1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Roger Luethi <rl@hellgate.ch> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 #define DRV_VERSION "1.5.0" 36 #define DRV_RELDATE "2010-10-09" 37 38 #include <linux/types.h> 39 40 /* A few user-configurable values. 41 These may be modified when a driver module is loaded. */ 42 static int debug = 0; 43 #define RHINE_MSG_DEFAULT \ 44 (0x0000) 45 46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 47 Setting to > 1518 effectively disables this feature. */ 48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 49 defined(CONFIG_SPARC) || defined(__ia64__) || \ 50 defined(__sh__) || defined(__mips__) 51 static int rx_copybreak = 1518; 52 #else 53 static int rx_copybreak; 54 #endif 55 56 /* Work-around for broken BIOSes: they are unable to get the chip back out of 57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 58 static bool avoid_D3; 59 60 /* 61 * In case you are looking for 'options[]' or 'full_duplex[]', they 62 * are gone. Use ethtool(8) instead. 63 */ 64 65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 66 The Rhine has a 64 element 8390-like hash table. */ 67 static const int multicast_filter_limit = 32; 68 69 70 /* Operational parameters that are set at compile time. */ 71 72 /* Keep the ring sizes a power of two for compile efficiency. 73 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 74 Making the Tx ring too large decreases the effectiveness of channel 75 bonding and packet priority. 76 There are no ill effects from too-large receive rings. */ 77 #define TX_RING_SIZE 16 78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ 79 #define RX_RING_SIZE 64 80 81 /* Operational parameters that usually are not changed. */ 82 83 /* Time in jiffies before concluding the transmitter is hung. */ 84 #define TX_TIMEOUT (2*HZ) 85 86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 87 88 #include <linux/module.h> 89 #include <linux/moduleparam.h> 90 #include <linux/kernel.h> 91 #include <linux/string.h> 92 #include <linux/timer.h> 93 #include <linux/errno.h> 94 #include <linux/ioport.h> 95 #include <linux/interrupt.h> 96 #include <linux/pci.h> 97 #include <linux/dma-mapping.h> 98 #include <linux/netdevice.h> 99 #include <linux/etherdevice.h> 100 #include <linux/skbuff.h> 101 #include <linux/init.h> 102 #include <linux/delay.h> 103 #include <linux/mii.h> 104 #include <linux/ethtool.h> 105 #include <linux/crc32.h> 106 #include <linux/if_vlan.h> 107 #include <linux/bitops.h> 108 #include <linux/workqueue.h> 109 #include <asm/processor.h> /* Processor type for cache alignment. */ 110 #include <asm/io.h> 111 #include <asm/irq.h> 112 #include <asm/uaccess.h> 113 #include <linux/dmi.h> 114 115 /* These identify the driver base version and may not be removed. */ 116 static const char version[] = 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; 118 119 /* This driver was written to use PCI memory space. Some early versions 120 of the Rhine may only work correctly with I/O space accesses. */ 121 #ifdef CONFIG_VIA_RHINE_MMIO 122 #define USE_MMIO 123 #else 124 #endif 125 126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 128 MODULE_LICENSE("GPL"); 129 130 module_param(debug, int, 0); 131 module_param(rx_copybreak, int, 0); 132 module_param(avoid_D3, bool, 0); 133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); 134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 136 137 #define MCAM_SIZE 32 138 #define VCAM_SIZE 32 139 140 /* 141 Theory of Operation 142 143 I. Board Compatibility 144 145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 146 controller. 147 148 II. Board-specific settings 149 150 Boards with this chip are functional only in a bus-master PCI slot. 151 152 Many operational settings are loaded from the EEPROM to the Config word at 153 offset 0x78. For most of these settings, this driver assumes that they are 154 correct. 155 If this driver is compiled to use PCI memory space operations the EEPROM 156 must be configured to enable memory ops. 157 158 III. Driver operation 159 160 IIIa. Ring buffers 161 162 This driver uses two statically allocated fixed-size descriptor lists 163 formed into rings by a branch from the final descriptor to the beginning of 164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 165 166 IIIb/c. Transmit/Receive Structure 167 168 This driver attempts to use a zero-copy receive and transmit scheme. 169 170 Alas, all data buffers are required to start on a 32 bit boundary, so 171 the driver must often copy transmit packets into bounce buffers. 172 173 The driver allocates full frame size skbuffs for the Rx ring buffers at 174 open() time and passes the skb->data field to the chip as receive data 175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 176 a fresh skbuff is allocated and the frame is copied to the new skbuff. 177 When the incoming frame is larger, the skbuff is passed directly up the 178 protocol stack. Buffers consumed this way are replaced by newly allocated 179 skbuffs in the last phase of rhine_rx(). 180 181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 182 using a full-sized skbuff for small frames vs. the copying costs of larger 183 frames. New boards are typically used in generously configured machines 184 and the underfilled buffers have negligible impact compared to the benefit of 185 a single allocation size, so the default value of zero results in never 186 copying packets. When copying is done, the cost is usually mitigated by using 187 a combined copy/checksum routine. Copying also preloads the cache, which is 188 most useful with small frames. 189 190 Since the VIA chips are only able to transfer data to buffers on 32 bit 191 boundaries, the IP header at offset 14 in an ethernet frame isn't 192 longword aligned for further processing. Copying these unaligned buffers 193 has the beneficial effect of 16-byte aligning the IP header. 194 195 IIId. Synchronization 196 197 The driver runs as two independent, single-threaded flows of control. One 198 is the send-packet routine, which enforces single-threaded use by the 199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 200 which is single threaded by the hardware and interrupt handling software. 201 202 The send packet thread has partial control over the Tx ring. It locks the 203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 204 the ring is not available it stops the transmit queue by 205 calling netif_stop_queue. 206 207 The interrupt handler has exclusive control over the Rx ring and records stats 208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 209 empty by incrementing the dirty_tx mark. If at least half of the entries in 210 the Rx ring are available the transmit queue is woken up if it was stopped. 211 212 IV. Notes 213 214 IVb. References 215 216 Preliminary VT86C100A manual from http://www.via.com.tw/ 217 http://www.scyld.com/expert/100mbps.html 218 http://www.scyld.com/expert/NWay.html 219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 221 222 223 IVc. Errata 224 225 The VT86C100A manual is not reliable information. 226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 227 in significant performance degradation for bounce buffer copies on transmit 228 and unaligned IP headers on receive. 229 The chip does not pad to minimum transmit length. 230 231 */ 232 233 234 /* This table drives the PCI probe routines. It's mostly boilerplate in all 235 of the drivers, and will likely be provided by some future kernel. 236 Note the matching code -- the first table entry matchs all 56** cards but 237 second only the 1234 card. 238 */ 239 240 enum rhine_revs { 241 VT86C100A = 0x00, 242 VTunknown0 = 0x20, 243 VT6102 = 0x40, 244 VT8231 = 0x50, /* Integrated MAC */ 245 VT8233 = 0x60, /* Integrated MAC */ 246 VT8235 = 0x74, /* Integrated MAC */ 247 VT8237 = 0x78, /* Integrated MAC */ 248 VTunknown1 = 0x7C, 249 VT6105 = 0x80, 250 VT6105_B0 = 0x83, 251 VT6105L = 0x8A, 252 VT6107 = 0x8C, 253 VTunknown2 = 0x8E, 254 VT6105M = 0x90, /* Management adapter */ 255 }; 256 257 enum rhine_quirks { 258 rqWOL = 0x0001, /* Wake-On-LAN support */ 259 rqForceReset = 0x0002, 260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 262 rqRhineI = 0x0100, /* See comment below */ 263 }; 264 /* 265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 266 * MMIO as well as for the collision counter and the Tx FIFO underflow 267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 268 */ 269 270 /* Beware of PCI posted writes */ 271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 272 273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = { 274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 278 { } /* terminate list */ 279 }; 280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 281 282 283 /* Offsets to the device registers. */ 284 enum register_offsets { 285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 286 ChipCmd1=0x09, TQWake=0x0A, 287 IntrStatus=0x0C, IntrEnable=0x0E, 288 MulticastFilter0=0x10, MulticastFilter1=0x14, 289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 294 StickyHW=0x83, IntrStatus2=0x84, 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 297 WOLcrClr1=0xA6, WOLcgClr=0xA7, 298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 299 }; 300 301 /* Bits in ConfigD */ 302 enum backoff_bits { 303 BackOptional=0x01, BackModify=0x02, 304 BackCaptureEffect=0x04, BackRandom=0x08 305 }; 306 307 /* Bits in the TxConfig (TCR) register */ 308 enum tcr_bits { 309 TCR_PQEN=0x01, 310 TCR_LB0=0x02, /* loopback[0] */ 311 TCR_LB1=0x04, /* loopback[1] */ 312 TCR_OFSET=0x08, 313 TCR_RTGOPT=0x10, 314 TCR_RTFT0=0x20, 315 TCR_RTFT1=0x40, 316 TCR_RTSF=0x80, 317 }; 318 319 /* Bits in the CamCon (CAMC) register */ 320 enum camcon_bits { 321 CAMC_CAMEN=0x01, 322 CAMC_VCAMSL=0x02, 323 CAMC_CAMWR=0x04, 324 CAMC_CAMRD=0x08, 325 }; 326 327 /* Bits in the PCIBusConfig1 (BCR1) register */ 328 enum bcr1_bits { 329 BCR1_POT0=0x01, 330 BCR1_POT1=0x02, 331 BCR1_POT2=0x04, 332 BCR1_CTFT0=0x08, 333 BCR1_CTFT1=0x10, 334 BCR1_CTSF=0x20, 335 BCR1_TXQNOBK=0x40, /* for VT6105 */ 336 BCR1_VIDFR=0x80, /* for VT6105 */ 337 BCR1_MED0=0x40, /* for VT6102 */ 338 BCR1_MED1=0x80, /* for VT6102 */ 339 }; 340 341 #ifdef USE_MMIO 342 /* Registers we check that mmio and reg are the same. */ 343 static const int mmio_verify_registers[] = { 344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 345 0 346 }; 347 #endif 348 349 /* Bits in the interrupt status/mask registers. */ 350 enum intr_status_bits { 351 IntrRxDone = 0x0001, 352 IntrTxDone = 0x0002, 353 IntrRxErr = 0x0004, 354 IntrTxError = 0x0008, 355 IntrRxEmpty = 0x0020, 356 IntrPCIErr = 0x0040, 357 IntrStatsMax = 0x0080, 358 IntrRxEarly = 0x0100, 359 IntrTxUnderrun = 0x0210, 360 IntrRxOverflow = 0x0400, 361 IntrRxDropped = 0x0800, 362 IntrRxNoBuf = 0x1000, 363 IntrTxAborted = 0x2000, 364 IntrLinkChange = 0x4000, 365 IntrRxWakeUp = 0x8000, 366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ 367 IntrNormalSummary = IntrRxDone | IntrTxDone, 368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | 369 IntrTxUnderrun, 370 }; 371 372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 373 enum wol_bits { 374 WOLucast = 0x10, 375 WOLmagic = 0x20, 376 WOLbmcast = 0x30, 377 WOLlnkon = 0x40, 378 WOLlnkoff = 0x80, 379 }; 380 381 /* The Rx and Tx buffer descriptors. */ 382 struct rx_desc { 383 __le32 rx_status; 384 __le32 desc_length; /* Chain flag, Buffer/frame length */ 385 __le32 addr; 386 __le32 next_desc; 387 }; 388 struct tx_desc { 389 __le32 tx_status; 390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 391 __le32 addr; 392 __le32 next_desc; 393 }; 394 395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 396 #define TXDESC 0x00e08000 397 398 enum rx_status_bits { 399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 400 }; 401 402 /* Bits in *_desc.*_status */ 403 enum desc_status_bits { 404 DescOwn=0x80000000 405 }; 406 407 /* Bits in *_desc.*_length */ 408 enum desc_length_bits { 409 DescTag=0x00010000 410 }; 411 412 /* Bits in ChipCmd. */ 413 enum chip_cmd_bits { 414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 418 }; 419 420 struct rhine_stats { 421 u64 packets; 422 u64 bytes; 423 struct u64_stats_sync syncp; 424 }; 425 426 struct rhine_private { 427 /* Bit mask for configured VLAN ids */ 428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 429 430 /* Descriptor rings */ 431 struct rx_desc *rx_ring; 432 struct tx_desc *tx_ring; 433 dma_addr_t rx_ring_dma; 434 dma_addr_t tx_ring_dma; 435 436 /* The addresses of receive-in-place skbuffs. */ 437 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 439 440 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 441 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 443 444 /* Tx bounce buffers (Rhine-I only) */ 445 unsigned char *tx_buf[TX_RING_SIZE]; 446 unsigned char *tx_bufs; 447 dma_addr_t tx_bufs_dma; 448 449 struct pci_dev *pdev; 450 long pioaddr; 451 struct net_device *dev; 452 struct napi_struct napi; 453 spinlock_t lock; 454 struct mutex task_lock; 455 bool task_enable; 456 struct work_struct slow_event_task; 457 struct work_struct reset_task; 458 459 u32 msg_enable; 460 461 /* Frequently used values: keep some adjacent for cache effect. */ 462 u32 quirks; 463 struct rx_desc *rx_head_desc; 464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 465 unsigned int cur_tx, dirty_tx; 466 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 467 struct rhine_stats rx_stats; 468 struct rhine_stats tx_stats; 469 u8 wolopts; 470 471 u8 tx_thresh, rx_thresh; 472 473 struct mii_if_info mii_if; 474 void __iomem *base; 475 }; 476 477 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 478 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 479 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 480 481 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 482 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 483 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 484 485 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 486 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 487 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 488 489 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 490 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 491 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 492 493 494 static int mdio_read(struct net_device *dev, int phy_id, int location); 495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 496 static int rhine_open(struct net_device *dev); 497 static void rhine_reset_task(struct work_struct *work); 498 static void rhine_slow_event_task(struct work_struct *work); 499 static void rhine_tx_timeout(struct net_device *dev); 500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 501 struct net_device *dev); 502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 503 static void rhine_tx(struct net_device *dev); 504 static int rhine_rx(struct net_device *dev, int limit); 505 static void rhine_set_rx_mode(struct net_device *dev); 506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev, 507 struct rtnl_link_stats64 *stats); 508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 509 static const struct ethtool_ops netdev_ethtool_ops; 510 static int rhine_close(struct net_device *dev); 511 static int rhine_vlan_rx_add_vid(struct net_device *dev, 512 __be16 proto, u16 vid); 513 static int rhine_vlan_rx_kill_vid(struct net_device *dev, 514 __be16 proto, u16 vid); 515 static void rhine_restart_tx(struct net_device *dev); 516 517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) 518 { 519 void __iomem *ioaddr = rp->base; 520 int i; 521 522 for (i = 0; i < 1024; i++) { 523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); 524 525 if (low ^ has_mask_bits) 526 break; 527 udelay(10); 528 } 529 if (i > 64) { 530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " 531 "count: %04d\n", low ? "low" : "high", reg, mask, i); 532 } 533 } 534 535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) 536 { 537 rhine_wait_bit(rp, reg, mask, false); 538 } 539 540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) 541 { 542 rhine_wait_bit(rp, reg, mask, true); 543 } 544 545 static u32 rhine_get_events(struct rhine_private *rp) 546 { 547 void __iomem *ioaddr = rp->base; 548 u32 intr_status; 549 550 intr_status = ioread16(ioaddr + IntrStatus); 551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 552 if (rp->quirks & rqStatusWBRace) 553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 554 return intr_status; 555 } 556 557 static void rhine_ack_events(struct rhine_private *rp, u32 mask) 558 { 559 void __iomem *ioaddr = rp->base; 560 561 if (rp->quirks & rqStatusWBRace) 562 iowrite8(mask >> 16, ioaddr + IntrStatus2); 563 iowrite16(mask, ioaddr + IntrStatus); 564 mmiowb(); 565 } 566 567 /* 568 * Get power related registers into sane state. 569 * Notify user about past WOL event. 570 */ 571 static void rhine_power_init(struct net_device *dev) 572 { 573 struct rhine_private *rp = netdev_priv(dev); 574 void __iomem *ioaddr = rp->base; 575 u16 wolstat; 576 577 if (rp->quirks & rqWOL) { 578 /* Make sure chip is in power state D0 */ 579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 580 581 /* Disable "force PME-enable" */ 582 iowrite8(0x80, ioaddr + WOLcgClr); 583 584 /* Clear power-event config bits (WOL) */ 585 iowrite8(0xFF, ioaddr + WOLcrClr); 586 /* More recent cards can manage two additional patterns */ 587 if (rp->quirks & rq6patterns) 588 iowrite8(0x03, ioaddr + WOLcrClr1); 589 590 /* Save power-event status bits */ 591 wolstat = ioread8(ioaddr + PwrcsrSet); 592 if (rp->quirks & rq6patterns) 593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 594 595 /* Clear power-event status bits */ 596 iowrite8(0xFF, ioaddr + PwrcsrClr); 597 if (rp->quirks & rq6patterns) 598 iowrite8(0x03, ioaddr + PwrcsrClr1); 599 600 if (wolstat) { 601 char *reason; 602 switch (wolstat) { 603 case WOLmagic: 604 reason = "Magic packet"; 605 break; 606 case WOLlnkon: 607 reason = "Link went up"; 608 break; 609 case WOLlnkoff: 610 reason = "Link went down"; 611 break; 612 case WOLucast: 613 reason = "Unicast packet"; 614 break; 615 case WOLbmcast: 616 reason = "Multicast/broadcast packet"; 617 break; 618 default: 619 reason = "Unknown"; 620 } 621 netdev_info(dev, "Woke system up. Reason: %s\n", 622 reason); 623 } 624 } 625 } 626 627 static void rhine_chip_reset(struct net_device *dev) 628 { 629 struct rhine_private *rp = netdev_priv(dev); 630 void __iomem *ioaddr = rp->base; 631 u8 cmd1; 632 633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 634 IOSYNC; 635 636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 637 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 638 639 /* Force reset */ 640 if (rp->quirks & rqForceReset) 641 iowrite8(0x40, ioaddr + MiscCmd); 642 643 /* Reset can take somewhat longer (rare) */ 644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); 645 } 646 647 cmd1 = ioread8(ioaddr + ChipCmd1); 648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? 649 "failed" : "succeeded"); 650 } 651 652 #ifdef USE_MMIO 653 static void enable_mmio(long pioaddr, u32 quirks) 654 { 655 int n; 656 if (quirks & rqRhineI) { 657 /* More recent docs say that this bit is reserved ... */ 658 n = inb(pioaddr + ConfigA) | 0x20; 659 outb(n, pioaddr + ConfigA); 660 } else { 661 n = inb(pioaddr + ConfigD) | 0x80; 662 outb(n, pioaddr + ConfigD); 663 } 664 } 665 #endif 666 667 /* 668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 669 * (plus 0x6C for Rhine-I/II) 670 */ 671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) 672 { 673 struct rhine_private *rp = netdev_priv(dev); 674 void __iomem *ioaddr = rp->base; 675 int i; 676 677 outb(0x20, pioaddr + MACRegEEcsr); 678 for (i = 0; i < 1024; i++) { 679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) 680 break; 681 } 682 if (i > 512) 683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); 684 685 #ifdef USE_MMIO 686 /* 687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 688 * MMIO. If reloading EEPROM was done first this could be avoided, but 689 * it is not known if that still works with the "win98-reboot" problem. 690 */ 691 enable_mmio(pioaddr, rp->quirks); 692 #endif 693 694 /* Turn off EEPROM-controlled wake-up (magic packet) */ 695 if (rp->quirks & rqWOL) 696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 697 698 } 699 700 #ifdef CONFIG_NET_POLL_CONTROLLER 701 static void rhine_poll(struct net_device *dev) 702 { 703 struct rhine_private *rp = netdev_priv(dev); 704 const int irq = rp->pdev->irq; 705 706 disable_irq(irq); 707 rhine_interrupt(irq, dev); 708 enable_irq(irq); 709 } 710 #endif 711 712 static void rhine_kick_tx_threshold(struct rhine_private *rp) 713 { 714 if (rp->tx_thresh < 0xe0) { 715 void __iomem *ioaddr = rp->base; 716 717 rp->tx_thresh += 0x20; 718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); 719 } 720 } 721 722 static void rhine_tx_err(struct rhine_private *rp, u32 status) 723 { 724 struct net_device *dev = rp->dev; 725 726 if (status & IntrTxAborted) { 727 netif_info(rp, tx_err, dev, 728 "Abort %08x, frame dropped\n", status); 729 } 730 731 if (status & IntrTxUnderrun) { 732 rhine_kick_tx_threshold(rp); 733 netif_info(rp, tx_err ,dev, "Transmitter underrun, " 734 "Tx threshold now %02x\n", rp->tx_thresh); 735 } 736 737 if (status & IntrTxDescRace) 738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); 739 740 if ((status & IntrTxError) && 741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { 742 rhine_kick_tx_threshold(rp); 743 netif_info(rp, tx_err, dev, "Unspecified error. " 744 "Tx threshold now %02x\n", rp->tx_thresh); 745 } 746 747 rhine_restart_tx(dev); 748 } 749 750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) 751 { 752 void __iomem *ioaddr = rp->base; 753 struct net_device_stats *stats = &rp->dev->stats; 754 755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed); 757 758 /* 759 * Clears the "tally counters" for CRC errors and missed frames(?). 760 * It has been reported that some chips need a write of 0 to clear 761 * these, for others the counters are set to 1 when written to and 762 * instead cleared when read. So we clear them both ways ... 763 */ 764 iowrite32(0, ioaddr + RxMissed); 765 ioread16(ioaddr + RxCRCErrs); 766 ioread16(ioaddr + RxMissed); 767 } 768 769 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ 770 IntrRxErr | \ 771 IntrRxEmpty | \ 772 IntrRxOverflow | \ 773 IntrRxDropped | \ 774 IntrRxNoBuf | \ 775 IntrRxWakeUp) 776 777 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ 778 IntrTxAborted | \ 779 IntrTxUnderrun | \ 780 IntrTxDescRace) 781 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) 782 783 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ 784 RHINE_EVENT_NAPI_TX | \ 785 IntrStatsMax) 786 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) 787 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) 788 789 static int rhine_napipoll(struct napi_struct *napi, int budget) 790 { 791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 792 struct net_device *dev = rp->dev; 793 void __iomem *ioaddr = rp->base; 794 u16 enable_mask = RHINE_EVENT & 0xffff; 795 int work_done = 0; 796 u32 status; 797 798 status = rhine_get_events(rp); 799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); 800 801 if (status & RHINE_EVENT_NAPI_RX) 802 work_done += rhine_rx(dev, budget); 803 804 if (status & RHINE_EVENT_NAPI_TX) { 805 if (status & RHINE_EVENT_NAPI_TX_ERR) { 806 /* Avoid scavenging before Tx engine turned off */ 807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); 808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn) 809 netif_warn(rp, tx_err, dev, "Tx still on\n"); 810 } 811 812 rhine_tx(dev); 813 814 if (status & RHINE_EVENT_NAPI_TX_ERR) 815 rhine_tx_err(rp, status); 816 } 817 818 if (status & IntrStatsMax) { 819 spin_lock(&rp->lock); 820 rhine_update_rx_crc_and_missed_errord(rp); 821 spin_unlock(&rp->lock); 822 } 823 824 if (status & RHINE_EVENT_SLOW) { 825 enable_mask &= ~RHINE_EVENT_SLOW; 826 schedule_work(&rp->slow_event_task); 827 } 828 829 if (work_done < budget) { 830 napi_complete(napi); 831 iowrite16(enable_mask, ioaddr + IntrEnable); 832 mmiowb(); 833 } 834 return work_done; 835 } 836 837 static void rhine_hw_init(struct net_device *dev, long pioaddr) 838 { 839 struct rhine_private *rp = netdev_priv(dev); 840 841 /* Reset the chip to erase previous misconfiguration. */ 842 rhine_chip_reset(dev); 843 844 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 845 if (rp->quirks & rqRhineI) 846 msleep(5); 847 848 /* Reload EEPROM controlled bytes cleared by soft reset */ 849 rhine_reload_eeprom(pioaddr, dev); 850 } 851 852 static const struct net_device_ops rhine_netdev_ops = { 853 .ndo_open = rhine_open, 854 .ndo_stop = rhine_close, 855 .ndo_start_xmit = rhine_start_tx, 856 .ndo_get_stats64 = rhine_get_stats64, 857 .ndo_set_rx_mode = rhine_set_rx_mode, 858 .ndo_change_mtu = eth_change_mtu, 859 .ndo_validate_addr = eth_validate_addr, 860 .ndo_set_mac_address = eth_mac_addr, 861 .ndo_do_ioctl = netdev_ioctl, 862 .ndo_tx_timeout = rhine_tx_timeout, 863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 865 #ifdef CONFIG_NET_POLL_CONTROLLER 866 .ndo_poll_controller = rhine_poll, 867 #endif 868 }; 869 870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 871 { 872 struct net_device *dev; 873 struct rhine_private *rp; 874 int i, rc; 875 u32 quirks; 876 long pioaddr; 877 long memaddr; 878 void __iomem *ioaddr; 879 int io_size, phy_id; 880 const char *name; 881 #ifdef USE_MMIO 882 int bar = 1; 883 #else 884 int bar = 0; 885 #endif 886 887 /* when built into the kernel, we only print version if device is found */ 888 #ifndef MODULE 889 pr_info_once("%s\n", version); 890 #endif 891 892 io_size = 256; 893 phy_id = 0; 894 quirks = 0; 895 name = "Rhine"; 896 if (pdev->revision < VTunknown0) { 897 quirks = rqRhineI; 898 io_size = 128; 899 } 900 else if (pdev->revision >= VT6102) { 901 quirks = rqWOL | rqForceReset; 902 if (pdev->revision < VT6105) { 903 name = "Rhine II"; 904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */ 905 } 906 else { 907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */ 908 if (pdev->revision >= VT6105_B0) 909 quirks |= rq6patterns; 910 if (pdev->revision < VT6105M) 911 name = "Rhine III"; 912 else 913 name = "Rhine III (Management Adapter)"; 914 } 915 } 916 917 rc = pci_enable_device(pdev); 918 if (rc) 919 goto err_out; 920 921 /* this should always be supported */ 922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 923 if (rc) { 924 dev_err(&pdev->dev, 925 "32-bit PCI DMA addresses not supported by the card!?\n"); 926 goto err_out; 927 } 928 929 /* sanity check */ 930 if ((pci_resource_len(pdev, 0) < io_size) || 931 (pci_resource_len(pdev, 1) < io_size)) { 932 rc = -EIO; 933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n"); 934 goto err_out; 935 } 936 937 pioaddr = pci_resource_start(pdev, 0); 938 memaddr = pci_resource_start(pdev, 1); 939 940 pci_set_master(pdev); 941 942 dev = alloc_etherdev(sizeof(struct rhine_private)); 943 if (!dev) { 944 rc = -ENOMEM; 945 goto err_out; 946 } 947 SET_NETDEV_DEV(dev, &pdev->dev); 948 949 rp = netdev_priv(dev); 950 rp->dev = dev; 951 rp->quirks = quirks; 952 rp->pioaddr = pioaddr; 953 rp->pdev = pdev; 954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); 955 956 rc = pci_request_regions(pdev, DRV_NAME); 957 if (rc) 958 goto err_out_free_netdev; 959 960 ioaddr = pci_iomap(pdev, bar, io_size); 961 if (!ioaddr) { 962 rc = -EIO; 963 dev_err(&pdev->dev, 964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 965 pci_name(pdev), io_size, memaddr); 966 goto err_out_free_res; 967 } 968 969 #ifdef USE_MMIO 970 enable_mmio(pioaddr, quirks); 971 972 /* Check that selected MMIO registers match the PIO ones */ 973 i = 0; 974 while (mmio_verify_registers[i]) { 975 int reg = mmio_verify_registers[i++]; 976 unsigned char a = inb(pioaddr+reg); 977 unsigned char b = readb(ioaddr+reg); 978 if (a != b) { 979 rc = -EIO; 980 dev_err(&pdev->dev, 981 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 982 reg, a, b); 983 goto err_out_unmap; 984 } 985 } 986 #endif /* USE_MMIO */ 987 988 rp->base = ioaddr; 989 990 /* Get chip registers into a sane state */ 991 rhine_power_init(dev); 992 rhine_hw_init(dev, pioaddr); 993 994 for (i = 0; i < 6; i++) 995 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); 996 997 if (!is_valid_ether_addr(dev->dev_addr)) { 998 /* Report it and use a random ethernet address instead */ 999 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 1000 eth_hw_addr_random(dev); 1001 netdev_info(dev, "Using random MAC address: %pM\n", 1002 dev->dev_addr); 1003 } 1004 1005 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 1006 if (!phy_id) 1007 phy_id = ioread8(ioaddr + 0x6C); 1008 1009 spin_lock_init(&rp->lock); 1010 mutex_init(&rp->task_lock); 1011 INIT_WORK(&rp->reset_task, rhine_reset_task); 1012 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); 1013 1014 rp->mii_if.dev = dev; 1015 rp->mii_if.mdio_read = mdio_read; 1016 rp->mii_if.mdio_write = mdio_write; 1017 rp->mii_if.phy_id_mask = 0x1f; 1018 rp->mii_if.reg_num_mask = 0x1f; 1019 1020 /* The chip-specific entries in the device structure. */ 1021 dev->netdev_ops = &rhine_netdev_ops; 1022 dev->ethtool_ops = &netdev_ethtool_ops, 1023 dev->watchdog_timeo = TX_TIMEOUT; 1024 1025 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); 1026 1027 if (rp->quirks & rqRhineI) 1028 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 1029 1030 if (pdev->revision >= VT6105M) 1031 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1032 NETIF_F_HW_VLAN_CTAG_RX | 1033 NETIF_F_HW_VLAN_CTAG_FILTER; 1034 1035 /* dev->name not defined before register_netdev()! */ 1036 rc = register_netdev(dev); 1037 if (rc) 1038 goto err_out_unmap; 1039 1040 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", 1041 name, 1042 #ifdef USE_MMIO 1043 memaddr, 1044 #else 1045 (long)ioaddr, 1046 #endif 1047 dev->dev_addr, pdev->irq); 1048 1049 pci_set_drvdata(pdev, dev); 1050 1051 { 1052 u16 mii_cmd; 1053 int mii_status = mdio_read(dev, phy_id, 1); 1054 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 1055 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 1056 if (mii_status != 0xffff && mii_status != 0x0000) { 1057 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 1058 netdev_info(dev, 1059 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 1060 phy_id, 1061 mii_status, rp->mii_if.advertising, 1062 mdio_read(dev, phy_id, 5)); 1063 1064 /* set IFF_RUNNING */ 1065 if (mii_status & BMSR_LSTATUS) 1066 netif_carrier_on(dev); 1067 else 1068 netif_carrier_off(dev); 1069 1070 } 1071 } 1072 rp->mii_if.phy_id = phy_id; 1073 if (avoid_D3) 1074 netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); 1075 1076 return 0; 1077 1078 err_out_unmap: 1079 pci_iounmap(pdev, ioaddr); 1080 err_out_free_res: 1081 pci_release_regions(pdev); 1082 err_out_free_netdev: 1083 free_netdev(dev); 1084 err_out: 1085 return rc; 1086 } 1087 1088 static int alloc_ring(struct net_device* dev) 1089 { 1090 struct rhine_private *rp = netdev_priv(dev); 1091 void *ring; 1092 dma_addr_t ring_dma; 1093 1094 ring = pci_alloc_consistent(rp->pdev, 1095 RX_RING_SIZE * sizeof(struct rx_desc) + 1096 TX_RING_SIZE * sizeof(struct tx_desc), 1097 &ring_dma); 1098 if (!ring) { 1099 netdev_err(dev, "Could not allocate DMA memory\n"); 1100 return -ENOMEM; 1101 } 1102 if (rp->quirks & rqRhineI) { 1103 rp->tx_bufs = pci_alloc_consistent(rp->pdev, 1104 PKT_BUF_SZ * TX_RING_SIZE, 1105 &rp->tx_bufs_dma); 1106 if (rp->tx_bufs == NULL) { 1107 pci_free_consistent(rp->pdev, 1108 RX_RING_SIZE * sizeof(struct rx_desc) + 1109 TX_RING_SIZE * sizeof(struct tx_desc), 1110 ring, ring_dma); 1111 return -ENOMEM; 1112 } 1113 } 1114 1115 rp->rx_ring = ring; 1116 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 1117 rp->rx_ring_dma = ring_dma; 1118 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 1119 1120 return 0; 1121 } 1122 1123 static void free_ring(struct net_device* dev) 1124 { 1125 struct rhine_private *rp = netdev_priv(dev); 1126 1127 pci_free_consistent(rp->pdev, 1128 RX_RING_SIZE * sizeof(struct rx_desc) + 1129 TX_RING_SIZE * sizeof(struct tx_desc), 1130 rp->rx_ring, rp->rx_ring_dma); 1131 rp->tx_ring = NULL; 1132 1133 if (rp->tx_bufs) 1134 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE, 1135 rp->tx_bufs, rp->tx_bufs_dma); 1136 1137 rp->tx_bufs = NULL; 1138 1139 } 1140 1141 static void alloc_rbufs(struct net_device *dev) 1142 { 1143 struct rhine_private *rp = netdev_priv(dev); 1144 dma_addr_t next; 1145 int i; 1146 1147 rp->dirty_rx = rp->cur_rx = 0; 1148 1149 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1150 rp->rx_head_desc = &rp->rx_ring[0]; 1151 next = rp->rx_ring_dma; 1152 1153 /* Init the ring entries */ 1154 for (i = 0; i < RX_RING_SIZE; i++) { 1155 rp->rx_ring[i].rx_status = 0; 1156 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1157 next += sizeof(struct rx_desc); 1158 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1159 rp->rx_skbuff[i] = NULL; 1160 } 1161 /* Mark the last entry as wrapping the ring. */ 1162 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1163 1164 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1165 for (i = 0; i < RX_RING_SIZE; i++) { 1166 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1167 rp->rx_skbuff[i] = skb; 1168 if (skb == NULL) 1169 break; 1170 1171 rp->rx_skbuff_dma[i] = 1172 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz, 1173 PCI_DMA_FROMDEVICE); 1174 1175 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]); 1176 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1177 } 1178 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1179 } 1180 1181 static void free_rbufs(struct net_device* dev) 1182 { 1183 struct rhine_private *rp = netdev_priv(dev); 1184 int i; 1185 1186 /* Free all the skbuffs in the Rx queue. */ 1187 for (i = 0; i < RX_RING_SIZE; i++) { 1188 rp->rx_ring[i].rx_status = 0; 1189 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1190 if (rp->rx_skbuff[i]) { 1191 pci_unmap_single(rp->pdev, 1192 rp->rx_skbuff_dma[i], 1193 rp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1194 dev_kfree_skb(rp->rx_skbuff[i]); 1195 } 1196 rp->rx_skbuff[i] = NULL; 1197 } 1198 } 1199 1200 static void alloc_tbufs(struct net_device* dev) 1201 { 1202 struct rhine_private *rp = netdev_priv(dev); 1203 dma_addr_t next; 1204 int i; 1205 1206 rp->dirty_tx = rp->cur_tx = 0; 1207 next = rp->tx_ring_dma; 1208 for (i = 0; i < TX_RING_SIZE; i++) { 1209 rp->tx_skbuff[i] = NULL; 1210 rp->tx_ring[i].tx_status = 0; 1211 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1212 next += sizeof(struct tx_desc); 1213 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1214 if (rp->quirks & rqRhineI) 1215 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1216 } 1217 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1218 1219 } 1220 1221 static void free_tbufs(struct net_device* dev) 1222 { 1223 struct rhine_private *rp = netdev_priv(dev); 1224 int i; 1225 1226 for (i = 0; i < TX_RING_SIZE; i++) { 1227 rp->tx_ring[i].tx_status = 0; 1228 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1229 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1230 if (rp->tx_skbuff[i]) { 1231 if (rp->tx_skbuff_dma[i]) { 1232 pci_unmap_single(rp->pdev, 1233 rp->tx_skbuff_dma[i], 1234 rp->tx_skbuff[i]->len, 1235 PCI_DMA_TODEVICE); 1236 } 1237 dev_kfree_skb(rp->tx_skbuff[i]); 1238 } 1239 rp->tx_skbuff[i] = NULL; 1240 rp->tx_buf[i] = NULL; 1241 } 1242 } 1243 1244 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1245 { 1246 struct rhine_private *rp = netdev_priv(dev); 1247 void __iomem *ioaddr = rp->base; 1248 1249 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); 1250 1251 if (rp->mii_if.full_duplex) 1252 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1253 ioaddr + ChipCmd1); 1254 else 1255 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1256 ioaddr + ChipCmd1); 1257 1258 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1259 rp->mii_if.force_media, netif_carrier_ok(dev)); 1260 } 1261 1262 /* Called after status of force_media possibly changed */ 1263 static void rhine_set_carrier(struct mii_if_info *mii) 1264 { 1265 struct net_device *dev = mii->dev; 1266 struct rhine_private *rp = netdev_priv(dev); 1267 1268 if (mii->force_media) { 1269 /* autoneg is off: Link is always assumed to be up */ 1270 if (!netif_carrier_ok(dev)) 1271 netif_carrier_on(dev); 1272 } else /* Let MMI library update carrier status */ 1273 rhine_check_media(dev, 0); 1274 1275 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1276 mii->force_media, netif_carrier_ok(dev)); 1277 } 1278 1279 /** 1280 * rhine_set_cam - set CAM multicast filters 1281 * @ioaddr: register block of this Rhine 1282 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1283 * @addr: multicast address (6 bytes) 1284 * 1285 * Load addresses into multicast filters. 1286 */ 1287 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1288 { 1289 int i; 1290 1291 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1292 wmb(); 1293 1294 /* Paranoid -- idx out of range should never happen */ 1295 idx &= (MCAM_SIZE - 1); 1296 1297 iowrite8((u8) idx, ioaddr + CamAddr); 1298 1299 for (i = 0; i < 6; i++, addr++) 1300 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1301 udelay(10); 1302 wmb(); 1303 1304 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1305 udelay(10); 1306 1307 iowrite8(0, ioaddr + CamCon); 1308 } 1309 1310 /** 1311 * rhine_set_vlan_cam - set CAM VLAN filters 1312 * @ioaddr: register block of this Rhine 1313 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1314 * @addr: VLAN ID (2 bytes) 1315 * 1316 * Load addresses into VLAN filters. 1317 */ 1318 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1319 { 1320 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1321 wmb(); 1322 1323 /* Paranoid -- idx out of range should never happen */ 1324 idx &= (VCAM_SIZE - 1); 1325 1326 iowrite8((u8) idx, ioaddr + CamAddr); 1327 1328 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1329 udelay(10); 1330 wmb(); 1331 1332 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1333 udelay(10); 1334 1335 iowrite8(0, ioaddr + CamCon); 1336 } 1337 1338 /** 1339 * rhine_set_cam_mask - set multicast CAM mask 1340 * @ioaddr: register block of this Rhine 1341 * @mask: multicast CAM mask 1342 * 1343 * Mask sets multicast filters active/inactive. 1344 */ 1345 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1346 { 1347 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1348 wmb(); 1349 1350 /* write mask */ 1351 iowrite32(mask, ioaddr + CamMask); 1352 1353 /* disable CAMEN */ 1354 iowrite8(0, ioaddr + CamCon); 1355 } 1356 1357 /** 1358 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1359 * @ioaddr: register block of this Rhine 1360 * @mask: VLAN CAM mask 1361 * 1362 * Mask sets VLAN filters active/inactive. 1363 */ 1364 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1365 { 1366 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1367 wmb(); 1368 1369 /* write mask */ 1370 iowrite32(mask, ioaddr + CamMask); 1371 1372 /* disable CAMEN */ 1373 iowrite8(0, ioaddr + CamCon); 1374 } 1375 1376 /** 1377 * rhine_init_cam_filter - initialize CAM filters 1378 * @dev: network device 1379 * 1380 * Initialize (disable) hardware VLAN and multicast support on this 1381 * Rhine. 1382 */ 1383 static void rhine_init_cam_filter(struct net_device *dev) 1384 { 1385 struct rhine_private *rp = netdev_priv(dev); 1386 void __iomem *ioaddr = rp->base; 1387 1388 /* Disable all CAMs */ 1389 rhine_set_vlan_cam_mask(ioaddr, 0); 1390 rhine_set_cam_mask(ioaddr, 0); 1391 1392 /* disable hardware VLAN support */ 1393 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1394 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1395 } 1396 1397 /** 1398 * rhine_update_vcam - update VLAN CAM filters 1399 * @rp: rhine_private data of this Rhine 1400 * 1401 * Update VLAN CAM filters to match configuration change. 1402 */ 1403 static void rhine_update_vcam(struct net_device *dev) 1404 { 1405 struct rhine_private *rp = netdev_priv(dev); 1406 void __iomem *ioaddr = rp->base; 1407 u16 vid; 1408 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1409 unsigned int i = 0; 1410 1411 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1412 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1413 vCAMmask |= 1 << i; 1414 if (++i >= VCAM_SIZE) 1415 break; 1416 } 1417 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1418 } 1419 1420 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1421 { 1422 struct rhine_private *rp = netdev_priv(dev); 1423 1424 spin_lock_bh(&rp->lock); 1425 set_bit(vid, rp->active_vlans); 1426 rhine_update_vcam(dev); 1427 spin_unlock_bh(&rp->lock); 1428 return 0; 1429 } 1430 1431 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1432 { 1433 struct rhine_private *rp = netdev_priv(dev); 1434 1435 spin_lock_bh(&rp->lock); 1436 clear_bit(vid, rp->active_vlans); 1437 rhine_update_vcam(dev); 1438 spin_unlock_bh(&rp->lock); 1439 return 0; 1440 } 1441 1442 static void init_registers(struct net_device *dev) 1443 { 1444 struct rhine_private *rp = netdev_priv(dev); 1445 void __iomem *ioaddr = rp->base; 1446 int i; 1447 1448 for (i = 0; i < 6; i++) 1449 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1450 1451 /* Initialize other registers. */ 1452 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1453 /* Configure initial FIFO thresholds. */ 1454 iowrite8(0x20, ioaddr + TxConfig); 1455 rp->tx_thresh = 0x20; 1456 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1457 1458 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1459 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1460 1461 rhine_set_rx_mode(dev); 1462 1463 if (rp->pdev->revision >= VT6105M) 1464 rhine_init_cam_filter(dev); 1465 1466 napi_enable(&rp->napi); 1467 1468 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); 1469 1470 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1471 ioaddr + ChipCmd); 1472 rhine_check_media(dev, 1); 1473 } 1474 1475 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1476 static void rhine_enable_linkmon(struct rhine_private *rp) 1477 { 1478 void __iomem *ioaddr = rp->base; 1479 1480 iowrite8(0, ioaddr + MIICmd); 1481 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1482 iowrite8(0x80, ioaddr + MIICmd); 1483 1484 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1485 1486 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1487 } 1488 1489 /* Disable MII link status auto-polling (required for MDIO access) */ 1490 static void rhine_disable_linkmon(struct rhine_private *rp) 1491 { 1492 void __iomem *ioaddr = rp->base; 1493 1494 iowrite8(0, ioaddr + MIICmd); 1495 1496 if (rp->quirks & rqRhineI) { 1497 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1498 1499 /* Can be called from ISR. Evil. */ 1500 mdelay(1); 1501 1502 /* 0x80 must be set immediately before turning it off */ 1503 iowrite8(0x80, ioaddr + MIICmd); 1504 1505 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1506 1507 /* Heh. Now clear 0x80 again. */ 1508 iowrite8(0, ioaddr + MIICmd); 1509 } 1510 else 1511 rhine_wait_bit_high(rp, MIIRegAddr, 0x80); 1512 } 1513 1514 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1515 1516 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1517 { 1518 struct rhine_private *rp = netdev_priv(dev); 1519 void __iomem *ioaddr = rp->base; 1520 int result; 1521 1522 rhine_disable_linkmon(rp); 1523 1524 /* rhine_disable_linkmon already cleared MIICmd */ 1525 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1526 iowrite8(regnum, ioaddr + MIIRegAddr); 1527 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1528 rhine_wait_bit_low(rp, MIICmd, 0x40); 1529 result = ioread16(ioaddr + MIIData); 1530 1531 rhine_enable_linkmon(rp); 1532 return result; 1533 } 1534 1535 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1536 { 1537 struct rhine_private *rp = netdev_priv(dev); 1538 void __iomem *ioaddr = rp->base; 1539 1540 rhine_disable_linkmon(rp); 1541 1542 /* rhine_disable_linkmon already cleared MIICmd */ 1543 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1544 iowrite8(regnum, ioaddr + MIIRegAddr); 1545 iowrite16(value, ioaddr + MIIData); 1546 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1547 rhine_wait_bit_low(rp, MIICmd, 0x20); 1548 1549 rhine_enable_linkmon(rp); 1550 } 1551 1552 static void rhine_task_disable(struct rhine_private *rp) 1553 { 1554 mutex_lock(&rp->task_lock); 1555 rp->task_enable = false; 1556 mutex_unlock(&rp->task_lock); 1557 1558 cancel_work_sync(&rp->slow_event_task); 1559 cancel_work_sync(&rp->reset_task); 1560 } 1561 1562 static void rhine_task_enable(struct rhine_private *rp) 1563 { 1564 mutex_lock(&rp->task_lock); 1565 rp->task_enable = true; 1566 mutex_unlock(&rp->task_lock); 1567 } 1568 1569 static int rhine_open(struct net_device *dev) 1570 { 1571 struct rhine_private *rp = netdev_priv(dev); 1572 void __iomem *ioaddr = rp->base; 1573 int rc; 1574 1575 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name, 1576 dev); 1577 if (rc) 1578 return rc; 1579 1580 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq); 1581 1582 rc = alloc_ring(dev); 1583 if (rc) { 1584 free_irq(rp->pdev->irq, dev); 1585 return rc; 1586 } 1587 alloc_rbufs(dev); 1588 alloc_tbufs(dev); 1589 rhine_chip_reset(dev); 1590 rhine_task_enable(rp); 1591 init_registers(dev); 1592 1593 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", 1594 __func__, ioread16(ioaddr + ChipCmd), 1595 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1596 1597 netif_start_queue(dev); 1598 1599 return 0; 1600 } 1601 1602 static void rhine_reset_task(struct work_struct *work) 1603 { 1604 struct rhine_private *rp = container_of(work, struct rhine_private, 1605 reset_task); 1606 struct net_device *dev = rp->dev; 1607 1608 mutex_lock(&rp->task_lock); 1609 1610 if (!rp->task_enable) 1611 goto out_unlock; 1612 1613 napi_disable(&rp->napi); 1614 spin_lock_bh(&rp->lock); 1615 1616 /* clear all descriptors */ 1617 free_tbufs(dev); 1618 free_rbufs(dev); 1619 alloc_tbufs(dev); 1620 alloc_rbufs(dev); 1621 1622 /* Reinitialize the hardware. */ 1623 rhine_chip_reset(dev); 1624 init_registers(dev); 1625 1626 spin_unlock_bh(&rp->lock); 1627 1628 dev->trans_start = jiffies; /* prevent tx timeout */ 1629 dev->stats.tx_errors++; 1630 netif_wake_queue(dev); 1631 1632 out_unlock: 1633 mutex_unlock(&rp->task_lock); 1634 } 1635 1636 static void rhine_tx_timeout(struct net_device *dev) 1637 { 1638 struct rhine_private *rp = netdev_priv(dev); 1639 void __iomem *ioaddr = rp->base; 1640 1641 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1642 ioread16(ioaddr + IntrStatus), 1643 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1644 1645 schedule_work(&rp->reset_task); 1646 } 1647 1648 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1649 struct net_device *dev) 1650 { 1651 struct rhine_private *rp = netdev_priv(dev); 1652 void __iomem *ioaddr = rp->base; 1653 unsigned entry; 1654 1655 /* Caution: the write order is important here, set the field 1656 with the "ownership" bits last. */ 1657 1658 /* Calculate the next Tx descriptor entry. */ 1659 entry = rp->cur_tx % TX_RING_SIZE; 1660 1661 if (skb_padto(skb, ETH_ZLEN)) 1662 return NETDEV_TX_OK; 1663 1664 rp->tx_skbuff[entry] = skb; 1665 1666 if ((rp->quirks & rqRhineI) && 1667 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1668 /* Must use alignment buffer. */ 1669 if (skb->len > PKT_BUF_SZ) { 1670 /* packet too long, drop it */ 1671 dev_kfree_skb(skb); 1672 rp->tx_skbuff[entry] = NULL; 1673 dev->stats.tx_dropped++; 1674 return NETDEV_TX_OK; 1675 } 1676 1677 /* Padding is not copied and so must be redone. */ 1678 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1679 if (skb->len < ETH_ZLEN) 1680 memset(rp->tx_buf[entry] + skb->len, 0, 1681 ETH_ZLEN - skb->len); 1682 rp->tx_skbuff_dma[entry] = 0; 1683 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1684 (rp->tx_buf[entry] - 1685 rp->tx_bufs)); 1686 } else { 1687 rp->tx_skbuff_dma[entry] = 1688 pci_map_single(rp->pdev, skb->data, skb->len, 1689 PCI_DMA_TODEVICE); 1690 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1691 } 1692 1693 rp->tx_ring[entry].desc_length = 1694 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1695 1696 if (unlikely(vlan_tx_tag_present(skb))) { 1697 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16); 1698 /* request tagging */ 1699 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1700 } 1701 else 1702 rp->tx_ring[entry].tx_status = 0; 1703 1704 /* lock eth irq */ 1705 wmb(); 1706 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1707 wmb(); 1708 1709 rp->cur_tx++; 1710 1711 /* Non-x86 Todo: explicitly flush cache lines here. */ 1712 1713 if (vlan_tx_tag_present(skb)) 1714 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1715 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1716 1717 /* Wake the potentially-idle transmit channel */ 1718 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1719 ioaddr + ChipCmd1); 1720 IOSYNC; 1721 1722 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN) 1723 netif_stop_queue(dev); 1724 1725 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", 1726 rp->cur_tx - 1, entry); 1727 1728 return NETDEV_TX_OK; 1729 } 1730 1731 static void rhine_irq_disable(struct rhine_private *rp) 1732 { 1733 iowrite16(0x0000, rp->base + IntrEnable); 1734 mmiowb(); 1735 } 1736 1737 /* The interrupt handler does all of the Rx thread work and cleans up 1738 after the Tx thread. */ 1739 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1740 { 1741 struct net_device *dev = dev_instance; 1742 struct rhine_private *rp = netdev_priv(dev); 1743 u32 status; 1744 int handled = 0; 1745 1746 status = rhine_get_events(rp); 1747 1748 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); 1749 1750 if (status & RHINE_EVENT) { 1751 handled = 1; 1752 1753 rhine_irq_disable(rp); 1754 napi_schedule(&rp->napi); 1755 } 1756 1757 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { 1758 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", 1759 status); 1760 } 1761 1762 return IRQ_RETVAL(handled); 1763 } 1764 1765 /* This routine is logically part of the interrupt handler, but isolated 1766 for clarity. */ 1767 static void rhine_tx(struct net_device *dev) 1768 { 1769 struct rhine_private *rp = netdev_priv(dev); 1770 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE; 1771 1772 /* find and cleanup dirty tx descriptors */ 1773 while (rp->dirty_tx != rp->cur_tx) { 1774 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1775 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", 1776 entry, txstatus); 1777 if (txstatus & DescOwn) 1778 break; 1779 if (txstatus & 0x8000) { 1780 netif_dbg(rp, tx_done, dev, 1781 "Transmit error, Tx status %08x\n", txstatus); 1782 dev->stats.tx_errors++; 1783 if (txstatus & 0x0400) 1784 dev->stats.tx_carrier_errors++; 1785 if (txstatus & 0x0200) 1786 dev->stats.tx_window_errors++; 1787 if (txstatus & 0x0100) 1788 dev->stats.tx_aborted_errors++; 1789 if (txstatus & 0x0080) 1790 dev->stats.tx_heartbeat_errors++; 1791 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1792 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1793 dev->stats.tx_fifo_errors++; 1794 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1795 break; /* Keep the skb - we try again */ 1796 } 1797 /* Transmitter restarted in 'abnormal' handler. */ 1798 } else { 1799 if (rp->quirks & rqRhineI) 1800 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1801 else 1802 dev->stats.collisions += txstatus & 0x0F; 1803 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", 1804 (txstatus >> 3) & 0xF, txstatus & 0xF); 1805 1806 u64_stats_update_begin(&rp->tx_stats.syncp); 1807 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len; 1808 rp->tx_stats.packets++; 1809 u64_stats_update_end(&rp->tx_stats.syncp); 1810 } 1811 /* Free the original skb. */ 1812 if (rp->tx_skbuff_dma[entry]) { 1813 pci_unmap_single(rp->pdev, 1814 rp->tx_skbuff_dma[entry], 1815 rp->tx_skbuff[entry]->len, 1816 PCI_DMA_TODEVICE); 1817 } 1818 dev_kfree_skb(rp->tx_skbuff[entry]); 1819 rp->tx_skbuff[entry] = NULL; 1820 entry = (++rp->dirty_tx) % TX_RING_SIZE; 1821 } 1822 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4) 1823 netif_wake_queue(dev); 1824 } 1825 1826 /** 1827 * rhine_get_vlan_tci - extract TCI from Rx data buffer 1828 * @skb: pointer to sk_buff 1829 * @data_size: used data area of the buffer including CRC 1830 * 1831 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 1832 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 1833 * aligned following the CRC. 1834 */ 1835 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 1836 { 1837 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 1838 return be16_to_cpup((__be16 *)trailer); 1839 } 1840 1841 /* Process up to limit frames from receive ring */ 1842 static int rhine_rx(struct net_device *dev, int limit) 1843 { 1844 struct rhine_private *rp = netdev_priv(dev); 1845 int count; 1846 int entry = rp->cur_rx % RX_RING_SIZE; 1847 1848 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, 1849 entry, le32_to_cpu(rp->rx_head_desc->rx_status)); 1850 1851 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1852 for (count = 0; count < limit; ++count) { 1853 struct rx_desc *desc = rp->rx_head_desc; 1854 u32 desc_status = le32_to_cpu(desc->rx_status); 1855 u32 desc_length = le32_to_cpu(desc->desc_length); 1856 int data_size = desc_status >> 16; 1857 1858 if (desc_status & DescOwn) 1859 break; 1860 1861 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, 1862 desc_status); 1863 1864 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 1865 if ((desc_status & RxWholePkt) != RxWholePkt) { 1866 netdev_warn(dev, 1867 "Oversized Ethernet frame spanned multiple buffers, " 1868 "entry %#x length %d status %08x!\n", 1869 entry, data_size, 1870 desc_status); 1871 netdev_warn(dev, 1872 "Oversized Ethernet frame %p vs %p\n", 1873 rp->rx_head_desc, 1874 &rp->rx_ring[entry]); 1875 dev->stats.rx_length_errors++; 1876 } else if (desc_status & RxErr) { 1877 /* There was a error. */ 1878 netif_dbg(rp, rx_err, dev, 1879 "%s() Rx error %08x\n", __func__, 1880 desc_status); 1881 dev->stats.rx_errors++; 1882 if (desc_status & 0x0030) 1883 dev->stats.rx_length_errors++; 1884 if (desc_status & 0x0048) 1885 dev->stats.rx_fifo_errors++; 1886 if (desc_status & 0x0004) 1887 dev->stats.rx_frame_errors++; 1888 if (desc_status & 0x0002) { 1889 /* this can also be updated outside the interrupt handler */ 1890 spin_lock(&rp->lock); 1891 dev->stats.rx_crc_errors++; 1892 spin_unlock(&rp->lock); 1893 } 1894 } 1895 } else { 1896 struct sk_buff *skb = NULL; 1897 /* Length should omit the CRC */ 1898 int pkt_len = data_size - 4; 1899 u16 vlan_tci = 0; 1900 1901 /* Check if the packet is long enough to accept without 1902 copying to a minimally-sized skbuff. */ 1903 if (pkt_len < rx_copybreak) 1904 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 1905 if (skb) { 1906 pci_dma_sync_single_for_cpu(rp->pdev, 1907 rp->rx_skbuff_dma[entry], 1908 rp->rx_buf_sz, 1909 PCI_DMA_FROMDEVICE); 1910 1911 skb_copy_to_linear_data(skb, 1912 rp->rx_skbuff[entry]->data, 1913 pkt_len); 1914 skb_put(skb, pkt_len); 1915 pci_dma_sync_single_for_device(rp->pdev, 1916 rp->rx_skbuff_dma[entry], 1917 rp->rx_buf_sz, 1918 PCI_DMA_FROMDEVICE); 1919 } else { 1920 skb = rp->rx_skbuff[entry]; 1921 if (skb == NULL) { 1922 netdev_err(dev, "Inconsistent Rx descriptor chain\n"); 1923 break; 1924 } 1925 rp->rx_skbuff[entry] = NULL; 1926 skb_put(skb, pkt_len); 1927 pci_unmap_single(rp->pdev, 1928 rp->rx_skbuff_dma[entry], 1929 rp->rx_buf_sz, 1930 PCI_DMA_FROMDEVICE); 1931 } 1932 1933 if (unlikely(desc_length & DescTag)) 1934 vlan_tci = rhine_get_vlan_tci(skb, data_size); 1935 1936 skb->protocol = eth_type_trans(skb, dev); 1937 1938 if (unlikely(desc_length & DescTag)) 1939 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 1940 netif_receive_skb(skb); 1941 1942 u64_stats_update_begin(&rp->rx_stats.syncp); 1943 rp->rx_stats.bytes += pkt_len; 1944 rp->rx_stats.packets++; 1945 u64_stats_update_end(&rp->rx_stats.syncp); 1946 } 1947 entry = (++rp->cur_rx) % RX_RING_SIZE; 1948 rp->rx_head_desc = &rp->rx_ring[entry]; 1949 } 1950 1951 /* Refill the Rx ring buffers. */ 1952 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) { 1953 struct sk_buff *skb; 1954 entry = rp->dirty_rx % RX_RING_SIZE; 1955 if (rp->rx_skbuff[entry] == NULL) { 1956 skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1957 rp->rx_skbuff[entry] = skb; 1958 if (skb == NULL) 1959 break; /* Better luck next round. */ 1960 rp->rx_skbuff_dma[entry] = 1961 pci_map_single(rp->pdev, skb->data, 1962 rp->rx_buf_sz, 1963 PCI_DMA_FROMDEVICE); 1964 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]); 1965 } 1966 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); 1967 } 1968 1969 return count; 1970 } 1971 1972 static void rhine_restart_tx(struct net_device *dev) { 1973 struct rhine_private *rp = netdev_priv(dev); 1974 void __iomem *ioaddr = rp->base; 1975 int entry = rp->dirty_tx % TX_RING_SIZE; 1976 u32 intr_status; 1977 1978 /* 1979 * If new errors occurred, we need to sort them out before doing Tx. 1980 * In that case the ISR will be back here RSN anyway. 1981 */ 1982 intr_status = rhine_get_events(rp); 1983 1984 if ((intr_status & IntrTxErrSummary) == 0) { 1985 1986 /* We know better than the chip where it should continue. */ 1987 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 1988 ioaddr + TxRingPtr); 1989 1990 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 1991 ioaddr + ChipCmd); 1992 1993 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 1994 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1995 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1996 1997 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1998 ioaddr + ChipCmd1); 1999 IOSYNC; 2000 } 2001 else { 2002 /* This should never happen */ 2003 netif_warn(rp, tx_err, dev, "another error occurred %08x\n", 2004 intr_status); 2005 } 2006 2007 } 2008 2009 static void rhine_slow_event_task(struct work_struct *work) 2010 { 2011 struct rhine_private *rp = 2012 container_of(work, struct rhine_private, slow_event_task); 2013 struct net_device *dev = rp->dev; 2014 u32 intr_status; 2015 2016 mutex_lock(&rp->task_lock); 2017 2018 if (!rp->task_enable) 2019 goto out_unlock; 2020 2021 intr_status = rhine_get_events(rp); 2022 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); 2023 2024 if (intr_status & IntrLinkChange) 2025 rhine_check_media(dev, 0); 2026 2027 if (intr_status & IntrPCIErr) 2028 netif_warn(rp, hw, dev, "PCI error\n"); 2029 2030 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); 2031 2032 out_unlock: 2033 mutex_unlock(&rp->task_lock); 2034 } 2035 2036 static struct rtnl_link_stats64 * 2037 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 2038 { 2039 struct rhine_private *rp = netdev_priv(dev); 2040 unsigned int start; 2041 2042 spin_lock_bh(&rp->lock); 2043 rhine_update_rx_crc_and_missed_errord(rp); 2044 spin_unlock_bh(&rp->lock); 2045 2046 netdev_stats_to_stats64(stats, &dev->stats); 2047 2048 do { 2049 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp); 2050 stats->rx_packets = rp->rx_stats.packets; 2051 stats->rx_bytes = rp->rx_stats.bytes; 2052 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start)); 2053 2054 do { 2055 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp); 2056 stats->tx_packets = rp->tx_stats.packets; 2057 stats->tx_bytes = rp->tx_stats.bytes; 2058 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start)); 2059 2060 return stats; 2061 } 2062 2063 static void rhine_set_rx_mode(struct net_device *dev) 2064 { 2065 struct rhine_private *rp = netdev_priv(dev); 2066 void __iomem *ioaddr = rp->base; 2067 u32 mc_filter[2]; /* Multicast hash filter */ 2068 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 2069 struct netdev_hw_addr *ha; 2070 2071 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2072 rx_mode = 0x1C; 2073 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2074 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2075 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2076 (dev->flags & IFF_ALLMULTI)) { 2077 /* Too many to match, or accept all multicasts. */ 2078 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2079 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2080 } else if (rp->pdev->revision >= VT6105M) { 2081 int i = 0; 2082 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 2083 netdev_for_each_mc_addr(ha, dev) { 2084 if (i == MCAM_SIZE) 2085 break; 2086 rhine_set_cam(ioaddr, i, ha->addr); 2087 mCAMmask |= 1 << i; 2088 i++; 2089 } 2090 rhine_set_cam_mask(ioaddr, mCAMmask); 2091 } else { 2092 memset(mc_filter, 0, sizeof(mc_filter)); 2093 netdev_for_each_mc_addr(ha, dev) { 2094 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 2095 2096 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 2097 } 2098 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 2099 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 2100 } 2101 /* enable/disable VLAN receive filtering */ 2102 if (rp->pdev->revision >= VT6105M) { 2103 if (dev->flags & IFF_PROMISC) 2104 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2105 else 2106 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2107 } 2108 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2109 } 2110 2111 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2112 { 2113 struct rhine_private *rp = netdev_priv(dev); 2114 2115 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2116 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2117 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info)); 2118 } 2119 2120 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2121 { 2122 struct rhine_private *rp = netdev_priv(dev); 2123 int rc; 2124 2125 mutex_lock(&rp->task_lock); 2126 rc = mii_ethtool_gset(&rp->mii_if, cmd); 2127 mutex_unlock(&rp->task_lock); 2128 2129 return rc; 2130 } 2131 2132 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2133 { 2134 struct rhine_private *rp = netdev_priv(dev); 2135 int rc; 2136 2137 mutex_lock(&rp->task_lock); 2138 rc = mii_ethtool_sset(&rp->mii_if, cmd); 2139 rhine_set_carrier(&rp->mii_if); 2140 mutex_unlock(&rp->task_lock); 2141 2142 return rc; 2143 } 2144 2145 static int netdev_nway_reset(struct net_device *dev) 2146 { 2147 struct rhine_private *rp = netdev_priv(dev); 2148 2149 return mii_nway_restart(&rp->mii_if); 2150 } 2151 2152 static u32 netdev_get_link(struct net_device *dev) 2153 { 2154 struct rhine_private *rp = netdev_priv(dev); 2155 2156 return mii_link_ok(&rp->mii_if); 2157 } 2158 2159 static u32 netdev_get_msglevel(struct net_device *dev) 2160 { 2161 struct rhine_private *rp = netdev_priv(dev); 2162 2163 return rp->msg_enable; 2164 } 2165 2166 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2167 { 2168 struct rhine_private *rp = netdev_priv(dev); 2169 2170 rp->msg_enable = value; 2171 } 2172 2173 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2174 { 2175 struct rhine_private *rp = netdev_priv(dev); 2176 2177 if (!(rp->quirks & rqWOL)) 2178 return; 2179 2180 spin_lock_irq(&rp->lock); 2181 wol->supported = WAKE_PHY | WAKE_MAGIC | 2182 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2183 wol->wolopts = rp->wolopts; 2184 spin_unlock_irq(&rp->lock); 2185 } 2186 2187 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2188 { 2189 struct rhine_private *rp = netdev_priv(dev); 2190 u32 support = WAKE_PHY | WAKE_MAGIC | 2191 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2192 2193 if (!(rp->quirks & rqWOL)) 2194 return -EINVAL; 2195 2196 if (wol->wolopts & ~support) 2197 return -EINVAL; 2198 2199 spin_lock_irq(&rp->lock); 2200 rp->wolopts = wol->wolopts; 2201 spin_unlock_irq(&rp->lock); 2202 2203 return 0; 2204 } 2205 2206 static const struct ethtool_ops netdev_ethtool_ops = { 2207 .get_drvinfo = netdev_get_drvinfo, 2208 .get_settings = netdev_get_settings, 2209 .set_settings = netdev_set_settings, 2210 .nway_reset = netdev_nway_reset, 2211 .get_link = netdev_get_link, 2212 .get_msglevel = netdev_get_msglevel, 2213 .set_msglevel = netdev_set_msglevel, 2214 .get_wol = rhine_get_wol, 2215 .set_wol = rhine_set_wol, 2216 }; 2217 2218 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2219 { 2220 struct rhine_private *rp = netdev_priv(dev); 2221 int rc; 2222 2223 if (!netif_running(dev)) 2224 return -EINVAL; 2225 2226 mutex_lock(&rp->task_lock); 2227 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2228 rhine_set_carrier(&rp->mii_if); 2229 mutex_unlock(&rp->task_lock); 2230 2231 return rc; 2232 } 2233 2234 static int rhine_close(struct net_device *dev) 2235 { 2236 struct rhine_private *rp = netdev_priv(dev); 2237 void __iomem *ioaddr = rp->base; 2238 2239 rhine_task_disable(rp); 2240 napi_disable(&rp->napi); 2241 netif_stop_queue(dev); 2242 2243 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", 2244 ioread16(ioaddr + ChipCmd)); 2245 2246 /* Switch to loopback mode to avoid hardware races. */ 2247 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2248 2249 rhine_irq_disable(rp); 2250 2251 /* Stop the chip's Tx and Rx processes. */ 2252 iowrite16(CmdStop, ioaddr + ChipCmd); 2253 2254 free_irq(rp->pdev->irq, dev); 2255 free_rbufs(dev); 2256 free_tbufs(dev); 2257 free_ring(dev); 2258 2259 return 0; 2260 } 2261 2262 2263 static void rhine_remove_one(struct pci_dev *pdev) 2264 { 2265 struct net_device *dev = pci_get_drvdata(pdev); 2266 struct rhine_private *rp = netdev_priv(dev); 2267 2268 unregister_netdev(dev); 2269 2270 pci_iounmap(pdev, rp->base); 2271 pci_release_regions(pdev); 2272 2273 free_netdev(dev); 2274 pci_disable_device(pdev); 2275 pci_set_drvdata(pdev, NULL); 2276 } 2277 2278 static void rhine_shutdown (struct pci_dev *pdev) 2279 { 2280 struct net_device *dev = pci_get_drvdata(pdev); 2281 struct rhine_private *rp = netdev_priv(dev); 2282 void __iomem *ioaddr = rp->base; 2283 2284 if (!(rp->quirks & rqWOL)) 2285 return; /* Nothing to do for non-WOL adapters */ 2286 2287 rhine_power_init(dev); 2288 2289 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2290 if (rp->quirks & rq6patterns) 2291 iowrite8(0x04, ioaddr + WOLcgClr); 2292 2293 spin_lock(&rp->lock); 2294 2295 if (rp->wolopts & WAKE_MAGIC) { 2296 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2297 /* 2298 * Turn EEPROM-controlled wake-up back on -- some hardware may 2299 * not cooperate otherwise. 2300 */ 2301 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2302 } 2303 2304 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2305 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2306 2307 if (rp->wolopts & WAKE_PHY) 2308 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2309 2310 if (rp->wolopts & WAKE_UCAST) 2311 iowrite8(WOLucast, ioaddr + WOLcrSet); 2312 2313 if (rp->wolopts) { 2314 /* Enable legacy WOL (for old motherboards) */ 2315 iowrite8(0x01, ioaddr + PwcfgSet); 2316 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2317 } 2318 2319 spin_unlock(&rp->lock); 2320 2321 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { 2322 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2323 2324 pci_wake_from_d3(pdev, true); 2325 pci_set_power_state(pdev, PCI_D3hot); 2326 } 2327 } 2328 2329 #ifdef CONFIG_PM_SLEEP 2330 static int rhine_suspend(struct device *device) 2331 { 2332 struct pci_dev *pdev = to_pci_dev(device); 2333 struct net_device *dev = pci_get_drvdata(pdev); 2334 struct rhine_private *rp = netdev_priv(dev); 2335 2336 if (!netif_running(dev)) 2337 return 0; 2338 2339 rhine_task_disable(rp); 2340 rhine_irq_disable(rp); 2341 napi_disable(&rp->napi); 2342 2343 netif_device_detach(dev); 2344 2345 rhine_shutdown(pdev); 2346 2347 return 0; 2348 } 2349 2350 static int rhine_resume(struct device *device) 2351 { 2352 struct pci_dev *pdev = to_pci_dev(device); 2353 struct net_device *dev = pci_get_drvdata(pdev); 2354 struct rhine_private *rp = netdev_priv(dev); 2355 2356 if (!netif_running(dev)) 2357 return 0; 2358 2359 #ifdef USE_MMIO 2360 enable_mmio(rp->pioaddr, rp->quirks); 2361 #endif 2362 rhine_power_init(dev); 2363 free_tbufs(dev); 2364 free_rbufs(dev); 2365 alloc_tbufs(dev); 2366 alloc_rbufs(dev); 2367 rhine_task_enable(rp); 2368 spin_lock_bh(&rp->lock); 2369 init_registers(dev); 2370 spin_unlock_bh(&rp->lock); 2371 2372 netif_device_attach(dev); 2373 2374 return 0; 2375 } 2376 2377 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); 2378 #define RHINE_PM_OPS (&rhine_pm_ops) 2379 2380 #else 2381 2382 #define RHINE_PM_OPS NULL 2383 2384 #endif /* !CONFIG_PM_SLEEP */ 2385 2386 static struct pci_driver rhine_driver = { 2387 .name = DRV_NAME, 2388 .id_table = rhine_pci_tbl, 2389 .probe = rhine_init_one, 2390 .remove = rhine_remove_one, 2391 .shutdown = rhine_shutdown, 2392 .driver.pm = RHINE_PM_OPS, 2393 }; 2394 2395 static struct dmi_system_id __initdata rhine_dmi_table[] = { 2396 { 2397 .ident = "EPIA-M", 2398 .matches = { 2399 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2400 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2401 }, 2402 }, 2403 { 2404 .ident = "KV7", 2405 .matches = { 2406 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2407 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2408 }, 2409 }, 2410 { NULL } 2411 }; 2412 2413 static int __init rhine_init(void) 2414 { 2415 /* when a module, this is printed whether or not devices are found in probe */ 2416 #ifdef MODULE 2417 pr_info("%s\n", version); 2418 #endif 2419 if (dmi_check_system(rhine_dmi_table)) { 2420 /* these BIOSes fail at PXE boot if chip is in D3 */ 2421 avoid_D3 = true; 2422 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2423 } 2424 else if (avoid_D3) 2425 pr_info("avoid_D3 set\n"); 2426 2427 return pci_register_driver(&rhine_driver); 2428 } 2429 2430 2431 static void __exit rhine_cleanup(void) 2432 { 2433 pci_unregister_driver(&rhine_driver); 2434 } 2435 2436 2437 module_init(rhine_init); 2438 module_exit(rhine_cleanup); 2439