1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * This code is derived from the VIA reference driver (copyright message 4 * below) provided to Red Hat by VIA Networking Technologies, Inc. for 5 * addition to the Linux kernel. 6 * 7 * The code has been merged into one source file, cleaned up to follow 8 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned 9 * for 64bit hardware platforms. 10 * 11 * TODO 12 * rx_copybreak/alignment 13 * More testing 14 * 15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk> 16 * Additional fixes and clean up: Francois Romieu 17 * 18 * This source has not been verified for use in safety critical systems. 19 * 20 * Please direct queries about the revamped driver to the linux-kernel 21 * list not VIA. 22 * 23 * Original code: 24 * 25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. 26 * All rights reserved. 27 * 28 * Author: Chuang Liang-Shing, AJ Jiang 29 * 30 * Date: Jan 24, 2003 31 * 32 * MODULE_LICENSE("GPL"); 33 */ 34 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/bitops.h> 38 #include <linux/init.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/mm.h> 41 #include <linux/errno.h> 42 #include <linux/ioport.h> 43 #include <linux/pci.h> 44 #include <linux/kernel.h> 45 #include <linux/netdevice.h> 46 #include <linux/etherdevice.h> 47 #include <linux/skbuff.h> 48 #include <linux/delay.h> 49 #include <linux/timer.h> 50 #include <linux/slab.h> 51 #include <linux/interrupt.h> 52 #include <linux/string.h> 53 #include <linux/wait.h> 54 #include <linux/io.h> 55 #include <linux/if.h> 56 #include <linux/uaccess.h> 57 #include <linux/proc_fs.h> 58 #include <linux/of_address.h> 59 #include <linux/of_device.h> 60 #include <linux/of_irq.h> 61 #include <linux/inetdevice.h> 62 #include <linux/platform_device.h> 63 #include <linux/reboot.h> 64 #include <linux/ethtool.h> 65 #include <linux/mii.h> 66 #include <linux/in.h> 67 #include <linux/if_arp.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ip.h> 70 #include <linux/tcp.h> 71 #include <linux/udp.h> 72 #include <linux/crc-ccitt.h> 73 #include <linux/crc32.h> 74 75 #include "via-velocity.h" 76 77 enum velocity_bus_type { 78 BUS_PCI, 79 BUS_PLATFORM, 80 }; 81 82 static int velocity_nics; 83 static int msglevel = MSG_LEVEL_INFO; 84 85 static void velocity_set_power_state(struct velocity_info *vptr, char state) 86 { 87 void *addr = vptr->mac_regs; 88 89 if (vptr->pdev) 90 pci_set_power_state(vptr->pdev, state); 91 else 92 writeb(state, addr + 0x154); 93 } 94 95 /** 96 * mac_get_cam_mask - Read a CAM mask 97 * @regs: register block for this velocity 98 * @mask: buffer to store mask 99 * 100 * Fetch the mask bits of the selected CAM and store them into the 101 * provided mask buffer. 102 */ 103 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 104 { 105 int i; 106 107 /* Select CAM mask */ 108 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 109 110 writeb(0, ®s->CAMADDR); 111 112 /* read mask */ 113 for (i = 0; i < 8; i++) 114 *mask++ = readb(&(regs->MARCAM[i])); 115 116 /* disable CAMEN */ 117 writeb(0, ®s->CAMADDR); 118 119 /* Select mar */ 120 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 121 } 122 123 /** 124 * mac_set_cam_mask - Set a CAM mask 125 * @regs: register block for this velocity 126 * @mask: CAM mask to load 127 * 128 * Store a new mask into a CAM 129 */ 130 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 131 { 132 int i; 133 /* Select CAM mask */ 134 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 135 136 writeb(CAMADDR_CAMEN, ®s->CAMADDR); 137 138 for (i = 0; i < 8; i++) 139 writeb(*mask++, &(regs->MARCAM[i])); 140 141 /* disable CAMEN */ 142 writeb(0, ®s->CAMADDR); 143 144 /* Select mar */ 145 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 146 } 147 148 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask) 149 { 150 int i; 151 /* Select CAM mask */ 152 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 153 154 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, ®s->CAMADDR); 155 156 for (i = 0; i < 8; i++) 157 writeb(*mask++, &(regs->MARCAM[i])); 158 159 /* disable CAMEN */ 160 writeb(0, ®s->CAMADDR); 161 162 /* Select mar */ 163 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 164 } 165 166 /** 167 * mac_set_cam - set CAM data 168 * @regs: register block of this velocity 169 * @idx: Cam index 170 * @addr: 2 or 6 bytes of CAM data 171 * 172 * Load an address or vlan tag into a CAM 173 */ 174 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr) 175 { 176 int i; 177 178 /* Select CAM mask */ 179 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 180 181 idx &= (64 - 1); 182 183 writeb(CAMADDR_CAMEN | idx, ®s->CAMADDR); 184 185 for (i = 0; i < 6; i++) 186 writeb(*addr++, &(regs->MARCAM[i])); 187 188 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 189 190 udelay(10); 191 192 writeb(0, ®s->CAMADDR); 193 194 /* Select mar */ 195 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 196 } 197 198 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx, 199 const u8 *addr) 200 { 201 202 /* Select CAM mask */ 203 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 204 205 idx &= (64 - 1); 206 207 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, ®s->CAMADDR); 208 writew(*((u16 *) addr), ®s->MARCAM[0]); 209 210 BYTE_REG_BITS_ON(CAMCR_CAMWR, ®s->CAMCR); 211 212 udelay(10); 213 214 writeb(0, ®s->CAMADDR); 215 216 /* Select mar */ 217 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, ®s->CAMCR); 218 } 219 220 221 /** 222 * mac_wol_reset - reset WOL after exiting low power 223 * @regs: register block of this velocity 224 * 225 * Called after we drop out of wake on lan mode in order to 226 * reset the Wake on lan features. This function doesn't restore 227 * the rest of the logic from the result of sleep/wakeup 228 */ 229 static void mac_wol_reset(struct mac_regs __iomem *regs) 230 { 231 232 /* Turn off SWPTAG right after leaving power mode */ 233 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, ®s->STICKHW); 234 /* clear sticky bits */ 235 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 236 237 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, ®s->CHIPGCR); 238 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 239 /* disable force PME-enable */ 240 writeb(WOLCFG_PMEOVR, ®s->WOLCFGClr); 241 /* disable power-event config bit */ 242 writew(0xFFFF, ®s->WOLCRClr); 243 /* clear power status */ 244 writew(0xFFFF, ®s->WOLSRClr); 245 } 246 247 static const struct ethtool_ops velocity_ethtool_ops; 248 249 /* 250 Define module options 251 */ 252 253 MODULE_AUTHOR("VIA Networking Technologies, Inc."); 254 MODULE_LICENSE("GPL"); 255 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver"); 256 257 #define VELOCITY_PARAM(N, D) \ 258 static int N[MAX_UNITS] = OPTION_DEFAULT;\ 259 module_param_array(N, int, NULL, 0); \ 260 MODULE_PARM_DESC(N, D); 261 262 #define RX_DESC_MIN 64 263 #define RX_DESC_MAX 255 264 #define RX_DESC_DEF 64 265 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors"); 266 267 #define TX_DESC_MIN 16 268 #define TX_DESC_MAX 256 269 #define TX_DESC_DEF 64 270 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors"); 271 272 #define RX_THRESH_MIN 0 273 #define RX_THRESH_MAX 3 274 #define RX_THRESH_DEF 0 275 /* rx_thresh[] is used for controlling the receive fifo threshold. 276 0: indicate the rxfifo threshold is 128 bytes. 277 1: indicate the rxfifo threshold is 512 bytes. 278 2: indicate the rxfifo threshold is 1024 bytes. 279 3: indicate the rxfifo threshold is store & forward. 280 */ 281 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold"); 282 283 #define DMA_LENGTH_MIN 0 284 #define DMA_LENGTH_MAX 7 285 #define DMA_LENGTH_DEF 6 286 287 /* DMA_length[] is used for controlling the DMA length 288 0: 8 DWORDs 289 1: 16 DWORDs 290 2: 32 DWORDs 291 3: 64 DWORDs 292 4: 128 DWORDs 293 5: 256 DWORDs 294 6: SF(flush till emply) 295 7: SF(flush till emply) 296 */ 297 VELOCITY_PARAM(DMA_length, "DMA length"); 298 299 #define IP_ALIG_DEF 0 300 /* IP_byte_align[] is used for IP header DWORD byte aligned 301 0: indicate the IP header won't be DWORD byte aligned.(Default) . 302 1: indicate the IP header will be DWORD byte aligned. 303 In some environment, the IP header should be DWORD byte aligned, 304 or the packet will be droped when we receive it. (eg: IPVS) 305 */ 306 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned"); 307 308 #define FLOW_CNTL_DEF 1 309 #define FLOW_CNTL_MIN 1 310 #define FLOW_CNTL_MAX 5 311 312 /* flow_control[] is used for setting the flow control ability of NIC. 313 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR. 314 2: enable TX flow control. 315 3: enable RX flow control. 316 4: enable RX/TX flow control. 317 5: disable 318 */ 319 VELOCITY_PARAM(flow_control, "Enable flow control ability"); 320 321 #define MED_LNK_DEF 0 322 #define MED_LNK_MIN 0 323 #define MED_LNK_MAX 5 324 /* speed_duplex[] is used for setting the speed and duplex mode of NIC. 325 0: indicate autonegotiation for both speed and duplex mode 326 1: indicate 100Mbps half duplex mode 327 2: indicate 100Mbps full duplex mode 328 3: indicate 10Mbps half duplex mode 329 4: indicate 10Mbps full duplex mode 330 5: indicate 1000Mbps full duplex mode 331 332 Note: 333 if EEPROM have been set to the force mode, this option is ignored 334 by driver. 335 */ 336 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode"); 337 338 #define WOL_OPT_DEF 0 339 #define WOL_OPT_MIN 0 340 #define WOL_OPT_MAX 7 341 /* wol_opts[] is used for controlling wake on lan behavior. 342 0: Wake up if recevied a magic packet. (Default) 343 1: Wake up if link status is on/off. 344 2: Wake up if recevied an arp packet. 345 4: Wake up if recevied any unicast packet. 346 Those value can be sumed up to support more than one option. 347 */ 348 VELOCITY_PARAM(wol_opts, "Wake On Lan options"); 349 350 static int rx_copybreak = 200; 351 module_param(rx_copybreak, int, 0644); 352 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 353 354 /* 355 * Internal board variants. At the moment we have only one 356 */ 357 static struct velocity_info_tbl chip_info_table[] = { 358 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL}, 359 { } 360 }; 361 362 /* 363 * Describe the PCI device identifiers that we support in this 364 * device driver. Used for hotplug autoloading. 365 */ 366 367 static const struct pci_device_id velocity_pci_id_table[] = { 368 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) }, 369 { } 370 }; 371 372 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table); 373 374 /** 375 * Describe the OF device identifiers that we support in this 376 * device driver. Used for devicetree nodes. 377 */ 378 static const struct of_device_id velocity_of_ids[] = { 379 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] }, 380 { /* Sentinel */ }, 381 }; 382 MODULE_DEVICE_TABLE(of, velocity_of_ids); 383 384 /** 385 * get_chip_name - identifier to name 386 * @id: chip identifier 387 * 388 * Given a chip identifier return a suitable description. Returns 389 * a pointer a static string valid while the driver is loaded. 390 */ 391 static const char *get_chip_name(enum chip_type chip_id) 392 { 393 int i; 394 for (i = 0; chip_info_table[i].name != NULL; i++) 395 if (chip_info_table[i].chip_id == chip_id) 396 break; 397 return chip_info_table[i].name; 398 } 399 400 /** 401 * velocity_set_int_opt - parser for integer options 402 * @opt: pointer to option value 403 * @val: value the user requested (or -1 for default) 404 * @min: lowest value allowed 405 * @max: highest value allowed 406 * @def: default value 407 * @name: property name 408 * @dev: device name 409 * 410 * Set an integer property in the module options. This function does 411 * all the verification and checking as well as reporting so that 412 * we don't duplicate code for each option. 413 */ 414 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def, 415 char *name, const char *devname) 416 { 417 if (val == -1) 418 *opt = def; 419 else if (val < min || val > max) { 420 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n", 421 devname, name, min, max); 422 *opt = def; 423 } else { 424 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n", 425 devname, name, val); 426 *opt = val; 427 } 428 } 429 430 /** 431 * velocity_set_bool_opt - parser for boolean options 432 * @opt: pointer to option value 433 * @val: value the user requested (or -1 for default) 434 * @def: default value (yes/no) 435 * @flag: numeric value to set for true. 436 * @name: property name 437 * @dev: device name 438 * 439 * Set a boolean property in the module options. This function does 440 * all the verification and checking as well as reporting so that 441 * we don't duplicate code for each option. 442 */ 443 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, 444 char *name, const char *devname) 445 { 446 (*opt) &= (~flag); 447 if (val == -1) 448 *opt |= (def ? flag : 0); 449 else if (val < 0 || val > 1) { 450 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n", 451 devname, name); 452 *opt |= (def ? flag : 0); 453 } else { 454 printk(KERN_INFO "%s: set parameter %s to %s\n", 455 devname, name, val ? "TRUE" : "FALSE"); 456 *opt |= (val ? flag : 0); 457 } 458 } 459 460 /** 461 * velocity_get_options - set options on device 462 * @opts: option structure for the device 463 * @index: index of option to use in module options array 464 * @devname: device name 465 * 466 * Turn the module and command options into a single structure 467 * for the current device 468 */ 469 static void velocity_get_options(struct velocity_opt *opts, int index, 470 const char *devname) 471 { 472 473 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname); 474 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname); 475 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname); 476 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname); 477 478 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname); 479 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname); 480 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname); 481 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname); 482 opts->numrx = (opts->numrx & ~3); 483 } 484 485 /** 486 * velocity_init_cam_filter - initialise CAM 487 * @vptr: velocity to program 488 * 489 * Initialize the content addressable memory used for filters. Load 490 * appropriately according to the presence of VLAN 491 */ 492 static void velocity_init_cam_filter(struct velocity_info *vptr) 493 { 494 struct mac_regs __iomem *regs = vptr->mac_regs; 495 unsigned int vid, i = 0; 496 497 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */ 498 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, ®s->MCFG); 499 WORD_REG_BITS_ON(MCFG_VIDFR, ®s->MCFG); 500 501 /* Disable all CAMs */ 502 memset(vptr->vCAMmask, 0, sizeof(u8) * 8); 503 memset(vptr->mCAMmask, 0, sizeof(u8) * 8); 504 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 505 mac_set_cam_mask(regs, vptr->mCAMmask); 506 507 /* Enable VCAMs */ 508 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) { 509 mac_set_vlan_cam(regs, i, (u8 *) &vid); 510 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8); 511 if (++i >= VCAM_SIZE) 512 break; 513 } 514 mac_set_vlan_cam_mask(regs, vptr->vCAMmask); 515 } 516 517 static int velocity_vlan_rx_add_vid(struct net_device *dev, 518 __be16 proto, u16 vid) 519 { 520 struct velocity_info *vptr = netdev_priv(dev); 521 522 spin_lock_irq(&vptr->lock); 523 set_bit(vid, vptr->active_vlans); 524 velocity_init_cam_filter(vptr); 525 spin_unlock_irq(&vptr->lock); 526 return 0; 527 } 528 529 static int velocity_vlan_rx_kill_vid(struct net_device *dev, 530 __be16 proto, u16 vid) 531 { 532 struct velocity_info *vptr = netdev_priv(dev); 533 534 spin_lock_irq(&vptr->lock); 535 clear_bit(vid, vptr->active_vlans); 536 velocity_init_cam_filter(vptr); 537 spin_unlock_irq(&vptr->lock); 538 return 0; 539 } 540 541 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr) 542 { 543 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0; 544 } 545 546 /** 547 * velocity_rx_reset - handle a receive reset 548 * @vptr: velocity we are resetting 549 * 550 * Reset the ownership and status for the receive ring side. 551 * Hand all the receive queue to the NIC. 552 */ 553 static void velocity_rx_reset(struct velocity_info *vptr) 554 { 555 556 struct mac_regs __iomem *regs = vptr->mac_regs; 557 int i; 558 559 velocity_init_rx_ring_indexes(vptr); 560 561 /* 562 * Init state, all RD entries belong to the NIC 563 */ 564 for (i = 0; i < vptr->options.numrx; ++i) 565 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC; 566 567 writew(vptr->options.numrx, ®s->RBRDU); 568 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 569 writew(0, ®s->RDIdx); 570 writew(vptr->options.numrx - 1, ®s->RDCSize); 571 } 572 573 /** 574 * velocity_get_opt_media_mode - get media selection 575 * @vptr: velocity adapter 576 * 577 * Get the media mode stored in EEPROM or module options and load 578 * mii_status accordingly. The requested link state information 579 * is also returned. 580 */ 581 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr) 582 { 583 u32 status = 0; 584 585 switch (vptr->options.spd_dpx) { 586 case SPD_DPX_AUTO: 587 status = VELOCITY_AUTONEG_ENABLE; 588 break; 589 case SPD_DPX_100_FULL: 590 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL; 591 break; 592 case SPD_DPX_10_FULL: 593 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL; 594 break; 595 case SPD_DPX_100_HALF: 596 status = VELOCITY_SPEED_100; 597 break; 598 case SPD_DPX_10_HALF: 599 status = VELOCITY_SPEED_10; 600 break; 601 case SPD_DPX_1000_FULL: 602 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 603 break; 604 } 605 vptr->mii_status = status; 606 return status; 607 } 608 609 /** 610 * safe_disable_mii_autopoll - autopoll off 611 * @regs: velocity registers 612 * 613 * Turn off the autopoll and wait for it to disable on the chip 614 */ 615 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs) 616 { 617 u16 ww; 618 619 /* turn off MAUTO */ 620 writeb(0, ®s->MIICR); 621 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 622 udelay(1); 623 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 624 break; 625 } 626 } 627 628 /** 629 * enable_mii_autopoll - turn on autopolling 630 * @regs: velocity registers 631 * 632 * Enable the MII link status autopoll feature on the Velocity 633 * hardware. Wait for it to enable. 634 */ 635 static void enable_mii_autopoll(struct mac_regs __iomem *regs) 636 { 637 int ii; 638 639 writeb(0, &(regs->MIICR)); 640 writeb(MIIADR_SWMPL, ®s->MIIADR); 641 642 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 643 udelay(1); 644 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 645 break; 646 } 647 648 writeb(MIICR_MAUTO, ®s->MIICR); 649 650 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) { 651 udelay(1); 652 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, ®s->MIISR)) 653 break; 654 } 655 656 } 657 658 /** 659 * velocity_mii_read - read MII data 660 * @regs: velocity registers 661 * @index: MII register index 662 * @data: buffer for received data 663 * 664 * Perform a single read of an MII 16bit register. Returns zero 665 * on success or -ETIMEDOUT if the PHY did not respond. 666 */ 667 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data) 668 { 669 u16 ww; 670 671 /* 672 * Disable MIICR_MAUTO, so that mii addr can be set normally 673 */ 674 safe_disable_mii_autopoll(regs); 675 676 writeb(index, ®s->MIIADR); 677 678 BYTE_REG_BITS_ON(MIICR_RCMD, ®s->MIICR); 679 680 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 681 if (!(readb(®s->MIICR) & MIICR_RCMD)) 682 break; 683 } 684 685 *data = readw(®s->MIIDATA); 686 687 enable_mii_autopoll(regs); 688 if (ww == W_MAX_TIMEOUT) 689 return -ETIMEDOUT; 690 return 0; 691 } 692 693 /** 694 * mii_check_media_mode - check media state 695 * @regs: velocity registers 696 * 697 * Check the current MII status and determine the link status 698 * accordingly 699 */ 700 static u32 mii_check_media_mode(struct mac_regs __iomem *regs) 701 { 702 u32 status = 0; 703 u16 ANAR; 704 705 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs)) 706 status |= VELOCITY_LINK_FAIL; 707 708 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs)) 709 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL; 710 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs)) 711 status |= (VELOCITY_SPEED_1000); 712 else { 713 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 714 if (ANAR & ADVERTISE_100FULL) 715 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL); 716 else if (ANAR & ADVERTISE_100HALF) 717 status |= VELOCITY_SPEED_100; 718 else if (ANAR & ADVERTISE_10FULL) 719 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL); 720 else 721 status |= (VELOCITY_SPEED_10); 722 } 723 724 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 725 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 726 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 727 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 728 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 729 status |= VELOCITY_AUTONEG_ENABLE; 730 } 731 } 732 733 return status; 734 } 735 736 /** 737 * velocity_mii_write - write MII data 738 * @regs: velocity registers 739 * @index: MII register index 740 * @data: 16bit data for the MII register 741 * 742 * Perform a single write to an MII 16bit register. Returns zero 743 * on success or -ETIMEDOUT if the PHY did not respond. 744 */ 745 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data) 746 { 747 u16 ww; 748 749 /* 750 * Disable MIICR_MAUTO, so that mii addr can be set normally 751 */ 752 safe_disable_mii_autopoll(regs); 753 754 /* MII reg offset */ 755 writeb(mii_addr, ®s->MIIADR); 756 /* set MII data */ 757 writew(data, ®s->MIIDATA); 758 759 /* turn on MIICR_WCMD */ 760 BYTE_REG_BITS_ON(MIICR_WCMD, ®s->MIICR); 761 762 /* W_MAX_TIMEOUT is the timeout period */ 763 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) { 764 udelay(5); 765 if (!(readb(®s->MIICR) & MIICR_WCMD)) 766 break; 767 } 768 enable_mii_autopoll(regs); 769 770 if (ww == W_MAX_TIMEOUT) 771 return -ETIMEDOUT; 772 return 0; 773 } 774 775 /** 776 * set_mii_flow_control - flow control setup 777 * @vptr: velocity interface 778 * 779 * Set up the flow control on this interface according to 780 * the supplied user/eeprom options. 781 */ 782 static void set_mii_flow_control(struct velocity_info *vptr) 783 { 784 /*Enable or Disable PAUSE in ANAR */ 785 switch (vptr->options.flow_cntl) { 786 case FLOW_CNTL_TX: 787 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 788 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 789 break; 790 791 case FLOW_CNTL_RX: 792 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 793 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 794 break; 795 796 case FLOW_CNTL_TX_RX: 797 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 798 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 799 break; 800 801 case FLOW_CNTL_DISABLE: 802 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs); 803 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs); 804 break; 805 default: 806 break; 807 } 808 } 809 810 /** 811 * mii_set_auto_on - autonegotiate on 812 * @vptr: velocity 813 * 814 * Enable autonegotation on this interface 815 */ 816 static void mii_set_auto_on(struct velocity_info *vptr) 817 { 818 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs)) 819 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 820 else 821 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); 822 } 823 824 static u32 check_connection_type(struct mac_regs __iomem *regs) 825 { 826 u32 status = 0; 827 u8 PHYSR0; 828 u16 ANAR; 829 PHYSR0 = readb(®s->PHYSR0); 830 831 /* 832 if (!(PHYSR0 & PHYSR0_LINKGD)) 833 status|=VELOCITY_LINK_FAIL; 834 */ 835 836 if (PHYSR0 & PHYSR0_FDPX) 837 status |= VELOCITY_DUPLEX_FULL; 838 839 if (PHYSR0 & PHYSR0_SPDG) 840 status |= VELOCITY_SPEED_1000; 841 else if (PHYSR0 & PHYSR0_SPD10) 842 status |= VELOCITY_SPEED_10; 843 else 844 status |= VELOCITY_SPEED_100; 845 846 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) { 847 velocity_mii_read(regs, MII_ADVERTISE, &ANAR); 848 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) 849 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) { 850 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs)) 851 status |= VELOCITY_AUTONEG_ENABLE; 852 } 853 } 854 855 return status; 856 } 857 858 /** 859 * velocity_set_media_mode - set media mode 860 * @mii_status: old MII link state 861 * 862 * Check the media link state and configure the flow control 863 * PHY and also velocity hardware setup accordingly. In particular 864 * we need to set up CD polling and frame bursting. 865 */ 866 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status) 867 { 868 u32 curr_status; 869 struct mac_regs __iomem *regs = vptr->mac_regs; 870 871 vptr->mii_status = mii_check_media_mode(vptr->mac_regs); 872 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL); 873 874 /* Set mii link status */ 875 set_mii_flow_control(vptr); 876 877 /* 878 Check if new status is consistent with current status 879 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) || 880 (mii_status==curr_status)) { 881 vptr->mii_status=mii_check_media_mode(vptr->mac_regs); 882 vptr->mii_status=check_connection_type(vptr->mac_regs); 883 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n"); 884 return 0; 885 } 886 */ 887 888 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 889 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 890 891 /* 892 * If connection type is AUTO 893 */ 894 if (mii_status & VELOCITY_AUTONEG_ENABLE) { 895 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n"); 896 /* clear force MAC mode bit */ 897 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, ®s->CHIPGCR); 898 /* set duplex mode of MAC according to duplex mode of MII */ 899 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs); 900 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 901 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); 902 903 /* enable AUTO-NEGO mode */ 904 mii_set_auto_on(vptr); 905 } else { 906 u16 CTRL1000; 907 u16 ANAR; 908 u8 CHIPGCR; 909 910 /* 911 * 1. if it's 3119, disable frame bursting in halfduplex mode 912 * and enable it in fullduplex mode 913 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR 914 * 3. only enable CD heart beat counter in 10HD mode 915 */ 916 917 /* set force MAC mode bit */ 918 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 919 920 CHIPGCR = readb(®s->CHIPGCR); 921 922 if (mii_status & VELOCITY_SPEED_1000) 923 CHIPGCR |= CHIPGCR_FCGMII; 924 else 925 CHIPGCR &= ~CHIPGCR_FCGMII; 926 927 if (mii_status & VELOCITY_DUPLEX_FULL) { 928 CHIPGCR |= CHIPGCR_FCFDX; 929 writeb(CHIPGCR, ®s->CHIPGCR); 930 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n"); 931 if (vptr->rev_id < REV_ID_VT3216_A0) 932 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 933 } else { 934 CHIPGCR &= ~CHIPGCR_FCFDX; 935 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n"); 936 writeb(CHIPGCR, ®s->CHIPGCR); 937 if (vptr->rev_id < REV_ID_VT3216_A0) 938 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 939 } 940 941 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000); 942 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); 943 if ((mii_status & VELOCITY_SPEED_1000) && 944 (mii_status & VELOCITY_DUPLEX_FULL)) { 945 CTRL1000 |= ADVERTISE_1000FULL; 946 } 947 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000); 948 949 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) 950 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 951 else 952 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 953 954 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */ 955 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR); 956 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)); 957 if (mii_status & VELOCITY_SPEED_100) { 958 if (mii_status & VELOCITY_DUPLEX_FULL) 959 ANAR |= ADVERTISE_100FULL; 960 else 961 ANAR |= ADVERTISE_100HALF; 962 } else if (mii_status & VELOCITY_SPEED_10) { 963 if (mii_status & VELOCITY_DUPLEX_FULL) 964 ANAR |= ADVERTISE_10FULL; 965 else 966 ANAR |= ADVERTISE_10HALF; 967 } 968 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR); 969 /* enable AUTO-NEGO mode */ 970 mii_set_auto_on(vptr); 971 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */ 972 } 973 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */ 974 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */ 975 return VELOCITY_LINK_CHANGE; 976 } 977 978 /** 979 * velocity_print_link_status - link status reporting 980 * @vptr: velocity to report on 981 * 982 * Turn the link status of the velocity card into a kernel log 983 * description of the new link state, detailing speed and duplex 984 * status 985 */ 986 static void velocity_print_link_status(struct velocity_info *vptr) 987 { 988 989 if (vptr->mii_status & VELOCITY_LINK_FAIL) { 990 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name); 991 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 992 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name); 993 994 if (vptr->mii_status & VELOCITY_SPEED_1000) 995 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps"); 996 else if (vptr->mii_status & VELOCITY_SPEED_100) 997 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps"); 998 else 999 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps"); 1000 1001 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1002 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n"); 1003 else 1004 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n"); 1005 } else { 1006 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name); 1007 switch (vptr->options.spd_dpx) { 1008 case SPD_DPX_1000_FULL: 1009 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n"); 1010 break; 1011 case SPD_DPX_100_HALF: 1012 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n"); 1013 break; 1014 case SPD_DPX_100_FULL: 1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n"); 1016 break; 1017 case SPD_DPX_10_HALF: 1018 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n"); 1019 break; 1020 case SPD_DPX_10_FULL: 1021 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n"); 1022 break; 1023 default: 1024 break; 1025 } 1026 } 1027 } 1028 1029 /** 1030 * enable_flow_control_ability - flow control 1031 * @vptr: veloity to configure 1032 * 1033 * Set up flow control according to the flow control options 1034 * determined by the eeprom/configuration. 1035 */ 1036 static void enable_flow_control_ability(struct velocity_info *vptr) 1037 { 1038 1039 struct mac_regs __iomem *regs = vptr->mac_regs; 1040 1041 switch (vptr->options.flow_cntl) { 1042 1043 case FLOW_CNTL_DEFAULT: 1044 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, ®s->PHYSR0)) 1045 writel(CR0_FDXRFCEN, ®s->CR0Set); 1046 else 1047 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1048 1049 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, ®s->PHYSR0)) 1050 writel(CR0_FDXTFCEN, ®s->CR0Set); 1051 else 1052 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1053 break; 1054 1055 case FLOW_CNTL_TX: 1056 writel(CR0_FDXTFCEN, ®s->CR0Set); 1057 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1058 break; 1059 1060 case FLOW_CNTL_RX: 1061 writel(CR0_FDXRFCEN, ®s->CR0Set); 1062 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1063 break; 1064 1065 case FLOW_CNTL_TX_RX: 1066 writel(CR0_FDXTFCEN, ®s->CR0Set); 1067 writel(CR0_FDXRFCEN, ®s->CR0Set); 1068 break; 1069 1070 case FLOW_CNTL_DISABLE: 1071 writel(CR0_FDXRFCEN, ®s->CR0Clr); 1072 writel(CR0_FDXTFCEN, ®s->CR0Clr); 1073 break; 1074 1075 default: 1076 break; 1077 } 1078 1079 } 1080 1081 /** 1082 * velocity_soft_reset - soft reset 1083 * @vptr: velocity to reset 1084 * 1085 * Kick off a soft reset of the velocity adapter and then poll 1086 * until the reset sequence has completed before returning. 1087 */ 1088 static int velocity_soft_reset(struct velocity_info *vptr) 1089 { 1090 struct mac_regs __iomem *regs = vptr->mac_regs; 1091 int i = 0; 1092 1093 writel(CR0_SFRST, ®s->CR0Set); 1094 1095 for (i = 0; i < W_MAX_TIMEOUT; i++) { 1096 udelay(5); 1097 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, ®s->CR0Set)) 1098 break; 1099 } 1100 1101 if (i == W_MAX_TIMEOUT) { 1102 writel(CR0_FORSRST, ®s->CR0Set); 1103 /* FIXME: PCI POSTING */ 1104 /* delay 2ms */ 1105 mdelay(2); 1106 } 1107 return 0; 1108 } 1109 1110 /** 1111 * velocity_set_multi - filter list change callback 1112 * @dev: network device 1113 * 1114 * Called by the network layer when the filter lists need to change 1115 * for a velocity adapter. Reload the CAMs with the new address 1116 * filter ruleset. 1117 */ 1118 static void velocity_set_multi(struct net_device *dev) 1119 { 1120 struct velocity_info *vptr = netdev_priv(dev); 1121 struct mac_regs __iomem *regs = vptr->mac_regs; 1122 u8 rx_mode; 1123 int i; 1124 struct netdev_hw_addr *ha; 1125 1126 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1127 writel(0xffffffff, ®s->MARCAM[0]); 1128 writel(0xffffffff, ®s->MARCAM[4]); 1129 rx_mode = (RCR_AM | RCR_AB | RCR_PROM); 1130 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) || 1131 (dev->flags & IFF_ALLMULTI)) { 1132 writel(0xffffffff, ®s->MARCAM[0]); 1133 writel(0xffffffff, ®s->MARCAM[4]); 1134 rx_mode = (RCR_AM | RCR_AB); 1135 } else { 1136 int offset = MCAM_SIZE - vptr->multicast_limit; 1137 mac_get_cam_mask(regs, vptr->mCAMmask); 1138 1139 i = 0; 1140 netdev_for_each_mc_addr(ha, dev) { 1141 mac_set_cam(regs, i + offset, ha->addr); 1142 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7); 1143 i++; 1144 } 1145 1146 mac_set_cam_mask(regs, vptr->mCAMmask); 1147 rx_mode = RCR_AM | RCR_AB | RCR_AP; 1148 } 1149 if (dev->mtu > 1500) 1150 rx_mode |= RCR_AL; 1151 1152 BYTE_REG_BITS_ON(rx_mode, ®s->RCR); 1153 1154 } 1155 1156 /* 1157 * MII access , media link mode setting functions 1158 */ 1159 1160 /** 1161 * mii_init - set up MII 1162 * @vptr: velocity adapter 1163 * @mii_status: links tatus 1164 * 1165 * Set up the PHY for the current link state. 1166 */ 1167 static void mii_init(struct velocity_info *vptr, u32 mii_status) 1168 { 1169 u16 BMCR; 1170 1171 switch (PHYID_GET_PHY_ID(vptr->phy_id)) { 1172 case PHYID_ICPLUS_IP101A: 1173 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), 1174 MII_ADVERTISE, vptr->mac_regs); 1175 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1176 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, 1177 vptr->mac_regs); 1178 else 1179 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, 1180 vptr->mac_regs); 1181 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1182 break; 1183 case PHYID_CICADA_CS8201: 1184 /* 1185 * Reset to hardware default 1186 */ 1187 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1188 /* 1189 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1190 * off it in NWay-forced half mode for NWay-forced v.s. 1191 * legacy-forced issue. 1192 */ 1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1195 else 1196 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1197 /* 1198 * Turn on Link/Activity LED enable bit for CIS8201 1199 */ 1200 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs); 1201 break; 1202 case PHYID_VT3216_32BIT: 1203 case PHYID_VT3216_64BIT: 1204 /* 1205 * Reset to hardware default 1206 */ 1207 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1208 /* 1209 * Turn on ECHODIS bit in NWay-forced full mode and turn it 1210 * off it in NWay-forced half mode for NWay-forced v.s. 1211 * legacy-forced issue 1212 */ 1213 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1214 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1215 else 1216 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs); 1217 break; 1218 1219 case PHYID_MARVELL_1000: 1220 case PHYID_MARVELL_1000S: 1221 /* 1222 * Assert CRS on Transmit 1223 */ 1224 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs); 1225 /* 1226 * Reset to hardware default 1227 */ 1228 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs); 1229 break; 1230 default: 1231 ; 1232 } 1233 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR); 1234 if (BMCR & BMCR_ISOLATE) { 1235 BMCR &= ~BMCR_ISOLATE; 1236 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR); 1237 } 1238 } 1239 1240 /** 1241 * setup_queue_timers - Setup interrupt timers 1242 * 1243 * Setup interrupt frequency during suppression (timeout if the frame 1244 * count isn't filled). 1245 */ 1246 static void setup_queue_timers(struct velocity_info *vptr) 1247 { 1248 /* Only for newer revisions */ 1249 if (vptr->rev_id >= REV_ID_VT3216_A0) { 1250 u8 txqueue_timer = 0; 1251 u8 rxqueue_timer = 0; 1252 1253 if (vptr->mii_status & (VELOCITY_SPEED_1000 | 1254 VELOCITY_SPEED_100)) { 1255 txqueue_timer = vptr->options.txqueue_timer; 1256 rxqueue_timer = vptr->options.rxqueue_timer; 1257 } 1258 1259 writeb(txqueue_timer, &vptr->mac_regs->TQETMR); 1260 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR); 1261 } 1262 } 1263 1264 /** 1265 * setup_adaptive_interrupts - Setup interrupt suppression 1266 * 1267 * @vptr velocity adapter 1268 * 1269 * The velocity is able to suppress interrupt during high interrupt load. 1270 * This function turns on that feature. 1271 */ 1272 static void setup_adaptive_interrupts(struct velocity_info *vptr) 1273 { 1274 struct mac_regs __iomem *regs = vptr->mac_regs; 1275 u16 tx_intsup = vptr->options.tx_intsup; 1276 u16 rx_intsup = vptr->options.rx_intsup; 1277 1278 /* Setup default interrupt mask (will be changed below) */ 1279 vptr->int_mask = INT_MASK_DEF; 1280 1281 /* Set Tx Interrupt Suppression Threshold */ 1282 writeb(CAMCR_PS0, ®s->CAMCR); 1283 if (tx_intsup != 0) { 1284 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I | 1285 ISR_PTX2I | ISR_PTX3I); 1286 writew(tx_intsup, ®s->ISRCTL); 1287 } else 1288 writew(ISRCTL_TSUPDIS, ®s->ISRCTL); 1289 1290 /* Set Rx Interrupt Suppression Threshold */ 1291 writeb(CAMCR_PS1, ®s->CAMCR); 1292 if (rx_intsup != 0) { 1293 vptr->int_mask &= ~ISR_PRXI; 1294 writew(rx_intsup, ®s->ISRCTL); 1295 } else 1296 writew(ISRCTL_RSUPDIS, ®s->ISRCTL); 1297 1298 /* Select page to interrupt hold timer */ 1299 writeb(0, ®s->CAMCR); 1300 } 1301 1302 /** 1303 * velocity_init_registers - initialise MAC registers 1304 * @vptr: velocity to init 1305 * @type: type of initialisation (hot or cold) 1306 * 1307 * Initialise the MAC on a reset or on first set up on the 1308 * hardware. 1309 */ 1310 static void velocity_init_registers(struct velocity_info *vptr, 1311 enum velocity_init_type type) 1312 { 1313 struct mac_regs __iomem *regs = vptr->mac_regs; 1314 struct net_device *netdev = vptr->netdev; 1315 int i, mii_status; 1316 1317 mac_wol_reset(regs); 1318 1319 switch (type) { 1320 case VELOCITY_INIT_RESET: 1321 case VELOCITY_INIT_WOL: 1322 1323 netif_stop_queue(netdev); 1324 1325 /* 1326 * Reset RX to prevent RX pointer not on the 4X location 1327 */ 1328 velocity_rx_reset(vptr); 1329 mac_rx_queue_run(regs); 1330 mac_rx_queue_wake(regs); 1331 1332 mii_status = velocity_get_opt_media_mode(vptr); 1333 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1334 velocity_print_link_status(vptr); 1335 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1336 netif_wake_queue(netdev); 1337 } 1338 1339 enable_flow_control_ability(vptr); 1340 1341 mac_clear_isr(regs); 1342 writel(CR0_STOP, ®s->CR0Clr); 1343 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), 1344 ®s->CR0Set); 1345 1346 break; 1347 1348 case VELOCITY_INIT_COLD: 1349 default: 1350 /* 1351 * Do reset 1352 */ 1353 velocity_soft_reset(vptr); 1354 mdelay(5); 1355 1356 if (!vptr->no_eeprom) { 1357 mac_eeprom_reload(regs); 1358 for (i = 0; i < 6; i++) 1359 writeb(netdev->dev_addr[i], regs->PAR + i); 1360 } 1361 1362 /* 1363 * clear Pre_ACPI bit. 1364 */ 1365 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA)); 1366 mac_set_rx_thresh(regs, vptr->options.rx_thresh); 1367 mac_set_dma_length(regs, vptr->options.DMA_length); 1368 1369 writeb(WOLCFG_SAM | WOLCFG_SAB, ®s->WOLCFGSet); 1370 /* 1371 * Back off algorithm use original IEEE standard 1372 */ 1373 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), ®s->CFGB); 1374 1375 /* 1376 * Init CAM filter 1377 */ 1378 velocity_init_cam_filter(vptr); 1379 1380 /* 1381 * Set packet filter: Receive directed and broadcast address 1382 */ 1383 velocity_set_multi(netdev); 1384 1385 /* 1386 * Enable MII auto-polling 1387 */ 1388 enable_mii_autopoll(regs); 1389 1390 setup_adaptive_interrupts(vptr); 1391 1392 writel(vptr->rx.pool_dma, ®s->RDBaseLo); 1393 writew(vptr->options.numrx - 1, ®s->RDCSize); 1394 mac_rx_queue_run(regs); 1395 mac_rx_queue_wake(regs); 1396 1397 writew(vptr->options.numtx - 1, ®s->TDCSize); 1398 1399 for (i = 0; i < vptr->tx.numq; i++) { 1400 writel(vptr->tx.pool_dma[i], ®s->TDBaseLo[i]); 1401 mac_tx_queue_run(regs, i); 1402 } 1403 1404 init_flow_control_register(vptr); 1405 1406 writel(CR0_STOP, ®s->CR0Clr); 1407 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), ®s->CR0Set); 1408 1409 mii_status = velocity_get_opt_media_mode(vptr); 1410 netif_stop_queue(netdev); 1411 1412 mii_init(vptr, mii_status); 1413 1414 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) { 1415 velocity_print_link_status(vptr); 1416 if (!(vptr->mii_status & VELOCITY_LINK_FAIL)) 1417 netif_wake_queue(netdev); 1418 } 1419 1420 enable_flow_control_ability(vptr); 1421 mac_hw_mibs_init(regs); 1422 mac_write_int_mask(vptr->int_mask, regs); 1423 mac_clear_isr(regs); 1424 1425 } 1426 } 1427 1428 static void velocity_give_many_rx_descs(struct velocity_info *vptr) 1429 { 1430 struct mac_regs __iomem *regs = vptr->mac_regs; 1431 int avail, dirty, unusable; 1432 1433 /* 1434 * RD number must be equal to 4X per hardware spec 1435 * (programming guide rev 1.20, p.13) 1436 */ 1437 if (vptr->rx.filled < 4) 1438 return; 1439 1440 wmb(); 1441 1442 unusable = vptr->rx.filled & 0x0003; 1443 dirty = vptr->rx.dirty - unusable; 1444 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) { 1445 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1; 1446 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC; 1447 } 1448 1449 writew(vptr->rx.filled & 0xfffc, ®s->RBRDU); 1450 vptr->rx.filled = unusable; 1451 } 1452 1453 /** 1454 * velocity_init_dma_rings - set up DMA rings 1455 * @vptr: Velocity to set up 1456 * 1457 * Allocate PCI mapped DMA rings for the receive and transmit layer 1458 * to use. 1459 */ 1460 static int velocity_init_dma_rings(struct velocity_info *vptr) 1461 { 1462 struct velocity_opt *opt = &vptr->options; 1463 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc); 1464 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc); 1465 dma_addr_t pool_dma; 1466 void *pool; 1467 unsigned int i; 1468 1469 /* 1470 * Allocate all RD/TD rings a single pool. 1471 * 1472 * dma_alloc_coherent() fulfills the requirement for 64 bytes 1473 * alignment 1474 */ 1475 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq + 1476 rx_ring_size, &pool_dma, GFP_ATOMIC); 1477 if (!pool) { 1478 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n", 1479 vptr->netdev->name); 1480 return -ENOMEM; 1481 } 1482 1483 vptr->rx.ring = pool; 1484 vptr->rx.pool_dma = pool_dma; 1485 1486 pool += rx_ring_size; 1487 pool_dma += rx_ring_size; 1488 1489 for (i = 0; i < vptr->tx.numq; i++) { 1490 vptr->tx.rings[i] = pool; 1491 vptr->tx.pool_dma[i] = pool_dma; 1492 pool += tx_ring_size; 1493 pool_dma += tx_ring_size; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu) 1500 { 1501 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32; 1502 } 1503 1504 /** 1505 * velocity_alloc_rx_buf - allocate aligned receive buffer 1506 * @vptr: velocity 1507 * @idx: ring index 1508 * 1509 * Allocate a new full sized buffer for the reception of a frame and 1510 * map it into PCI space for the hardware to use. The hardware 1511 * requires *64* byte alignment of the buffer which makes life 1512 * less fun than would be ideal. 1513 */ 1514 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx) 1515 { 1516 struct rx_desc *rd = &(vptr->rx.ring[idx]); 1517 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 1518 1519 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64); 1520 if (rd_info->skb == NULL) 1521 return -ENOMEM; 1522 1523 /* 1524 * Do the gymnastics to get the buffer head for data at 1525 * 64byte alignment. 1526 */ 1527 skb_reserve(rd_info->skb, 1528 64 - ((unsigned long) rd_info->skb->data & 63)); 1529 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data, 1530 vptr->rx.buf_sz, DMA_FROM_DEVICE); 1531 1532 /* 1533 * Fill in the descriptor to match 1534 */ 1535 1536 *((u32 *) & (rd->rdesc0)) = 0; 1537 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN; 1538 rd->pa_low = cpu_to_le32(rd_info->skb_dma); 1539 rd->pa_high = 0; 1540 return 0; 1541 } 1542 1543 1544 static int velocity_rx_refill(struct velocity_info *vptr) 1545 { 1546 int dirty = vptr->rx.dirty, done = 0; 1547 1548 do { 1549 struct rx_desc *rd = vptr->rx.ring + dirty; 1550 1551 /* Fine for an all zero Rx desc at init time as well */ 1552 if (rd->rdesc0.len & OWNED_BY_NIC) 1553 break; 1554 1555 if (!vptr->rx.info[dirty].skb) { 1556 if (velocity_alloc_rx_buf(vptr, dirty) < 0) 1557 break; 1558 } 1559 done++; 1560 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0; 1561 } while (dirty != vptr->rx.curr); 1562 1563 if (done) { 1564 vptr->rx.dirty = dirty; 1565 vptr->rx.filled += done; 1566 } 1567 1568 return done; 1569 } 1570 1571 /** 1572 * velocity_free_rd_ring - free receive ring 1573 * @vptr: velocity to clean up 1574 * 1575 * Free the receive buffers for each ring slot and any 1576 * attached socket buffers that need to go away. 1577 */ 1578 static void velocity_free_rd_ring(struct velocity_info *vptr) 1579 { 1580 int i; 1581 1582 if (vptr->rx.info == NULL) 1583 return; 1584 1585 for (i = 0; i < vptr->options.numrx; i++) { 1586 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]); 1587 struct rx_desc *rd = vptr->rx.ring + i; 1588 1589 memset(rd, 0, sizeof(*rd)); 1590 1591 if (!rd_info->skb) 1592 continue; 1593 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 1594 DMA_FROM_DEVICE); 1595 rd_info->skb_dma = 0; 1596 1597 dev_kfree_skb(rd_info->skb); 1598 rd_info->skb = NULL; 1599 } 1600 1601 kfree(vptr->rx.info); 1602 vptr->rx.info = NULL; 1603 } 1604 1605 /** 1606 * velocity_init_rd_ring - set up receive ring 1607 * @vptr: velocity to configure 1608 * 1609 * Allocate and set up the receive buffers for each ring slot and 1610 * assign them to the network adapter. 1611 */ 1612 static int velocity_init_rd_ring(struct velocity_info *vptr) 1613 { 1614 int ret = -ENOMEM; 1615 1616 vptr->rx.info = kcalloc(vptr->options.numrx, 1617 sizeof(struct velocity_rd_info), GFP_KERNEL); 1618 if (!vptr->rx.info) 1619 goto out; 1620 1621 velocity_init_rx_ring_indexes(vptr); 1622 1623 if (velocity_rx_refill(vptr) != vptr->options.numrx) { 1624 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR 1625 "%s: failed to allocate RX buffer.\n", vptr->netdev->name); 1626 velocity_free_rd_ring(vptr); 1627 goto out; 1628 } 1629 1630 ret = 0; 1631 out: 1632 return ret; 1633 } 1634 1635 /** 1636 * velocity_init_td_ring - set up transmit ring 1637 * @vptr: velocity 1638 * 1639 * Set up the transmit ring and chain the ring pointers together. 1640 * Returns zero on success or a negative posix errno code for 1641 * failure. 1642 */ 1643 static int velocity_init_td_ring(struct velocity_info *vptr) 1644 { 1645 int j; 1646 1647 /* Init the TD ring entries */ 1648 for (j = 0; j < vptr->tx.numq; j++) { 1649 1650 vptr->tx.infos[j] = kcalloc(vptr->options.numtx, 1651 sizeof(struct velocity_td_info), 1652 GFP_KERNEL); 1653 if (!vptr->tx.infos[j]) { 1654 while (--j >= 0) 1655 kfree(vptr->tx.infos[j]); 1656 return -ENOMEM; 1657 } 1658 1659 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0; 1660 } 1661 return 0; 1662 } 1663 1664 /** 1665 * velocity_free_dma_rings - free PCI ring pointers 1666 * @vptr: Velocity to free from 1667 * 1668 * Clean up the PCI ring buffers allocated to this velocity. 1669 */ 1670 static void velocity_free_dma_rings(struct velocity_info *vptr) 1671 { 1672 const int size = vptr->options.numrx * sizeof(struct rx_desc) + 1673 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq; 1674 1675 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma); 1676 } 1677 1678 static int velocity_init_rings(struct velocity_info *vptr, int mtu) 1679 { 1680 int ret; 1681 1682 velocity_set_rxbufsize(vptr, mtu); 1683 1684 ret = velocity_init_dma_rings(vptr); 1685 if (ret < 0) 1686 goto out; 1687 1688 ret = velocity_init_rd_ring(vptr); 1689 if (ret < 0) 1690 goto err_free_dma_rings_0; 1691 1692 ret = velocity_init_td_ring(vptr); 1693 if (ret < 0) 1694 goto err_free_rd_ring_1; 1695 out: 1696 return ret; 1697 1698 err_free_rd_ring_1: 1699 velocity_free_rd_ring(vptr); 1700 err_free_dma_rings_0: 1701 velocity_free_dma_rings(vptr); 1702 goto out; 1703 } 1704 1705 /** 1706 * velocity_free_tx_buf - free transmit buffer 1707 * @vptr: velocity 1708 * @tdinfo: buffer 1709 * 1710 * Release an transmit buffer. If the buffer was preallocated then 1711 * recycle it, if not then unmap the buffer. 1712 */ 1713 static void velocity_free_tx_buf(struct velocity_info *vptr, 1714 struct velocity_td_info *tdinfo, struct tx_desc *td) 1715 { 1716 struct sk_buff *skb = tdinfo->skb; 1717 int i; 1718 1719 /* 1720 * Don't unmap the pre-allocated tx_bufs 1721 */ 1722 for (i = 0; i < tdinfo->nskb_dma; i++) { 1723 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN); 1724 1725 /* For scatter-gather */ 1726 if (skb_shinfo(skb)->nr_frags > 0) 1727 pktlen = max_t(size_t, pktlen, 1728 td->td_buf[i].size & ~TD_QUEUE); 1729 1730 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i], 1731 le16_to_cpu(pktlen), DMA_TO_DEVICE); 1732 } 1733 dev_consume_skb_irq(skb); 1734 tdinfo->skb = NULL; 1735 } 1736 1737 /* 1738 * FIXME: could we merge this with velocity_free_tx_buf ? 1739 */ 1740 static void velocity_free_td_ring_entry(struct velocity_info *vptr, 1741 int q, int n) 1742 { 1743 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]); 1744 int i; 1745 1746 if (td_info == NULL) 1747 return; 1748 1749 if (td_info->skb) { 1750 for (i = 0; i < td_info->nskb_dma; i++) { 1751 if (td_info->skb_dma[i]) { 1752 dma_unmap_single(vptr->dev, td_info->skb_dma[i], 1753 td_info->skb->len, DMA_TO_DEVICE); 1754 td_info->skb_dma[i] = 0; 1755 } 1756 } 1757 dev_kfree_skb(td_info->skb); 1758 td_info->skb = NULL; 1759 } 1760 } 1761 1762 /** 1763 * velocity_free_td_ring - free td ring 1764 * @vptr: velocity 1765 * 1766 * Free up the transmit ring for this particular velocity adapter. 1767 * We free the ring contents but not the ring itself. 1768 */ 1769 static void velocity_free_td_ring(struct velocity_info *vptr) 1770 { 1771 int i, j; 1772 1773 for (j = 0; j < vptr->tx.numq; j++) { 1774 if (vptr->tx.infos[j] == NULL) 1775 continue; 1776 for (i = 0; i < vptr->options.numtx; i++) 1777 velocity_free_td_ring_entry(vptr, j, i); 1778 1779 kfree(vptr->tx.infos[j]); 1780 vptr->tx.infos[j] = NULL; 1781 } 1782 } 1783 1784 static void velocity_free_rings(struct velocity_info *vptr) 1785 { 1786 velocity_free_td_ring(vptr); 1787 velocity_free_rd_ring(vptr); 1788 velocity_free_dma_rings(vptr); 1789 } 1790 1791 /** 1792 * velocity_error - handle error from controller 1793 * @vptr: velocity 1794 * @status: card status 1795 * 1796 * Process an error report from the hardware and attempt to recover 1797 * the card itself. At the moment we cannot recover from some 1798 * theoretically impossible errors but this could be fixed using 1799 * the pci_device_failed logic to bounce the hardware 1800 * 1801 */ 1802 static void velocity_error(struct velocity_info *vptr, int status) 1803 { 1804 1805 if (status & ISR_TXSTLI) { 1806 struct mac_regs __iomem *regs = vptr->mac_regs; 1807 1808 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(®s->TDIdx[0])); 1809 BYTE_REG_BITS_ON(TXESR_TDSTR, ®s->TXESR); 1810 writew(TRDCSR_RUN, ®s->TDCSRClr); 1811 netif_stop_queue(vptr->netdev); 1812 1813 /* FIXME: port over the pci_device_failed code and use it 1814 here */ 1815 } 1816 1817 if (status & ISR_SRCI) { 1818 struct mac_regs __iomem *regs = vptr->mac_regs; 1819 int linked; 1820 1821 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 1822 vptr->mii_status = check_connection_type(regs); 1823 1824 /* 1825 * If it is a 3119, disable frame bursting in 1826 * halfduplex mode and enable it in fullduplex 1827 * mode 1828 */ 1829 if (vptr->rev_id < REV_ID_VT3216_A0) { 1830 if (vptr->mii_status & VELOCITY_DUPLEX_FULL) 1831 BYTE_REG_BITS_ON(TCR_TB2BDIS, ®s->TCR); 1832 else 1833 BYTE_REG_BITS_OFF(TCR_TB2BDIS, ®s->TCR); 1834 } 1835 /* 1836 * Only enable CD heart beat counter in 10HD mode 1837 */ 1838 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) 1839 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, ®s->TESTCFG); 1840 else 1841 BYTE_REG_BITS_ON(TESTCFG_HBDIS, ®s->TESTCFG); 1842 1843 setup_queue_timers(vptr); 1844 } 1845 /* 1846 * Get link status from PHYSR0 1847 */ 1848 linked = readb(®s->PHYSR0) & PHYSR0_LINKGD; 1849 1850 if (linked) { 1851 vptr->mii_status &= ~VELOCITY_LINK_FAIL; 1852 netif_carrier_on(vptr->netdev); 1853 } else { 1854 vptr->mii_status |= VELOCITY_LINK_FAIL; 1855 netif_carrier_off(vptr->netdev); 1856 } 1857 1858 velocity_print_link_status(vptr); 1859 enable_flow_control_ability(vptr); 1860 1861 /* 1862 * Re-enable auto-polling because SRCI will disable 1863 * auto-polling 1864 */ 1865 1866 enable_mii_autopoll(regs); 1867 1868 if (vptr->mii_status & VELOCITY_LINK_FAIL) 1869 netif_stop_queue(vptr->netdev); 1870 else 1871 netif_wake_queue(vptr->netdev); 1872 1873 } 1874 if (status & ISR_MIBFI) 1875 velocity_update_hw_mibs(vptr); 1876 if (status & ISR_LSTEI) 1877 mac_rx_queue_wake(vptr->mac_regs); 1878 } 1879 1880 /** 1881 * tx_srv - transmit interrupt service 1882 * @vptr; Velocity 1883 * 1884 * Scan the queues looking for transmitted packets that 1885 * we can complete and clean up. Update any statistics as 1886 * necessary/ 1887 */ 1888 static int velocity_tx_srv(struct velocity_info *vptr) 1889 { 1890 struct tx_desc *td; 1891 int qnum; 1892 int full = 0; 1893 int idx; 1894 int works = 0; 1895 struct velocity_td_info *tdinfo; 1896 struct net_device_stats *stats = &vptr->netdev->stats; 1897 1898 for (qnum = 0; qnum < vptr->tx.numq; qnum++) { 1899 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0; 1900 idx = (idx + 1) % vptr->options.numtx) { 1901 1902 /* 1903 * Get Tx Descriptor 1904 */ 1905 td = &(vptr->tx.rings[qnum][idx]); 1906 tdinfo = &(vptr->tx.infos[qnum][idx]); 1907 1908 if (td->tdesc0.len & OWNED_BY_NIC) 1909 break; 1910 1911 if ((works++ > 15)) 1912 break; 1913 1914 if (td->tdesc0.TSR & TSR0_TERR) { 1915 stats->tx_errors++; 1916 stats->tx_dropped++; 1917 if (td->tdesc0.TSR & TSR0_CDH) 1918 stats->tx_heartbeat_errors++; 1919 if (td->tdesc0.TSR & TSR0_CRS) 1920 stats->tx_carrier_errors++; 1921 if (td->tdesc0.TSR & TSR0_ABT) 1922 stats->tx_aborted_errors++; 1923 if (td->tdesc0.TSR & TSR0_OWC) 1924 stats->tx_window_errors++; 1925 } else { 1926 stats->tx_packets++; 1927 stats->tx_bytes += tdinfo->skb->len; 1928 } 1929 velocity_free_tx_buf(vptr, tdinfo, td); 1930 vptr->tx.used[qnum]--; 1931 } 1932 vptr->tx.tail[qnum] = idx; 1933 1934 if (AVAIL_TD(vptr, qnum) < 1) 1935 full = 1; 1936 } 1937 /* 1938 * Look to see if we should kick the transmit network 1939 * layer for more work. 1940 */ 1941 if (netif_queue_stopped(vptr->netdev) && (full == 0) && 1942 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) { 1943 netif_wake_queue(vptr->netdev); 1944 } 1945 return works; 1946 } 1947 1948 /** 1949 * velocity_rx_csum - checksum process 1950 * @rd: receive packet descriptor 1951 * @skb: network layer packet buffer 1952 * 1953 * Process the status bits for the received packet and determine 1954 * if the checksum was computed and verified by the hardware 1955 */ 1956 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb) 1957 { 1958 skb_checksum_none_assert(skb); 1959 1960 if (rd->rdesc1.CSM & CSM_IPKT) { 1961 if (rd->rdesc1.CSM & CSM_IPOK) { 1962 if ((rd->rdesc1.CSM & CSM_TCPKT) || 1963 (rd->rdesc1.CSM & CSM_UDPKT)) { 1964 if (!(rd->rdesc1.CSM & CSM_TUPOK)) 1965 return; 1966 } 1967 skb->ip_summed = CHECKSUM_UNNECESSARY; 1968 } 1969 } 1970 } 1971 1972 /** 1973 * velocity_rx_copy - in place Rx copy for small packets 1974 * @rx_skb: network layer packet buffer candidate 1975 * @pkt_size: received data size 1976 * @rd: receive packet descriptor 1977 * @dev: network device 1978 * 1979 * Replace the current skb that is scheduled for Rx processing by a 1980 * shorter, immediately allocated skb, if the received packet is small 1981 * enough. This function returns a negative value if the received 1982 * packet is too big or if memory is exhausted. 1983 */ 1984 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size, 1985 struct velocity_info *vptr) 1986 { 1987 int ret = -1; 1988 if (pkt_size < rx_copybreak) { 1989 struct sk_buff *new_skb; 1990 1991 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size); 1992 if (new_skb) { 1993 new_skb->ip_summed = rx_skb[0]->ip_summed; 1994 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size); 1995 *rx_skb = new_skb; 1996 ret = 0; 1997 } 1998 1999 } 2000 return ret; 2001 } 2002 2003 /** 2004 * velocity_iph_realign - IP header alignment 2005 * @vptr: velocity we are handling 2006 * @skb: network layer packet buffer 2007 * @pkt_size: received data size 2008 * 2009 * Align IP header on a 2 bytes boundary. This behavior can be 2010 * configured by the user. 2011 */ 2012 static inline void velocity_iph_realign(struct velocity_info *vptr, 2013 struct sk_buff *skb, int pkt_size) 2014 { 2015 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) { 2016 memmove(skb->data + 2, skb->data, pkt_size); 2017 skb_reserve(skb, 2); 2018 } 2019 } 2020 2021 /** 2022 * velocity_receive_frame - received packet processor 2023 * @vptr: velocity we are handling 2024 * @idx: ring index 2025 * 2026 * A packet has arrived. We process the packet and if appropriate 2027 * pass the frame up the network stack 2028 */ 2029 static int velocity_receive_frame(struct velocity_info *vptr, int idx) 2030 { 2031 struct net_device_stats *stats = &vptr->netdev->stats; 2032 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]); 2033 struct rx_desc *rd = &(vptr->rx.ring[idx]); 2034 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff; 2035 struct sk_buff *skb; 2036 2037 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) { 2038 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) 2039 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name); 2040 stats->rx_length_errors++; 2041 return -EINVAL; 2042 } 2043 2044 if (rd->rdesc0.RSR & RSR_MAR) 2045 stats->multicast++; 2046 2047 skb = rd_info->skb; 2048 2049 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma, 2050 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2051 2052 velocity_rx_csum(rd, skb); 2053 2054 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) { 2055 velocity_iph_realign(vptr, skb, pkt_len); 2056 rd_info->skb = NULL; 2057 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz, 2058 DMA_FROM_DEVICE); 2059 } else { 2060 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma, 2061 vptr->rx.buf_sz, DMA_FROM_DEVICE); 2062 } 2063 2064 skb_put(skb, pkt_len - 4); 2065 skb->protocol = eth_type_trans(skb, vptr->netdev); 2066 2067 if (rd->rdesc0.RSR & RSR_DETAG) { 2068 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG)); 2069 2070 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 2071 } 2072 netif_receive_skb(skb); 2073 2074 stats->rx_bytes += pkt_len; 2075 stats->rx_packets++; 2076 2077 return 0; 2078 } 2079 2080 /** 2081 * velocity_rx_srv - service RX interrupt 2082 * @vptr: velocity 2083 * 2084 * Walk the receive ring of the velocity adapter and remove 2085 * any received packets from the receive queue. Hand the ring 2086 * slots back to the adapter for reuse. 2087 */ 2088 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left) 2089 { 2090 struct net_device_stats *stats = &vptr->netdev->stats; 2091 int rd_curr = vptr->rx.curr; 2092 int works = 0; 2093 2094 while (works < budget_left) { 2095 struct rx_desc *rd = vptr->rx.ring + rd_curr; 2096 2097 if (!vptr->rx.info[rd_curr].skb) 2098 break; 2099 2100 if (rd->rdesc0.len & OWNED_BY_NIC) 2101 break; 2102 2103 rmb(); 2104 2105 /* 2106 * Don't drop CE or RL error frame although RXOK is off 2107 */ 2108 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) { 2109 if (velocity_receive_frame(vptr, rd_curr) < 0) 2110 stats->rx_dropped++; 2111 } else { 2112 if (rd->rdesc0.RSR & RSR_CRC) 2113 stats->rx_crc_errors++; 2114 if (rd->rdesc0.RSR & RSR_FAE) 2115 stats->rx_frame_errors++; 2116 2117 stats->rx_dropped++; 2118 } 2119 2120 rd->size |= RX_INTEN; 2121 2122 rd_curr++; 2123 if (rd_curr >= vptr->options.numrx) 2124 rd_curr = 0; 2125 works++; 2126 } 2127 2128 vptr->rx.curr = rd_curr; 2129 2130 if ((works > 0) && (velocity_rx_refill(vptr) > 0)) 2131 velocity_give_many_rx_descs(vptr); 2132 2133 VAR_USED(stats); 2134 return works; 2135 } 2136 2137 static int velocity_poll(struct napi_struct *napi, int budget) 2138 { 2139 struct velocity_info *vptr = container_of(napi, 2140 struct velocity_info, napi); 2141 unsigned int rx_done; 2142 unsigned long flags; 2143 2144 /* 2145 * Do rx and tx twice for performance (taken from the VIA 2146 * out-of-tree driver). 2147 */ 2148 rx_done = velocity_rx_srv(vptr, budget); 2149 spin_lock_irqsave(&vptr->lock, flags); 2150 velocity_tx_srv(vptr); 2151 /* If budget not fully consumed, exit the polling mode */ 2152 if (rx_done < budget) { 2153 napi_complete_done(napi, rx_done); 2154 mac_enable_int(vptr->mac_regs); 2155 } 2156 spin_unlock_irqrestore(&vptr->lock, flags); 2157 2158 return rx_done; 2159 } 2160 2161 /** 2162 * velocity_intr - interrupt callback 2163 * @irq: interrupt number 2164 * @dev_instance: interrupting device 2165 * 2166 * Called whenever an interrupt is generated by the velocity 2167 * adapter IRQ line. We may not be the source of the interrupt 2168 * and need to identify initially if we are, and if not exit as 2169 * efficiently as possible. 2170 */ 2171 static irqreturn_t velocity_intr(int irq, void *dev_instance) 2172 { 2173 struct net_device *dev = dev_instance; 2174 struct velocity_info *vptr = netdev_priv(dev); 2175 u32 isr_status; 2176 2177 spin_lock(&vptr->lock); 2178 isr_status = mac_read_isr(vptr->mac_regs); 2179 2180 /* Not us ? */ 2181 if (isr_status == 0) { 2182 spin_unlock(&vptr->lock); 2183 return IRQ_NONE; 2184 } 2185 2186 /* Ack the interrupt */ 2187 mac_write_isr(vptr->mac_regs, isr_status); 2188 2189 if (likely(napi_schedule_prep(&vptr->napi))) { 2190 mac_disable_int(vptr->mac_regs); 2191 __napi_schedule(&vptr->napi); 2192 } 2193 2194 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI))) 2195 velocity_error(vptr, isr_status); 2196 2197 spin_unlock(&vptr->lock); 2198 2199 return IRQ_HANDLED; 2200 } 2201 2202 /** 2203 * velocity_open - interface activation callback 2204 * @dev: network layer device to open 2205 * 2206 * Called when the network layer brings the interface up. Returns 2207 * a negative posix error code on failure, or zero on success. 2208 * 2209 * All the ring allocation and set up is done on open for this 2210 * adapter to minimise memory usage when inactive 2211 */ 2212 static int velocity_open(struct net_device *dev) 2213 { 2214 struct velocity_info *vptr = netdev_priv(dev); 2215 int ret; 2216 2217 ret = velocity_init_rings(vptr, dev->mtu); 2218 if (ret < 0) 2219 goto out; 2220 2221 /* Ensure chip is running */ 2222 velocity_set_power_state(vptr, PCI_D0); 2223 2224 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2225 2226 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED, 2227 dev->name, dev); 2228 if (ret < 0) { 2229 /* Power down the chip */ 2230 velocity_set_power_state(vptr, PCI_D3hot); 2231 velocity_free_rings(vptr); 2232 goto out; 2233 } 2234 2235 velocity_give_many_rx_descs(vptr); 2236 2237 mac_enable_int(vptr->mac_regs); 2238 netif_start_queue(dev); 2239 napi_enable(&vptr->napi); 2240 vptr->flags |= VELOCITY_FLAGS_OPENED; 2241 out: 2242 return ret; 2243 } 2244 2245 /** 2246 * velocity_shutdown - shut down the chip 2247 * @vptr: velocity to deactivate 2248 * 2249 * Shuts down the internal operations of the velocity and 2250 * disables interrupts, autopolling, transmit and receive 2251 */ 2252 static void velocity_shutdown(struct velocity_info *vptr) 2253 { 2254 struct mac_regs __iomem *regs = vptr->mac_regs; 2255 mac_disable_int(regs); 2256 writel(CR0_STOP, ®s->CR0Set); 2257 writew(0xFFFF, ®s->TDCSRClr); 2258 writeb(0xFF, ®s->RDCSRClr); 2259 safe_disable_mii_autopoll(regs); 2260 mac_clear_isr(regs); 2261 } 2262 2263 /** 2264 * velocity_change_mtu - MTU change callback 2265 * @dev: network device 2266 * @new_mtu: desired MTU 2267 * 2268 * Handle requests from the networking layer for MTU change on 2269 * this interface. It gets called on a change by the network layer. 2270 * Return zero for success or negative posix error code. 2271 */ 2272 static int velocity_change_mtu(struct net_device *dev, int new_mtu) 2273 { 2274 struct velocity_info *vptr = netdev_priv(dev); 2275 int ret = 0; 2276 2277 if (!netif_running(dev)) { 2278 dev->mtu = new_mtu; 2279 goto out_0; 2280 } 2281 2282 if (dev->mtu != new_mtu) { 2283 struct velocity_info *tmp_vptr; 2284 unsigned long flags; 2285 struct rx_info rx; 2286 struct tx_info tx; 2287 2288 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL); 2289 if (!tmp_vptr) { 2290 ret = -ENOMEM; 2291 goto out_0; 2292 } 2293 2294 tmp_vptr->netdev = dev; 2295 tmp_vptr->pdev = vptr->pdev; 2296 tmp_vptr->dev = vptr->dev; 2297 tmp_vptr->options = vptr->options; 2298 tmp_vptr->tx.numq = vptr->tx.numq; 2299 2300 ret = velocity_init_rings(tmp_vptr, new_mtu); 2301 if (ret < 0) 2302 goto out_free_tmp_vptr_1; 2303 2304 napi_disable(&vptr->napi); 2305 2306 spin_lock_irqsave(&vptr->lock, flags); 2307 2308 netif_stop_queue(dev); 2309 velocity_shutdown(vptr); 2310 2311 rx = vptr->rx; 2312 tx = vptr->tx; 2313 2314 vptr->rx = tmp_vptr->rx; 2315 vptr->tx = tmp_vptr->tx; 2316 2317 tmp_vptr->rx = rx; 2318 tmp_vptr->tx = tx; 2319 2320 dev->mtu = new_mtu; 2321 2322 velocity_init_registers(vptr, VELOCITY_INIT_COLD); 2323 2324 velocity_give_many_rx_descs(vptr); 2325 2326 napi_enable(&vptr->napi); 2327 2328 mac_enable_int(vptr->mac_regs); 2329 netif_start_queue(dev); 2330 2331 spin_unlock_irqrestore(&vptr->lock, flags); 2332 2333 velocity_free_rings(tmp_vptr); 2334 2335 out_free_tmp_vptr_1: 2336 kfree(tmp_vptr); 2337 } 2338 out_0: 2339 return ret; 2340 } 2341 2342 #ifdef CONFIG_NET_POLL_CONTROLLER 2343 /** 2344 * velocity_poll_controller - Velocity Poll controller function 2345 * @dev: network device 2346 * 2347 * 2348 * Used by NETCONSOLE and other diagnostic tools to allow network I/P 2349 * with interrupts disabled. 2350 */ 2351 static void velocity_poll_controller(struct net_device *dev) 2352 { 2353 disable_irq(dev->irq); 2354 velocity_intr(dev->irq, dev); 2355 enable_irq(dev->irq); 2356 } 2357 #endif 2358 2359 /** 2360 * velocity_mii_ioctl - MII ioctl handler 2361 * @dev: network device 2362 * @ifr: the ifreq block for the ioctl 2363 * @cmd: the command 2364 * 2365 * Process MII requests made via ioctl from the network layer. These 2366 * are used by tools like kudzu to interrogate the link state of the 2367 * hardware 2368 */ 2369 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2370 { 2371 struct velocity_info *vptr = netdev_priv(dev); 2372 struct mac_regs __iomem *regs = vptr->mac_regs; 2373 unsigned long flags; 2374 struct mii_ioctl_data *miidata = if_mii(ifr); 2375 int err; 2376 2377 switch (cmd) { 2378 case SIOCGMIIPHY: 2379 miidata->phy_id = readb(®s->MIIADR) & 0x1f; 2380 break; 2381 case SIOCGMIIREG: 2382 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0) 2383 return -ETIMEDOUT; 2384 break; 2385 case SIOCSMIIREG: 2386 spin_lock_irqsave(&vptr->lock, flags); 2387 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in); 2388 spin_unlock_irqrestore(&vptr->lock, flags); 2389 check_connection_type(vptr->mac_regs); 2390 if (err) 2391 return err; 2392 break; 2393 default: 2394 return -EOPNOTSUPP; 2395 } 2396 return 0; 2397 } 2398 2399 /** 2400 * velocity_ioctl - ioctl entry point 2401 * @dev: network device 2402 * @rq: interface request ioctl 2403 * @cmd: command code 2404 * 2405 * Called when the user issues an ioctl request to the network 2406 * device in question. The velocity interface supports MII. 2407 */ 2408 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2409 { 2410 struct velocity_info *vptr = netdev_priv(dev); 2411 int ret; 2412 2413 /* If we are asked for information and the device is power 2414 saving then we need to bring the device back up to talk to it */ 2415 2416 if (!netif_running(dev)) 2417 velocity_set_power_state(vptr, PCI_D0); 2418 2419 switch (cmd) { 2420 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 2421 case SIOCGMIIREG: /* Read MII PHY register. */ 2422 case SIOCSMIIREG: /* Write to MII PHY register. */ 2423 ret = velocity_mii_ioctl(dev, rq, cmd); 2424 break; 2425 2426 default: 2427 ret = -EOPNOTSUPP; 2428 } 2429 if (!netif_running(dev)) 2430 velocity_set_power_state(vptr, PCI_D3hot); 2431 2432 2433 return ret; 2434 } 2435 2436 /** 2437 * velocity_get_status - statistics callback 2438 * @dev: network device 2439 * 2440 * Callback from the network layer to allow driver statistics 2441 * to be resynchronized with hardware collected state. In the 2442 * case of the velocity we need to pull the MIB counters from 2443 * the hardware into the counters before letting the network 2444 * layer display them. 2445 */ 2446 static struct net_device_stats *velocity_get_stats(struct net_device *dev) 2447 { 2448 struct velocity_info *vptr = netdev_priv(dev); 2449 2450 /* If the hardware is down, don't touch MII */ 2451 if (!netif_running(dev)) 2452 return &dev->stats; 2453 2454 spin_lock_irq(&vptr->lock); 2455 velocity_update_hw_mibs(vptr); 2456 spin_unlock_irq(&vptr->lock); 2457 2458 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts]; 2459 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts]; 2460 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors]; 2461 2462 // unsigned long rx_dropped; /* no space in linux buffers */ 2463 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions]; 2464 /* detailed rx_errors: */ 2465 // unsigned long rx_length_errors; 2466 // unsigned long rx_over_errors; /* receiver ring buff overflow */ 2467 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE]; 2468 // unsigned long rx_frame_errors; /* recv'd frame alignment error */ 2469 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */ 2470 // unsigned long rx_missed_errors; /* receiver missed packet */ 2471 2472 /* detailed tx_errors */ 2473 // unsigned long tx_fifo_errors; 2474 2475 return &dev->stats; 2476 } 2477 2478 /** 2479 * velocity_close - close adapter callback 2480 * @dev: network device 2481 * 2482 * Callback from the network layer when the velocity is being 2483 * deactivated by the network layer 2484 */ 2485 static int velocity_close(struct net_device *dev) 2486 { 2487 struct velocity_info *vptr = netdev_priv(dev); 2488 2489 napi_disable(&vptr->napi); 2490 netif_stop_queue(dev); 2491 velocity_shutdown(vptr); 2492 2493 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) 2494 velocity_get_ip(vptr); 2495 2496 free_irq(dev->irq, dev); 2497 2498 velocity_free_rings(vptr); 2499 2500 vptr->flags &= (~VELOCITY_FLAGS_OPENED); 2501 return 0; 2502 } 2503 2504 /** 2505 * velocity_xmit - transmit packet callback 2506 * @skb: buffer to transmit 2507 * @dev: network device 2508 * 2509 * Called by the networ layer to request a packet is queued to 2510 * the velocity. Returns zero on success. 2511 */ 2512 static netdev_tx_t velocity_xmit(struct sk_buff *skb, 2513 struct net_device *dev) 2514 { 2515 struct velocity_info *vptr = netdev_priv(dev); 2516 int qnum = 0; 2517 struct tx_desc *td_ptr; 2518 struct velocity_td_info *tdinfo; 2519 unsigned long flags; 2520 int pktlen; 2521 int index, prev; 2522 int i = 0; 2523 2524 if (skb_padto(skb, ETH_ZLEN)) 2525 goto out; 2526 2527 /* The hardware can handle at most 7 memory segments, so merge 2528 * the skb if there are more */ 2529 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) { 2530 dev_kfree_skb_any(skb); 2531 return NETDEV_TX_OK; 2532 } 2533 2534 pktlen = skb_shinfo(skb)->nr_frags == 0 ? 2535 max_t(unsigned int, skb->len, ETH_ZLEN) : 2536 skb_headlen(skb); 2537 2538 spin_lock_irqsave(&vptr->lock, flags); 2539 2540 index = vptr->tx.curr[qnum]; 2541 td_ptr = &(vptr->tx.rings[qnum][index]); 2542 tdinfo = &(vptr->tx.infos[qnum][index]); 2543 2544 td_ptr->tdesc1.TCR = TCR0_TIC; 2545 td_ptr->td_buf[0].size &= ~TD_QUEUE; 2546 2547 /* 2548 * Map the linear network buffer into PCI space and 2549 * add it to the transmit ring. 2550 */ 2551 tdinfo->skb = skb; 2552 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen, 2553 DMA_TO_DEVICE); 2554 td_ptr->tdesc0.len = cpu_to_le16(pktlen); 2555 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]); 2556 td_ptr->td_buf[0].pa_high = 0; 2557 td_ptr->td_buf[0].size = cpu_to_le16(pktlen); 2558 2559 /* Handle fragments */ 2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2561 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2562 2563 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev, 2564 frag, 0, 2565 skb_frag_size(frag), 2566 DMA_TO_DEVICE); 2567 2568 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]); 2569 td_ptr->td_buf[i + 1].pa_high = 0; 2570 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag)); 2571 } 2572 tdinfo->nskb_dma = i + 1; 2573 2574 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16; 2575 2576 if (skb_vlan_tag_present(skb)) { 2577 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 2578 td_ptr->tdesc1.TCR |= TCR0_VETAG; 2579 } 2580 2581 /* 2582 * Handle hardware checksum 2583 */ 2584 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2585 const struct iphdr *ip = ip_hdr(skb); 2586 if (ip->protocol == IPPROTO_TCP) 2587 td_ptr->tdesc1.TCR |= TCR0_TCPCK; 2588 else if (ip->protocol == IPPROTO_UDP) 2589 td_ptr->tdesc1.TCR |= (TCR0_UDPCK); 2590 td_ptr->tdesc1.TCR |= TCR0_IPCK; 2591 } 2592 2593 prev = index - 1; 2594 if (prev < 0) 2595 prev = vptr->options.numtx - 1; 2596 td_ptr->tdesc0.len |= OWNED_BY_NIC; 2597 vptr->tx.used[qnum]++; 2598 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx; 2599 2600 if (AVAIL_TD(vptr, qnum) < 1) 2601 netif_stop_queue(dev); 2602 2603 td_ptr = &(vptr->tx.rings[qnum][prev]); 2604 td_ptr->td_buf[0].size |= TD_QUEUE; 2605 mac_tx_queue_wake(vptr->mac_regs, qnum); 2606 2607 spin_unlock_irqrestore(&vptr->lock, flags); 2608 out: 2609 return NETDEV_TX_OK; 2610 } 2611 2612 static const struct net_device_ops velocity_netdev_ops = { 2613 .ndo_open = velocity_open, 2614 .ndo_stop = velocity_close, 2615 .ndo_start_xmit = velocity_xmit, 2616 .ndo_get_stats = velocity_get_stats, 2617 .ndo_validate_addr = eth_validate_addr, 2618 .ndo_set_mac_address = eth_mac_addr, 2619 .ndo_set_rx_mode = velocity_set_multi, 2620 .ndo_change_mtu = velocity_change_mtu, 2621 .ndo_do_ioctl = velocity_ioctl, 2622 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid, 2623 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid, 2624 #ifdef CONFIG_NET_POLL_CONTROLLER 2625 .ndo_poll_controller = velocity_poll_controller, 2626 #endif 2627 }; 2628 2629 /** 2630 * velocity_init_info - init private data 2631 * @pdev: PCI device 2632 * @vptr: Velocity info 2633 * @info: Board type 2634 * 2635 * Set up the initial velocity_info struct for the device that has been 2636 * discovered. 2637 */ 2638 static void velocity_init_info(struct velocity_info *vptr, 2639 const struct velocity_info_tbl *info) 2640 { 2641 vptr->chip_id = info->chip_id; 2642 vptr->tx.numq = info->txqueue; 2643 vptr->multicast_limit = MCAM_SIZE; 2644 spin_lock_init(&vptr->lock); 2645 } 2646 2647 /** 2648 * velocity_get_pci_info - retrieve PCI info for device 2649 * @vptr: velocity device 2650 * @pdev: PCI device it matches 2651 * 2652 * Retrieve the PCI configuration space data that interests us from 2653 * the kernel PCI layer 2654 */ 2655 static int velocity_get_pci_info(struct velocity_info *vptr) 2656 { 2657 struct pci_dev *pdev = vptr->pdev; 2658 2659 pci_set_master(pdev); 2660 2661 vptr->ioaddr = pci_resource_start(pdev, 0); 2662 vptr->memaddr = pci_resource_start(pdev, 1); 2663 2664 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) { 2665 dev_err(&pdev->dev, 2666 "region #0 is not an I/O resource, aborting.\n"); 2667 return -EINVAL; 2668 } 2669 2670 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) { 2671 dev_err(&pdev->dev, 2672 "region #1 is an I/O resource, aborting.\n"); 2673 return -EINVAL; 2674 } 2675 2676 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) { 2677 dev_err(&pdev->dev, "region #1 is too small.\n"); 2678 return -EINVAL; 2679 } 2680 2681 return 0; 2682 } 2683 2684 /** 2685 * velocity_get_platform_info - retrieve platform info for device 2686 * @vptr: velocity device 2687 * @pdev: platform device it matches 2688 * 2689 * Retrieve the Platform configuration data that interests us 2690 */ 2691 static int velocity_get_platform_info(struct velocity_info *vptr) 2692 { 2693 struct resource res; 2694 int ret; 2695 2696 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL)) 2697 vptr->no_eeprom = 1; 2698 2699 ret = of_address_to_resource(vptr->dev->of_node, 0, &res); 2700 if (ret) { 2701 dev_err(vptr->dev, "unable to find memory address\n"); 2702 return ret; 2703 } 2704 2705 vptr->memaddr = res.start; 2706 2707 if (resource_size(&res) < VELOCITY_IO_SIZE) { 2708 dev_err(vptr->dev, "memory region is too small.\n"); 2709 return -EINVAL; 2710 } 2711 2712 return 0; 2713 } 2714 2715 /** 2716 * velocity_print_info - per driver data 2717 * @vptr: velocity 2718 * 2719 * Print per driver data as the kernel driver finds Velocity 2720 * hardware 2721 */ 2722 static void velocity_print_info(struct velocity_info *vptr) 2723 { 2724 struct net_device *dev = vptr->netdev; 2725 2726 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id)); 2727 printk(KERN_INFO "%s: Ethernet Address: %pM\n", 2728 dev->name, dev->dev_addr); 2729 } 2730 2731 static u32 velocity_get_link(struct net_device *dev) 2732 { 2733 struct velocity_info *vptr = netdev_priv(dev); 2734 struct mac_regs __iomem *regs = vptr->mac_regs; 2735 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, ®s->PHYSR0) ? 1 : 0; 2736 } 2737 2738 /** 2739 * velocity_probe - set up discovered velocity device 2740 * @pdev: PCI device 2741 * @ent: PCI device table entry that matched 2742 * @bustype: bus that device is connected to 2743 * 2744 * Configure a discovered adapter from scratch. Return a negative 2745 * errno error code on failure paths. 2746 */ 2747 static int velocity_probe(struct device *dev, int irq, 2748 const struct velocity_info_tbl *info, 2749 enum velocity_bus_type bustype) 2750 { 2751 static int first = 1; 2752 struct net_device *netdev; 2753 int i; 2754 const char *drv_string; 2755 struct velocity_info *vptr; 2756 struct mac_regs __iomem *regs; 2757 int ret = -ENOMEM; 2758 2759 /* FIXME: this driver, like almost all other ethernet drivers, 2760 * can support more than MAX_UNITS. 2761 */ 2762 if (velocity_nics >= MAX_UNITS) { 2763 dev_notice(dev, "already found %d NICs.\n", velocity_nics); 2764 return -ENODEV; 2765 } 2766 2767 netdev = alloc_etherdev(sizeof(struct velocity_info)); 2768 if (!netdev) 2769 goto out; 2770 2771 /* Chain it all together */ 2772 2773 SET_NETDEV_DEV(netdev, dev); 2774 vptr = netdev_priv(netdev); 2775 2776 if (first) { 2777 printk(KERN_INFO "%s Ver. %s\n", 2778 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION); 2779 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n"); 2780 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n"); 2781 first = 0; 2782 } 2783 2784 netdev->irq = irq; 2785 vptr->netdev = netdev; 2786 vptr->dev = dev; 2787 2788 velocity_init_info(vptr, info); 2789 2790 if (bustype == BUS_PCI) { 2791 vptr->pdev = to_pci_dev(dev); 2792 2793 ret = velocity_get_pci_info(vptr); 2794 if (ret < 0) 2795 goto err_free_dev; 2796 } else { 2797 vptr->pdev = NULL; 2798 ret = velocity_get_platform_info(vptr); 2799 if (ret < 0) 2800 goto err_free_dev; 2801 } 2802 2803 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE); 2804 if (regs == NULL) { 2805 ret = -EIO; 2806 goto err_free_dev; 2807 } 2808 2809 vptr->mac_regs = regs; 2810 vptr->rev_id = readb(®s->rev_id); 2811 2812 mac_wol_reset(regs); 2813 2814 for (i = 0; i < 6; i++) 2815 netdev->dev_addr[i] = readb(®s->PAR[i]); 2816 2817 2818 drv_string = dev_driver_string(dev); 2819 2820 velocity_get_options(&vptr->options, velocity_nics, drv_string); 2821 2822 /* 2823 * Mask out the options cannot be set to the chip 2824 */ 2825 2826 vptr->options.flags &= info->flags; 2827 2828 /* 2829 * Enable the chip specified capbilities 2830 */ 2831 2832 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL); 2833 2834 vptr->wol_opts = vptr->options.wol_opts; 2835 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 2836 2837 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs); 2838 2839 netdev->netdev_ops = &velocity_netdev_ops; 2840 netdev->ethtool_ops = &velocity_ethtool_ops; 2841 netif_napi_add(netdev, &vptr->napi, velocity_poll, 2842 VELOCITY_NAPI_WEIGHT); 2843 2844 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 2845 NETIF_F_HW_VLAN_CTAG_TX; 2846 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | 2847 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | 2848 NETIF_F_IP_CSUM; 2849 2850 /* MTU range: 64 - 9000 */ 2851 netdev->min_mtu = VELOCITY_MIN_MTU; 2852 netdev->max_mtu = VELOCITY_MAX_MTU; 2853 2854 ret = register_netdev(netdev); 2855 if (ret < 0) 2856 goto err_iounmap; 2857 2858 if (!velocity_get_link(netdev)) { 2859 netif_carrier_off(netdev); 2860 vptr->mii_status |= VELOCITY_LINK_FAIL; 2861 } 2862 2863 velocity_print_info(vptr); 2864 dev_set_drvdata(vptr->dev, netdev); 2865 2866 /* and leave the chip powered down */ 2867 2868 velocity_set_power_state(vptr, PCI_D3hot); 2869 velocity_nics++; 2870 out: 2871 return ret; 2872 2873 err_iounmap: 2874 netif_napi_del(&vptr->napi); 2875 iounmap(regs); 2876 err_free_dev: 2877 free_netdev(netdev); 2878 goto out; 2879 } 2880 2881 /** 2882 * velocity_remove - device unplug 2883 * @dev: device being removed 2884 * 2885 * Device unload callback. Called on an unplug or on module 2886 * unload for each active device that is present. Disconnects 2887 * the device from the network layer and frees all the resources 2888 */ 2889 static int velocity_remove(struct device *dev) 2890 { 2891 struct net_device *netdev = dev_get_drvdata(dev); 2892 struct velocity_info *vptr = netdev_priv(netdev); 2893 2894 unregister_netdev(netdev); 2895 netif_napi_del(&vptr->napi); 2896 iounmap(vptr->mac_regs); 2897 free_netdev(netdev); 2898 velocity_nics--; 2899 2900 return 0; 2901 } 2902 2903 static int velocity_pci_probe(struct pci_dev *pdev, 2904 const struct pci_device_id *ent) 2905 { 2906 const struct velocity_info_tbl *info = 2907 &chip_info_table[ent->driver_data]; 2908 int ret; 2909 2910 ret = pci_enable_device(pdev); 2911 if (ret < 0) 2912 return ret; 2913 2914 ret = pci_request_regions(pdev, VELOCITY_NAME); 2915 if (ret < 0) { 2916 dev_err(&pdev->dev, "No PCI resources.\n"); 2917 goto fail1; 2918 } 2919 2920 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI); 2921 if (ret == 0) 2922 return 0; 2923 2924 pci_release_regions(pdev); 2925 fail1: 2926 pci_disable_device(pdev); 2927 return ret; 2928 } 2929 2930 static void velocity_pci_remove(struct pci_dev *pdev) 2931 { 2932 velocity_remove(&pdev->dev); 2933 2934 pci_release_regions(pdev); 2935 pci_disable_device(pdev); 2936 } 2937 2938 static int velocity_platform_probe(struct platform_device *pdev) 2939 { 2940 const struct of_device_id *of_id; 2941 const struct velocity_info_tbl *info; 2942 int irq; 2943 2944 of_id = of_match_device(velocity_of_ids, &pdev->dev); 2945 if (!of_id) 2946 return -EINVAL; 2947 info = of_id->data; 2948 2949 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2950 if (!irq) 2951 return -EINVAL; 2952 2953 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM); 2954 } 2955 2956 static int velocity_platform_remove(struct platform_device *pdev) 2957 { 2958 velocity_remove(&pdev->dev); 2959 2960 return 0; 2961 } 2962 2963 #ifdef CONFIG_PM_SLEEP 2964 /** 2965 * wol_calc_crc - WOL CRC 2966 * @pattern: data pattern 2967 * @mask_pattern: mask 2968 * 2969 * Compute the wake on lan crc hashes for the packet header 2970 * we are interested in. 2971 */ 2972 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern) 2973 { 2974 u16 crc = 0xFFFF; 2975 u8 mask; 2976 int i, j; 2977 2978 for (i = 0; i < size; i++) { 2979 mask = mask_pattern[i]; 2980 2981 /* Skip this loop if the mask equals to zero */ 2982 if (mask == 0x00) 2983 continue; 2984 2985 for (j = 0; j < 8; j++) { 2986 if ((mask & 0x01) == 0) { 2987 mask >>= 1; 2988 continue; 2989 } 2990 mask >>= 1; 2991 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1); 2992 } 2993 } 2994 /* Finally, invert the result once to get the correct data */ 2995 crc = ~crc; 2996 return bitrev32(crc) >> 16; 2997 } 2998 2999 /** 3000 * velocity_set_wol - set up for wake on lan 3001 * @vptr: velocity to set WOL status on 3002 * 3003 * Set a card up for wake on lan either by unicast or by 3004 * ARP packet. 3005 * 3006 * FIXME: check static buffer is safe here 3007 */ 3008 static int velocity_set_wol(struct velocity_info *vptr) 3009 { 3010 struct mac_regs __iomem *regs = vptr->mac_regs; 3011 enum speed_opt spd_dpx = vptr->options.spd_dpx; 3012 static u8 buf[256]; 3013 int i; 3014 3015 static u32 mask_pattern[2][4] = { 3016 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */ 3017 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */ 3018 }; 3019 3020 writew(0xFFFF, ®s->WOLCRClr); 3021 writeb(WOLCFG_SAB | WOLCFG_SAM, ®s->WOLCFGSet); 3022 writew(WOLCR_MAGIC_EN, ®s->WOLCRSet); 3023 3024 /* 3025 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3026 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), ®s->WOLCRSet); 3027 */ 3028 3029 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3030 writew(WOLCR_UNICAST_EN, ®s->WOLCRSet); 3031 3032 if (vptr->wol_opts & VELOCITY_WOL_ARP) { 3033 struct arp_packet *arp = (struct arp_packet *) buf; 3034 u16 crc; 3035 memset(buf, 0, sizeof(struct arp_packet) + 7); 3036 3037 for (i = 0; i < 4; i++) 3038 writel(mask_pattern[0][i], ®s->ByteMask[0][i]); 3039 3040 arp->type = htons(ETH_P_ARP); 3041 arp->ar_op = htons(1); 3042 3043 memcpy(arp->ar_tip, vptr->ip_addr, 4); 3044 3045 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf, 3046 (u8 *) & mask_pattern[0][0]); 3047 3048 writew(crc, ®s->PatternCRC[0]); 3049 writew(WOLCR_ARP_EN, ®s->WOLCRSet); 3050 } 3051 3052 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, ®s->PWCFGSet); 3053 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, ®s->PWCFGSet); 3054 3055 writew(0x0FFF, ®s->WOLSRClr); 3056 3057 if (spd_dpx == SPD_DPX_1000_FULL) 3058 goto mac_done; 3059 3060 if (spd_dpx != SPD_DPX_AUTO) 3061 goto advertise_done; 3062 3063 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) { 3064 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) 3065 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs); 3066 3067 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs); 3068 } 3069 3070 if (vptr->mii_status & VELOCITY_SPEED_1000) 3071 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs); 3072 3073 advertise_done: 3074 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, ®s->CHIPGCR); 3075 3076 { 3077 u8 GCR; 3078 GCR = readb(®s->CHIPGCR); 3079 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX; 3080 writeb(GCR, ®s->CHIPGCR); 3081 } 3082 3083 mac_done: 3084 BYTE_REG_BITS_OFF(ISR_PWEI, ®s->ISR); 3085 /* Turn on SWPTAG just before entering power mode */ 3086 BYTE_REG_BITS_ON(STICKHW_SWPTAG, ®s->STICKHW); 3087 /* Go to bed ..... */ 3088 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), ®s->STICKHW); 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * velocity_save_context - save registers 3095 * @vptr: velocity 3096 * @context: buffer for stored context 3097 * 3098 * Retrieve the current configuration from the velocity hardware 3099 * and stash it in the context structure, for use by the context 3100 * restore functions. This allows us to save things we need across 3101 * power down states 3102 */ 3103 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context) 3104 { 3105 struct mac_regs __iomem *regs = vptr->mac_regs; 3106 u16 i; 3107 u8 __iomem *ptr = (u8 __iomem *)regs; 3108 3109 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4) 3110 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3111 3112 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4) 3113 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3114 3115 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3116 *((u32 *) (context->mac_reg + i)) = readl(ptr + i); 3117 3118 } 3119 3120 static int velocity_suspend(struct device *dev) 3121 { 3122 struct net_device *netdev = dev_get_drvdata(dev); 3123 struct velocity_info *vptr = netdev_priv(netdev); 3124 unsigned long flags; 3125 3126 if (!netif_running(vptr->netdev)) 3127 return 0; 3128 3129 netif_device_detach(vptr->netdev); 3130 3131 spin_lock_irqsave(&vptr->lock, flags); 3132 if (vptr->pdev) 3133 pci_save_state(vptr->pdev); 3134 3135 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) { 3136 velocity_get_ip(vptr); 3137 velocity_save_context(vptr, &vptr->context); 3138 velocity_shutdown(vptr); 3139 velocity_set_wol(vptr); 3140 if (vptr->pdev) 3141 pci_enable_wake(vptr->pdev, PCI_D3hot, 1); 3142 velocity_set_power_state(vptr, PCI_D3hot); 3143 } else { 3144 velocity_save_context(vptr, &vptr->context); 3145 velocity_shutdown(vptr); 3146 if (vptr->pdev) 3147 pci_disable_device(vptr->pdev); 3148 velocity_set_power_state(vptr, PCI_D3hot); 3149 } 3150 3151 spin_unlock_irqrestore(&vptr->lock, flags); 3152 return 0; 3153 } 3154 3155 /** 3156 * velocity_restore_context - restore registers 3157 * @vptr: velocity 3158 * @context: buffer for stored context 3159 * 3160 * Reload the register configuration from the velocity context 3161 * created by velocity_save_context. 3162 */ 3163 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context) 3164 { 3165 struct mac_regs __iomem *regs = vptr->mac_regs; 3166 int i; 3167 u8 __iomem *ptr = (u8 __iomem *)regs; 3168 3169 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) 3170 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3171 3172 /* Just skip cr0 */ 3173 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) { 3174 /* Clear */ 3175 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4); 3176 /* Set */ 3177 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3178 } 3179 3180 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) 3181 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3182 3183 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) 3184 writel(*((u32 *) (context->mac_reg + i)), ptr + i); 3185 3186 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) 3187 writeb(*((u8 *) (context->mac_reg + i)), ptr + i); 3188 } 3189 3190 static int velocity_resume(struct device *dev) 3191 { 3192 struct net_device *netdev = dev_get_drvdata(dev); 3193 struct velocity_info *vptr = netdev_priv(netdev); 3194 unsigned long flags; 3195 int i; 3196 3197 if (!netif_running(vptr->netdev)) 3198 return 0; 3199 3200 velocity_set_power_state(vptr, PCI_D0); 3201 3202 if (vptr->pdev) { 3203 pci_enable_wake(vptr->pdev, PCI_D0, 0); 3204 pci_restore_state(vptr->pdev); 3205 } 3206 3207 mac_wol_reset(vptr->mac_regs); 3208 3209 spin_lock_irqsave(&vptr->lock, flags); 3210 velocity_restore_context(vptr, &vptr->context); 3211 velocity_init_registers(vptr, VELOCITY_INIT_WOL); 3212 mac_disable_int(vptr->mac_regs); 3213 3214 velocity_tx_srv(vptr); 3215 3216 for (i = 0; i < vptr->tx.numq; i++) { 3217 if (vptr->tx.used[i]) 3218 mac_tx_queue_wake(vptr->mac_regs, i); 3219 } 3220 3221 mac_enable_int(vptr->mac_regs); 3222 spin_unlock_irqrestore(&vptr->lock, flags); 3223 netif_device_attach(vptr->netdev); 3224 3225 return 0; 3226 } 3227 #endif /* CONFIG_PM_SLEEP */ 3228 3229 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume); 3230 3231 /* 3232 * Definition for our device driver. The PCI layer interface 3233 * uses this to handle all our card discover and plugging 3234 */ 3235 static struct pci_driver velocity_pci_driver = { 3236 .name = VELOCITY_NAME, 3237 .id_table = velocity_pci_id_table, 3238 .probe = velocity_pci_probe, 3239 .remove = velocity_pci_remove, 3240 .driver = { 3241 .pm = &velocity_pm_ops, 3242 }, 3243 }; 3244 3245 static struct platform_driver velocity_platform_driver = { 3246 .probe = velocity_platform_probe, 3247 .remove = velocity_platform_remove, 3248 .driver = { 3249 .name = "via-velocity", 3250 .of_match_table = velocity_of_ids, 3251 .pm = &velocity_pm_ops, 3252 }, 3253 }; 3254 3255 /** 3256 * velocity_ethtool_up - pre hook for ethtool 3257 * @dev: network device 3258 * 3259 * Called before an ethtool operation. We need to make sure the 3260 * chip is out of D3 state before we poke at it. In case of ethtool 3261 * ops nesting, only wake the device up in the outermost block. 3262 */ 3263 static int velocity_ethtool_up(struct net_device *dev) 3264 { 3265 struct velocity_info *vptr = netdev_priv(dev); 3266 3267 if (vptr->ethtool_ops_nesting == U32_MAX) 3268 return -EBUSY; 3269 if (!vptr->ethtool_ops_nesting++ && !netif_running(dev)) 3270 velocity_set_power_state(vptr, PCI_D0); 3271 return 0; 3272 } 3273 3274 /** 3275 * velocity_ethtool_down - post hook for ethtool 3276 * @dev: network device 3277 * 3278 * Called after an ethtool operation. Restore the chip back to D3 3279 * state if it isn't running. In case of ethtool ops nesting, only 3280 * put the device to sleep in the outermost block. 3281 */ 3282 static void velocity_ethtool_down(struct net_device *dev) 3283 { 3284 struct velocity_info *vptr = netdev_priv(dev); 3285 3286 if (!--vptr->ethtool_ops_nesting && !netif_running(dev)) 3287 velocity_set_power_state(vptr, PCI_D3hot); 3288 } 3289 3290 static int velocity_get_link_ksettings(struct net_device *dev, 3291 struct ethtool_link_ksettings *cmd) 3292 { 3293 struct velocity_info *vptr = netdev_priv(dev); 3294 struct mac_regs __iomem *regs = vptr->mac_regs; 3295 u32 status; 3296 u32 supported, advertising; 3297 3298 status = check_connection_type(vptr->mac_regs); 3299 3300 supported = SUPPORTED_TP | 3301 SUPPORTED_Autoneg | 3302 SUPPORTED_10baseT_Half | 3303 SUPPORTED_10baseT_Full | 3304 SUPPORTED_100baseT_Half | 3305 SUPPORTED_100baseT_Full | 3306 SUPPORTED_1000baseT_Half | 3307 SUPPORTED_1000baseT_Full; 3308 3309 advertising = ADVERTISED_TP | ADVERTISED_Autoneg; 3310 if (vptr->options.spd_dpx == SPD_DPX_AUTO) { 3311 advertising |= 3312 ADVERTISED_10baseT_Half | 3313 ADVERTISED_10baseT_Full | 3314 ADVERTISED_100baseT_Half | 3315 ADVERTISED_100baseT_Full | 3316 ADVERTISED_1000baseT_Half | 3317 ADVERTISED_1000baseT_Full; 3318 } else { 3319 switch (vptr->options.spd_dpx) { 3320 case SPD_DPX_1000_FULL: 3321 advertising |= ADVERTISED_1000baseT_Full; 3322 break; 3323 case SPD_DPX_100_HALF: 3324 advertising |= ADVERTISED_100baseT_Half; 3325 break; 3326 case SPD_DPX_100_FULL: 3327 advertising |= ADVERTISED_100baseT_Full; 3328 break; 3329 case SPD_DPX_10_HALF: 3330 advertising |= ADVERTISED_10baseT_Half; 3331 break; 3332 case SPD_DPX_10_FULL: 3333 advertising |= ADVERTISED_10baseT_Full; 3334 break; 3335 default: 3336 break; 3337 } 3338 } 3339 3340 if (status & VELOCITY_SPEED_1000) 3341 cmd->base.speed = SPEED_1000; 3342 else if (status & VELOCITY_SPEED_100) 3343 cmd->base.speed = SPEED_100; 3344 else 3345 cmd->base.speed = SPEED_10; 3346 3347 cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? 3348 AUTONEG_ENABLE : AUTONEG_DISABLE; 3349 cmd->base.port = PORT_TP; 3350 cmd->base.phy_address = readb(®s->MIIADR) & 0x1F; 3351 3352 if (status & VELOCITY_DUPLEX_FULL) 3353 cmd->base.duplex = DUPLEX_FULL; 3354 else 3355 cmd->base.duplex = DUPLEX_HALF; 3356 3357 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 3358 supported); 3359 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 3360 advertising); 3361 3362 return 0; 3363 } 3364 3365 static int velocity_set_link_ksettings(struct net_device *dev, 3366 const struct ethtool_link_ksettings *cmd) 3367 { 3368 struct velocity_info *vptr = netdev_priv(dev); 3369 u32 speed = cmd->base.speed; 3370 u32 curr_status; 3371 u32 new_status = 0; 3372 int ret = 0; 3373 3374 curr_status = check_connection_type(vptr->mac_regs); 3375 curr_status &= (~VELOCITY_LINK_FAIL); 3376 3377 new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0); 3378 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0); 3379 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0); 3380 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0); 3381 new_status |= ((cmd->base.duplex == DUPLEX_FULL) ? 3382 VELOCITY_DUPLEX_FULL : 0); 3383 3384 if ((new_status & VELOCITY_AUTONEG_ENABLE) && 3385 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) { 3386 ret = -EINVAL; 3387 } else { 3388 enum speed_opt spd_dpx; 3389 3390 if (new_status & VELOCITY_AUTONEG_ENABLE) 3391 spd_dpx = SPD_DPX_AUTO; 3392 else if ((new_status & VELOCITY_SPEED_1000) && 3393 (new_status & VELOCITY_DUPLEX_FULL)) { 3394 spd_dpx = SPD_DPX_1000_FULL; 3395 } else if (new_status & VELOCITY_SPEED_100) 3396 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3397 SPD_DPX_100_FULL : SPD_DPX_100_HALF; 3398 else if (new_status & VELOCITY_SPEED_10) 3399 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ? 3400 SPD_DPX_10_FULL : SPD_DPX_10_HALF; 3401 else 3402 return -EOPNOTSUPP; 3403 3404 vptr->options.spd_dpx = spd_dpx; 3405 3406 velocity_set_media_mode(vptr, new_status); 3407 } 3408 3409 return ret; 3410 } 3411 3412 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3413 { 3414 struct velocity_info *vptr = netdev_priv(dev); 3415 3416 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver)); 3417 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version)); 3418 if (vptr->pdev) 3419 strlcpy(info->bus_info, pci_name(vptr->pdev), 3420 sizeof(info->bus_info)); 3421 else 3422 strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); 3423 } 3424 3425 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3426 { 3427 struct velocity_info *vptr = netdev_priv(dev); 3428 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP; 3429 wol->wolopts |= WAKE_MAGIC; 3430 /* 3431 if (vptr->wol_opts & VELOCITY_WOL_PHY) 3432 wol.wolopts|=WAKE_PHY; 3433 */ 3434 if (vptr->wol_opts & VELOCITY_WOL_UCAST) 3435 wol->wolopts |= WAKE_UCAST; 3436 if (vptr->wol_opts & VELOCITY_WOL_ARP) 3437 wol->wolopts |= WAKE_ARP; 3438 memcpy(&wol->sopass, vptr->wol_passwd, 6); 3439 } 3440 3441 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3442 { 3443 struct velocity_info *vptr = netdev_priv(dev); 3444 3445 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP))) 3446 return -EFAULT; 3447 vptr->wol_opts = VELOCITY_WOL_MAGIC; 3448 3449 /* 3450 if (wol.wolopts & WAKE_PHY) { 3451 vptr->wol_opts|=VELOCITY_WOL_PHY; 3452 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED; 3453 } 3454 */ 3455 3456 if (wol->wolopts & WAKE_MAGIC) { 3457 vptr->wol_opts |= VELOCITY_WOL_MAGIC; 3458 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3459 } 3460 if (wol->wolopts & WAKE_UCAST) { 3461 vptr->wol_opts |= VELOCITY_WOL_UCAST; 3462 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3463 } 3464 if (wol->wolopts & WAKE_ARP) { 3465 vptr->wol_opts |= VELOCITY_WOL_ARP; 3466 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED; 3467 } 3468 memcpy(vptr->wol_passwd, wol->sopass, 6); 3469 return 0; 3470 } 3471 3472 static u32 velocity_get_msglevel(struct net_device *dev) 3473 { 3474 return msglevel; 3475 } 3476 3477 static void velocity_set_msglevel(struct net_device *dev, u32 value) 3478 { 3479 msglevel = value; 3480 } 3481 3482 static int get_pending_timer_val(int val) 3483 { 3484 int mult_bits = val >> 6; 3485 int mult = 1; 3486 3487 switch (mult_bits) 3488 { 3489 case 1: 3490 mult = 4; break; 3491 case 2: 3492 mult = 16; break; 3493 case 3: 3494 mult = 64; break; 3495 case 0: 3496 default: 3497 break; 3498 } 3499 3500 return (val & 0x3f) * mult; 3501 } 3502 3503 static void set_pending_timer_val(int *val, u32 us) 3504 { 3505 u8 mult = 0; 3506 u8 shift = 0; 3507 3508 if (us >= 0x3f) { 3509 mult = 1; /* mult with 4 */ 3510 shift = 2; 3511 } 3512 if (us >= 0x3f * 4) { 3513 mult = 2; /* mult with 16 */ 3514 shift = 4; 3515 } 3516 if (us >= 0x3f * 16) { 3517 mult = 3; /* mult with 64 */ 3518 shift = 6; 3519 } 3520 3521 *val = (mult << 6) | ((us >> shift) & 0x3f); 3522 } 3523 3524 3525 static int velocity_get_coalesce(struct net_device *dev, 3526 struct ethtool_coalesce *ecmd) 3527 { 3528 struct velocity_info *vptr = netdev_priv(dev); 3529 3530 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup; 3531 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup; 3532 3533 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer); 3534 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer); 3535 3536 return 0; 3537 } 3538 3539 static int velocity_set_coalesce(struct net_device *dev, 3540 struct ethtool_coalesce *ecmd) 3541 { 3542 struct velocity_info *vptr = netdev_priv(dev); 3543 int max_us = 0x3f * 64; 3544 unsigned long flags; 3545 3546 /* 6 bits of */ 3547 if (ecmd->tx_coalesce_usecs > max_us) 3548 return -EINVAL; 3549 if (ecmd->rx_coalesce_usecs > max_us) 3550 return -EINVAL; 3551 3552 if (ecmd->tx_max_coalesced_frames > 0xff) 3553 return -EINVAL; 3554 if (ecmd->rx_max_coalesced_frames > 0xff) 3555 return -EINVAL; 3556 3557 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames; 3558 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames; 3559 3560 set_pending_timer_val(&vptr->options.rxqueue_timer, 3561 ecmd->rx_coalesce_usecs); 3562 set_pending_timer_val(&vptr->options.txqueue_timer, 3563 ecmd->tx_coalesce_usecs); 3564 3565 /* Setup the interrupt suppression and queue timers */ 3566 spin_lock_irqsave(&vptr->lock, flags); 3567 mac_disable_int(vptr->mac_regs); 3568 setup_adaptive_interrupts(vptr); 3569 setup_queue_timers(vptr); 3570 3571 mac_write_int_mask(vptr->int_mask, vptr->mac_regs); 3572 mac_clear_isr(vptr->mac_regs); 3573 mac_enable_int(vptr->mac_regs); 3574 spin_unlock_irqrestore(&vptr->lock, flags); 3575 3576 return 0; 3577 } 3578 3579 static const char velocity_gstrings[][ETH_GSTRING_LEN] = { 3580 "rx_all", 3581 "rx_ok", 3582 "tx_ok", 3583 "rx_error", 3584 "rx_runt_ok", 3585 "rx_runt_err", 3586 "rx_64", 3587 "tx_64", 3588 "rx_65_to_127", 3589 "tx_65_to_127", 3590 "rx_128_to_255", 3591 "tx_128_to_255", 3592 "rx_256_to_511", 3593 "tx_256_to_511", 3594 "rx_512_to_1023", 3595 "tx_512_to_1023", 3596 "rx_1024_to_1518", 3597 "tx_1024_to_1518", 3598 "tx_ether_collisions", 3599 "rx_crc_errors", 3600 "rx_jumbo", 3601 "tx_jumbo", 3602 "rx_mac_control_frames", 3603 "tx_mac_control_frames", 3604 "rx_frame_alignment_errors", 3605 "rx_long_ok", 3606 "rx_long_err", 3607 "tx_sqe_errors", 3608 "rx_no_buf", 3609 "rx_symbol_errors", 3610 "in_range_length_errors", 3611 "late_collisions" 3612 }; 3613 3614 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data) 3615 { 3616 switch (sset) { 3617 case ETH_SS_STATS: 3618 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings)); 3619 break; 3620 } 3621 } 3622 3623 static int velocity_get_sset_count(struct net_device *dev, int sset) 3624 { 3625 switch (sset) { 3626 case ETH_SS_STATS: 3627 return ARRAY_SIZE(velocity_gstrings); 3628 default: 3629 return -EOPNOTSUPP; 3630 } 3631 } 3632 3633 static void velocity_get_ethtool_stats(struct net_device *dev, 3634 struct ethtool_stats *stats, u64 *data) 3635 { 3636 if (netif_running(dev)) { 3637 struct velocity_info *vptr = netdev_priv(dev); 3638 u32 *p = vptr->mib_counter; 3639 int i; 3640 3641 spin_lock_irq(&vptr->lock); 3642 velocity_update_hw_mibs(vptr); 3643 spin_unlock_irq(&vptr->lock); 3644 3645 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++) 3646 *data++ = *p++; 3647 } 3648 } 3649 3650 static const struct ethtool_ops velocity_ethtool_ops = { 3651 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3652 ETHTOOL_COALESCE_MAX_FRAMES, 3653 .get_drvinfo = velocity_get_drvinfo, 3654 .get_wol = velocity_ethtool_get_wol, 3655 .set_wol = velocity_ethtool_set_wol, 3656 .get_msglevel = velocity_get_msglevel, 3657 .set_msglevel = velocity_set_msglevel, 3658 .get_link = velocity_get_link, 3659 .get_strings = velocity_get_strings, 3660 .get_sset_count = velocity_get_sset_count, 3661 .get_ethtool_stats = velocity_get_ethtool_stats, 3662 .get_coalesce = velocity_get_coalesce, 3663 .set_coalesce = velocity_set_coalesce, 3664 .begin = velocity_ethtool_up, 3665 .complete = velocity_ethtool_down, 3666 .get_link_ksettings = velocity_get_link_ksettings, 3667 .set_link_ksettings = velocity_set_link_ksettings, 3668 }; 3669 3670 #if defined(CONFIG_PM) && defined(CONFIG_INET) 3671 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr) 3672 { 3673 struct in_ifaddr *ifa = ptr; 3674 struct net_device *dev = ifa->ifa_dev->dev; 3675 3676 if (dev_net(dev) == &init_net && 3677 dev->netdev_ops == &velocity_netdev_ops) 3678 velocity_get_ip(netdev_priv(dev)); 3679 3680 return NOTIFY_DONE; 3681 } 3682 3683 static struct notifier_block velocity_inetaddr_notifier = { 3684 .notifier_call = velocity_netdev_event, 3685 }; 3686 3687 static void velocity_register_notifier(void) 3688 { 3689 register_inetaddr_notifier(&velocity_inetaddr_notifier); 3690 } 3691 3692 static void velocity_unregister_notifier(void) 3693 { 3694 unregister_inetaddr_notifier(&velocity_inetaddr_notifier); 3695 } 3696 3697 #else 3698 3699 #define velocity_register_notifier() do {} while (0) 3700 #define velocity_unregister_notifier() do {} while (0) 3701 3702 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */ 3703 3704 /** 3705 * velocity_init_module - load time function 3706 * 3707 * Called when the velocity module is loaded. The PCI driver 3708 * is registered with the PCI layer, and in turn will call 3709 * the probe functions for each velocity adapter installed 3710 * in the system. 3711 */ 3712 static int __init velocity_init_module(void) 3713 { 3714 int ret_pci, ret_platform; 3715 3716 velocity_register_notifier(); 3717 3718 ret_pci = pci_register_driver(&velocity_pci_driver); 3719 ret_platform = platform_driver_register(&velocity_platform_driver); 3720 3721 /* if both_registers failed, remove the notifier */ 3722 if ((ret_pci < 0) && (ret_platform < 0)) { 3723 velocity_unregister_notifier(); 3724 return ret_pci; 3725 } 3726 3727 return 0; 3728 } 3729 3730 /** 3731 * velocity_cleanup - module unload 3732 * 3733 * When the velocity hardware is unloaded this function is called. 3734 * It will clean up the notifiers and the unregister the PCI 3735 * driver interface for this hardware. This in turn cleans up 3736 * all discovered interfaces before returning from the function 3737 */ 3738 static void __exit velocity_cleanup_module(void) 3739 { 3740 velocity_unregister_notifier(); 3741 3742 pci_unregister_driver(&velocity_pci_driver); 3743 platform_driver_unregister(&velocity_platform_driver); 3744 } 3745 3746 module_init(velocity_init_module); 3747 module_exit(velocity_cleanup_module); 3748