptr; 3524 struct net_device *dev = ifa->ifa_dev->dev; 3525 3526 if (dev_net(dev) == &init_net && 3527 dev->netdev_ops == &velocity_netdev_ops) 3528 velocity_get_ip(netdev_priv(dev)); 3529 3530 return NOTIFY_DONE; 3531 } 3532 3533 static struct notifier_block velocity_inetaddr_notifier = { 3534 .notifier_call = velocity_netdev_event, 3535 }; 3536 3537 static void velocity_register_notifier(void) 3538 { 3539 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3540 } 3541 3542 static void velocity_unregister_notifier(void) 3543 { 3544 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3545 } 3546 3547 #else 3548 3549 #define velocity_register_notifier() do {} while (0) 3550 #define velocity_unregister_notifier() do {} while (0) 3551 3552 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3553 3554 /** 3555 * velocity_init_module - load time function 3556 * 3557 * Called when the velocity module is loaded. The PCI driver 3558 * is registered with the PCI layer, and in turn will call 3559 * the probe functions for each velocity adapter installed 3560 * in the system. 3561 */ 3562 static int __init velocity_init_module(void) 3563 { 3564 int ret; 3565 3566 velocity_register_notifier(); 3567 ret = pci_register_driver(&velocity_driver); 3568 if (ret < 0) 3569 velocity_unregister_notifier(); 3570 return ret; 3571 } 3572 3573 /** 3574 * velocity_cleanup - module unload 3575 * 3576 * When the velocity hardware is unloaded this function is called. 3577 * It will clean up the notifiers and the unregister the PCI 3578 * driver interface for this hardware. This in turn cleans up 3579 * all discovered interfaces before returning from the function 3580 */ 3581 static void __exit velocity_cleanup_module(void) 3582 { 3583 velocity_unregister_notifier(); 3584 pci_unregister_driver(&velocity_driver); 3585 } 3586 3587 module_init(velocity_init_module); 3588 module_exit(velocity_cleanup_module); 3589