1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 36 #include <linux/types.h> 37 38 /* A few user-configurable values. 39 These may be modified when a driver module is loaded. */ 40 static int debug = 0; 41 #define RHINE_MSG_DEFAULT \ 42 (0x0000) 43 44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 45 Setting to > 1518 effectively disables this feature. */ 46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 47 defined(CONFIG_SPARC) || defined(__ia64__) || \ 48 defined(__sh__) || defined(__mips__) 49 static int rx_copybreak = 1518; 50 #else 51 static int rx_copybreak; 52 #endif 53 54 /* Work-around for broken BIOSes: they are unable to get the chip back out of 55 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 56 static bool avoid_D3; 57 58 /* 59 * In case you are looking for 'options[]' or 'full_duplex[]', they 60 * are gone. Use ethtool(8) instead. 61 */ 62 63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 64 The Rhine has a 64 element 8390-like hash table. */ 65 static const int multicast_filter_limit = 32; 66 67 68 /* Operational parameters that are set at compile time. */ 69 70 /* Keep the ring sizes a power of two for compile efficiency. 71 * The compiler will convert <unsigned>'%'<2^N> into a bit mask. 72 * Making the Tx ring too large decreases the effectiveness of channel 73 * bonding and packet priority. 74 * With BQL support, we can increase TX ring safely. 75 * There are no ill effects from too-large receive rings. 76 */ 77 #define TX_RING_SIZE 64 78 #define TX_QUEUE_LEN (TX_RING_SIZE - 6) /* Limit ring entries actually used. */ 79 #define RX_RING_SIZE 64 80 81 /* Operational parameters that usually are not changed. */ 82 83 /* Time in jiffies before concluding the transmitter is hung. */ 84 #define TX_TIMEOUT (2*HZ) 85 86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 87 88 #include <linux/module.h> 89 #include <linux/moduleparam.h> 90 #include <linux/kernel.h> 91 #include <linux/string.h> 92 #include <linux/timer.h> 93 #include <linux/errno.h> 94 #include <linux/ioport.h> 95 #include <linux/interrupt.h> 96 #include <linux/pci.h> 97 #include <linux/of_device.h> 98 #include <linux/of_irq.h> 99 #include <linux/platform_device.h> 100 #include <linux/dma-mapping.h> 101 #include <linux/netdevice.h> 102 #include <linux/etherdevice.h> 103 #include <linux/skbuff.h> 104 #include <linux/init.h> 105 #include <linux/delay.h> 106 #include <linux/mii.h> 107 #include <linux/ethtool.h> 108 #include <linux/crc32.h> 109 #include <linux/if_vlan.h> 110 #include <linux/bitops.h> 111 #include <linux/workqueue.h> 112 #include <asm/processor.h> /* Processor type for cache alignment. */ 113 #include <asm/io.h> 114 #include <asm/irq.h> 115 #include <linux/uaccess.h> 116 #include <linux/dmi.h> 117 118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 120 MODULE_LICENSE("GPL"); 121 122 module_param(debug, int, 0); 123 module_param(rx_copybreak, int, 0); 124 module_param(avoid_D3, bool, 0); 125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); 126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 128 129 #define MCAM_SIZE 32 130 #define VCAM_SIZE 32 131 132 /* 133 Theory of Operation 134 135 I. Board Compatibility 136 137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 138 controller. 139 140 II. Board-specific settings 141 142 Boards with this chip are functional only in a bus-master PCI slot. 143 144 Many operational settings are loaded from the EEPROM to the Config word at 145 offset 0x78. For most of these settings, this driver assumes that they are 146 correct. 147 If this driver is compiled to use PCI memory space operations the EEPROM 148 must be configured to enable memory ops. 149 150 III. Driver operation 151 152 IIIa. Ring buffers 153 154 This driver uses two statically allocated fixed-size descriptor lists 155 formed into rings by a branch from the final descriptor to the beginning of 156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 157 158 IIIb/c. Transmit/Receive Structure 159 160 This driver attempts to use a zero-copy receive and transmit scheme. 161 162 Alas, all data buffers are required to start on a 32 bit boundary, so 163 the driver must often copy transmit packets into bounce buffers. 164 165 The driver allocates full frame size skbuffs for the Rx ring buffers at 166 open() time and passes the skb->data field to the chip as receive data 167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 168 a fresh skbuff is allocated and the frame is copied to the new skbuff. 169 When the incoming frame is larger, the skbuff is passed directly up the 170 protocol stack. Buffers consumed this way are replaced by newly allocated 171 skbuffs in the last phase of rhine_rx(). 172 173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 174 using a full-sized skbuff for small frames vs. the copying costs of larger 175 frames. New boards are typically used in generously configured machines 176 and the underfilled buffers have negligible impact compared to the benefit of 177 a single allocation size, so the default value of zero results in never 178 copying packets. When copying is done, the cost is usually mitigated by using 179 a combined copy/checksum routine. Copying also preloads the cache, which is 180 most useful with small frames. 181 182 Since the VIA chips are only able to transfer data to buffers on 32 bit 183 boundaries, the IP header at offset 14 in an ethernet frame isn't 184 longword aligned for further processing. Copying these unaligned buffers 185 has the beneficial effect of 16-byte aligning the IP header. 186 187 IIId. Synchronization 188 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 192 which is single threaded by the hardware and interrupt handling software. 193 194 The send packet thread has partial control over the Tx ring. It locks the 195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 196 the ring is not available it stops the transmit queue by 197 calling netif_stop_queue. 198 199 The interrupt handler has exclusive control over the Rx ring and records stats 200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 201 empty by incrementing the dirty_tx mark. If at least half of the entries in 202 the Rx ring are available the transmit queue is woken up if it was stopped. 203 204 IV. Notes 205 206 IVb. References 207 208 Preliminary VT86C100A manual from http://www.via.com.tw/ 209 http://www.scyld.com/expert/100mbps.html 210 http://www.scyld.com/expert/NWay.html 211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 213 214 215 IVc. Errata 216 217 The VT86C100A manual is not reliable information. 218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 219 in significant performance degradation for bounce buffer copies on transmit 220 and unaligned IP headers on receive. 221 The chip does not pad to minimum transmit length. 222 223 */ 224 225 226 /* This table drives the PCI probe routines. It's mostly boilerplate in all 227 of the drivers, and will likely be provided by some future kernel. 228 Note the matching code -- the first table entry matchs all 56** cards but 229 second only the 1234 card. 230 */ 231 232 enum rhine_revs { 233 VT86C100A = 0x00, 234 VTunknown0 = 0x20, 235 VT6102 = 0x40, 236 VT8231 = 0x50, /* Integrated MAC */ 237 VT8233 = 0x60, /* Integrated MAC */ 238 VT8235 = 0x74, /* Integrated MAC */ 239 VT8237 = 0x78, /* Integrated MAC */ 240 VT8251 = 0x7C, /* Integrated MAC */ 241 VT6105 = 0x80, 242 VT6105_B0 = 0x83, 243 VT6105L = 0x8A, 244 VT6107 = 0x8C, 245 VTunknown2 = 0x8E, 246 VT6105M = 0x90, /* Management adapter */ 247 }; 248 249 enum rhine_quirks { 250 rqWOL = 0x0001, /* Wake-On-LAN support */ 251 rqForceReset = 0x0002, 252 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 253 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 254 rqRhineI = 0x0100, /* See comment below */ 255 rqIntPHY = 0x0200, /* Integrated PHY */ 256 rqMgmt = 0x0400, /* Management adapter */ 257 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be 258 * switched from PIO mode to MMIO 259 * (only applies to PCI) 260 */ 261 }; 262 /* 263 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 264 * MMIO as well as for the collision counter and the Tx FIFO underflow 265 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 266 */ 267 268 /* Beware of PCI posted writes */ 269 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 270 271 static const struct pci_device_id rhine_pci_tbl[] = { 272 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 273 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 274 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 275 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 276 { } /* terminate list */ 277 }; 278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 279 280 /* OpenFirmware identifiers for platform-bus devices 281 * The .data field is currently only used to store quirks 282 */ 283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns; 284 static const struct of_device_id rhine_of_tbl[] = { 285 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks }, 286 { } /* terminate list */ 287 }; 288 MODULE_DEVICE_TABLE(of, rhine_of_tbl); 289 290 /* Offsets to the device registers. */ 291 enum register_offsets { 292 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 293 ChipCmd1=0x09, TQWake=0x0A, 294 IntrStatus=0x0C, IntrEnable=0x0E, 295 MulticastFilter0=0x10, MulticastFilter1=0x14, 296 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 297 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 298 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 299 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 300 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 301 StickyHW=0x83, IntrStatus2=0x84, 302 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 303 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 304 WOLcrClr1=0xA6, WOLcgClr=0xA7, 305 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 306 }; 307 308 /* Bits in ConfigD */ 309 enum backoff_bits { 310 BackOptional=0x01, BackModify=0x02, 311 BackCaptureEffect=0x04, BackRandom=0x08 312 }; 313 314 /* Bits in the TxConfig (TCR) register */ 315 enum tcr_bits { 316 TCR_PQEN=0x01, 317 TCR_LB0=0x02, /* loopback[0] */ 318 TCR_LB1=0x04, /* loopback[1] */ 319 TCR_OFSET=0x08, 320 TCR_RTGOPT=0x10, 321 TCR_RTFT0=0x20, 322 TCR_RTFT1=0x40, 323 TCR_RTSF=0x80, 324 }; 325 326 /* Bits in the CamCon (CAMC) register */ 327 enum camcon_bits { 328 CAMC_CAMEN=0x01, 329 CAMC_VCAMSL=0x02, 330 CAMC_CAMWR=0x04, 331 CAMC_CAMRD=0x08, 332 }; 333 334 /* Bits in the PCIBusConfig1 (BCR1) register */ 335 enum bcr1_bits { 336 BCR1_POT0=0x01, 337 BCR1_POT1=0x02, 338 BCR1_POT2=0x04, 339 BCR1_CTFT0=0x08, 340 BCR1_CTFT1=0x10, 341 BCR1_CTSF=0x20, 342 BCR1_TXQNOBK=0x40, /* for VT6105 */ 343 BCR1_VIDFR=0x80, /* for VT6105 */ 344 BCR1_MED0=0x40, /* for VT6102 */ 345 BCR1_MED1=0x80, /* for VT6102 */ 346 }; 347 348 /* Registers we check that mmio and reg are the same. */ 349 static const int mmio_verify_registers[] = { 350 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 351 0 352 }; 353 354 /* Bits in the interrupt status/mask registers. */ 355 enum intr_status_bits { 356 IntrRxDone = 0x0001, 357 IntrTxDone = 0x0002, 358 IntrRxErr = 0x0004, 359 IntrTxError = 0x0008, 360 IntrRxEmpty = 0x0020, 361 IntrPCIErr = 0x0040, 362 IntrStatsMax = 0x0080, 363 IntrRxEarly = 0x0100, 364 IntrTxUnderrun = 0x0210, 365 IntrRxOverflow = 0x0400, 366 IntrRxDropped = 0x0800, 367 IntrRxNoBuf = 0x1000, 368 IntrTxAborted = 0x2000, 369 IntrLinkChange = 0x4000, 370 IntrRxWakeUp = 0x8000, 371 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ 372 IntrNormalSummary = IntrRxDone | IntrTxDone, 373 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | 374 IntrTxUnderrun, 375 }; 376 377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 378 enum wol_bits { 379 WOLucast = 0x10, 380 WOLmagic = 0x20, 381 WOLbmcast = 0x30, 382 WOLlnkon = 0x40, 383 WOLlnkoff = 0x80, 384 }; 385 386 /* The Rx and Tx buffer descriptors. */ 387 struct rx_desc { 388 __le32 rx_status; 389 __le32 desc_length; /* Chain flag, Buffer/frame length */ 390 __le32 addr; 391 __le32 next_desc; 392 }; 393 struct tx_desc { 394 __le32 tx_status; 395 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 396 __le32 addr; 397 __le32 next_desc; 398 }; 399 400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 401 #define TXDESC 0x00e08000 402 403 enum rx_status_bits { 404 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 405 }; 406 407 /* Bits in *_desc.*_status */ 408 enum desc_status_bits { 409 DescOwn=0x80000000 410 }; 411 412 /* Bits in *_desc.*_length */ 413 enum desc_length_bits { 414 DescTag=0x00010000 415 }; 416 417 /* Bits in ChipCmd. */ 418 enum chip_cmd_bits { 419 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 420 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 421 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 422 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 423 }; 424 425 struct rhine_stats { 426 u64 packets; 427 u64 bytes; 428 struct u64_stats_sync syncp; 429 }; 430 431 struct rhine_private { 432 /* Bit mask for configured VLAN ids */ 433 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 434 435 /* Descriptor rings */ 436 struct rx_desc *rx_ring; 437 struct tx_desc *tx_ring; 438 dma_addr_t rx_ring_dma; 439 dma_addr_t tx_ring_dma; 440 441 /* The addresses of receive-in-place skbuffs. */ 442 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 443 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 444 445 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 446 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 447 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 448 449 /* Tx bounce buffers (Rhine-I only) */ 450 unsigned char *tx_buf[TX_RING_SIZE]; 451 unsigned char *tx_bufs; 452 dma_addr_t tx_bufs_dma; 453 454 int irq; 455 long pioaddr; 456 struct net_device *dev; 457 struct napi_struct napi; 458 spinlock_t lock; 459 struct mutex task_lock; 460 bool task_enable; 461 struct work_struct slow_event_task; 462 struct work_struct reset_task; 463 464 u32 msg_enable; 465 466 /* Frequently used values: keep some adjacent for cache effect. */ 467 u32 quirks; 468 unsigned int cur_rx; 469 unsigned int cur_tx, dirty_tx; 470 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 471 struct rhine_stats rx_stats; 472 struct rhine_stats tx_stats; 473 u8 wolopts; 474 475 u8 tx_thresh, rx_thresh; 476 477 struct mii_if_info mii_if; 478 void __iomem *base; 479 }; 480 481 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 482 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 483 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 484 485 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 486 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 487 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 488 489 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 490 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 491 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 492 493 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 494 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 495 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 496 497 498 static int mdio_read(struct net_device *dev, int phy_id, int location); 499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 500 static int rhine_open(struct net_device *dev); 501 static void rhine_reset_task(struct work_struct *work); 502 static void rhine_slow_event_task(struct work_struct *work); 503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue); 504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 505 struct net_device *dev); 506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 507 static void rhine_tx(struct net_device *dev); 508 static int rhine_rx(struct net_device *dev, int limit); 509 static void rhine_set_rx_mode(struct net_device *dev); 510 static void rhine_get_stats64(struct net_device *dev, 511 struct rtnl_link_stats64 *stats); 512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 513 static const struct ethtool_ops netdev_ethtool_ops; 514 static int rhine_close(struct net_device *dev); 515 static int rhine_vlan_rx_add_vid(struct net_device *dev, 516 __be16 proto, u16 vid); 517 static int rhine_vlan_rx_kill_vid(struct net_device *dev, 518 __be16 proto, u16 vid); 519 static void rhine_restart_tx(struct net_device *dev); 520 521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) 522 { 523 void __iomem *ioaddr = rp->base; 524 int i; 525 526 for (i = 0; i < 1024; i++) { 527 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); 528 529 if (low ^ has_mask_bits) 530 break; 531 udelay(10); 532 } 533 if (i > 64) { 534 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " 535 "count: %04d\n", low ? "low" : "high", reg, mask, i); 536 } 537 } 538 539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) 540 { 541 rhine_wait_bit(rp, reg, mask, false); 542 } 543 544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) 545 { 546 rhine_wait_bit(rp, reg, mask, true); 547 } 548 549 static u32 rhine_get_events(struct rhine_private *rp) 550 { 551 void __iomem *ioaddr = rp->base; 552 u32 intr_status; 553 554 intr_status = ioread16(ioaddr + IntrStatus); 555 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 556 if (rp->quirks & rqStatusWBRace) 557 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 558 return intr_status; 559 } 560 561 static void rhine_ack_events(struct rhine_private *rp, u32 mask) 562 { 563 void __iomem *ioaddr = rp->base; 564 565 if (rp->quirks & rqStatusWBRace) 566 iowrite8(mask >> 16, ioaddr + IntrStatus2); 567 iowrite16(mask, ioaddr + IntrStatus); 568 } 569 570 /* 571 * Get power related registers into sane state. 572 * Notify user about past WOL event. 573 */ 574 static void rhine_power_init(struct net_device *dev) 575 { 576 struct rhine_private *rp = netdev_priv(dev); 577 void __iomem *ioaddr = rp->base; 578 u16 wolstat; 579 580 if (rp->quirks & rqWOL) { 581 /* Make sure chip is in power state D0 */ 582 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 583 584 /* Disable "force PME-enable" */ 585 iowrite8(0x80, ioaddr + WOLcgClr); 586 587 /* Clear power-event config bits (WOL) */ 588 iowrite8(0xFF, ioaddr + WOLcrClr); 589 /* More recent cards can manage two additional patterns */ 590 if (rp->quirks & rq6patterns) 591 iowrite8(0x03, ioaddr + WOLcrClr1); 592 593 /* Save power-event status bits */ 594 wolstat = ioread8(ioaddr + PwrcsrSet); 595 if (rp->quirks & rq6patterns) 596 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 597 598 /* Clear power-event status bits */ 599 iowrite8(0xFF, ioaddr + PwrcsrClr); 600 if (rp->quirks & rq6patterns) 601 iowrite8(0x03, ioaddr + PwrcsrClr1); 602 603 if (wolstat) { 604 char *reason; 605 switch (wolstat) { 606 case WOLmagic: 607 reason = "Magic packet"; 608 break; 609 case WOLlnkon: 610 reason = "Link went up"; 611 break; 612 case WOLlnkoff: 613 reason = "Link went down"; 614 break; 615 case WOLucast: 616 reason = "Unicast packet"; 617 break; 618 case WOLbmcast: 619 reason = "Multicast/broadcast packet"; 620 break; 621 default: 622 reason = "Unknown"; 623 } 624 netdev_info(dev, "Woke system up. Reason: %s\n", 625 reason); 626 } 627 } 628 } 629 630 static void rhine_chip_reset(struct net_device *dev) 631 { 632 struct rhine_private *rp = netdev_priv(dev); 633 void __iomem *ioaddr = rp->base; 634 u8 cmd1; 635 636 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 637 IOSYNC; 638 639 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 640 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 641 642 /* Force reset */ 643 if (rp->quirks & rqForceReset) 644 iowrite8(0x40, ioaddr + MiscCmd); 645 646 /* Reset can take somewhat longer (rare) */ 647 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); 648 } 649 650 cmd1 = ioread8(ioaddr + ChipCmd1); 651 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? 652 "failed" : "succeeded"); 653 } 654 655 static void enable_mmio(long pioaddr, u32 quirks) 656 { 657 int n; 658 659 if (quirks & rqNeedEnMMIO) { 660 if (quirks & rqRhineI) { 661 /* More recent docs say that this bit is reserved */ 662 n = inb(pioaddr + ConfigA) | 0x20; 663 outb(n, pioaddr + ConfigA); 664 } else { 665 n = inb(pioaddr + ConfigD) | 0x80; 666 outb(n, pioaddr + ConfigD); 667 } 668 } 669 } 670 671 static inline int verify_mmio(struct device *hwdev, 672 long pioaddr, 673 void __iomem *ioaddr, 674 u32 quirks) 675 { 676 if (quirks & rqNeedEnMMIO) { 677 int i = 0; 678 679 /* Check that selected MMIO registers match the PIO ones */ 680 while (mmio_verify_registers[i]) { 681 int reg = mmio_verify_registers[i++]; 682 unsigned char a = inb(pioaddr+reg); 683 unsigned char b = readb(ioaddr+reg); 684 685 if (a != b) { 686 dev_err(hwdev, 687 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 688 reg, a, b); 689 return -EIO; 690 } 691 } 692 } 693 return 0; 694 } 695 696 /* 697 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 698 * (plus 0x6C for Rhine-I/II) 699 */ 700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) 701 { 702 struct rhine_private *rp = netdev_priv(dev); 703 void __iomem *ioaddr = rp->base; 704 int i; 705 706 outb(0x20, pioaddr + MACRegEEcsr); 707 for (i = 0; i < 1024; i++) { 708 if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) 709 break; 710 } 711 if (i > 512) 712 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); 713 714 /* 715 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 716 * MMIO. If reloading EEPROM was done first this could be avoided, but 717 * it is not known if that still works with the "win98-reboot" problem. 718 */ 719 enable_mmio(pioaddr, rp->quirks); 720 721 /* Turn off EEPROM-controlled wake-up (magic packet) */ 722 if (rp->quirks & rqWOL) 723 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 724 725 } 726 727 #ifdef CONFIG_NET_POLL_CONTROLLER 728 static void rhine_poll(struct net_device *dev) 729 { 730 struct rhine_private *rp = netdev_priv(dev); 731 const int irq = rp->irq; 732 733 disable_irq(irq); 734 rhine_interrupt(irq, dev); 735 enable_irq(irq); 736 } 737 #endif 738 739 static void rhine_kick_tx_threshold(struct rhine_private *rp) 740 { 741 if (rp->tx_thresh < 0xe0) { 742 void __iomem *ioaddr = rp->base; 743 744 rp->tx_thresh += 0x20; 745 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); 746 } 747 } 748 749 static void rhine_tx_err(struct rhine_private *rp, u32 status) 750 { 751 struct net_device *dev = rp->dev; 752 753 if (status & IntrTxAborted) { 754 netif_info(rp, tx_err, dev, 755 "Abort %08x, frame dropped\n", status); 756 } 757 758 if (status & IntrTxUnderrun) { 759 rhine_kick_tx_threshold(rp); 760 netif_info(rp, tx_err ,dev, "Transmitter underrun, " 761 "Tx threshold now %02x\n", rp->tx_thresh); 762 } 763 764 if (status & IntrTxDescRace) 765 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); 766 767 if ((status & IntrTxError) && 768 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { 769 rhine_kick_tx_threshold(rp); 770 netif_info(rp, tx_err, dev, "Unspecified error. " 771 "Tx threshold now %02x\n", rp->tx_thresh); 772 } 773 774 rhine_restart_tx(dev); 775 } 776 777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) 778 { 779 void __iomem *ioaddr = rp->base; 780 struct net_device_stats *stats = &rp->dev->stats; 781 782 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 783 stats->rx_missed_errors += ioread16(ioaddr + RxMissed); 784 785 /* 786 * Clears the "tally counters" for CRC errors and missed frames(?). 787 * It has been reported that some chips need a write of 0 to clear 788 * these, for others the counters are set to 1 when written to and 789 * instead cleared when read. So we clear them both ways ... 790 */ 791 iowrite32(0, ioaddr + RxMissed); 792 ioread16(ioaddr + RxCRCErrs); 793 ioread16(ioaddr + RxMissed); 794 } 795 796 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ 797 IntrRxErr | \ 798 IntrRxEmpty | \ 799 IntrRxOverflow | \ 800 IntrRxDropped | \ 801 IntrRxNoBuf | \ 802 IntrRxWakeUp) 803 804 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ 805 IntrTxAborted | \ 806 IntrTxUnderrun | \ 807 IntrTxDescRace) 808 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) 809 810 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ 811 RHINE_EVENT_NAPI_TX | \ 812 IntrStatsMax) 813 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) 814 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) 815 816 static int rhine_napipoll(struct napi_struct *napi, int budget) 817 { 818 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 819 struct net_device *dev = rp->dev; 820 void __iomem *ioaddr = rp->base; 821 u16 enable_mask = RHINE_EVENT & 0xffff; 822 int work_done = 0; 823 u32 status; 824 825 status = rhine_get_events(rp); 826 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); 827 828 if (status & RHINE_EVENT_NAPI_RX) 829 work_done += rhine_rx(dev, budget); 830 831 if (status & RHINE_EVENT_NAPI_TX) { 832 if (status & RHINE_EVENT_NAPI_TX_ERR) { 833 /* Avoid scavenging before Tx engine turned off */ 834 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); 835 if (ioread8(ioaddr + ChipCmd) & CmdTxOn) 836 netif_warn(rp, tx_err, dev, "Tx still on\n"); 837 } 838 839 rhine_tx(dev); 840 841 if (status & RHINE_EVENT_NAPI_TX_ERR) 842 rhine_tx_err(rp, status); 843 } 844 845 if (status & IntrStatsMax) { 846 spin_lock(&rp->lock); 847 rhine_update_rx_crc_and_missed_errord(rp); 848 spin_unlock(&rp->lock); 849 } 850 851 if (status & RHINE_EVENT_SLOW) { 852 enable_mask &= ~RHINE_EVENT_SLOW; 853 schedule_work(&rp->slow_event_task); 854 } 855 856 if (work_done < budget) { 857 napi_complete_done(napi, work_done); 858 iowrite16(enable_mask, ioaddr + IntrEnable); 859 } 860 return work_done; 861 } 862 863 static void rhine_hw_init(struct net_device *dev, long pioaddr) 864 { 865 struct rhine_private *rp = netdev_priv(dev); 866 867 /* Reset the chip to erase previous misconfiguration. */ 868 rhine_chip_reset(dev); 869 870 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 871 if (rp->quirks & rqRhineI) 872 msleep(5); 873 874 /* Reload EEPROM controlled bytes cleared by soft reset */ 875 if (dev_is_pci(dev->dev.parent)) 876 rhine_reload_eeprom(pioaddr, dev); 877 } 878 879 static const struct net_device_ops rhine_netdev_ops = { 880 .ndo_open = rhine_open, 881 .ndo_stop = rhine_close, 882 .ndo_start_xmit = rhine_start_tx, 883 .ndo_get_stats64 = rhine_get_stats64, 884 .ndo_set_rx_mode = rhine_set_rx_mode, 885 .ndo_validate_addr = eth_validate_addr, 886 .ndo_set_mac_address = eth_mac_addr, 887 .ndo_eth_ioctl = netdev_ioctl, 888 .ndo_tx_timeout = rhine_tx_timeout, 889 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 890 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 891 #ifdef CONFIG_NET_POLL_CONTROLLER 892 .ndo_poll_controller = rhine_poll, 893 #endif 894 }; 895 896 static int rhine_init_one_common(struct device *hwdev, u32 quirks, 897 long pioaddr, void __iomem *ioaddr, int irq) 898 { 899 struct net_device *dev; 900 struct rhine_private *rp; 901 int i, rc, phy_id; 902 u8 addr[ETH_ALEN]; 903 const char *name; 904 905 /* this should always be supported */ 906 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32)); 907 if (rc) { 908 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n"); 909 goto err_out; 910 } 911 912 dev = alloc_etherdev(sizeof(struct rhine_private)); 913 if (!dev) { 914 rc = -ENOMEM; 915 goto err_out; 916 } 917 SET_NETDEV_DEV(dev, hwdev); 918 919 rp = netdev_priv(dev); 920 rp->dev = dev; 921 rp->quirks = quirks; 922 rp->pioaddr = pioaddr; 923 rp->base = ioaddr; 924 rp->irq = irq; 925 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); 926 927 phy_id = rp->quirks & rqIntPHY ? 1 : 0; 928 929 u64_stats_init(&rp->tx_stats.syncp); 930 u64_stats_init(&rp->rx_stats.syncp); 931 932 /* Get chip registers into a sane state */ 933 rhine_power_init(dev); 934 rhine_hw_init(dev, pioaddr); 935 936 for (i = 0; i < 6; i++) 937 addr[i] = ioread8(ioaddr + StationAddr + i); 938 eth_hw_addr_set(dev, addr); 939 940 if (!is_valid_ether_addr(dev->dev_addr)) { 941 /* Report it and use a random ethernet address instead */ 942 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 943 eth_hw_addr_random(dev); 944 netdev_info(dev, "Using random MAC address: %pM\n", 945 dev->dev_addr); 946 } 947 948 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 949 if (!phy_id) 950 phy_id = ioread8(ioaddr + 0x6C); 951 952 spin_lock_init(&rp->lock); 953 mutex_init(&rp->task_lock); 954 INIT_WORK(&rp->reset_task, rhine_reset_task); 955 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); 956 957 rp->mii_if.dev = dev; 958 rp->mii_if.mdio_read = mdio_read; 959 rp->mii_if.mdio_write = mdio_write; 960 rp->mii_if.phy_id_mask = 0x1f; 961 rp->mii_if.reg_num_mask = 0x1f; 962 963 /* The chip-specific entries in the device structure. */ 964 dev->netdev_ops = &rhine_netdev_ops; 965 dev->ethtool_ops = &netdev_ethtool_ops; 966 dev->watchdog_timeo = TX_TIMEOUT; 967 968 netif_napi_add(dev, &rp->napi, rhine_napipoll); 969 970 if (rp->quirks & rqRhineI) 971 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 972 973 if (rp->quirks & rqMgmt) 974 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 975 NETIF_F_HW_VLAN_CTAG_RX | 976 NETIF_F_HW_VLAN_CTAG_FILTER; 977 978 /* dev->name not defined before register_netdev()! */ 979 rc = register_netdev(dev); 980 if (rc) 981 goto err_out_free_netdev; 982 983 if (rp->quirks & rqRhineI) 984 name = "Rhine"; 985 else if (rp->quirks & rqStatusWBRace) 986 name = "Rhine II"; 987 else if (rp->quirks & rqMgmt) 988 name = "Rhine III (Management Adapter)"; 989 else 990 name = "Rhine III"; 991 992 netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n", 993 name, ioaddr, dev->dev_addr, rp->irq); 994 995 dev_set_drvdata(hwdev, dev); 996 997 { 998 u16 mii_cmd; 999 int mii_status = mdio_read(dev, phy_id, 1); 1000 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 1001 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 1002 if (mii_status != 0xffff && mii_status != 0x0000) { 1003 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 1004 netdev_info(dev, 1005 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 1006 phy_id, 1007 mii_status, rp->mii_if.advertising, 1008 mdio_read(dev, phy_id, 5)); 1009 1010 /* set IFF_RUNNING */ 1011 if (mii_status & BMSR_LSTATUS) 1012 netif_carrier_on(dev); 1013 else 1014 netif_carrier_off(dev); 1015 1016 } 1017 } 1018 rp->mii_if.phy_id = phy_id; 1019 if (avoid_D3) 1020 netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); 1021 1022 return 0; 1023 1024 err_out_free_netdev: 1025 free_netdev(dev); 1026 err_out: 1027 return rc; 1028 } 1029 1030 static int rhine_init_one_pci(struct pci_dev *pdev, 1031 const struct pci_device_id *ent) 1032 { 1033 struct device *hwdev = &pdev->dev; 1034 int rc; 1035 long pioaddr, memaddr; 1036 void __iomem *ioaddr; 1037 int io_size = pdev->revision < VTunknown0 ? 128 : 256; 1038 1039 /* This driver was written to use PCI memory space. Some early versions 1040 * of the Rhine may only work correctly with I/O space accesses. 1041 * TODO: determine for which revisions this is true and assign the flag 1042 * in code as opposed to this Kconfig option (???) 1043 */ 1044 #ifdef CONFIG_VIA_RHINE_MMIO 1045 u32 quirks = rqNeedEnMMIO; 1046 #else 1047 u32 quirks = 0; 1048 #endif 1049 1050 rc = pci_enable_device(pdev); 1051 if (rc) 1052 goto err_out; 1053 1054 if (pdev->revision < VTunknown0) { 1055 quirks |= rqRhineI; 1056 } else if (pdev->revision >= VT6102) { 1057 quirks |= rqWOL | rqForceReset; 1058 if (pdev->revision < VT6105) { 1059 quirks |= rqStatusWBRace; 1060 } else { 1061 quirks |= rqIntPHY; 1062 if (pdev->revision >= VT6105_B0) 1063 quirks |= rq6patterns; 1064 if (pdev->revision >= VT6105M) 1065 quirks |= rqMgmt; 1066 } 1067 } 1068 1069 /* sanity check */ 1070 if ((pci_resource_len(pdev, 0) < io_size) || 1071 (pci_resource_len(pdev, 1) < io_size)) { 1072 rc = -EIO; 1073 dev_err(hwdev, "Insufficient PCI resources, aborting\n"); 1074 goto err_out_pci_disable; 1075 } 1076 1077 pioaddr = pci_resource_start(pdev, 0); 1078 memaddr = pci_resource_start(pdev, 1); 1079 1080 pci_set_master(pdev); 1081 1082 rc = pci_request_regions(pdev, DRV_NAME); 1083 if (rc) 1084 goto err_out_pci_disable; 1085 1086 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size); 1087 if (!ioaddr) { 1088 rc = -EIO; 1089 dev_err(hwdev, 1090 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 1091 dev_name(hwdev), io_size, memaddr); 1092 goto err_out_free_res; 1093 } 1094 1095 enable_mmio(pioaddr, quirks); 1096 1097 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks); 1098 if (rc) 1099 goto err_out_unmap; 1100 1101 rc = rhine_init_one_common(&pdev->dev, quirks, 1102 pioaddr, ioaddr, pdev->irq); 1103 if (!rc) 1104 return 0; 1105 1106 err_out_unmap: 1107 pci_iounmap(pdev, ioaddr); 1108 err_out_free_res: 1109 pci_release_regions(pdev); 1110 err_out_pci_disable: 1111 pci_disable_device(pdev); 1112 err_out: 1113 return rc; 1114 } 1115 1116 static int rhine_init_one_platform(struct platform_device *pdev) 1117 { 1118 const u32 *quirks; 1119 int irq; 1120 void __iomem *ioaddr; 1121 1122 quirks = of_device_get_match_data(&pdev->dev); 1123 if (!quirks) 1124 return -EINVAL; 1125 1126 ioaddr = devm_platform_ioremap_resource(pdev, 0); 1127 if (IS_ERR(ioaddr)) 1128 return PTR_ERR(ioaddr); 1129 1130 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1131 if (!irq) 1132 return -EINVAL; 1133 1134 return rhine_init_one_common(&pdev->dev, *quirks, 1135 (long)ioaddr, ioaddr, irq); 1136 } 1137 1138 static int alloc_ring(struct net_device* dev) 1139 { 1140 struct rhine_private *rp = netdev_priv(dev); 1141 struct device *hwdev = dev->dev.parent; 1142 void *ring; 1143 dma_addr_t ring_dma; 1144 1145 ring = dma_alloc_coherent(hwdev, 1146 RX_RING_SIZE * sizeof(struct rx_desc) + 1147 TX_RING_SIZE * sizeof(struct tx_desc), 1148 &ring_dma, 1149 GFP_ATOMIC); 1150 if (!ring) { 1151 netdev_err(dev, "Could not allocate DMA memory\n"); 1152 return -ENOMEM; 1153 } 1154 if (rp->quirks & rqRhineI) { 1155 rp->tx_bufs = dma_alloc_coherent(hwdev, 1156 PKT_BUF_SZ * TX_RING_SIZE, 1157 &rp->tx_bufs_dma, 1158 GFP_ATOMIC); 1159 if (rp->tx_bufs == NULL) { 1160 dma_free_coherent(hwdev, 1161 RX_RING_SIZE * sizeof(struct rx_desc) + 1162 TX_RING_SIZE * sizeof(struct tx_desc), 1163 ring, ring_dma); 1164 return -ENOMEM; 1165 } 1166 } 1167 1168 rp->rx_ring = ring; 1169 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 1170 rp->rx_ring_dma = ring_dma; 1171 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 1172 1173 return 0; 1174 } 1175 1176 static void free_ring(struct net_device* dev) 1177 { 1178 struct rhine_private *rp = netdev_priv(dev); 1179 struct device *hwdev = dev->dev.parent; 1180 1181 dma_free_coherent(hwdev, 1182 RX_RING_SIZE * sizeof(struct rx_desc) + 1183 TX_RING_SIZE * sizeof(struct tx_desc), 1184 rp->rx_ring, rp->rx_ring_dma); 1185 rp->tx_ring = NULL; 1186 1187 if (rp->tx_bufs) 1188 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE, 1189 rp->tx_bufs, rp->tx_bufs_dma); 1190 1191 rp->tx_bufs = NULL; 1192 1193 } 1194 1195 struct rhine_skb_dma { 1196 struct sk_buff *skb; 1197 dma_addr_t dma; 1198 }; 1199 1200 static inline int rhine_skb_dma_init(struct net_device *dev, 1201 struct rhine_skb_dma *sd) 1202 { 1203 struct rhine_private *rp = netdev_priv(dev); 1204 struct device *hwdev = dev->dev.parent; 1205 const int size = rp->rx_buf_sz; 1206 1207 sd->skb = netdev_alloc_skb(dev, size); 1208 if (!sd->skb) 1209 return -ENOMEM; 1210 1211 sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE); 1212 if (unlikely(dma_mapping_error(hwdev, sd->dma))) { 1213 netif_err(rp, drv, dev, "Rx DMA mapping failure\n"); 1214 dev_kfree_skb_any(sd->skb); 1215 return -EIO; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static void rhine_reset_rbufs(struct rhine_private *rp) 1222 { 1223 int i; 1224 1225 rp->cur_rx = 0; 1226 1227 for (i = 0; i < RX_RING_SIZE; i++) 1228 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1229 } 1230 1231 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp, 1232 struct rhine_skb_dma *sd, int entry) 1233 { 1234 rp->rx_skbuff_dma[entry] = sd->dma; 1235 rp->rx_skbuff[entry] = sd->skb; 1236 1237 rp->rx_ring[entry].addr = cpu_to_le32(sd->dma); 1238 dma_wmb(); 1239 } 1240 1241 static void free_rbufs(struct net_device* dev); 1242 1243 static int alloc_rbufs(struct net_device *dev) 1244 { 1245 struct rhine_private *rp = netdev_priv(dev); 1246 dma_addr_t next; 1247 int rc, i; 1248 1249 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1250 next = rp->rx_ring_dma; 1251 1252 /* Init the ring entries */ 1253 for (i = 0; i < RX_RING_SIZE; i++) { 1254 rp->rx_ring[i].rx_status = 0; 1255 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1256 next += sizeof(struct rx_desc); 1257 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1258 rp->rx_skbuff[i] = NULL; 1259 } 1260 /* Mark the last entry as wrapping the ring. */ 1261 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1262 1263 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1264 for (i = 0; i < RX_RING_SIZE; i++) { 1265 struct rhine_skb_dma sd; 1266 1267 rc = rhine_skb_dma_init(dev, &sd); 1268 if (rc < 0) { 1269 free_rbufs(dev); 1270 goto out; 1271 } 1272 1273 rhine_skb_dma_nic_store(rp, &sd, i); 1274 } 1275 1276 rhine_reset_rbufs(rp); 1277 out: 1278 return rc; 1279 } 1280 1281 static void free_rbufs(struct net_device* dev) 1282 { 1283 struct rhine_private *rp = netdev_priv(dev); 1284 struct device *hwdev = dev->dev.parent; 1285 int i; 1286 1287 /* Free all the skbuffs in the Rx queue. */ 1288 for (i = 0; i < RX_RING_SIZE; i++) { 1289 rp->rx_ring[i].rx_status = 0; 1290 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1291 if (rp->rx_skbuff[i]) { 1292 dma_unmap_single(hwdev, 1293 rp->rx_skbuff_dma[i], 1294 rp->rx_buf_sz, DMA_FROM_DEVICE); 1295 dev_kfree_skb(rp->rx_skbuff[i]); 1296 } 1297 rp->rx_skbuff[i] = NULL; 1298 } 1299 } 1300 1301 static void alloc_tbufs(struct net_device* dev) 1302 { 1303 struct rhine_private *rp = netdev_priv(dev); 1304 dma_addr_t next; 1305 int i; 1306 1307 rp->dirty_tx = rp->cur_tx = 0; 1308 next = rp->tx_ring_dma; 1309 for (i = 0; i < TX_RING_SIZE; i++) { 1310 rp->tx_skbuff[i] = NULL; 1311 rp->tx_ring[i].tx_status = 0; 1312 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1313 next += sizeof(struct tx_desc); 1314 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1315 if (rp->quirks & rqRhineI) 1316 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1317 } 1318 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1319 1320 netdev_reset_queue(dev); 1321 } 1322 1323 static void free_tbufs(struct net_device* dev) 1324 { 1325 struct rhine_private *rp = netdev_priv(dev); 1326 struct device *hwdev = dev->dev.parent; 1327 int i; 1328 1329 for (i = 0; i < TX_RING_SIZE; i++) { 1330 rp->tx_ring[i].tx_status = 0; 1331 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1332 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1333 if (rp->tx_skbuff[i]) { 1334 if (rp->tx_skbuff_dma[i]) { 1335 dma_unmap_single(hwdev, 1336 rp->tx_skbuff_dma[i], 1337 rp->tx_skbuff[i]->len, 1338 DMA_TO_DEVICE); 1339 } 1340 dev_kfree_skb(rp->tx_skbuff[i]); 1341 } 1342 rp->tx_skbuff[i] = NULL; 1343 rp->tx_buf[i] = NULL; 1344 } 1345 } 1346 1347 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1348 { 1349 struct rhine_private *rp = netdev_priv(dev); 1350 void __iomem *ioaddr = rp->base; 1351 1352 if (!rp->mii_if.force_media) 1353 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); 1354 1355 if (rp->mii_if.full_duplex) 1356 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1357 ioaddr + ChipCmd1); 1358 else 1359 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1360 ioaddr + ChipCmd1); 1361 1362 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1363 rp->mii_if.force_media, netif_carrier_ok(dev)); 1364 } 1365 1366 /* Called after status of force_media possibly changed */ 1367 static void rhine_set_carrier(struct mii_if_info *mii) 1368 { 1369 struct net_device *dev = mii->dev; 1370 struct rhine_private *rp = netdev_priv(dev); 1371 1372 if (mii->force_media) { 1373 /* autoneg is off: Link is always assumed to be up */ 1374 if (!netif_carrier_ok(dev)) 1375 netif_carrier_on(dev); 1376 } 1377 1378 rhine_check_media(dev, 0); 1379 1380 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1381 mii->force_media, netif_carrier_ok(dev)); 1382 } 1383 1384 /** 1385 * rhine_set_cam - set CAM multicast filters 1386 * @ioaddr: register block of this Rhine 1387 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1388 * @addr: multicast address (6 bytes) 1389 * 1390 * Load addresses into multicast filters. 1391 */ 1392 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1393 { 1394 int i; 1395 1396 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1397 wmb(); 1398 1399 /* Paranoid -- idx out of range should never happen */ 1400 idx &= (MCAM_SIZE - 1); 1401 1402 iowrite8((u8) idx, ioaddr + CamAddr); 1403 1404 for (i = 0; i < 6; i++, addr++) 1405 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1406 udelay(10); 1407 wmb(); 1408 1409 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1410 udelay(10); 1411 1412 iowrite8(0, ioaddr + CamCon); 1413 } 1414 1415 /** 1416 * rhine_set_vlan_cam - set CAM VLAN filters 1417 * @ioaddr: register block of this Rhine 1418 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1419 * @addr: VLAN ID (2 bytes) 1420 * 1421 * Load addresses into VLAN filters. 1422 */ 1423 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1424 { 1425 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1426 wmb(); 1427 1428 /* Paranoid -- idx out of range should never happen */ 1429 idx &= (VCAM_SIZE - 1); 1430 1431 iowrite8((u8) idx, ioaddr + CamAddr); 1432 1433 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1434 udelay(10); 1435 wmb(); 1436 1437 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1438 udelay(10); 1439 1440 iowrite8(0, ioaddr + CamCon); 1441 } 1442 1443 /** 1444 * rhine_set_cam_mask - set multicast CAM mask 1445 * @ioaddr: register block of this Rhine 1446 * @mask: multicast CAM mask 1447 * 1448 * Mask sets multicast filters active/inactive. 1449 */ 1450 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1451 { 1452 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1453 wmb(); 1454 1455 /* write mask */ 1456 iowrite32(mask, ioaddr + CamMask); 1457 1458 /* disable CAMEN */ 1459 iowrite8(0, ioaddr + CamCon); 1460 } 1461 1462 /** 1463 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1464 * @ioaddr: register block of this Rhine 1465 * @mask: VLAN CAM mask 1466 * 1467 * Mask sets VLAN filters active/inactive. 1468 */ 1469 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1470 { 1471 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1472 wmb(); 1473 1474 /* write mask */ 1475 iowrite32(mask, ioaddr + CamMask); 1476 1477 /* disable CAMEN */ 1478 iowrite8(0, ioaddr + CamCon); 1479 } 1480 1481 /** 1482 * rhine_init_cam_filter - initialize CAM filters 1483 * @dev: network device 1484 * 1485 * Initialize (disable) hardware VLAN and multicast support on this 1486 * Rhine. 1487 */ 1488 static void rhine_init_cam_filter(struct net_device *dev) 1489 { 1490 struct rhine_private *rp = netdev_priv(dev); 1491 void __iomem *ioaddr = rp->base; 1492 1493 /* Disable all CAMs */ 1494 rhine_set_vlan_cam_mask(ioaddr, 0); 1495 rhine_set_cam_mask(ioaddr, 0); 1496 1497 /* disable hardware VLAN support */ 1498 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1499 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1500 } 1501 1502 /** 1503 * rhine_update_vcam - update VLAN CAM filters 1504 * @dev: rhine_private data of this Rhine 1505 * 1506 * Update VLAN CAM filters to match configuration change. 1507 */ 1508 static void rhine_update_vcam(struct net_device *dev) 1509 { 1510 struct rhine_private *rp = netdev_priv(dev); 1511 void __iomem *ioaddr = rp->base; 1512 u16 vid; 1513 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1514 unsigned int i = 0; 1515 1516 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1517 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1518 vCAMmask |= 1 << i; 1519 if (++i >= VCAM_SIZE) 1520 break; 1521 } 1522 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1523 } 1524 1525 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1526 { 1527 struct rhine_private *rp = netdev_priv(dev); 1528 1529 spin_lock_bh(&rp->lock); 1530 set_bit(vid, rp->active_vlans); 1531 rhine_update_vcam(dev); 1532 spin_unlock_bh(&rp->lock); 1533 return 0; 1534 } 1535 1536 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1537 { 1538 struct rhine_private *rp = netdev_priv(dev); 1539 1540 spin_lock_bh(&rp->lock); 1541 clear_bit(vid, rp->active_vlans); 1542 rhine_update_vcam(dev); 1543 spin_unlock_bh(&rp->lock); 1544 return 0; 1545 } 1546 1547 static void init_registers(struct net_device *dev) 1548 { 1549 struct rhine_private *rp = netdev_priv(dev); 1550 void __iomem *ioaddr = rp->base; 1551 int i; 1552 1553 for (i = 0; i < 6; i++) 1554 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1555 1556 /* Initialize other registers. */ 1557 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1558 /* Configure initial FIFO thresholds. */ 1559 iowrite8(0x20, ioaddr + TxConfig); 1560 rp->tx_thresh = 0x20; 1561 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1562 1563 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1564 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1565 1566 rhine_set_rx_mode(dev); 1567 1568 if (rp->quirks & rqMgmt) 1569 rhine_init_cam_filter(dev); 1570 1571 napi_enable(&rp->napi); 1572 1573 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); 1574 1575 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1576 ioaddr + ChipCmd); 1577 rhine_check_media(dev, 1); 1578 } 1579 1580 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1581 static void rhine_enable_linkmon(struct rhine_private *rp) 1582 { 1583 void __iomem *ioaddr = rp->base; 1584 1585 iowrite8(0, ioaddr + MIICmd); 1586 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1587 iowrite8(0x80, ioaddr + MIICmd); 1588 1589 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1590 1591 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1592 } 1593 1594 /* Disable MII link status auto-polling (required for MDIO access) */ 1595 static void rhine_disable_linkmon(struct rhine_private *rp) 1596 { 1597 void __iomem *ioaddr = rp->base; 1598 1599 iowrite8(0, ioaddr + MIICmd); 1600 1601 if (rp->quirks & rqRhineI) { 1602 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1603 1604 /* Can be called from ISR. Evil. */ 1605 mdelay(1); 1606 1607 /* 0x80 must be set immediately before turning it off */ 1608 iowrite8(0x80, ioaddr + MIICmd); 1609 1610 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1611 1612 /* Heh. Now clear 0x80 again. */ 1613 iowrite8(0, ioaddr + MIICmd); 1614 } 1615 else 1616 rhine_wait_bit_high(rp, MIIRegAddr, 0x80); 1617 } 1618 1619 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1620 1621 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1622 { 1623 struct rhine_private *rp = netdev_priv(dev); 1624 void __iomem *ioaddr = rp->base; 1625 int result; 1626 1627 rhine_disable_linkmon(rp); 1628 1629 /* rhine_disable_linkmon already cleared MIICmd */ 1630 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1631 iowrite8(regnum, ioaddr + MIIRegAddr); 1632 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1633 rhine_wait_bit_low(rp, MIICmd, 0x40); 1634 result = ioread16(ioaddr + MIIData); 1635 1636 rhine_enable_linkmon(rp); 1637 return result; 1638 } 1639 1640 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1641 { 1642 struct rhine_private *rp = netdev_priv(dev); 1643 void __iomem *ioaddr = rp->base; 1644 1645 rhine_disable_linkmon(rp); 1646 1647 /* rhine_disable_linkmon already cleared MIICmd */ 1648 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1649 iowrite8(regnum, ioaddr + MIIRegAddr); 1650 iowrite16(value, ioaddr + MIIData); 1651 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1652 rhine_wait_bit_low(rp, MIICmd, 0x20); 1653 1654 rhine_enable_linkmon(rp); 1655 } 1656 1657 static void rhine_task_disable(struct rhine_private *rp) 1658 { 1659 mutex_lock(&rp->task_lock); 1660 rp->task_enable = false; 1661 mutex_unlock(&rp->task_lock); 1662 1663 cancel_work_sync(&rp->slow_event_task); 1664 cancel_work_sync(&rp->reset_task); 1665 } 1666 1667 static void rhine_task_enable(struct rhine_private *rp) 1668 { 1669 mutex_lock(&rp->task_lock); 1670 rp->task_enable = true; 1671 mutex_unlock(&rp->task_lock); 1672 } 1673 1674 static int rhine_open(struct net_device *dev) 1675 { 1676 struct rhine_private *rp = netdev_priv(dev); 1677 void __iomem *ioaddr = rp->base; 1678 int rc; 1679 1680 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev); 1681 if (rc) 1682 goto out; 1683 1684 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq); 1685 1686 rc = alloc_ring(dev); 1687 if (rc < 0) 1688 goto out_free_irq; 1689 1690 rc = alloc_rbufs(dev); 1691 if (rc < 0) 1692 goto out_free_ring; 1693 1694 alloc_tbufs(dev); 1695 enable_mmio(rp->pioaddr, rp->quirks); 1696 rhine_power_init(dev); 1697 rhine_chip_reset(dev); 1698 rhine_task_enable(rp); 1699 init_registers(dev); 1700 1701 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", 1702 __func__, ioread16(ioaddr + ChipCmd), 1703 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1704 1705 netif_start_queue(dev); 1706 1707 out: 1708 return rc; 1709 1710 out_free_ring: 1711 free_ring(dev); 1712 out_free_irq: 1713 free_irq(rp->irq, dev); 1714 goto out; 1715 } 1716 1717 static void rhine_reset_task(struct work_struct *work) 1718 { 1719 struct rhine_private *rp = container_of(work, struct rhine_private, 1720 reset_task); 1721 struct net_device *dev = rp->dev; 1722 1723 mutex_lock(&rp->task_lock); 1724 1725 if (!rp->task_enable) 1726 goto out_unlock; 1727 1728 napi_disable(&rp->napi); 1729 netif_tx_disable(dev); 1730 spin_lock_bh(&rp->lock); 1731 1732 /* clear all descriptors */ 1733 free_tbufs(dev); 1734 alloc_tbufs(dev); 1735 1736 rhine_reset_rbufs(rp); 1737 1738 /* Reinitialize the hardware. */ 1739 rhine_chip_reset(dev); 1740 init_registers(dev); 1741 1742 spin_unlock_bh(&rp->lock); 1743 1744 netif_trans_update(dev); /* prevent tx timeout */ 1745 dev->stats.tx_errors++; 1746 netif_wake_queue(dev); 1747 1748 out_unlock: 1749 mutex_unlock(&rp->task_lock); 1750 } 1751 1752 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue) 1753 { 1754 struct rhine_private *rp = netdev_priv(dev); 1755 void __iomem *ioaddr = rp->base; 1756 1757 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1758 ioread16(ioaddr + IntrStatus), 1759 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1760 1761 schedule_work(&rp->reset_task); 1762 } 1763 1764 static inline bool rhine_tx_queue_full(struct rhine_private *rp) 1765 { 1766 return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN; 1767 } 1768 1769 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1770 struct net_device *dev) 1771 { 1772 struct rhine_private *rp = netdev_priv(dev); 1773 struct device *hwdev = dev->dev.parent; 1774 void __iomem *ioaddr = rp->base; 1775 unsigned entry; 1776 1777 /* Caution: the write order is important here, set the field 1778 with the "ownership" bits last. */ 1779 1780 /* Calculate the next Tx descriptor entry. */ 1781 entry = rp->cur_tx % TX_RING_SIZE; 1782 1783 if (skb_padto(skb, ETH_ZLEN)) 1784 return NETDEV_TX_OK; 1785 1786 rp->tx_skbuff[entry] = skb; 1787 1788 if ((rp->quirks & rqRhineI) && 1789 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1790 /* Must use alignment buffer. */ 1791 if (skb->len > PKT_BUF_SZ) { 1792 /* packet too long, drop it */ 1793 dev_kfree_skb_any(skb); 1794 rp->tx_skbuff[entry] = NULL; 1795 dev->stats.tx_dropped++; 1796 return NETDEV_TX_OK; 1797 } 1798 1799 /* Padding is not copied and so must be redone. */ 1800 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1801 if (skb->len < ETH_ZLEN) 1802 memset(rp->tx_buf[entry] + skb->len, 0, 1803 ETH_ZLEN - skb->len); 1804 rp->tx_skbuff_dma[entry] = 0; 1805 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1806 (rp->tx_buf[entry] - 1807 rp->tx_bufs)); 1808 } else { 1809 rp->tx_skbuff_dma[entry] = 1810 dma_map_single(hwdev, skb->data, skb->len, 1811 DMA_TO_DEVICE); 1812 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) { 1813 dev_kfree_skb_any(skb); 1814 rp->tx_skbuff_dma[entry] = 0; 1815 dev->stats.tx_dropped++; 1816 return NETDEV_TX_OK; 1817 } 1818 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1819 } 1820 1821 rp->tx_ring[entry].desc_length = 1822 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1823 1824 if (unlikely(skb_vlan_tag_present(skb))) { 1825 u16 vid_pcp = skb_vlan_tag_get(skb); 1826 1827 /* drop CFI/DEI bit, register needs VID and PCP */ 1828 vid_pcp = (vid_pcp & VLAN_VID_MASK) | 1829 ((vid_pcp & VLAN_PRIO_MASK) >> 1); 1830 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16); 1831 /* request tagging */ 1832 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1833 } 1834 else 1835 rp->tx_ring[entry].tx_status = 0; 1836 1837 netdev_sent_queue(dev, skb->len); 1838 /* lock eth irq */ 1839 dma_wmb(); 1840 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1841 wmb(); 1842 1843 rp->cur_tx++; 1844 /* 1845 * Nobody wants cur_tx write to rot for ages after the NIC will have 1846 * seen the transmit request, especially as the transmit completion 1847 * handler could miss it. 1848 */ 1849 smp_wmb(); 1850 1851 /* Non-x86 Todo: explicitly flush cache lines here. */ 1852 1853 if (skb_vlan_tag_present(skb)) 1854 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1855 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1856 1857 /* Wake the potentially-idle transmit channel */ 1858 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1859 ioaddr + ChipCmd1); 1860 IOSYNC; 1861 1862 /* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */ 1863 if (rhine_tx_queue_full(rp)) { 1864 netif_stop_queue(dev); 1865 smp_rmb(); 1866 /* Rejuvenate. */ 1867 if (!rhine_tx_queue_full(rp)) 1868 netif_wake_queue(dev); 1869 } 1870 1871 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", 1872 rp->cur_tx - 1, entry); 1873 1874 return NETDEV_TX_OK; 1875 } 1876 1877 static void rhine_irq_disable(struct rhine_private *rp) 1878 { 1879 iowrite16(0x0000, rp->base + IntrEnable); 1880 } 1881 1882 /* The interrupt handler does all of the Rx thread work and cleans up 1883 after the Tx thread. */ 1884 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1885 { 1886 struct net_device *dev = dev_instance; 1887 struct rhine_private *rp = netdev_priv(dev); 1888 u32 status; 1889 int handled = 0; 1890 1891 status = rhine_get_events(rp); 1892 1893 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); 1894 1895 if (status & RHINE_EVENT) { 1896 handled = 1; 1897 1898 rhine_irq_disable(rp); 1899 napi_schedule(&rp->napi); 1900 } 1901 1902 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { 1903 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", 1904 status); 1905 } 1906 1907 return IRQ_RETVAL(handled); 1908 } 1909 1910 /* This routine is logically part of the interrupt handler, but isolated 1911 for clarity. */ 1912 static void rhine_tx(struct net_device *dev) 1913 { 1914 struct rhine_private *rp = netdev_priv(dev); 1915 struct device *hwdev = dev->dev.parent; 1916 unsigned int pkts_compl = 0, bytes_compl = 0; 1917 unsigned int dirty_tx = rp->dirty_tx; 1918 unsigned int cur_tx; 1919 struct sk_buff *skb; 1920 1921 /* 1922 * The race with rhine_start_tx does not matter here as long as the 1923 * driver enforces a value of cur_tx that was relevant when the 1924 * packet was scheduled to the network chipset. 1925 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx. 1926 */ 1927 smp_rmb(); 1928 cur_tx = rp->cur_tx; 1929 /* find and cleanup dirty tx descriptors */ 1930 while (dirty_tx != cur_tx) { 1931 unsigned int entry = dirty_tx % TX_RING_SIZE; 1932 u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1933 1934 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", 1935 entry, txstatus); 1936 if (txstatus & DescOwn) 1937 break; 1938 skb = rp->tx_skbuff[entry]; 1939 if (txstatus & 0x8000) { 1940 netif_dbg(rp, tx_done, dev, 1941 "Transmit error, Tx status %08x\n", txstatus); 1942 dev->stats.tx_errors++; 1943 if (txstatus & 0x0400) 1944 dev->stats.tx_carrier_errors++; 1945 if (txstatus & 0x0200) 1946 dev->stats.tx_window_errors++; 1947 if (txstatus & 0x0100) 1948 dev->stats.tx_aborted_errors++; 1949 if (txstatus & 0x0080) 1950 dev->stats.tx_heartbeat_errors++; 1951 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1952 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1953 dev->stats.tx_fifo_errors++; 1954 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1955 break; /* Keep the skb - we try again */ 1956 } 1957 /* Transmitter restarted in 'abnormal' handler. */ 1958 } else { 1959 if (rp->quirks & rqRhineI) 1960 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1961 else 1962 dev->stats.collisions += txstatus & 0x0F; 1963 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", 1964 (txstatus >> 3) & 0xF, txstatus & 0xF); 1965 1966 u64_stats_update_begin(&rp->tx_stats.syncp); 1967 rp->tx_stats.bytes += skb->len; 1968 rp->tx_stats.packets++; 1969 u64_stats_update_end(&rp->tx_stats.syncp); 1970 } 1971 /* Free the original skb. */ 1972 if (rp->tx_skbuff_dma[entry]) { 1973 dma_unmap_single(hwdev, 1974 rp->tx_skbuff_dma[entry], 1975 skb->len, 1976 DMA_TO_DEVICE); 1977 } 1978 bytes_compl += skb->len; 1979 pkts_compl++; 1980 dev_consume_skb_any(skb); 1981 rp->tx_skbuff[entry] = NULL; 1982 dirty_tx++; 1983 } 1984 1985 rp->dirty_tx = dirty_tx; 1986 /* Pity we can't rely on the nearby BQL completion implicit barrier. */ 1987 smp_wmb(); 1988 1989 netdev_completed_queue(dev, pkts_compl, bytes_compl); 1990 1991 /* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */ 1992 if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) { 1993 netif_wake_queue(dev); 1994 smp_rmb(); 1995 /* Rejuvenate. */ 1996 if (rhine_tx_queue_full(rp)) 1997 netif_stop_queue(dev); 1998 } 1999 } 2000 2001 /** 2002 * rhine_get_vlan_tci - extract TCI from Rx data buffer 2003 * @skb: pointer to sk_buff 2004 * @data_size: used data area of the buffer including CRC 2005 * 2006 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 2007 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 2008 * aligned following the CRC. 2009 */ 2010 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 2011 { 2012 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 2013 return be16_to_cpup((__be16 *)trailer); 2014 } 2015 2016 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc, 2017 int data_size) 2018 { 2019 dma_rmb(); 2020 if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) { 2021 u16 vlan_tci; 2022 2023 vlan_tci = rhine_get_vlan_tci(skb, data_size); 2024 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 2025 } 2026 } 2027 2028 /* Process up to limit frames from receive ring */ 2029 static int rhine_rx(struct net_device *dev, int limit) 2030 { 2031 struct rhine_private *rp = netdev_priv(dev); 2032 struct device *hwdev = dev->dev.parent; 2033 int entry = rp->cur_rx % RX_RING_SIZE; 2034 int count; 2035 2036 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, 2037 entry, le32_to_cpu(rp->rx_ring[entry].rx_status)); 2038 2039 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 2040 for (count = 0; count < limit; ++count) { 2041 struct rx_desc *desc = rp->rx_ring + entry; 2042 u32 desc_status = le32_to_cpu(desc->rx_status); 2043 int data_size = desc_status >> 16; 2044 2045 if (desc_status & DescOwn) 2046 break; 2047 2048 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, 2049 desc_status); 2050 2051 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 2052 if ((desc_status & RxWholePkt) != RxWholePkt) { 2053 netdev_warn(dev, 2054 "Oversized Ethernet frame spanned multiple buffers, " 2055 "entry %#x length %d status %08x!\n", 2056 entry, data_size, 2057 desc_status); 2058 dev->stats.rx_length_errors++; 2059 } else if (desc_status & RxErr) { 2060 /* There was a error. */ 2061 netif_dbg(rp, rx_err, dev, 2062 "%s() Rx error %08x\n", __func__, 2063 desc_status); 2064 dev->stats.rx_errors++; 2065 if (desc_status & 0x0030) 2066 dev->stats.rx_length_errors++; 2067 if (desc_status & 0x0048) 2068 dev->stats.rx_fifo_errors++; 2069 if (desc_status & 0x0004) 2070 dev->stats.rx_frame_errors++; 2071 if (desc_status & 0x0002) { 2072 /* this can also be updated outside the interrupt handler */ 2073 spin_lock(&rp->lock); 2074 dev->stats.rx_crc_errors++; 2075 spin_unlock(&rp->lock); 2076 } 2077 } 2078 } else { 2079 /* Length should omit the CRC */ 2080 int pkt_len = data_size - 4; 2081 struct sk_buff *skb; 2082 2083 /* Check if the packet is long enough to accept without 2084 copying to a minimally-sized skbuff. */ 2085 if (pkt_len < rx_copybreak) { 2086 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 2087 if (unlikely(!skb)) 2088 goto drop; 2089 2090 dma_sync_single_for_cpu(hwdev, 2091 rp->rx_skbuff_dma[entry], 2092 rp->rx_buf_sz, 2093 DMA_FROM_DEVICE); 2094 2095 skb_copy_to_linear_data(skb, 2096 rp->rx_skbuff[entry]->data, 2097 pkt_len); 2098 2099 dma_sync_single_for_device(hwdev, 2100 rp->rx_skbuff_dma[entry], 2101 rp->rx_buf_sz, 2102 DMA_FROM_DEVICE); 2103 } else { 2104 struct rhine_skb_dma sd; 2105 2106 if (unlikely(rhine_skb_dma_init(dev, &sd) < 0)) 2107 goto drop; 2108 2109 skb = rp->rx_skbuff[entry]; 2110 2111 dma_unmap_single(hwdev, 2112 rp->rx_skbuff_dma[entry], 2113 rp->rx_buf_sz, 2114 DMA_FROM_DEVICE); 2115 rhine_skb_dma_nic_store(rp, &sd, entry); 2116 } 2117 2118 skb_put(skb, pkt_len); 2119 2120 rhine_rx_vlan_tag(skb, desc, data_size); 2121 2122 skb->protocol = eth_type_trans(skb, dev); 2123 2124 netif_receive_skb(skb); 2125 2126 u64_stats_update_begin(&rp->rx_stats.syncp); 2127 rp->rx_stats.bytes += pkt_len; 2128 rp->rx_stats.packets++; 2129 u64_stats_update_end(&rp->rx_stats.syncp); 2130 } 2131 give_descriptor_to_nic: 2132 desc->rx_status = cpu_to_le32(DescOwn); 2133 entry = (++rp->cur_rx) % RX_RING_SIZE; 2134 } 2135 2136 return count; 2137 2138 drop: 2139 dev->stats.rx_dropped++; 2140 goto give_descriptor_to_nic; 2141 } 2142 2143 static void rhine_restart_tx(struct net_device *dev) { 2144 struct rhine_private *rp = netdev_priv(dev); 2145 void __iomem *ioaddr = rp->base; 2146 int entry = rp->dirty_tx % TX_RING_SIZE; 2147 u32 intr_status; 2148 2149 /* 2150 * If new errors occurred, we need to sort them out before doing Tx. 2151 * In that case the ISR will be back here RSN anyway. 2152 */ 2153 intr_status = rhine_get_events(rp); 2154 2155 if ((intr_status & IntrTxErrSummary) == 0) { 2156 2157 /* We know better than the chip where it should continue. */ 2158 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 2159 ioaddr + TxRingPtr); 2160 2161 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 2162 ioaddr + ChipCmd); 2163 2164 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 2165 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 2166 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 2167 2168 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 2169 ioaddr + ChipCmd1); 2170 IOSYNC; 2171 } 2172 else { 2173 /* This should never happen */ 2174 netif_warn(rp, tx_err, dev, "another error occurred %08x\n", 2175 intr_status); 2176 } 2177 2178 } 2179 2180 static void rhine_slow_event_task(struct work_struct *work) 2181 { 2182 struct rhine_private *rp = 2183 container_of(work, struct rhine_private, slow_event_task); 2184 struct net_device *dev = rp->dev; 2185 u32 intr_status; 2186 2187 mutex_lock(&rp->task_lock); 2188 2189 if (!rp->task_enable) 2190 goto out_unlock; 2191 2192 intr_status = rhine_get_events(rp); 2193 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); 2194 2195 if (intr_status & IntrLinkChange) 2196 rhine_check_media(dev, 0); 2197 2198 if (intr_status & IntrPCIErr) 2199 netif_warn(rp, hw, dev, "PCI error\n"); 2200 2201 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); 2202 2203 out_unlock: 2204 mutex_unlock(&rp->task_lock); 2205 } 2206 2207 static void 2208 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 2209 { 2210 struct rhine_private *rp = netdev_priv(dev); 2211 unsigned int start; 2212 2213 spin_lock_bh(&rp->lock); 2214 rhine_update_rx_crc_and_missed_errord(rp); 2215 spin_unlock_bh(&rp->lock); 2216 2217 netdev_stats_to_stats64(stats, &dev->stats); 2218 2219 do { 2220 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp); 2221 stats->rx_packets = rp->rx_stats.packets; 2222 stats->rx_bytes = rp->rx_stats.bytes; 2223 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start)); 2224 2225 do { 2226 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp); 2227 stats->tx_packets = rp->tx_stats.packets; 2228 stats->tx_bytes = rp->tx_stats.bytes; 2229 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start)); 2230 } 2231 2232 static void rhine_set_rx_mode(struct net_device *dev) 2233 { 2234 struct rhine_private *rp = netdev_priv(dev); 2235 void __iomem *ioaddr = rp->base; 2236 u32 mc_filter[2]; /* Multicast hash filter */ 2237 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 2238 struct netdev_hw_addr *ha; 2239 2240 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2241 rx_mode = 0x1C; 2242 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2243 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2244 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2245 (dev->flags & IFF_ALLMULTI)) { 2246 /* Too many to match, or accept all multicasts. */ 2247 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2248 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2249 } else if (rp->quirks & rqMgmt) { 2250 int i = 0; 2251 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 2252 netdev_for_each_mc_addr(ha, dev) { 2253 if (i == MCAM_SIZE) 2254 break; 2255 rhine_set_cam(ioaddr, i, ha->addr); 2256 mCAMmask |= 1 << i; 2257 i++; 2258 } 2259 rhine_set_cam_mask(ioaddr, mCAMmask); 2260 } else { 2261 memset(mc_filter, 0, sizeof(mc_filter)); 2262 netdev_for_each_mc_addr(ha, dev) { 2263 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 2264 2265 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 2266 } 2267 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 2268 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 2269 } 2270 /* enable/disable VLAN receive filtering */ 2271 if (rp->quirks & rqMgmt) { 2272 if (dev->flags & IFF_PROMISC) 2273 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2274 else 2275 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2276 } 2277 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2278 } 2279 2280 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2281 { 2282 struct device *hwdev = dev->dev.parent; 2283 2284 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 2285 strscpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info)); 2286 } 2287 2288 static int netdev_get_link_ksettings(struct net_device *dev, 2289 struct ethtool_link_ksettings *cmd) 2290 { 2291 struct rhine_private *rp = netdev_priv(dev); 2292 2293 mutex_lock(&rp->task_lock); 2294 mii_ethtool_get_link_ksettings(&rp->mii_if, cmd); 2295 mutex_unlock(&rp->task_lock); 2296 2297 return 0; 2298 } 2299 2300 static int netdev_set_link_ksettings(struct net_device *dev, 2301 const struct ethtool_link_ksettings *cmd) 2302 { 2303 struct rhine_private *rp = netdev_priv(dev); 2304 int rc; 2305 2306 mutex_lock(&rp->task_lock); 2307 rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd); 2308 rhine_set_carrier(&rp->mii_if); 2309 mutex_unlock(&rp->task_lock); 2310 2311 return rc; 2312 } 2313 2314 static int netdev_nway_reset(struct net_device *dev) 2315 { 2316 struct rhine_private *rp = netdev_priv(dev); 2317 2318 return mii_nway_restart(&rp->mii_if); 2319 } 2320 2321 static u32 netdev_get_link(struct net_device *dev) 2322 { 2323 struct rhine_private *rp = netdev_priv(dev); 2324 2325 return mii_link_ok(&rp->mii_if); 2326 } 2327 2328 static u32 netdev_get_msglevel(struct net_device *dev) 2329 { 2330 struct rhine_private *rp = netdev_priv(dev); 2331 2332 return rp->msg_enable; 2333 } 2334 2335 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2336 { 2337 struct rhine_private *rp = netdev_priv(dev); 2338 2339 rp->msg_enable = value; 2340 } 2341 2342 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2343 { 2344 struct rhine_private *rp = netdev_priv(dev); 2345 2346 if (!(rp->quirks & rqWOL)) 2347 return; 2348 2349 spin_lock_irq(&rp->lock); 2350 wol->supported = WAKE_PHY | WAKE_MAGIC | 2351 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2352 wol->wolopts = rp->wolopts; 2353 spin_unlock_irq(&rp->lock); 2354 } 2355 2356 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2357 { 2358 struct rhine_private *rp = netdev_priv(dev); 2359 u32 support = WAKE_PHY | WAKE_MAGIC | 2360 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2361 2362 if (!(rp->quirks & rqWOL)) 2363 return -EINVAL; 2364 2365 if (wol->wolopts & ~support) 2366 return -EINVAL; 2367 2368 spin_lock_irq(&rp->lock); 2369 rp->wolopts = wol->wolopts; 2370 spin_unlock_irq(&rp->lock); 2371 2372 return 0; 2373 } 2374 2375 static const struct ethtool_ops netdev_ethtool_ops = { 2376 .get_drvinfo = netdev_get_drvinfo, 2377 .nway_reset = netdev_nway_reset, 2378 .get_link = netdev_get_link, 2379 .get_msglevel = netdev_get_msglevel, 2380 .set_msglevel = netdev_set_msglevel, 2381 .get_wol = rhine_get_wol, 2382 .set_wol = rhine_set_wol, 2383 .get_link_ksettings = netdev_get_link_ksettings, 2384 .set_link_ksettings = netdev_set_link_ksettings, 2385 }; 2386 2387 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2388 { 2389 struct rhine_private *rp = netdev_priv(dev); 2390 int rc; 2391 2392 if (!netif_running(dev)) 2393 return -EINVAL; 2394 2395 mutex_lock(&rp->task_lock); 2396 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2397 rhine_set_carrier(&rp->mii_if); 2398 mutex_unlock(&rp->task_lock); 2399 2400 return rc; 2401 } 2402 2403 static int rhine_close(struct net_device *dev) 2404 { 2405 struct rhine_private *rp = netdev_priv(dev); 2406 void __iomem *ioaddr = rp->base; 2407 2408 rhine_task_disable(rp); 2409 napi_disable(&rp->napi); 2410 netif_stop_queue(dev); 2411 2412 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", 2413 ioread16(ioaddr + ChipCmd)); 2414 2415 /* Switch to loopback mode to avoid hardware races. */ 2416 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2417 2418 rhine_irq_disable(rp); 2419 2420 /* Stop the chip's Tx and Rx processes. */ 2421 iowrite16(CmdStop, ioaddr + ChipCmd); 2422 2423 free_irq(rp->irq, dev); 2424 free_rbufs(dev); 2425 free_tbufs(dev); 2426 free_ring(dev); 2427 2428 return 0; 2429 } 2430 2431 2432 static void rhine_remove_one_pci(struct pci_dev *pdev) 2433 { 2434 struct net_device *dev = pci_get_drvdata(pdev); 2435 struct rhine_private *rp = netdev_priv(dev); 2436 2437 unregister_netdev(dev); 2438 2439 pci_iounmap(pdev, rp->base); 2440 pci_release_regions(pdev); 2441 2442 free_netdev(dev); 2443 pci_disable_device(pdev); 2444 } 2445 2446 static int rhine_remove_one_platform(struct platform_device *pdev) 2447 { 2448 struct net_device *dev = platform_get_drvdata(pdev); 2449 struct rhine_private *rp = netdev_priv(dev); 2450 2451 unregister_netdev(dev); 2452 2453 iounmap(rp->base); 2454 2455 free_netdev(dev); 2456 2457 return 0; 2458 } 2459 2460 static void rhine_shutdown_pci(struct pci_dev *pdev) 2461 { 2462 struct net_device *dev = pci_get_drvdata(pdev); 2463 struct rhine_private *rp = netdev_priv(dev); 2464 void __iomem *ioaddr = rp->base; 2465 2466 if (!(rp->quirks & rqWOL)) 2467 return; /* Nothing to do for non-WOL adapters */ 2468 2469 rhine_power_init(dev); 2470 2471 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2472 if (rp->quirks & rq6patterns) 2473 iowrite8(0x04, ioaddr + WOLcgClr); 2474 2475 spin_lock(&rp->lock); 2476 2477 if (rp->wolopts & WAKE_MAGIC) { 2478 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2479 /* 2480 * Turn EEPROM-controlled wake-up back on -- some hardware may 2481 * not cooperate otherwise. 2482 */ 2483 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2484 } 2485 2486 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2487 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2488 2489 if (rp->wolopts & WAKE_PHY) 2490 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2491 2492 if (rp->wolopts & WAKE_UCAST) 2493 iowrite8(WOLucast, ioaddr + WOLcrSet); 2494 2495 if (rp->wolopts) { 2496 /* Enable legacy WOL (for old motherboards) */ 2497 iowrite8(0x01, ioaddr + PwcfgSet); 2498 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2499 } 2500 2501 spin_unlock(&rp->lock); 2502 2503 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { 2504 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2505 2506 pci_wake_from_d3(pdev, true); 2507 pci_set_power_state(pdev, PCI_D3hot); 2508 } 2509 } 2510 2511 #ifdef CONFIG_PM_SLEEP 2512 static int rhine_suspend(struct device *device) 2513 { 2514 struct net_device *dev = dev_get_drvdata(device); 2515 struct rhine_private *rp = netdev_priv(dev); 2516 2517 if (!netif_running(dev)) 2518 return 0; 2519 2520 rhine_task_disable(rp); 2521 rhine_irq_disable(rp); 2522 napi_disable(&rp->napi); 2523 2524 netif_device_detach(dev); 2525 2526 if (dev_is_pci(device)) 2527 rhine_shutdown_pci(to_pci_dev(device)); 2528 2529 return 0; 2530 } 2531 2532 static int rhine_resume(struct device *device) 2533 { 2534 struct net_device *dev = dev_get_drvdata(device); 2535 struct rhine_private *rp = netdev_priv(dev); 2536 2537 if (!netif_running(dev)) 2538 return 0; 2539 2540 enable_mmio(rp->pioaddr, rp->quirks); 2541 rhine_power_init(dev); 2542 free_tbufs(dev); 2543 alloc_tbufs(dev); 2544 rhine_reset_rbufs(rp); 2545 rhine_task_enable(rp); 2546 spin_lock_bh(&rp->lock); 2547 init_registers(dev); 2548 spin_unlock_bh(&rp->lock); 2549 2550 netif_device_attach(dev); 2551 2552 return 0; 2553 } 2554 2555 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); 2556 #define RHINE_PM_OPS (&rhine_pm_ops) 2557 2558 #else 2559 2560 #define RHINE_PM_OPS NULL 2561 2562 #endif /* !CONFIG_PM_SLEEP */ 2563 2564 static struct pci_driver rhine_driver_pci = { 2565 .name = DRV_NAME, 2566 .id_table = rhine_pci_tbl, 2567 .probe = rhine_init_one_pci, 2568 .remove = rhine_remove_one_pci, 2569 .shutdown = rhine_shutdown_pci, 2570 .driver.pm = RHINE_PM_OPS, 2571 }; 2572 2573 static struct platform_driver rhine_driver_platform = { 2574 .probe = rhine_init_one_platform, 2575 .remove = rhine_remove_one_platform, 2576 .driver = { 2577 .name = DRV_NAME, 2578 .of_match_table = rhine_of_tbl, 2579 .pm = RHINE_PM_OPS, 2580 } 2581 }; 2582 2583 static const struct dmi_system_id rhine_dmi_table[] __initconst = { 2584 { 2585 .ident = "EPIA-M", 2586 .matches = { 2587 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2588 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2589 }, 2590 }, 2591 { 2592 .ident = "KV7", 2593 .matches = { 2594 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2595 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2596 }, 2597 }, 2598 { NULL } 2599 }; 2600 2601 static int __init rhine_init(void) 2602 { 2603 int ret_pci, ret_platform; 2604 2605 /* when a module, this is printed whether or not devices are found in probe */ 2606 if (dmi_check_system(rhine_dmi_table)) { 2607 /* these BIOSes fail at PXE boot if chip is in D3 */ 2608 avoid_D3 = true; 2609 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2610 } 2611 else if (avoid_D3) 2612 pr_info("avoid_D3 set\n"); 2613 2614 ret_pci = pci_register_driver(&rhine_driver_pci); 2615 ret_platform = platform_driver_register(&rhine_driver_platform); 2616 if ((ret_pci < 0) && (ret_platform < 0)) 2617 return ret_pci; 2618 2619 return 0; 2620 } 2621 2622 2623 static void __exit rhine_cleanup(void) 2624 { 2625 platform_driver_unregister(&rhine_driver_platform); 2626 pci_unregister_driver(&rhine_driver_pci); 2627 } 2628 2629 2630 module_init(rhine_init); 2631 module_exit(rhine_cleanup); 2632