1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Roger Luethi <rl@hellgate.ch>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 #define DRV_VERSION	"1.5.1"
36 #define DRV_RELDATE	"2010-10-09"
37 
38 #include <linux/types.h>
39 
40 /* A few user-configurable values.
41    These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44         (0x0000)
45 
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47    Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
50 	defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55 
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59 
60 /*
61  * In case you are looking for 'options[]' or 'full_duplex[]', they
62  * are gone. Use ethtool(8) instead.
63  */
64 
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66    The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68 
69 
70 /* Operational parameters that are set at compile time. */
71 
72 /* Keep the ring sizes a power of two for compile efficiency.
73    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74    Making the Tx ring too large decreases the effectiveness of channel
75    bonding and packet priority.
76    There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE	16
78 #define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h>	/* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114 
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] =
117 	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118 
119 /* This driver was written to use PCI memory space. Some early versions
120    of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125 
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129 
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136 
137 #define MCAM_SIZE	32
138 #define VCAM_SIZE	32
139 
140 /*
141 		Theory of Operation
142 
143 I. Board Compatibility
144 
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147 
148 II. Board-specific settings
149 
150 Boards with this chip are functional only in a bus-master PCI slot.
151 
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157 
158 III. Driver operation
159 
160 IIIa. Ring buffers
161 
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165 
166 IIIb/c. Transmit/Receive Structure
167 
168 This driver attempts to use a zero-copy receive and transmit scheme.
169 
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172 
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180 
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189 
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194 
195 IIId. Synchronization
196 
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201 
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206 
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211 
212 IV. Notes
213 
214 IVb. References
215 
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221 
222 
223 IVc. Errata
224 
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230 
231 */
232 
233 
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235    of the drivers, and will likely be provided by some future kernel.
236    Note the matching code -- the first table entry matchs all 56** cards but
237    second only the 1234 card.
238 */
239 
240 enum rhine_revs {
241 	VT86C100A	= 0x00,
242 	VTunknown0	= 0x20,
243 	VT6102		= 0x40,
244 	VT8231		= 0x50,	/* Integrated MAC */
245 	VT8233		= 0x60,	/* Integrated MAC */
246 	VT8235		= 0x74,	/* Integrated MAC */
247 	VT8237		= 0x78,	/* Integrated MAC */
248 	VTunknown1	= 0x7C,
249 	VT6105		= 0x80,
250 	VT6105_B0	= 0x83,
251 	VT6105L		= 0x8A,
252 	VT6107		= 0x8C,
253 	VTunknown2	= 0x8E,
254 	VT6105M		= 0x90,	/* Management adapter */
255 };
256 
257 enum rhine_quirks {
258 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
259 	rqForceReset	= 0x0002,
260 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
261 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
262 	rqRhineI	= 0x0100,	/* See comment below */
263 };
264 /*
265  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266  * MMIO as well as for the collision counter and the Tx FIFO underflow
267  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268  */
269 
270 /* Beware of PCI posted writes */
271 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
272 
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
275 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
276 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
277 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
278 	{ }	/* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281 
282 
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 	ChipCmd1=0x09, TQWake=0x0A,
287 	IntrStatus=0x0C, IntrEnable=0x0E,
288 	MulticastFilter0=0x10, MulticastFilter1=0x14,
289 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 	StickyHW=0x83, IntrStatus2=0x84,
295 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300 
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 	BackOptional=0x01, BackModify=0x02,
304 	BackCaptureEffect=0x04, BackRandom=0x08
305 };
306 
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 	TCR_PQEN=0x01,
310 	TCR_LB0=0x02,		/* loopback[0] */
311 	TCR_LB1=0x04,		/* loopback[1] */
312 	TCR_OFSET=0x08,
313 	TCR_RTGOPT=0x10,
314 	TCR_RTFT0=0x20,
315 	TCR_RTFT1=0x40,
316 	TCR_RTSF=0x80,
317 };
318 
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 	CAMC_CAMEN=0x01,
322 	CAMC_VCAMSL=0x02,
323 	CAMC_CAMWR=0x04,
324 	CAMC_CAMRD=0x08,
325 };
326 
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 	BCR1_POT0=0x01,
330 	BCR1_POT1=0x02,
331 	BCR1_POT2=0x04,
332 	BCR1_CTFT0=0x08,
333 	BCR1_CTFT1=0x10,
334 	BCR1_CTSF=0x20,
335 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
336 	BCR1_VIDFR=0x80,	/* for VT6105 */
337 	BCR1_MED0=0x40,		/* for VT6102 */
338 	BCR1_MED1=0x80,		/* for VT6102 */
339 };
340 
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 	0
346 };
347 #endif
348 
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 	IntrRxDone	= 0x0001,
352 	IntrTxDone	= 0x0002,
353 	IntrRxErr	= 0x0004,
354 	IntrTxError	= 0x0008,
355 	IntrRxEmpty	= 0x0020,
356 	IntrPCIErr	= 0x0040,
357 	IntrStatsMax	= 0x0080,
358 	IntrRxEarly	= 0x0100,
359 	IntrTxUnderrun	= 0x0210,
360 	IntrRxOverflow	= 0x0400,
361 	IntrRxDropped	= 0x0800,
362 	IntrRxNoBuf	= 0x1000,
363 	IntrTxAborted	= 0x2000,
364 	IntrLinkChange	= 0x4000,
365 	IntrRxWakeUp	= 0x8000,
366 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
367 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
368 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
369 				  IntrTxUnderrun,
370 };
371 
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 	WOLucast	= 0x10,
375 	WOLmagic	= 0x20,
376 	WOLbmcast	= 0x30,
377 	WOLlnkon	= 0x40,
378 	WOLlnkoff	= 0x80,
379 };
380 
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 	__le32 rx_status;
384 	__le32 desc_length; /* Chain flag, Buffer/frame length */
385 	__le32 addr;
386 	__le32 next_desc;
387 };
388 struct tx_desc {
389 	__le32 tx_status;
390 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 	__le32 addr;
392 	__le32 next_desc;
393 };
394 
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC		0x00e08000
397 
398 enum rx_status_bits {
399 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401 
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 	DescOwn=0x80000000
405 };
406 
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 	DescTag=0x00010000
410 };
411 
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419 
420 struct rhine_stats {
421 	u64		packets;
422 	u64		bytes;
423 	struct u64_stats_sync syncp;
424 };
425 
426 struct rhine_private {
427 	/* Bit mask for configured VLAN ids */
428 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429 
430 	/* Descriptor rings */
431 	struct rx_desc *rx_ring;
432 	struct tx_desc *tx_ring;
433 	dma_addr_t rx_ring_dma;
434 	dma_addr_t tx_ring_dma;
435 
436 	/* The addresses of receive-in-place skbuffs. */
437 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439 
440 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
441 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443 
444 	/* Tx bounce buffers (Rhine-I only) */
445 	unsigned char *tx_buf[TX_RING_SIZE];
446 	unsigned char *tx_bufs;
447 	dma_addr_t tx_bufs_dma;
448 
449 	struct pci_dev *pdev;
450 	long pioaddr;
451 	struct net_device *dev;
452 	struct napi_struct napi;
453 	spinlock_t lock;
454 	struct mutex task_lock;
455 	bool task_enable;
456 	struct work_struct slow_event_task;
457 	struct work_struct reset_task;
458 
459 	u32 msg_enable;
460 
461 	/* Frequently used values: keep some adjacent for cache effect. */
462 	u32 quirks;
463 	struct rx_desc *rx_head_desc;
464 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
465 	unsigned int cur_tx, dirty_tx;
466 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
467 	struct rhine_stats rx_stats;
468 	struct rhine_stats tx_stats;
469 	u8 wolopts;
470 
471 	u8 tx_thresh, rx_thresh;
472 
473 	struct mii_if_info mii_if;
474 	void __iomem *base;
475 };
476 
477 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480 
481 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
482 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
483 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
484 
485 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488 
489 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492 
493 
494 static int  mdio_read(struct net_device *dev, int phy_id, int location);
495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496 static int  rhine_open(struct net_device *dev);
497 static void rhine_reset_task(struct work_struct *work);
498 static void rhine_slow_event_task(struct work_struct *work);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 				  struct net_device *dev);
502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
503 static void rhine_tx(struct net_device *dev);
504 static int rhine_rx(struct net_device *dev, int limit);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 	       struct rtnl_link_stats64 *stats);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static const struct ethtool_ops netdev_ethtool_ops;
510 static int  rhine_close(struct net_device *dev);
511 static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 				 __be16 proto, u16 vid);
513 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 				  __be16 proto, u16 vid);
515 static void rhine_restart_tx(struct net_device *dev);
516 
517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
518 {
519 	void __iomem *ioaddr = rp->base;
520 	int i;
521 
522 	for (i = 0; i < 1024; i++) {
523 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524 
525 		if (low ^ has_mask_bits)
526 			break;
527 		udelay(10);
528 	}
529 	if (i > 64) {
530 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
531 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
532 	}
533 }
534 
535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536 {
537 	rhine_wait_bit(rp, reg, mask, false);
538 }
539 
540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541 {
542 	rhine_wait_bit(rp, reg, mask, true);
543 }
544 
545 static u32 rhine_get_events(struct rhine_private *rp)
546 {
547 	void __iomem *ioaddr = rp->base;
548 	u32 intr_status;
549 
550 	intr_status = ioread16(ioaddr + IntrStatus);
551 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 	if (rp->quirks & rqStatusWBRace)
553 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 	return intr_status;
555 }
556 
557 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558 {
559 	void __iomem *ioaddr = rp->base;
560 
561 	if (rp->quirks & rqStatusWBRace)
562 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 	iowrite16(mask, ioaddr + IntrStatus);
564 	mmiowb();
565 }
566 
567 /*
568  * Get power related registers into sane state.
569  * Notify user about past WOL event.
570  */
571 static void rhine_power_init(struct net_device *dev)
572 {
573 	struct rhine_private *rp = netdev_priv(dev);
574 	void __iomem *ioaddr = rp->base;
575 	u16 wolstat;
576 
577 	if (rp->quirks & rqWOL) {
578 		/* Make sure chip is in power state D0 */
579 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580 
581 		/* Disable "force PME-enable" */
582 		iowrite8(0x80, ioaddr + WOLcgClr);
583 
584 		/* Clear power-event config bits (WOL) */
585 		iowrite8(0xFF, ioaddr + WOLcrClr);
586 		/* More recent cards can manage two additional patterns */
587 		if (rp->quirks & rq6patterns)
588 			iowrite8(0x03, ioaddr + WOLcrClr1);
589 
590 		/* Save power-event status bits */
591 		wolstat = ioread8(ioaddr + PwrcsrSet);
592 		if (rp->quirks & rq6patterns)
593 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594 
595 		/* Clear power-event status bits */
596 		iowrite8(0xFF, ioaddr + PwrcsrClr);
597 		if (rp->quirks & rq6patterns)
598 			iowrite8(0x03, ioaddr + PwrcsrClr1);
599 
600 		if (wolstat) {
601 			char *reason;
602 			switch (wolstat) {
603 			case WOLmagic:
604 				reason = "Magic packet";
605 				break;
606 			case WOLlnkon:
607 				reason = "Link went up";
608 				break;
609 			case WOLlnkoff:
610 				reason = "Link went down";
611 				break;
612 			case WOLucast:
613 				reason = "Unicast packet";
614 				break;
615 			case WOLbmcast:
616 				reason = "Multicast/broadcast packet";
617 				break;
618 			default:
619 				reason = "Unknown";
620 			}
621 			netdev_info(dev, "Woke system up. Reason: %s\n",
622 				    reason);
623 		}
624 	}
625 }
626 
627 static void rhine_chip_reset(struct net_device *dev)
628 {
629 	struct rhine_private *rp = netdev_priv(dev);
630 	void __iomem *ioaddr = rp->base;
631 	u8 cmd1;
632 
633 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 	IOSYNC;
635 
636 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
637 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
638 
639 		/* Force reset */
640 		if (rp->quirks & rqForceReset)
641 			iowrite8(0x40, ioaddr + MiscCmd);
642 
643 		/* Reset can take somewhat longer (rare) */
644 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
645 	}
646 
647 	cmd1 = ioread8(ioaddr + ChipCmd1);
648 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 		   "failed" : "succeeded");
650 }
651 
652 #ifdef USE_MMIO
653 static void enable_mmio(long pioaddr, u32 quirks)
654 {
655 	int n;
656 	if (quirks & rqRhineI) {
657 		/* More recent docs say that this bit is reserved ... */
658 		n = inb(pioaddr + ConfigA) | 0x20;
659 		outb(n, pioaddr + ConfigA);
660 	} else {
661 		n = inb(pioaddr + ConfigD) | 0x80;
662 		outb(n, pioaddr + ConfigD);
663 	}
664 }
665 #endif
666 
667 /*
668  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669  * (plus 0x6C for Rhine-I/II)
670  */
671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
672 {
673 	struct rhine_private *rp = netdev_priv(dev);
674 	void __iomem *ioaddr = rp->base;
675 	int i;
676 
677 	outb(0x20, pioaddr + MACRegEEcsr);
678 	for (i = 0; i < 1024; i++) {
679 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 			break;
681 	}
682 	if (i > 512)
683 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
684 
685 #ifdef USE_MMIO
686 	/*
687 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 	 * it is not known if that still works with the "win98-reboot" problem.
690 	 */
691 	enable_mmio(pioaddr, rp->quirks);
692 #endif
693 
694 	/* Turn off EEPROM-controlled wake-up (magic packet) */
695 	if (rp->quirks & rqWOL)
696 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697 
698 }
699 
700 #ifdef CONFIG_NET_POLL_CONTROLLER
701 static void rhine_poll(struct net_device *dev)
702 {
703 	struct rhine_private *rp = netdev_priv(dev);
704 	const int irq = rp->pdev->irq;
705 
706 	disable_irq(irq);
707 	rhine_interrupt(irq, dev);
708 	enable_irq(irq);
709 }
710 #endif
711 
712 static void rhine_kick_tx_threshold(struct rhine_private *rp)
713 {
714 	if (rp->tx_thresh < 0xe0) {
715 		void __iomem *ioaddr = rp->base;
716 
717 		rp->tx_thresh += 0x20;
718 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 	}
720 }
721 
722 static void rhine_tx_err(struct rhine_private *rp, u32 status)
723 {
724 	struct net_device *dev = rp->dev;
725 
726 	if (status & IntrTxAborted) {
727 		netif_info(rp, tx_err, dev,
728 			   "Abort %08x, frame dropped\n", status);
729 	}
730 
731 	if (status & IntrTxUnderrun) {
732 		rhine_kick_tx_threshold(rp);
733 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 			   "Tx threshold now %02x\n", rp->tx_thresh);
735 	}
736 
737 	if (status & IntrTxDescRace)
738 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
739 
740 	if ((status & IntrTxError) &&
741 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 		rhine_kick_tx_threshold(rp);
743 		netif_info(rp, tx_err, dev, "Unspecified error. "
744 			   "Tx threshold now %02x\n", rp->tx_thresh);
745 	}
746 
747 	rhine_restart_tx(dev);
748 }
749 
750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751 {
752 	void __iomem *ioaddr = rp->base;
753 	struct net_device_stats *stats = &rp->dev->stats;
754 
755 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
756 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757 
758 	/*
759 	 * Clears the "tally counters" for CRC errors and missed frames(?).
760 	 * It has been reported that some chips need a write of 0 to clear
761 	 * these, for others the counters are set to 1 when written to and
762 	 * instead cleared when read. So we clear them both ways ...
763 	 */
764 	iowrite32(0, ioaddr + RxMissed);
765 	ioread16(ioaddr + RxCRCErrs);
766 	ioread16(ioaddr + RxMissed);
767 }
768 
769 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
770 				 IntrRxErr | \
771 				 IntrRxEmpty | \
772 				 IntrRxOverflow	| \
773 				 IntrRxDropped | \
774 				 IntrRxNoBuf | \
775 				 IntrRxWakeUp)
776 
777 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
778 				 IntrTxAborted | \
779 				 IntrTxUnderrun | \
780 				 IntrTxDescRace)
781 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782 
783 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
784 				 RHINE_EVENT_NAPI_TX | \
785 				 IntrStatsMax)
786 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
787 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788 
789 static int rhine_napipoll(struct napi_struct *napi, int budget)
790 {
791 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 	struct net_device *dev = rp->dev;
793 	void __iomem *ioaddr = rp->base;
794 	u16 enable_mask = RHINE_EVENT & 0xffff;
795 	int work_done = 0;
796 	u32 status;
797 
798 	status = rhine_get_events(rp);
799 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800 
801 	if (status & RHINE_EVENT_NAPI_RX)
802 		work_done += rhine_rx(dev, budget);
803 
804 	if (status & RHINE_EVENT_NAPI_TX) {
805 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
806 			/* Avoid scavenging before Tx engine turned off */
807 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
808 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 				netif_warn(rp, tx_err, dev, "Tx still on\n");
810 		}
811 
812 		rhine_tx(dev);
813 
814 		if (status & RHINE_EVENT_NAPI_TX_ERR)
815 			rhine_tx_err(rp, status);
816 	}
817 
818 	if (status & IntrStatsMax) {
819 		spin_lock(&rp->lock);
820 		rhine_update_rx_crc_and_missed_errord(rp);
821 		spin_unlock(&rp->lock);
822 	}
823 
824 	if (status & RHINE_EVENT_SLOW) {
825 		enable_mask &= ~RHINE_EVENT_SLOW;
826 		schedule_work(&rp->slow_event_task);
827 	}
828 
829 	if (work_done < budget) {
830 		napi_complete(napi);
831 		iowrite16(enable_mask, ioaddr + IntrEnable);
832 		mmiowb();
833 	}
834 	return work_done;
835 }
836 
837 static void rhine_hw_init(struct net_device *dev, long pioaddr)
838 {
839 	struct rhine_private *rp = netdev_priv(dev);
840 
841 	/* Reset the chip to erase previous misconfiguration. */
842 	rhine_chip_reset(dev);
843 
844 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
845 	if (rp->quirks & rqRhineI)
846 		msleep(5);
847 
848 	/* Reload EEPROM controlled bytes cleared by soft reset */
849 	rhine_reload_eeprom(pioaddr, dev);
850 }
851 
852 static const struct net_device_ops rhine_netdev_ops = {
853 	.ndo_open		 = rhine_open,
854 	.ndo_stop		 = rhine_close,
855 	.ndo_start_xmit		 = rhine_start_tx,
856 	.ndo_get_stats64	 = rhine_get_stats64,
857 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
858 	.ndo_change_mtu		 = eth_change_mtu,
859 	.ndo_validate_addr	 = eth_validate_addr,
860 	.ndo_set_mac_address 	 = eth_mac_addr,
861 	.ndo_do_ioctl		 = netdev_ioctl,
862 	.ndo_tx_timeout 	 = rhine_tx_timeout,
863 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
864 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
865 #ifdef CONFIG_NET_POLL_CONTROLLER
866 	.ndo_poll_controller	 = rhine_poll,
867 #endif
868 };
869 
870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
871 {
872 	struct net_device *dev;
873 	struct rhine_private *rp;
874 	int i, rc;
875 	u32 quirks;
876 	long pioaddr;
877 	long memaddr;
878 	void __iomem *ioaddr;
879 	int io_size, phy_id;
880 	const char *name;
881 #ifdef USE_MMIO
882 	int bar = 1;
883 #else
884 	int bar = 0;
885 #endif
886 
887 /* when built into the kernel, we only print version if device is found */
888 #ifndef MODULE
889 	pr_info_once("%s\n", version);
890 #endif
891 
892 	io_size = 256;
893 	phy_id = 0;
894 	quirks = 0;
895 	name = "Rhine";
896 	if (pdev->revision < VTunknown0) {
897 		quirks = rqRhineI;
898 		io_size = 128;
899 	}
900 	else if (pdev->revision >= VT6102) {
901 		quirks = rqWOL | rqForceReset;
902 		if (pdev->revision < VT6105) {
903 			name = "Rhine II";
904 			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
905 		}
906 		else {
907 			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
908 			if (pdev->revision >= VT6105_B0)
909 				quirks |= rq6patterns;
910 			if (pdev->revision < VT6105M)
911 				name = "Rhine III";
912 			else
913 				name = "Rhine III (Management Adapter)";
914 		}
915 	}
916 
917 	rc = pci_enable_device(pdev);
918 	if (rc)
919 		goto err_out;
920 
921 	/* this should always be supported */
922 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
923 	if (rc) {
924 		dev_err(&pdev->dev,
925 			"32-bit PCI DMA addresses not supported by the card!?\n");
926 		goto err_out_pci_disable;
927 	}
928 
929 	/* sanity check */
930 	if ((pci_resource_len(pdev, 0) < io_size) ||
931 	    (pci_resource_len(pdev, 1) < io_size)) {
932 		rc = -EIO;
933 		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
934 		goto err_out_pci_disable;
935 	}
936 
937 	pioaddr = pci_resource_start(pdev, 0);
938 	memaddr = pci_resource_start(pdev, 1);
939 
940 	pci_set_master(pdev);
941 
942 	dev = alloc_etherdev(sizeof(struct rhine_private));
943 	if (!dev) {
944 		rc = -ENOMEM;
945 		goto err_out_pci_disable;
946 	}
947 	SET_NETDEV_DEV(dev, &pdev->dev);
948 
949 	rp = netdev_priv(dev);
950 	rp->dev = dev;
951 	rp->quirks = quirks;
952 	rp->pioaddr = pioaddr;
953 	rp->pdev = pdev;
954 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
955 
956 	rc = pci_request_regions(pdev, DRV_NAME);
957 	if (rc)
958 		goto err_out_free_netdev;
959 
960 	ioaddr = pci_iomap(pdev, bar, io_size);
961 	if (!ioaddr) {
962 		rc = -EIO;
963 		dev_err(&pdev->dev,
964 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 			pci_name(pdev), io_size, memaddr);
966 		goto err_out_free_res;
967 	}
968 
969 #ifdef USE_MMIO
970 	enable_mmio(pioaddr, quirks);
971 
972 	/* Check that selected MMIO registers match the PIO ones */
973 	i = 0;
974 	while (mmio_verify_registers[i]) {
975 		int reg = mmio_verify_registers[i++];
976 		unsigned char a = inb(pioaddr+reg);
977 		unsigned char b = readb(ioaddr+reg);
978 		if (a != b) {
979 			rc = -EIO;
980 			dev_err(&pdev->dev,
981 				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 				reg, a, b);
983 			goto err_out_unmap;
984 		}
985 	}
986 #endif /* USE_MMIO */
987 
988 	rp->base = ioaddr;
989 
990 	u64_stats_init(&rp->tx_stats.syncp);
991 	u64_stats_init(&rp->rx_stats.syncp);
992 
993 	/* Get chip registers into a sane state */
994 	rhine_power_init(dev);
995 	rhine_hw_init(dev, pioaddr);
996 
997 	for (i = 0; i < 6; i++)
998 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
999 
1000 	if (!is_valid_ether_addr(dev->dev_addr)) {
1001 		/* Report it and use a random ethernet address instead */
1002 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
1003 		eth_hw_addr_random(dev);
1004 		netdev_info(dev, "Using random MAC address: %pM\n",
1005 			    dev->dev_addr);
1006 	}
1007 
1008 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
1009 	if (!phy_id)
1010 		phy_id = ioread8(ioaddr + 0x6C);
1011 
1012 	spin_lock_init(&rp->lock);
1013 	mutex_init(&rp->task_lock);
1014 	INIT_WORK(&rp->reset_task, rhine_reset_task);
1015 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1016 
1017 	rp->mii_if.dev = dev;
1018 	rp->mii_if.mdio_read = mdio_read;
1019 	rp->mii_if.mdio_write = mdio_write;
1020 	rp->mii_if.phy_id_mask = 0x1f;
1021 	rp->mii_if.reg_num_mask = 0x1f;
1022 
1023 	/* The chip-specific entries in the device structure. */
1024 	dev->netdev_ops = &rhine_netdev_ops;
1025 	dev->ethtool_ops = &netdev_ethtool_ops;
1026 	dev->watchdog_timeo = TX_TIMEOUT;
1027 
1028 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1029 
1030 	if (rp->quirks & rqRhineI)
1031 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1032 
1033 	if (pdev->revision >= VT6105M)
1034 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1035 				 NETIF_F_HW_VLAN_CTAG_RX |
1036 				 NETIF_F_HW_VLAN_CTAG_FILTER;
1037 
1038 	/* dev->name not defined before register_netdev()! */
1039 	rc = register_netdev(dev);
1040 	if (rc)
1041 		goto err_out_unmap;
1042 
1043 	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1044 		    name,
1045 #ifdef USE_MMIO
1046 		    memaddr,
1047 #else
1048 		    (long)ioaddr,
1049 #endif
1050 		    dev->dev_addr, pdev->irq);
1051 
1052 	pci_set_drvdata(pdev, dev);
1053 
1054 	{
1055 		u16 mii_cmd;
1056 		int mii_status = mdio_read(dev, phy_id, 1);
1057 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1058 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1059 		if (mii_status != 0xffff && mii_status != 0x0000) {
1060 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1061 			netdev_info(dev,
1062 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1063 				    phy_id,
1064 				    mii_status, rp->mii_if.advertising,
1065 				    mdio_read(dev, phy_id, 5));
1066 
1067 			/* set IFF_RUNNING */
1068 			if (mii_status & BMSR_LSTATUS)
1069 				netif_carrier_on(dev);
1070 			else
1071 				netif_carrier_off(dev);
1072 
1073 		}
1074 	}
1075 	rp->mii_if.phy_id = phy_id;
1076 	if (avoid_D3)
1077 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1078 
1079 	return 0;
1080 
1081 err_out_unmap:
1082 	pci_iounmap(pdev, ioaddr);
1083 err_out_free_res:
1084 	pci_release_regions(pdev);
1085 err_out_free_netdev:
1086 	free_netdev(dev);
1087 err_out_pci_disable:
1088 	pci_disable_device(pdev);
1089 err_out:
1090 	return rc;
1091 }
1092 
1093 static int alloc_ring(struct net_device* dev)
1094 {
1095 	struct rhine_private *rp = netdev_priv(dev);
1096 	void *ring;
1097 	dma_addr_t ring_dma;
1098 
1099 	ring = pci_alloc_consistent(rp->pdev,
1100 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1101 				    TX_RING_SIZE * sizeof(struct tx_desc),
1102 				    &ring_dma);
1103 	if (!ring) {
1104 		netdev_err(dev, "Could not allocate DMA memory\n");
1105 		return -ENOMEM;
1106 	}
1107 	if (rp->quirks & rqRhineI) {
1108 		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1109 						   PKT_BUF_SZ * TX_RING_SIZE,
1110 						   &rp->tx_bufs_dma);
1111 		if (rp->tx_bufs == NULL) {
1112 			pci_free_consistent(rp->pdev,
1113 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1114 				    TX_RING_SIZE * sizeof(struct tx_desc),
1115 				    ring, ring_dma);
1116 			return -ENOMEM;
1117 		}
1118 	}
1119 
1120 	rp->rx_ring = ring;
1121 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1122 	rp->rx_ring_dma = ring_dma;
1123 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1124 
1125 	return 0;
1126 }
1127 
1128 static void free_ring(struct net_device* dev)
1129 {
1130 	struct rhine_private *rp = netdev_priv(dev);
1131 
1132 	pci_free_consistent(rp->pdev,
1133 			    RX_RING_SIZE * sizeof(struct rx_desc) +
1134 			    TX_RING_SIZE * sizeof(struct tx_desc),
1135 			    rp->rx_ring, rp->rx_ring_dma);
1136 	rp->tx_ring = NULL;
1137 
1138 	if (rp->tx_bufs)
1139 		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1140 				    rp->tx_bufs, rp->tx_bufs_dma);
1141 
1142 	rp->tx_bufs = NULL;
1143 
1144 }
1145 
1146 static void alloc_rbufs(struct net_device *dev)
1147 {
1148 	struct rhine_private *rp = netdev_priv(dev);
1149 	dma_addr_t next;
1150 	int i;
1151 
1152 	rp->dirty_rx = rp->cur_rx = 0;
1153 
1154 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1155 	rp->rx_head_desc = &rp->rx_ring[0];
1156 	next = rp->rx_ring_dma;
1157 
1158 	/* Init the ring entries */
1159 	for (i = 0; i < RX_RING_SIZE; i++) {
1160 		rp->rx_ring[i].rx_status = 0;
1161 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1162 		next += sizeof(struct rx_desc);
1163 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1164 		rp->rx_skbuff[i] = NULL;
1165 	}
1166 	/* Mark the last entry as wrapping the ring. */
1167 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1168 
1169 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1170 	for (i = 0; i < RX_RING_SIZE; i++) {
1171 		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1172 		rp->rx_skbuff[i] = skb;
1173 		if (skb == NULL)
1174 			break;
1175 
1176 		rp->rx_skbuff_dma[i] =
1177 			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1178 				       PCI_DMA_FROMDEVICE);
1179 		if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1180 			rp->rx_skbuff_dma[i] = 0;
1181 			dev_kfree_skb(skb);
1182 			break;
1183 		}
1184 		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1185 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1186 	}
1187 	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1188 }
1189 
1190 static void free_rbufs(struct net_device* dev)
1191 {
1192 	struct rhine_private *rp = netdev_priv(dev);
1193 	int i;
1194 
1195 	/* Free all the skbuffs in the Rx queue. */
1196 	for (i = 0; i < RX_RING_SIZE; i++) {
1197 		rp->rx_ring[i].rx_status = 0;
1198 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1199 		if (rp->rx_skbuff[i]) {
1200 			pci_unmap_single(rp->pdev,
1201 					 rp->rx_skbuff_dma[i],
1202 					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1203 			dev_kfree_skb(rp->rx_skbuff[i]);
1204 		}
1205 		rp->rx_skbuff[i] = NULL;
1206 	}
1207 }
1208 
1209 static void alloc_tbufs(struct net_device* dev)
1210 {
1211 	struct rhine_private *rp = netdev_priv(dev);
1212 	dma_addr_t next;
1213 	int i;
1214 
1215 	rp->dirty_tx = rp->cur_tx = 0;
1216 	next = rp->tx_ring_dma;
1217 	for (i = 0; i < TX_RING_SIZE; i++) {
1218 		rp->tx_skbuff[i] = NULL;
1219 		rp->tx_ring[i].tx_status = 0;
1220 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1221 		next += sizeof(struct tx_desc);
1222 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1223 		if (rp->quirks & rqRhineI)
1224 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1225 	}
1226 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1227 
1228 }
1229 
1230 static void free_tbufs(struct net_device* dev)
1231 {
1232 	struct rhine_private *rp = netdev_priv(dev);
1233 	int i;
1234 
1235 	for (i = 0; i < TX_RING_SIZE; i++) {
1236 		rp->tx_ring[i].tx_status = 0;
1237 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1238 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1239 		if (rp->tx_skbuff[i]) {
1240 			if (rp->tx_skbuff_dma[i]) {
1241 				pci_unmap_single(rp->pdev,
1242 						 rp->tx_skbuff_dma[i],
1243 						 rp->tx_skbuff[i]->len,
1244 						 PCI_DMA_TODEVICE);
1245 			}
1246 			dev_kfree_skb(rp->tx_skbuff[i]);
1247 		}
1248 		rp->tx_skbuff[i] = NULL;
1249 		rp->tx_buf[i] = NULL;
1250 	}
1251 }
1252 
1253 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1254 {
1255 	struct rhine_private *rp = netdev_priv(dev);
1256 	void __iomem *ioaddr = rp->base;
1257 
1258 	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1259 
1260 	if (rp->mii_if.full_duplex)
1261 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1262 		   ioaddr + ChipCmd1);
1263 	else
1264 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1265 		   ioaddr + ChipCmd1);
1266 
1267 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1268 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1269 }
1270 
1271 /* Called after status of force_media possibly changed */
1272 static void rhine_set_carrier(struct mii_if_info *mii)
1273 {
1274 	struct net_device *dev = mii->dev;
1275 	struct rhine_private *rp = netdev_priv(dev);
1276 
1277 	if (mii->force_media) {
1278 		/* autoneg is off: Link is always assumed to be up */
1279 		if (!netif_carrier_ok(dev))
1280 			netif_carrier_on(dev);
1281 	} else	/* Let MMI library update carrier status */
1282 		rhine_check_media(dev, 0);
1283 
1284 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1285 		   mii->force_media, netif_carrier_ok(dev));
1286 }
1287 
1288 /**
1289  * rhine_set_cam - set CAM multicast filters
1290  * @ioaddr: register block of this Rhine
1291  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1292  * @addr: multicast address (6 bytes)
1293  *
1294  * Load addresses into multicast filters.
1295  */
1296 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1297 {
1298 	int i;
1299 
1300 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1301 	wmb();
1302 
1303 	/* Paranoid -- idx out of range should never happen */
1304 	idx &= (MCAM_SIZE - 1);
1305 
1306 	iowrite8((u8) idx, ioaddr + CamAddr);
1307 
1308 	for (i = 0; i < 6; i++, addr++)
1309 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1310 	udelay(10);
1311 	wmb();
1312 
1313 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1314 	udelay(10);
1315 
1316 	iowrite8(0, ioaddr + CamCon);
1317 }
1318 
1319 /**
1320  * rhine_set_vlan_cam - set CAM VLAN filters
1321  * @ioaddr: register block of this Rhine
1322  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1323  * @addr: VLAN ID (2 bytes)
1324  *
1325  * Load addresses into VLAN filters.
1326  */
1327 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1328 {
1329 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1330 	wmb();
1331 
1332 	/* Paranoid -- idx out of range should never happen */
1333 	idx &= (VCAM_SIZE - 1);
1334 
1335 	iowrite8((u8) idx, ioaddr + CamAddr);
1336 
1337 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1338 	udelay(10);
1339 	wmb();
1340 
1341 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1342 	udelay(10);
1343 
1344 	iowrite8(0, ioaddr + CamCon);
1345 }
1346 
1347 /**
1348  * rhine_set_cam_mask - set multicast CAM mask
1349  * @ioaddr: register block of this Rhine
1350  * @mask: multicast CAM mask
1351  *
1352  * Mask sets multicast filters active/inactive.
1353  */
1354 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1355 {
1356 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1357 	wmb();
1358 
1359 	/* write mask */
1360 	iowrite32(mask, ioaddr + CamMask);
1361 
1362 	/* disable CAMEN */
1363 	iowrite8(0, ioaddr + CamCon);
1364 }
1365 
1366 /**
1367  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1368  * @ioaddr: register block of this Rhine
1369  * @mask: VLAN CAM mask
1370  *
1371  * Mask sets VLAN filters active/inactive.
1372  */
1373 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1374 {
1375 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1376 	wmb();
1377 
1378 	/* write mask */
1379 	iowrite32(mask, ioaddr + CamMask);
1380 
1381 	/* disable CAMEN */
1382 	iowrite8(0, ioaddr + CamCon);
1383 }
1384 
1385 /**
1386  * rhine_init_cam_filter - initialize CAM filters
1387  * @dev: network device
1388  *
1389  * Initialize (disable) hardware VLAN and multicast support on this
1390  * Rhine.
1391  */
1392 static void rhine_init_cam_filter(struct net_device *dev)
1393 {
1394 	struct rhine_private *rp = netdev_priv(dev);
1395 	void __iomem *ioaddr = rp->base;
1396 
1397 	/* Disable all CAMs */
1398 	rhine_set_vlan_cam_mask(ioaddr, 0);
1399 	rhine_set_cam_mask(ioaddr, 0);
1400 
1401 	/* disable hardware VLAN support */
1402 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1403 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1404 }
1405 
1406 /**
1407  * rhine_update_vcam - update VLAN CAM filters
1408  * @rp: rhine_private data of this Rhine
1409  *
1410  * Update VLAN CAM filters to match configuration change.
1411  */
1412 static void rhine_update_vcam(struct net_device *dev)
1413 {
1414 	struct rhine_private *rp = netdev_priv(dev);
1415 	void __iomem *ioaddr = rp->base;
1416 	u16 vid;
1417 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1418 	unsigned int i = 0;
1419 
1420 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1421 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1422 		vCAMmask |= 1 << i;
1423 		if (++i >= VCAM_SIZE)
1424 			break;
1425 	}
1426 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1427 }
1428 
1429 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1430 {
1431 	struct rhine_private *rp = netdev_priv(dev);
1432 
1433 	spin_lock_bh(&rp->lock);
1434 	set_bit(vid, rp->active_vlans);
1435 	rhine_update_vcam(dev);
1436 	spin_unlock_bh(&rp->lock);
1437 	return 0;
1438 }
1439 
1440 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1441 {
1442 	struct rhine_private *rp = netdev_priv(dev);
1443 
1444 	spin_lock_bh(&rp->lock);
1445 	clear_bit(vid, rp->active_vlans);
1446 	rhine_update_vcam(dev);
1447 	spin_unlock_bh(&rp->lock);
1448 	return 0;
1449 }
1450 
1451 static void init_registers(struct net_device *dev)
1452 {
1453 	struct rhine_private *rp = netdev_priv(dev);
1454 	void __iomem *ioaddr = rp->base;
1455 	int i;
1456 
1457 	for (i = 0; i < 6; i++)
1458 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1459 
1460 	/* Initialize other registers. */
1461 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1462 	/* Configure initial FIFO thresholds. */
1463 	iowrite8(0x20, ioaddr + TxConfig);
1464 	rp->tx_thresh = 0x20;
1465 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1466 
1467 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1468 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1469 
1470 	rhine_set_rx_mode(dev);
1471 
1472 	if (rp->pdev->revision >= VT6105M)
1473 		rhine_init_cam_filter(dev);
1474 
1475 	napi_enable(&rp->napi);
1476 
1477 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1478 
1479 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1480 	       ioaddr + ChipCmd);
1481 	rhine_check_media(dev, 1);
1482 }
1483 
1484 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1485 static void rhine_enable_linkmon(struct rhine_private *rp)
1486 {
1487 	void __iomem *ioaddr = rp->base;
1488 
1489 	iowrite8(0, ioaddr + MIICmd);
1490 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1491 	iowrite8(0x80, ioaddr + MIICmd);
1492 
1493 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1494 
1495 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1496 }
1497 
1498 /* Disable MII link status auto-polling (required for MDIO access) */
1499 static void rhine_disable_linkmon(struct rhine_private *rp)
1500 {
1501 	void __iomem *ioaddr = rp->base;
1502 
1503 	iowrite8(0, ioaddr + MIICmd);
1504 
1505 	if (rp->quirks & rqRhineI) {
1506 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1507 
1508 		/* Can be called from ISR. Evil. */
1509 		mdelay(1);
1510 
1511 		/* 0x80 must be set immediately before turning it off */
1512 		iowrite8(0x80, ioaddr + MIICmd);
1513 
1514 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1515 
1516 		/* Heh. Now clear 0x80 again. */
1517 		iowrite8(0, ioaddr + MIICmd);
1518 	}
1519 	else
1520 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1521 }
1522 
1523 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1524 
1525 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1526 {
1527 	struct rhine_private *rp = netdev_priv(dev);
1528 	void __iomem *ioaddr = rp->base;
1529 	int result;
1530 
1531 	rhine_disable_linkmon(rp);
1532 
1533 	/* rhine_disable_linkmon already cleared MIICmd */
1534 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1535 	iowrite8(regnum, ioaddr + MIIRegAddr);
1536 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1537 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1538 	result = ioread16(ioaddr + MIIData);
1539 
1540 	rhine_enable_linkmon(rp);
1541 	return result;
1542 }
1543 
1544 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1545 {
1546 	struct rhine_private *rp = netdev_priv(dev);
1547 	void __iomem *ioaddr = rp->base;
1548 
1549 	rhine_disable_linkmon(rp);
1550 
1551 	/* rhine_disable_linkmon already cleared MIICmd */
1552 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1553 	iowrite8(regnum, ioaddr + MIIRegAddr);
1554 	iowrite16(value, ioaddr + MIIData);
1555 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1556 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1557 
1558 	rhine_enable_linkmon(rp);
1559 }
1560 
1561 static void rhine_task_disable(struct rhine_private *rp)
1562 {
1563 	mutex_lock(&rp->task_lock);
1564 	rp->task_enable = false;
1565 	mutex_unlock(&rp->task_lock);
1566 
1567 	cancel_work_sync(&rp->slow_event_task);
1568 	cancel_work_sync(&rp->reset_task);
1569 }
1570 
1571 static void rhine_task_enable(struct rhine_private *rp)
1572 {
1573 	mutex_lock(&rp->task_lock);
1574 	rp->task_enable = true;
1575 	mutex_unlock(&rp->task_lock);
1576 }
1577 
1578 static int rhine_open(struct net_device *dev)
1579 {
1580 	struct rhine_private *rp = netdev_priv(dev);
1581 	void __iomem *ioaddr = rp->base;
1582 	int rc;
1583 
1584 	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1585 			dev);
1586 	if (rc)
1587 		return rc;
1588 
1589 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1590 
1591 	rc = alloc_ring(dev);
1592 	if (rc) {
1593 		free_irq(rp->pdev->irq, dev);
1594 		return rc;
1595 	}
1596 	alloc_rbufs(dev);
1597 	alloc_tbufs(dev);
1598 	rhine_chip_reset(dev);
1599 	rhine_task_enable(rp);
1600 	init_registers(dev);
1601 
1602 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1603 		  __func__, ioread16(ioaddr + ChipCmd),
1604 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1605 
1606 	netif_start_queue(dev);
1607 
1608 	return 0;
1609 }
1610 
1611 static void rhine_reset_task(struct work_struct *work)
1612 {
1613 	struct rhine_private *rp = container_of(work, struct rhine_private,
1614 						reset_task);
1615 	struct net_device *dev = rp->dev;
1616 
1617 	mutex_lock(&rp->task_lock);
1618 
1619 	if (!rp->task_enable)
1620 		goto out_unlock;
1621 
1622 	napi_disable(&rp->napi);
1623 	netif_tx_disable(dev);
1624 	spin_lock_bh(&rp->lock);
1625 
1626 	/* clear all descriptors */
1627 	free_tbufs(dev);
1628 	free_rbufs(dev);
1629 	alloc_tbufs(dev);
1630 	alloc_rbufs(dev);
1631 
1632 	/* Reinitialize the hardware. */
1633 	rhine_chip_reset(dev);
1634 	init_registers(dev);
1635 
1636 	spin_unlock_bh(&rp->lock);
1637 
1638 	dev->trans_start = jiffies; /* prevent tx timeout */
1639 	dev->stats.tx_errors++;
1640 	netif_wake_queue(dev);
1641 
1642 out_unlock:
1643 	mutex_unlock(&rp->task_lock);
1644 }
1645 
1646 static void rhine_tx_timeout(struct net_device *dev)
1647 {
1648 	struct rhine_private *rp = netdev_priv(dev);
1649 	void __iomem *ioaddr = rp->base;
1650 
1651 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1652 		    ioread16(ioaddr + IntrStatus),
1653 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1654 
1655 	schedule_work(&rp->reset_task);
1656 }
1657 
1658 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1659 				  struct net_device *dev)
1660 {
1661 	struct rhine_private *rp = netdev_priv(dev);
1662 	void __iomem *ioaddr = rp->base;
1663 	unsigned entry;
1664 
1665 	/* Caution: the write order is important here, set the field
1666 	   with the "ownership" bits last. */
1667 
1668 	/* Calculate the next Tx descriptor entry. */
1669 	entry = rp->cur_tx % TX_RING_SIZE;
1670 
1671 	if (skb_padto(skb, ETH_ZLEN))
1672 		return NETDEV_TX_OK;
1673 
1674 	rp->tx_skbuff[entry] = skb;
1675 
1676 	if ((rp->quirks & rqRhineI) &&
1677 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1678 		/* Must use alignment buffer. */
1679 		if (skb->len > PKT_BUF_SZ) {
1680 			/* packet too long, drop it */
1681 			dev_kfree_skb_any(skb);
1682 			rp->tx_skbuff[entry] = NULL;
1683 			dev->stats.tx_dropped++;
1684 			return NETDEV_TX_OK;
1685 		}
1686 
1687 		/* Padding is not copied and so must be redone. */
1688 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1689 		if (skb->len < ETH_ZLEN)
1690 			memset(rp->tx_buf[entry] + skb->len, 0,
1691 			       ETH_ZLEN - skb->len);
1692 		rp->tx_skbuff_dma[entry] = 0;
1693 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1694 						      (rp->tx_buf[entry] -
1695 						       rp->tx_bufs));
1696 	} else {
1697 		rp->tx_skbuff_dma[entry] =
1698 			pci_map_single(rp->pdev, skb->data, skb->len,
1699 				       PCI_DMA_TODEVICE);
1700 		if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1701 			dev_kfree_skb_any(skb);
1702 			rp->tx_skbuff_dma[entry] = 0;
1703 			dev->stats.tx_dropped++;
1704 			return NETDEV_TX_OK;
1705 		}
1706 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1707 	}
1708 
1709 	rp->tx_ring[entry].desc_length =
1710 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1711 
1712 	if (unlikely(vlan_tx_tag_present(skb))) {
1713 		u16 vid_pcp = vlan_tx_tag_get(skb);
1714 
1715 		/* drop CFI/DEI bit, register needs VID and PCP */
1716 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1717 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1718 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1719 		/* request tagging */
1720 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1721 	}
1722 	else
1723 		rp->tx_ring[entry].tx_status = 0;
1724 
1725 	/* lock eth irq */
1726 	wmb();
1727 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1728 	wmb();
1729 
1730 	rp->cur_tx++;
1731 
1732 	/* Non-x86 Todo: explicitly flush cache lines here. */
1733 
1734 	if (vlan_tx_tag_present(skb))
1735 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1736 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1737 
1738 	/* Wake the potentially-idle transmit channel */
1739 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1740 	       ioaddr + ChipCmd1);
1741 	IOSYNC;
1742 
1743 	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1744 		netif_stop_queue(dev);
1745 
1746 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1747 		  rp->cur_tx - 1, entry);
1748 
1749 	return NETDEV_TX_OK;
1750 }
1751 
1752 static void rhine_irq_disable(struct rhine_private *rp)
1753 {
1754 	iowrite16(0x0000, rp->base + IntrEnable);
1755 	mmiowb();
1756 }
1757 
1758 /* The interrupt handler does all of the Rx thread work and cleans up
1759    after the Tx thread. */
1760 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1761 {
1762 	struct net_device *dev = dev_instance;
1763 	struct rhine_private *rp = netdev_priv(dev);
1764 	u32 status;
1765 	int handled = 0;
1766 
1767 	status = rhine_get_events(rp);
1768 
1769 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1770 
1771 	if (status & RHINE_EVENT) {
1772 		handled = 1;
1773 
1774 		rhine_irq_disable(rp);
1775 		napi_schedule(&rp->napi);
1776 	}
1777 
1778 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1779 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1780 			  status);
1781 	}
1782 
1783 	return IRQ_RETVAL(handled);
1784 }
1785 
1786 /* This routine is logically part of the interrupt handler, but isolated
1787    for clarity. */
1788 static void rhine_tx(struct net_device *dev)
1789 {
1790 	struct rhine_private *rp = netdev_priv(dev);
1791 	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1792 
1793 	/* find and cleanup dirty tx descriptors */
1794 	while (rp->dirty_tx != rp->cur_tx) {
1795 		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1796 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1797 			  entry, txstatus);
1798 		if (txstatus & DescOwn)
1799 			break;
1800 		if (txstatus & 0x8000) {
1801 			netif_dbg(rp, tx_done, dev,
1802 				  "Transmit error, Tx status %08x\n", txstatus);
1803 			dev->stats.tx_errors++;
1804 			if (txstatus & 0x0400)
1805 				dev->stats.tx_carrier_errors++;
1806 			if (txstatus & 0x0200)
1807 				dev->stats.tx_window_errors++;
1808 			if (txstatus & 0x0100)
1809 				dev->stats.tx_aborted_errors++;
1810 			if (txstatus & 0x0080)
1811 				dev->stats.tx_heartbeat_errors++;
1812 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1813 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1814 				dev->stats.tx_fifo_errors++;
1815 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1816 				break; /* Keep the skb - we try again */
1817 			}
1818 			/* Transmitter restarted in 'abnormal' handler. */
1819 		} else {
1820 			if (rp->quirks & rqRhineI)
1821 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1822 			else
1823 				dev->stats.collisions += txstatus & 0x0F;
1824 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1825 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1826 
1827 			u64_stats_update_begin(&rp->tx_stats.syncp);
1828 			rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1829 			rp->tx_stats.packets++;
1830 			u64_stats_update_end(&rp->tx_stats.syncp);
1831 		}
1832 		/* Free the original skb. */
1833 		if (rp->tx_skbuff_dma[entry]) {
1834 			pci_unmap_single(rp->pdev,
1835 					 rp->tx_skbuff_dma[entry],
1836 					 rp->tx_skbuff[entry]->len,
1837 					 PCI_DMA_TODEVICE);
1838 		}
1839 		dev_consume_skb_any(rp->tx_skbuff[entry]);
1840 		rp->tx_skbuff[entry] = NULL;
1841 		entry = (++rp->dirty_tx) % TX_RING_SIZE;
1842 	}
1843 	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1844 		netif_wake_queue(dev);
1845 }
1846 
1847 /**
1848  * rhine_get_vlan_tci - extract TCI from Rx data buffer
1849  * @skb: pointer to sk_buff
1850  * @data_size: used data area of the buffer including CRC
1851  *
1852  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1853  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1854  * aligned following the CRC.
1855  */
1856 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1857 {
1858 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1859 	return be16_to_cpup((__be16 *)trailer);
1860 }
1861 
1862 /* Process up to limit frames from receive ring */
1863 static int rhine_rx(struct net_device *dev, int limit)
1864 {
1865 	struct rhine_private *rp = netdev_priv(dev);
1866 	int count;
1867 	int entry = rp->cur_rx % RX_RING_SIZE;
1868 
1869 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1870 		  entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1871 
1872 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1873 	for (count = 0; count < limit; ++count) {
1874 		struct rx_desc *desc = rp->rx_head_desc;
1875 		u32 desc_status = le32_to_cpu(desc->rx_status);
1876 		u32 desc_length = le32_to_cpu(desc->desc_length);
1877 		int data_size = desc_status >> 16;
1878 
1879 		if (desc_status & DescOwn)
1880 			break;
1881 
1882 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1883 			  desc_status);
1884 
1885 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1886 			if ((desc_status & RxWholePkt) != RxWholePkt) {
1887 				netdev_warn(dev,
1888 	"Oversized Ethernet frame spanned multiple buffers, "
1889 	"entry %#x length %d status %08x!\n",
1890 					    entry, data_size,
1891 					    desc_status);
1892 				netdev_warn(dev,
1893 					    "Oversized Ethernet frame %p vs %p\n",
1894 					    rp->rx_head_desc,
1895 					    &rp->rx_ring[entry]);
1896 				dev->stats.rx_length_errors++;
1897 			} else if (desc_status & RxErr) {
1898 				/* There was a error. */
1899 				netif_dbg(rp, rx_err, dev,
1900 					  "%s() Rx error %08x\n", __func__,
1901 					  desc_status);
1902 				dev->stats.rx_errors++;
1903 				if (desc_status & 0x0030)
1904 					dev->stats.rx_length_errors++;
1905 				if (desc_status & 0x0048)
1906 					dev->stats.rx_fifo_errors++;
1907 				if (desc_status & 0x0004)
1908 					dev->stats.rx_frame_errors++;
1909 				if (desc_status & 0x0002) {
1910 					/* this can also be updated outside the interrupt handler */
1911 					spin_lock(&rp->lock);
1912 					dev->stats.rx_crc_errors++;
1913 					spin_unlock(&rp->lock);
1914 				}
1915 			}
1916 		} else {
1917 			struct sk_buff *skb = NULL;
1918 			/* Length should omit the CRC */
1919 			int pkt_len = data_size - 4;
1920 			u16 vlan_tci = 0;
1921 
1922 			/* Check if the packet is long enough to accept without
1923 			   copying to a minimally-sized skbuff. */
1924 			if (pkt_len < rx_copybreak)
1925 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1926 			if (skb) {
1927 				pci_dma_sync_single_for_cpu(rp->pdev,
1928 							    rp->rx_skbuff_dma[entry],
1929 							    rp->rx_buf_sz,
1930 							    PCI_DMA_FROMDEVICE);
1931 
1932 				skb_copy_to_linear_data(skb,
1933 						 rp->rx_skbuff[entry]->data,
1934 						 pkt_len);
1935 				skb_put(skb, pkt_len);
1936 				pci_dma_sync_single_for_device(rp->pdev,
1937 							       rp->rx_skbuff_dma[entry],
1938 							       rp->rx_buf_sz,
1939 							       PCI_DMA_FROMDEVICE);
1940 			} else {
1941 				skb = rp->rx_skbuff[entry];
1942 				if (skb == NULL) {
1943 					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1944 					break;
1945 				}
1946 				rp->rx_skbuff[entry] = NULL;
1947 				skb_put(skb, pkt_len);
1948 				pci_unmap_single(rp->pdev,
1949 						 rp->rx_skbuff_dma[entry],
1950 						 rp->rx_buf_sz,
1951 						 PCI_DMA_FROMDEVICE);
1952 			}
1953 
1954 			if (unlikely(desc_length & DescTag))
1955 				vlan_tci = rhine_get_vlan_tci(skb, data_size);
1956 
1957 			skb->protocol = eth_type_trans(skb, dev);
1958 
1959 			if (unlikely(desc_length & DescTag))
1960 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
1961 			netif_receive_skb(skb);
1962 
1963 			u64_stats_update_begin(&rp->rx_stats.syncp);
1964 			rp->rx_stats.bytes += pkt_len;
1965 			rp->rx_stats.packets++;
1966 			u64_stats_update_end(&rp->rx_stats.syncp);
1967 		}
1968 		entry = (++rp->cur_rx) % RX_RING_SIZE;
1969 		rp->rx_head_desc = &rp->rx_ring[entry];
1970 	}
1971 
1972 	/* Refill the Rx ring buffers. */
1973 	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1974 		struct sk_buff *skb;
1975 		entry = rp->dirty_rx % RX_RING_SIZE;
1976 		if (rp->rx_skbuff[entry] == NULL) {
1977 			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1978 			rp->rx_skbuff[entry] = skb;
1979 			if (skb == NULL)
1980 				break;	/* Better luck next round. */
1981 			rp->rx_skbuff_dma[entry] =
1982 				pci_map_single(rp->pdev, skb->data,
1983 					       rp->rx_buf_sz,
1984 					       PCI_DMA_FROMDEVICE);
1985 			if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1986 				dev_kfree_skb(skb);
1987 				rp->rx_skbuff_dma[entry] = 0;
1988 				break;
1989 			}
1990 			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1991 		}
1992 		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1993 	}
1994 
1995 	return count;
1996 }
1997 
1998 static void rhine_restart_tx(struct net_device *dev) {
1999 	struct rhine_private *rp = netdev_priv(dev);
2000 	void __iomem *ioaddr = rp->base;
2001 	int entry = rp->dirty_tx % TX_RING_SIZE;
2002 	u32 intr_status;
2003 
2004 	/*
2005 	 * If new errors occurred, we need to sort them out before doing Tx.
2006 	 * In that case the ISR will be back here RSN anyway.
2007 	 */
2008 	intr_status = rhine_get_events(rp);
2009 
2010 	if ((intr_status & IntrTxErrSummary) == 0) {
2011 
2012 		/* We know better than the chip where it should continue. */
2013 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2014 		       ioaddr + TxRingPtr);
2015 
2016 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2017 		       ioaddr + ChipCmd);
2018 
2019 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2020 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2021 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2022 
2023 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2024 		       ioaddr + ChipCmd1);
2025 		IOSYNC;
2026 	}
2027 	else {
2028 		/* This should never happen */
2029 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2030 			   intr_status);
2031 	}
2032 
2033 }
2034 
2035 static void rhine_slow_event_task(struct work_struct *work)
2036 {
2037 	struct rhine_private *rp =
2038 		container_of(work, struct rhine_private, slow_event_task);
2039 	struct net_device *dev = rp->dev;
2040 	u32 intr_status;
2041 
2042 	mutex_lock(&rp->task_lock);
2043 
2044 	if (!rp->task_enable)
2045 		goto out_unlock;
2046 
2047 	intr_status = rhine_get_events(rp);
2048 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2049 
2050 	if (intr_status & IntrLinkChange)
2051 		rhine_check_media(dev, 0);
2052 
2053 	if (intr_status & IntrPCIErr)
2054 		netif_warn(rp, hw, dev, "PCI error\n");
2055 
2056 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2057 
2058 out_unlock:
2059 	mutex_unlock(&rp->task_lock);
2060 }
2061 
2062 static struct rtnl_link_stats64 *
2063 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2064 {
2065 	struct rhine_private *rp = netdev_priv(dev);
2066 	unsigned int start;
2067 
2068 	spin_lock_bh(&rp->lock);
2069 	rhine_update_rx_crc_and_missed_errord(rp);
2070 	spin_unlock_bh(&rp->lock);
2071 
2072 	netdev_stats_to_stats64(stats, &dev->stats);
2073 
2074 	do {
2075 		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2076 		stats->rx_packets = rp->rx_stats.packets;
2077 		stats->rx_bytes = rp->rx_stats.bytes;
2078 	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2079 
2080 	do {
2081 		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2082 		stats->tx_packets = rp->tx_stats.packets;
2083 		stats->tx_bytes = rp->tx_stats.bytes;
2084 	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2085 
2086 	return stats;
2087 }
2088 
2089 static void rhine_set_rx_mode(struct net_device *dev)
2090 {
2091 	struct rhine_private *rp = netdev_priv(dev);
2092 	void __iomem *ioaddr = rp->base;
2093 	u32 mc_filter[2];	/* Multicast hash filter */
2094 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2095 	struct netdev_hw_addr *ha;
2096 
2097 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2098 		rx_mode = 0x1C;
2099 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2100 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2101 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2102 		   (dev->flags & IFF_ALLMULTI)) {
2103 		/* Too many to match, or accept all multicasts. */
2104 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2105 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2106 	} else if (rp->pdev->revision >= VT6105M) {
2107 		int i = 0;
2108 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2109 		netdev_for_each_mc_addr(ha, dev) {
2110 			if (i == MCAM_SIZE)
2111 				break;
2112 			rhine_set_cam(ioaddr, i, ha->addr);
2113 			mCAMmask |= 1 << i;
2114 			i++;
2115 		}
2116 		rhine_set_cam_mask(ioaddr, mCAMmask);
2117 	} else {
2118 		memset(mc_filter, 0, sizeof(mc_filter));
2119 		netdev_for_each_mc_addr(ha, dev) {
2120 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2121 
2122 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2123 		}
2124 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2125 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2126 	}
2127 	/* enable/disable VLAN receive filtering */
2128 	if (rp->pdev->revision >= VT6105M) {
2129 		if (dev->flags & IFF_PROMISC)
2130 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2131 		else
2132 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2133 	}
2134 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2135 }
2136 
2137 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2138 {
2139 	struct rhine_private *rp = netdev_priv(dev);
2140 
2141 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2142 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2143 	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2144 }
2145 
2146 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2147 {
2148 	struct rhine_private *rp = netdev_priv(dev);
2149 	int rc;
2150 
2151 	mutex_lock(&rp->task_lock);
2152 	rc = mii_ethtool_gset(&rp->mii_if, cmd);
2153 	mutex_unlock(&rp->task_lock);
2154 
2155 	return rc;
2156 }
2157 
2158 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2159 {
2160 	struct rhine_private *rp = netdev_priv(dev);
2161 	int rc;
2162 
2163 	mutex_lock(&rp->task_lock);
2164 	rc = mii_ethtool_sset(&rp->mii_if, cmd);
2165 	rhine_set_carrier(&rp->mii_if);
2166 	mutex_unlock(&rp->task_lock);
2167 
2168 	return rc;
2169 }
2170 
2171 static int netdev_nway_reset(struct net_device *dev)
2172 {
2173 	struct rhine_private *rp = netdev_priv(dev);
2174 
2175 	return mii_nway_restart(&rp->mii_if);
2176 }
2177 
2178 static u32 netdev_get_link(struct net_device *dev)
2179 {
2180 	struct rhine_private *rp = netdev_priv(dev);
2181 
2182 	return mii_link_ok(&rp->mii_if);
2183 }
2184 
2185 static u32 netdev_get_msglevel(struct net_device *dev)
2186 {
2187 	struct rhine_private *rp = netdev_priv(dev);
2188 
2189 	return rp->msg_enable;
2190 }
2191 
2192 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2193 {
2194 	struct rhine_private *rp = netdev_priv(dev);
2195 
2196 	rp->msg_enable = value;
2197 }
2198 
2199 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2200 {
2201 	struct rhine_private *rp = netdev_priv(dev);
2202 
2203 	if (!(rp->quirks & rqWOL))
2204 		return;
2205 
2206 	spin_lock_irq(&rp->lock);
2207 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2208 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2209 	wol->wolopts = rp->wolopts;
2210 	spin_unlock_irq(&rp->lock);
2211 }
2212 
2213 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2214 {
2215 	struct rhine_private *rp = netdev_priv(dev);
2216 	u32 support = WAKE_PHY | WAKE_MAGIC |
2217 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2218 
2219 	if (!(rp->quirks & rqWOL))
2220 		return -EINVAL;
2221 
2222 	if (wol->wolopts & ~support)
2223 		return -EINVAL;
2224 
2225 	spin_lock_irq(&rp->lock);
2226 	rp->wolopts = wol->wolopts;
2227 	spin_unlock_irq(&rp->lock);
2228 
2229 	return 0;
2230 }
2231 
2232 static const struct ethtool_ops netdev_ethtool_ops = {
2233 	.get_drvinfo		= netdev_get_drvinfo,
2234 	.get_settings		= netdev_get_settings,
2235 	.set_settings		= netdev_set_settings,
2236 	.nway_reset		= netdev_nway_reset,
2237 	.get_link		= netdev_get_link,
2238 	.get_msglevel		= netdev_get_msglevel,
2239 	.set_msglevel		= netdev_set_msglevel,
2240 	.get_wol		= rhine_get_wol,
2241 	.set_wol		= rhine_set_wol,
2242 };
2243 
2244 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2245 {
2246 	struct rhine_private *rp = netdev_priv(dev);
2247 	int rc;
2248 
2249 	if (!netif_running(dev))
2250 		return -EINVAL;
2251 
2252 	mutex_lock(&rp->task_lock);
2253 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2254 	rhine_set_carrier(&rp->mii_if);
2255 	mutex_unlock(&rp->task_lock);
2256 
2257 	return rc;
2258 }
2259 
2260 static int rhine_close(struct net_device *dev)
2261 {
2262 	struct rhine_private *rp = netdev_priv(dev);
2263 	void __iomem *ioaddr = rp->base;
2264 
2265 	rhine_task_disable(rp);
2266 	napi_disable(&rp->napi);
2267 	netif_stop_queue(dev);
2268 
2269 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2270 		  ioread16(ioaddr + ChipCmd));
2271 
2272 	/* Switch to loopback mode to avoid hardware races. */
2273 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2274 
2275 	rhine_irq_disable(rp);
2276 
2277 	/* Stop the chip's Tx and Rx processes. */
2278 	iowrite16(CmdStop, ioaddr + ChipCmd);
2279 
2280 	free_irq(rp->pdev->irq, dev);
2281 	free_rbufs(dev);
2282 	free_tbufs(dev);
2283 	free_ring(dev);
2284 
2285 	return 0;
2286 }
2287 
2288 
2289 static void rhine_remove_one(struct pci_dev *pdev)
2290 {
2291 	struct net_device *dev = pci_get_drvdata(pdev);
2292 	struct rhine_private *rp = netdev_priv(dev);
2293 
2294 	unregister_netdev(dev);
2295 
2296 	pci_iounmap(pdev, rp->base);
2297 	pci_release_regions(pdev);
2298 
2299 	free_netdev(dev);
2300 	pci_disable_device(pdev);
2301 }
2302 
2303 static void rhine_shutdown (struct pci_dev *pdev)
2304 {
2305 	struct net_device *dev = pci_get_drvdata(pdev);
2306 	struct rhine_private *rp = netdev_priv(dev);
2307 	void __iomem *ioaddr = rp->base;
2308 
2309 	if (!(rp->quirks & rqWOL))
2310 		return; /* Nothing to do for non-WOL adapters */
2311 
2312 	rhine_power_init(dev);
2313 
2314 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2315 	if (rp->quirks & rq6patterns)
2316 		iowrite8(0x04, ioaddr + WOLcgClr);
2317 
2318 	spin_lock(&rp->lock);
2319 
2320 	if (rp->wolopts & WAKE_MAGIC) {
2321 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2322 		/*
2323 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2324 		 * not cooperate otherwise.
2325 		 */
2326 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2327 	}
2328 
2329 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2330 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2331 
2332 	if (rp->wolopts & WAKE_PHY)
2333 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2334 
2335 	if (rp->wolopts & WAKE_UCAST)
2336 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2337 
2338 	if (rp->wolopts) {
2339 		/* Enable legacy WOL (for old motherboards) */
2340 		iowrite8(0x01, ioaddr + PwcfgSet);
2341 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2342 	}
2343 
2344 	spin_unlock(&rp->lock);
2345 
2346 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2347 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2348 
2349 		pci_wake_from_d3(pdev, true);
2350 		pci_set_power_state(pdev, PCI_D3hot);
2351 	}
2352 }
2353 
2354 #ifdef CONFIG_PM_SLEEP
2355 static int rhine_suspend(struct device *device)
2356 {
2357 	struct pci_dev *pdev = to_pci_dev(device);
2358 	struct net_device *dev = pci_get_drvdata(pdev);
2359 	struct rhine_private *rp = netdev_priv(dev);
2360 
2361 	if (!netif_running(dev))
2362 		return 0;
2363 
2364 	rhine_task_disable(rp);
2365 	rhine_irq_disable(rp);
2366 	napi_disable(&rp->napi);
2367 
2368 	netif_device_detach(dev);
2369 
2370 	rhine_shutdown(pdev);
2371 
2372 	return 0;
2373 }
2374 
2375 static int rhine_resume(struct device *device)
2376 {
2377 	struct pci_dev *pdev = to_pci_dev(device);
2378 	struct net_device *dev = pci_get_drvdata(pdev);
2379 	struct rhine_private *rp = netdev_priv(dev);
2380 
2381 	if (!netif_running(dev))
2382 		return 0;
2383 
2384 #ifdef USE_MMIO
2385 	enable_mmio(rp->pioaddr, rp->quirks);
2386 #endif
2387 	rhine_power_init(dev);
2388 	free_tbufs(dev);
2389 	free_rbufs(dev);
2390 	alloc_tbufs(dev);
2391 	alloc_rbufs(dev);
2392 	rhine_task_enable(rp);
2393 	spin_lock_bh(&rp->lock);
2394 	init_registers(dev);
2395 	spin_unlock_bh(&rp->lock);
2396 
2397 	netif_device_attach(dev);
2398 
2399 	return 0;
2400 }
2401 
2402 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2403 #define RHINE_PM_OPS	(&rhine_pm_ops)
2404 
2405 #else
2406 
2407 #define RHINE_PM_OPS	NULL
2408 
2409 #endif /* !CONFIG_PM_SLEEP */
2410 
2411 static struct pci_driver rhine_driver = {
2412 	.name		= DRV_NAME,
2413 	.id_table	= rhine_pci_tbl,
2414 	.probe		= rhine_init_one,
2415 	.remove		= rhine_remove_one,
2416 	.shutdown	= rhine_shutdown,
2417 	.driver.pm	= RHINE_PM_OPS,
2418 };
2419 
2420 static struct dmi_system_id rhine_dmi_table[] __initdata = {
2421 	{
2422 		.ident = "EPIA-M",
2423 		.matches = {
2424 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2425 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2426 		},
2427 	},
2428 	{
2429 		.ident = "KV7",
2430 		.matches = {
2431 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2432 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2433 		},
2434 	},
2435 	{ NULL }
2436 };
2437 
2438 static int __init rhine_init(void)
2439 {
2440 /* when a module, this is printed whether or not devices are found in probe */
2441 #ifdef MODULE
2442 	pr_info("%s\n", version);
2443 #endif
2444 	if (dmi_check_system(rhine_dmi_table)) {
2445 		/* these BIOSes fail at PXE boot if chip is in D3 */
2446 		avoid_D3 = true;
2447 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2448 	}
2449 	else if (avoid_D3)
2450 		pr_info("avoid_D3 set\n");
2451 
2452 	return pci_register_driver(&rhine_driver);
2453 }
2454 
2455 
2456 static void __exit rhine_cleanup(void)
2457 {
2458 	pci_unregister_driver(&rhine_driver);
2459 }
2460 
2461 
2462 module_init(rhine_init);
2463 module_exit(rhine_cleanup);
2464