1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Roger Luethi <rl@hellgate.ch>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 #define DRV_VERSION	"1.5.1"
36 #define DRV_RELDATE	"2010-10-09"
37 
38 #include <linux/types.h>
39 
40 /* A few user-configurable values.
41    These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44         (0x0000)
45 
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47    Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
50 	defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55 
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59 
60 /*
61  * In case you are looking for 'options[]' or 'full_duplex[]', they
62  * are gone. Use ethtool(8) instead.
63  */
64 
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66    The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68 
69 
70 /* Operational parameters that are set at compile time. */
71 
72 /* Keep the ring sizes a power of two for compile efficiency.
73    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74    Making the Tx ring too large decreases the effectiveness of channel
75    bonding and packet priority.
76    There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE	16
78 #define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h>	/* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114 
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] =
117 	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118 
119 /* This driver was written to use PCI memory space. Some early versions
120    of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125 
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129 
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136 
137 #define MCAM_SIZE	32
138 #define VCAM_SIZE	32
139 
140 /*
141 		Theory of Operation
142 
143 I. Board Compatibility
144 
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147 
148 II. Board-specific settings
149 
150 Boards with this chip are functional only in a bus-master PCI slot.
151 
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157 
158 III. Driver operation
159 
160 IIIa. Ring buffers
161 
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165 
166 IIIb/c. Transmit/Receive Structure
167 
168 This driver attempts to use a zero-copy receive and transmit scheme.
169 
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172 
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180 
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189 
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194 
195 IIId. Synchronization
196 
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201 
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206 
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211 
212 IV. Notes
213 
214 IVb. References
215 
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221 
222 
223 IVc. Errata
224 
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230 
231 */
232 
233 
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235    of the drivers, and will likely be provided by some future kernel.
236    Note the matching code -- the first table entry matchs all 56** cards but
237    second only the 1234 card.
238 */
239 
240 enum rhine_revs {
241 	VT86C100A	= 0x00,
242 	VTunknown0	= 0x20,
243 	VT6102		= 0x40,
244 	VT8231		= 0x50,	/* Integrated MAC */
245 	VT8233		= 0x60,	/* Integrated MAC */
246 	VT8235		= 0x74,	/* Integrated MAC */
247 	VT8237		= 0x78,	/* Integrated MAC */
248 	VTunknown1	= 0x7C,
249 	VT6105		= 0x80,
250 	VT6105_B0	= 0x83,
251 	VT6105L		= 0x8A,
252 	VT6107		= 0x8C,
253 	VTunknown2	= 0x8E,
254 	VT6105M		= 0x90,	/* Management adapter */
255 };
256 
257 enum rhine_quirks {
258 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
259 	rqForceReset	= 0x0002,
260 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
261 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
262 	rqRhineI	= 0x0100,	/* See comment below */
263 };
264 /*
265  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266  * MMIO as well as for the collision counter and the Tx FIFO underflow
267  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268  */
269 
270 /* Beware of PCI posted writes */
271 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
272 
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
275 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
276 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
277 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
278 	{ }	/* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281 
282 
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 	ChipCmd1=0x09, TQWake=0x0A,
287 	IntrStatus=0x0C, IntrEnable=0x0E,
288 	MulticastFilter0=0x10, MulticastFilter1=0x14,
289 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 	StickyHW=0x83, IntrStatus2=0x84,
295 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300 
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 	BackOptional=0x01, BackModify=0x02,
304 	BackCaptureEffect=0x04, BackRandom=0x08
305 };
306 
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 	TCR_PQEN=0x01,
310 	TCR_LB0=0x02,		/* loopback[0] */
311 	TCR_LB1=0x04,		/* loopback[1] */
312 	TCR_OFSET=0x08,
313 	TCR_RTGOPT=0x10,
314 	TCR_RTFT0=0x20,
315 	TCR_RTFT1=0x40,
316 	TCR_RTSF=0x80,
317 };
318 
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 	CAMC_CAMEN=0x01,
322 	CAMC_VCAMSL=0x02,
323 	CAMC_CAMWR=0x04,
324 	CAMC_CAMRD=0x08,
325 };
326 
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 	BCR1_POT0=0x01,
330 	BCR1_POT1=0x02,
331 	BCR1_POT2=0x04,
332 	BCR1_CTFT0=0x08,
333 	BCR1_CTFT1=0x10,
334 	BCR1_CTSF=0x20,
335 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
336 	BCR1_VIDFR=0x80,	/* for VT6105 */
337 	BCR1_MED0=0x40,		/* for VT6102 */
338 	BCR1_MED1=0x80,		/* for VT6102 */
339 };
340 
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 	0
346 };
347 #endif
348 
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 	IntrRxDone	= 0x0001,
352 	IntrTxDone	= 0x0002,
353 	IntrRxErr	= 0x0004,
354 	IntrTxError	= 0x0008,
355 	IntrRxEmpty	= 0x0020,
356 	IntrPCIErr	= 0x0040,
357 	IntrStatsMax	= 0x0080,
358 	IntrRxEarly	= 0x0100,
359 	IntrTxUnderrun	= 0x0210,
360 	IntrRxOverflow	= 0x0400,
361 	IntrRxDropped	= 0x0800,
362 	IntrRxNoBuf	= 0x1000,
363 	IntrTxAborted	= 0x2000,
364 	IntrLinkChange	= 0x4000,
365 	IntrRxWakeUp	= 0x8000,
366 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
367 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
368 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
369 				  IntrTxUnderrun,
370 };
371 
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 	WOLucast	= 0x10,
375 	WOLmagic	= 0x20,
376 	WOLbmcast	= 0x30,
377 	WOLlnkon	= 0x40,
378 	WOLlnkoff	= 0x80,
379 };
380 
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 	__le32 rx_status;
384 	__le32 desc_length; /* Chain flag, Buffer/frame length */
385 	__le32 addr;
386 	__le32 next_desc;
387 };
388 struct tx_desc {
389 	__le32 tx_status;
390 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 	__le32 addr;
392 	__le32 next_desc;
393 };
394 
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC		0x00e08000
397 
398 enum rx_status_bits {
399 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401 
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 	DescOwn=0x80000000
405 };
406 
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 	DescTag=0x00010000
410 };
411 
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419 
420 struct rhine_stats {
421 	u64		packets;
422 	u64		bytes;
423 	struct u64_stats_sync syncp;
424 };
425 
426 struct rhine_private {
427 	/* Bit mask for configured VLAN ids */
428 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429 
430 	/* Descriptor rings */
431 	struct rx_desc *rx_ring;
432 	struct tx_desc *tx_ring;
433 	dma_addr_t rx_ring_dma;
434 	dma_addr_t tx_ring_dma;
435 
436 	/* The addresses of receive-in-place skbuffs. */
437 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439 
440 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
441 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443 
444 	/* Tx bounce buffers (Rhine-I only) */
445 	unsigned char *tx_buf[TX_RING_SIZE];
446 	unsigned char *tx_bufs;
447 	dma_addr_t tx_bufs_dma;
448 
449 	struct pci_dev *pdev;
450 	long pioaddr;
451 	struct net_device *dev;
452 	struct napi_struct napi;
453 	spinlock_t lock;
454 	struct mutex task_lock;
455 	bool task_enable;
456 	struct work_struct slow_event_task;
457 	struct work_struct reset_task;
458 
459 	u32 msg_enable;
460 
461 	/* Frequently used values: keep some adjacent for cache effect. */
462 	u32 quirks;
463 	struct rx_desc *rx_head_desc;
464 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
465 	unsigned int cur_tx, dirty_tx;
466 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
467 	struct rhine_stats rx_stats;
468 	struct rhine_stats tx_stats;
469 	u8 wolopts;
470 
471 	u8 tx_thresh, rx_thresh;
472 
473 	struct mii_if_info mii_if;
474 	void __iomem *base;
475 };
476 
477 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480 
481 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
482 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
483 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
484 
485 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488 
489 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492 
493 
494 static int  mdio_read(struct net_device *dev, int phy_id, int location);
495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496 static int  rhine_open(struct net_device *dev);
497 static void rhine_reset_task(struct work_struct *work);
498 static void rhine_slow_event_task(struct work_struct *work);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 				  struct net_device *dev);
502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
503 static void rhine_tx(struct net_device *dev);
504 static int rhine_rx(struct net_device *dev, int limit);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 	       struct rtnl_link_stats64 *stats);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static const struct ethtool_ops netdev_ethtool_ops;
510 static int  rhine_close(struct net_device *dev);
511 static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 				 __be16 proto, u16 vid);
513 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 				  __be16 proto, u16 vid);
515 static void rhine_restart_tx(struct net_device *dev);
516 
517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
518 {
519 	void __iomem *ioaddr = rp->base;
520 	int i;
521 
522 	for (i = 0; i < 1024; i++) {
523 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524 
525 		if (low ^ has_mask_bits)
526 			break;
527 		udelay(10);
528 	}
529 	if (i > 64) {
530 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
531 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
532 	}
533 }
534 
535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536 {
537 	rhine_wait_bit(rp, reg, mask, false);
538 }
539 
540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541 {
542 	rhine_wait_bit(rp, reg, mask, true);
543 }
544 
545 static u32 rhine_get_events(struct rhine_private *rp)
546 {
547 	void __iomem *ioaddr = rp->base;
548 	u32 intr_status;
549 
550 	intr_status = ioread16(ioaddr + IntrStatus);
551 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 	if (rp->quirks & rqStatusWBRace)
553 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 	return intr_status;
555 }
556 
557 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558 {
559 	void __iomem *ioaddr = rp->base;
560 
561 	if (rp->quirks & rqStatusWBRace)
562 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 	iowrite16(mask, ioaddr + IntrStatus);
564 	mmiowb();
565 }
566 
567 /*
568  * Get power related registers into sane state.
569  * Notify user about past WOL event.
570  */
571 static void rhine_power_init(struct net_device *dev)
572 {
573 	struct rhine_private *rp = netdev_priv(dev);
574 	void __iomem *ioaddr = rp->base;
575 	u16 wolstat;
576 
577 	if (rp->quirks & rqWOL) {
578 		/* Make sure chip is in power state D0 */
579 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580 
581 		/* Disable "force PME-enable" */
582 		iowrite8(0x80, ioaddr + WOLcgClr);
583 
584 		/* Clear power-event config bits (WOL) */
585 		iowrite8(0xFF, ioaddr + WOLcrClr);
586 		/* More recent cards can manage two additional patterns */
587 		if (rp->quirks & rq6patterns)
588 			iowrite8(0x03, ioaddr + WOLcrClr1);
589 
590 		/* Save power-event status bits */
591 		wolstat = ioread8(ioaddr + PwrcsrSet);
592 		if (rp->quirks & rq6patterns)
593 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594 
595 		/* Clear power-event status bits */
596 		iowrite8(0xFF, ioaddr + PwrcsrClr);
597 		if (rp->quirks & rq6patterns)
598 			iowrite8(0x03, ioaddr + PwrcsrClr1);
599 
600 		if (wolstat) {
601 			char *reason;
602 			switch (wolstat) {
603 			case WOLmagic:
604 				reason = "Magic packet";
605 				break;
606 			case WOLlnkon:
607 				reason = "Link went up";
608 				break;
609 			case WOLlnkoff:
610 				reason = "Link went down";
611 				break;
612 			case WOLucast:
613 				reason = "Unicast packet";
614 				break;
615 			case WOLbmcast:
616 				reason = "Multicast/broadcast packet";
617 				break;
618 			default:
619 				reason = "Unknown";
620 			}
621 			netdev_info(dev, "Woke system up. Reason: %s\n",
622 				    reason);
623 		}
624 	}
625 }
626 
627 static void rhine_chip_reset(struct net_device *dev)
628 {
629 	struct rhine_private *rp = netdev_priv(dev);
630 	void __iomem *ioaddr = rp->base;
631 	u8 cmd1;
632 
633 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 	IOSYNC;
635 
636 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
637 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
638 
639 		/* Force reset */
640 		if (rp->quirks & rqForceReset)
641 			iowrite8(0x40, ioaddr + MiscCmd);
642 
643 		/* Reset can take somewhat longer (rare) */
644 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
645 	}
646 
647 	cmd1 = ioread8(ioaddr + ChipCmd1);
648 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 		   "failed" : "succeeded");
650 }
651 
652 #ifdef USE_MMIO
653 static void enable_mmio(long pioaddr, u32 quirks)
654 {
655 	int n;
656 	if (quirks & rqRhineI) {
657 		/* More recent docs say that this bit is reserved ... */
658 		n = inb(pioaddr + ConfigA) | 0x20;
659 		outb(n, pioaddr + ConfigA);
660 	} else {
661 		n = inb(pioaddr + ConfigD) | 0x80;
662 		outb(n, pioaddr + ConfigD);
663 	}
664 }
665 #endif
666 
667 /*
668  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669  * (plus 0x6C for Rhine-I/II)
670  */
671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
672 {
673 	struct rhine_private *rp = netdev_priv(dev);
674 	void __iomem *ioaddr = rp->base;
675 	int i;
676 
677 	outb(0x20, pioaddr + MACRegEEcsr);
678 	for (i = 0; i < 1024; i++) {
679 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 			break;
681 	}
682 	if (i > 512)
683 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
684 
685 #ifdef USE_MMIO
686 	/*
687 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 	 * it is not known if that still works with the "win98-reboot" problem.
690 	 */
691 	enable_mmio(pioaddr, rp->quirks);
692 #endif
693 
694 	/* Turn off EEPROM-controlled wake-up (magic packet) */
695 	if (rp->quirks & rqWOL)
696 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697 
698 }
699 
700 #ifdef CONFIG_NET_POLL_CONTROLLER
701 static void rhine_poll(struct net_device *dev)
702 {
703 	struct rhine_private *rp = netdev_priv(dev);
704 	const int irq = rp->pdev->irq;
705 
706 	disable_irq(irq);
707 	rhine_interrupt(irq, dev);
708 	enable_irq(irq);
709 }
710 #endif
711 
712 static void rhine_kick_tx_threshold(struct rhine_private *rp)
713 {
714 	if (rp->tx_thresh < 0xe0) {
715 		void __iomem *ioaddr = rp->base;
716 
717 		rp->tx_thresh += 0x20;
718 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 	}
720 }
721 
722 static void rhine_tx_err(struct rhine_private *rp, u32 status)
723 {
724 	struct net_device *dev = rp->dev;
725 
726 	if (status & IntrTxAborted) {
727 		netif_info(rp, tx_err, dev,
728 			   "Abort %08x, frame dropped\n", status);
729 	}
730 
731 	if (status & IntrTxUnderrun) {
732 		rhine_kick_tx_threshold(rp);
733 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 			   "Tx threshold now %02x\n", rp->tx_thresh);
735 	}
736 
737 	if (status & IntrTxDescRace)
738 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
739 
740 	if ((status & IntrTxError) &&
741 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 		rhine_kick_tx_threshold(rp);
743 		netif_info(rp, tx_err, dev, "Unspecified error. "
744 			   "Tx threshold now %02x\n", rp->tx_thresh);
745 	}
746 
747 	rhine_restart_tx(dev);
748 }
749 
750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751 {
752 	void __iomem *ioaddr = rp->base;
753 	struct net_device_stats *stats = &rp->dev->stats;
754 
755 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
756 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757 
758 	/*
759 	 * Clears the "tally counters" for CRC errors and missed frames(?).
760 	 * It has been reported that some chips need a write of 0 to clear
761 	 * these, for others the counters are set to 1 when written to and
762 	 * instead cleared when read. So we clear them both ways ...
763 	 */
764 	iowrite32(0, ioaddr + RxMissed);
765 	ioread16(ioaddr + RxCRCErrs);
766 	ioread16(ioaddr + RxMissed);
767 }
768 
769 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
770 				 IntrRxErr | \
771 				 IntrRxEmpty | \
772 				 IntrRxOverflow	| \
773 				 IntrRxDropped | \
774 				 IntrRxNoBuf | \
775 				 IntrRxWakeUp)
776 
777 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
778 				 IntrTxAborted | \
779 				 IntrTxUnderrun | \
780 				 IntrTxDescRace)
781 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782 
783 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
784 				 RHINE_EVENT_NAPI_TX | \
785 				 IntrStatsMax)
786 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
787 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788 
789 static int rhine_napipoll(struct napi_struct *napi, int budget)
790 {
791 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 	struct net_device *dev = rp->dev;
793 	void __iomem *ioaddr = rp->base;
794 	u16 enable_mask = RHINE_EVENT & 0xffff;
795 	int work_done = 0;
796 	u32 status;
797 
798 	status = rhine_get_events(rp);
799 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800 
801 	if (status & RHINE_EVENT_NAPI_RX)
802 		work_done += rhine_rx(dev, budget);
803 
804 	if (status & RHINE_EVENT_NAPI_TX) {
805 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
806 			/* Avoid scavenging before Tx engine turned off */
807 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
808 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 				netif_warn(rp, tx_err, dev, "Tx still on\n");
810 		}
811 
812 		rhine_tx(dev);
813 
814 		if (status & RHINE_EVENT_NAPI_TX_ERR)
815 			rhine_tx_err(rp, status);
816 	}
817 
818 	if (status & IntrStatsMax) {
819 		spin_lock(&rp->lock);
820 		rhine_update_rx_crc_and_missed_errord(rp);
821 		spin_unlock(&rp->lock);
822 	}
823 
824 	if (status & RHINE_EVENT_SLOW) {
825 		enable_mask &= ~RHINE_EVENT_SLOW;
826 		schedule_work(&rp->slow_event_task);
827 	}
828 
829 	if (work_done < budget) {
830 		napi_complete(napi);
831 		iowrite16(enable_mask, ioaddr + IntrEnable);
832 		mmiowb();
833 	}
834 	return work_done;
835 }
836 
837 static void rhine_hw_init(struct net_device *dev, long pioaddr)
838 {
839 	struct rhine_private *rp = netdev_priv(dev);
840 
841 	/* Reset the chip to erase previous misconfiguration. */
842 	rhine_chip_reset(dev);
843 
844 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
845 	if (rp->quirks & rqRhineI)
846 		msleep(5);
847 
848 	/* Reload EEPROM controlled bytes cleared by soft reset */
849 	rhine_reload_eeprom(pioaddr, dev);
850 }
851 
852 static const struct net_device_ops rhine_netdev_ops = {
853 	.ndo_open		 = rhine_open,
854 	.ndo_stop		 = rhine_close,
855 	.ndo_start_xmit		 = rhine_start_tx,
856 	.ndo_get_stats64	 = rhine_get_stats64,
857 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
858 	.ndo_change_mtu		 = eth_change_mtu,
859 	.ndo_validate_addr	 = eth_validate_addr,
860 	.ndo_set_mac_address 	 = eth_mac_addr,
861 	.ndo_do_ioctl		 = netdev_ioctl,
862 	.ndo_tx_timeout 	 = rhine_tx_timeout,
863 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
864 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
865 #ifdef CONFIG_NET_POLL_CONTROLLER
866 	.ndo_poll_controller	 = rhine_poll,
867 #endif
868 };
869 
870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
871 {
872 	struct net_device *dev;
873 	struct rhine_private *rp;
874 	int i, rc;
875 	u32 quirks;
876 	long pioaddr;
877 	long memaddr;
878 	void __iomem *ioaddr;
879 	int io_size, phy_id;
880 	const char *name;
881 #ifdef USE_MMIO
882 	int bar = 1;
883 #else
884 	int bar = 0;
885 #endif
886 
887 /* when built into the kernel, we only print version if device is found */
888 #ifndef MODULE
889 	pr_info_once("%s\n", version);
890 #endif
891 
892 	io_size = 256;
893 	phy_id = 0;
894 	quirks = 0;
895 	name = "Rhine";
896 	if (pdev->revision < VTunknown0) {
897 		quirks = rqRhineI;
898 		io_size = 128;
899 	}
900 	else if (pdev->revision >= VT6102) {
901 		quirks = rqWOL | rqForceReset;
902 		if (pdev->revision < VT6105) {
903 			name = "Rhine II";
904 			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
905 		}
906 		else {
907 			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
908 			if (pdev->revision >= VT6105_B0)
909 				quirks |= rq6patterns;
910 			if (pdev->revision < VT6105M)
911 				name = "Rhine III";
912 			else
913 				name = "Rhine III (Management Adapter)";
914 		}
915 	}
916 
917 	rc = pci_enable_device(pdev);
918 	if (rc)
919 		goto err_out;
920 
921 	/* this should always be supported */
922 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
923 	if (rc) {
924 		dev_err(&pdev->dev,
925 			"32-bit PCI DMA addresses not supported by the card!?\n");
926 		goto err_out;
927 	}
928 
929 	/* sanity check */
930 	if ((pci_resource_len(pdev, 0) < io_size) ||
931 	    (pci_resource_len(pdev, 1) < io_size)) {
932 		rc = -EIO;
933 		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
934 		goto err_out;
935 	}
936 
937 	pioaddr = pci_resource_start(pdev, 0);
938 	memaddr = pci_resource_start(pdev, 1);
939 
940 	pci_set_master(pdev);
941 
942 	dev = alloc_etherdev(sizeof(struct rhine_private));
943 	if (!dev) {
944 		rc = -ENOMEM;
945 		goto err_out;
946 	}
947 	SET_NETDEV_DEV(dev, &pdev->dev);
948 
949 	rp = netdev_priv(dev);
950 	rp->dev = dev;
951 	rp->quirks = quirks;
952 	rp->pioaddr = pioaddr;
953 	rp->pdev = pdev;
954 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
955 
956 	rc = pci_request_regions(pdev, DRV_NAME);
957 	if (rc)
958 		goto err_out_free_netdev;
959 
960 	ioaddr = pci_iomap(pdev, bar, io_size);
961 	if (!ioaddr) {
962 		rc = -EIO;
963 		dev_err(&pdev->dev,
964 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 			pci_name(pdev), io_size, memaddr);
966 		goto err_out_free_res;
967 	}
968 
969 #ifdef USE_MMIO
970 	enable_mmio(pioaddr, quirks);
971 
972 	/* Check that selected MMIO registers match the PIO ones */
973 	i = 0;
974 	while (mmio_verify_registers[i]) {
975 		int reg = mmio_verify_registers[i++];
976 		unsigned char a = inb(pioaddr+reg);
977 		unsigned char b = readb(ioaddr+reg);
978 		if (a != b) {
979 			rc = -EIO;
980 			dev_err(&pdev->dev,
981 				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 				reg, a, b);
983 			goto err_out_unmap;
984 		}
985 	}
986 #endif /* USE_MMIO */
987 
988 	rp->base = ioaddr;
989 
990 	u64_stats_init(&rp->tx_stats.syncp);
991 	u64_stats_init(&rp->rx_stats.syncp);
992 
993 	/* Get chip registers into a sane state */
994 	rhine_power_init(dev);
995 	rhine_hw_init(dev, pioaddr);
996 
997 	for (i = 0; i < 6; i++)
998 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
999 
1000 	if (!is_valid_ether_addr(dev->dev_addr)) {
1001 		/* Report it and use a random ethernet address instead */
1002 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
1003 		eth_hw_addr_random(dev);
1004 		netdev_info(dev, "Using random MAC address: %pM\n",
1005 			    dev->dev_addr);
1006 	}
1007 
1008 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
1009 	if (!phy_id)
1010 		phy_id = ioread8(ioaddr + 0x6C);
1011 
1012 	spin_lock_init(&rp->lock);
1013 	mutex_init(&rp->task_lock);
1014 	INIT_WORK(&rp->reset_task, rhine_reset_task);
1015 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1016 
1017 	rp->mii_if.dev = dev;
1018 	rp->mii_if.mdio_read = mdio_read;
1019 	rp->mii_if.mdio_write = mdio_write;
1020 	rp->mii_if.phy_id_mask = 0x1f;
1021 	rp->mii_if.reg_num_mask = 0x1f;
1022 
1023 	/* The chip-specific entries in the device structure. */
1024 	dev->netdev_ops = &rhine_netdev_ops;
1025 	dev->ethtool_ops = &netdev_ethtool_ops,
1026 	dev->watchdog_timeo = TX_TIMEOUT;
1027 
1028 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1029 
1030 	if (rp->quirks & rqRhineI)
1031 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1032 
1033 	if (pdev->revision >= VT6105M)
1034 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1035 				 NETIF_F_HW_VLAN_CTAG_RX |
1036 				 NETIF_F_HW_VLAN_CTAG_FILTER;
1037 
1038 	/* dev->name not defined before register_netdev()! */
1039 	rc = register_netdev(dev);
1040 	if (rc)
1041 		goto err_out_unmap;
1042 
1043 	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1044 		    name,
1045 #ifdef USE_MMIO
1046 		    memaddr,
1047 #else
1048 		    (long)ioaddr,
1049 #endif
1050 		    dev->dev_addr, pdev->irq);
1051 
1052 	pci_set_drvdata(pdev, dev);
1053 
1054 	{
1055 		u16 mii_cmd;
1056 		int mii_status = mdio_read(dev, phy_id, 1);
1057 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1058 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1059 		if (mii_status != 0xffff && mii_status != 0x0000) {
1060 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1061 			netdev_info(dev,
1062 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1063 				    phy_id,
1064 				    mii_status, rp->mii_if.advertising,
1065 				    mdio_read(dev, phy_id, 5));
1066 
1067 			/* set IFF_RUNNING */
1068 			if (mii_status & BMSR_LSTATUS)
1069 				netif_carrier_on(dev);
1070 			else
1071 				netif_carrier_off(dev);
1072 
1073 		}
1074 	}
1075 	rp->mii_if.phy_id = phy_id;
1076 	if (avoid_D3)
1077 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1078 
1079 	return 0;
1080 
1081 err_out_unmap:
1082 	pci_iounmap(pdev, ioaddr);
1083 err_out_free_res:
1084 	pci_release_regions(pdev);
1085 err_out_free_netdev:
1086 	free_netdev(dev);
1087 err_out:
1088 	return rc;
1089 }
1090 
1091 static int alloc_ring(struct net_device* dev)
1092 {
1093 	struct rhine_private *rp = netdev_priv(dev);
1094 	void *ring;
1095 	dma_addr_t ring_dma;
1096 
1097 	ring = pci_alloc_consistent(rp->pdev,
1098 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1099 				    TX_RING_SIZE * sizeof(struct tx_desc),
1100 				    &ring_dma);
1101 	if (!ring) {
1102 		netdev_err(dev, "Could not allocate DMA memory\n");
1103 		return -ENOMEM;
1104 	}
1105 	if (rp->quirks & rqRhineI) {
1106 		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1107 						   PKT_BUF_SZ * TX_RING_SIZE,
1108 						   &rp->tx_bufs_dma);
1109 		if (rp->tx_bufs == NULL) {
1110 			pci_free_consistent(rp->pdev,
1111 				    RX_RING_SIZE * sizeof(struct rx_desc) +
1112 				    TX_RING_SIZE * sizeof(struct tx_desc),
1113 				    ring, ring_dma);
1114 			return -ENOMEM;
1115 		}
1116 	}
1117 
1118 	rp->rx_ring = ring;
1119 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1120 	rp->rx_ring_dma = ring_dma;
1121 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1122 
1123 	return 0;
1124 }
1125 
1126 static void free_ring(struct net_device* dev)
1127 {
1128 	struct rhine_private *rp = netdev_priv(dev);
1129 
1130 	pci_free_consistent(rp->pdev,
1131 			    RX_RING_SIZE * sizeof(struct rx_desc) +
1132 			    TX_RING_SIZE * sizeof(struct tx_desc),
1133 			    rp->rx_ring, rp->rx_ring_dma);
1134 	rp->tx_ring = NULL;
1135 
1136 	if (rp->tx_bufs)
1137 		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1138 				    rp->tx_bufs, rp->tx_bufs_dma);
1139 
1140 	rp->tx_bufs = NULL;
1141 
1142 }
1143 
1144 static void alloc_rbufs(struct net_device *dev)
1145 {
1146 	struct rhine_private *rp = netdev_priv(dev);
1147 	dma_addr_t next;
1148 	int i;
1149 
1150 	rp->dirty_rx = rp->cur_rx = 0;
1151 
1152 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1153 	rp->rx_head_desc = &rp->rx_ring[0];
1154 	next = rp->rx_ring_dma;
1155 
1156 	/* Init the ring entries */
1157 	for (i = 0; i < RX_RING_SIZE; i++) {
1158 		rp->rx_ring[i].rx_status = 0;
1159 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1160 		next += sizeof(struct rx_desc);
1161 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1162 		rp->rx_skbuff[i] = NULL;
1163 	}
1164 	/* Mark the last entry as wrapping the ring. */
1165 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1166 
1167 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1168 	for (i = 0; i < RX_RING_SIZE; i++) {
1169 		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1170 		rp->rx_skbuff[i] = skb;
1171 		if (skb == NULL)
1172 			break;
1173 
1174 		rp->rx_skbuff_dma[i] =
1175 			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1176 				       PCI_DMA_FROMDEVICE);
1177 		if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1178 			rp->rx_skbuff_dma[i] = 0;
1179 			dev_kfree_skb(skb);
1180 			break;
1181 		}
1182 		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1183 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1184 	}
1185 	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1186 }
1187 
1188 static void free_rbufs(struct net_device* dev)
1189 {
1190 	struct rhine_private *rp = netdev_priv(dev);
1191 	int i;
1192 
1193 	/* Free all the skbuffs in the Rx queue. */
1194 	for (i = 0; i < RX_RING_SIZE; i++) {
1195 		rp->rx_ring[i].rx_status = 0;
1196 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1197 		if (rp->rx_skbuff[i]) {
1198 			pci_unmap_single(rp->pdev,
1199 					 rp->rx_skbuff_dma[i],
1200 					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1201 			dev_kfree_skb(rp->rx_skbuff[i]);
1202 		}
1203 		rp->rx_skbuff[i] = NULL;
1204 	}
1205 }
1206 
1207 static void alloc_tbufs(struct net_device* dev)
1208 {
1209 	struct rhine_private *rp = netdev_priv(dev);
1210 	dma_addr_t next;
1211 	int i;
1212 
1213 	rp->dirty_tx = rp->cur_tx = 0;
1214 	next = rp->tx_ring_dma;
1215 	for (i = 0; i < TX_RING_SIZE; i++) {
1216 		rp->tx_skbuff[i] = NULL;
1217 		rp->tx_ring[i].tx_status = 0;
1218 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1219 		next += sizeof(struct tx_desc);
1220 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1221 		if (rp->quirks & rqRhineI)
1222 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1223 	}
1224 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1225 
1226 }
1227 
1228 static void free_tbufs(struct net_device* dev)
1229 {
1230 	struct rhine_private *rp = netdev_priv(dev);
1231 	int i;
1232 
1233 	for (i = 0; i < TX_RING_SIZE; i++) {
1234 		rp->tx_ring[i].tx_status = 0;
1235 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1236 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1237 		if (rp->tx_skbuff[i]) {
1238 			if (rp->tx_skbuff_dma[i]) {
1239 				pci_unmap_single(rp->pdev,
1240 						 rp->tx_skbuff_dma[i],
1241 						 rp->tx_skbuff[i]->len,
1242 						 PCI_DMA_TODEVICE);
1243 			}
1244 			dev_kfree_skb(rp->tx_skbuff[i]);
1245 		}
1246 		rp->tx_skbuff[i] = NULL;
1247 		rp->tx_buf[i] = NULL;
1248 	}
1249 }
1250 
1251 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1252 {
1253 	struct rhine_private *rp = netdev_priv(dev);
1254 	void __iomem *ioaddr = rp->base;
1255 
1256 	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1257 
1258 	if (rp->mii_if.full_duplex)
1259 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1260 		   ioaddr + ChipCmd1);
1261 	else
1262 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1263 		   ioaddr + ChipCmd1);
1264 
1265 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1266 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1267 }
1268 
1269 /* Called after status of force_media possibly changed */
1270 static void rhine_set_carrier(struct mii_if_info *mii)
1271 {
1272 	struct net_device *dev = mii->dev;
1273 	struct rhine_private *rp = netdev_priv(dev);
1274 
1275 	if (mii->force_media) {
1276 		/* autoneg is off: Link is always assumed to be up */
1277 		if (!netif_carrier_ok(dev))
1278 			netif_carrier_on(dev);
1279 	} else	/* Let MMI library update carrier status */
1280 		rhine_check_media(dev, 0);
1281 
1282 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1283 		   mii->force_media, netif_carrier_ok(dev));
1284 }
1285 
1286 /**
1287  * rhine_set_cam - set CAM multicast filters
1288  * @ioaddr: register block of this Rhine
1289  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1290  * @addr: multicast address (6 bytes)
1291  *
1292  * Load addresses into multicast filters.
1293  */
1294 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1295 {
1296 	int i;
1297 
1298 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1299 	wmb();
1300 
1301 	/* Paranoid -- idx out of range should never happen */
1302 	idx &= (MCAM_SIZE - 1);
1303 
1304 	iowrite8((u8) idx, ioaddr + CamAddr);
1305 
1306 	for (i = 0; i < 6; i++, addr++)
1307 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1308 	udelay(10);
1309 	wmb();
1310 
1311 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1312 	udelay(10);
1313 
1314 	iowrite8(0, ioaddr + CamCon);
1315 }
1316 
1317 /**
1318  * rhine_set_vlan_cam - set CAM VLAN filters
1319  * @ioaddr: register block of this Rhine
1320  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1321  * @addr: VLAN ID (2 bytes)
1322  *
1323  * Load addresses into VLAN filters.
1324  */
1325 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1326 {
1327 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1328 	wmb();
1329 
1330 	/* Paranoid -- idx out of range should never happen */
1331 	idx &= (VCAM_SIZE - 1);
1332 
1333 	iowrite8((u8) idx, ioaddr + CamAddr);
1334 
1335 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1336 	udelay(10);
1337 	wmb();
1338 
1339 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1340 	udelay(10);
1341 
1342 	iowrite8(0, ioaddr + CamCon);
1343 }
1344 
1345 /**
1346  * rhine_set_cam_mask - set multicast CAM mask
1347  * @ioaddr: register block of this Rhine
1348  * @mask: multicast CAM mask
1349  *
1350  * Mask sets multicast filters active/inactive.
1351  */
1352 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1353 {
1354 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1355 	wmb();
1356 
1357 	/* write mask */
1358 	iowrite32(mask, ioaddr + CamMask);
1359 
1360 	/* disable CAMEN */
1361 	iowrite8(0, ioaddr + CamCon);
1362 }
1363 
1364 /**
1365  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1366  * @ioaddr: register block of this Rhine
1367  * @mask: VLAN CAM mask
1368  *
1369  * Mask sets VLAN filters active/inactive.
1370  */
1371 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1372 {
1373 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1374 	wmb();
1375 
1376 	/* write mask */
1377 	iowrite32(mask, ioaddr + CamMask);
1378 
1379 	/* disable CAMEN */
1380 	iowrite8(0, ioaddr + CamCon);
1381 }
1382 
1383 /**
1384  * rhine_init_cam_filter - initialize CAM filters
1385  * @dev: network device
1386  *
1387  * Initialize (disable) hardware VLAN and multicast support on this
1388  * Rhine.
1389  */
1390 static void rhine_init_cam_filter(struct net_device *dev)
1391 {
1392 	struct rhine_private *rp = netdev_priv(dev);
1393 	void __iomem *ioaddr = rp->base;
1394 
1395 	/* Disable all CAMs */
1396 	rhine_set_vlan_cam_mask(ioaddr, 0);
1397 	rhine_set_cam_mask(ioaddr, 0);
1398 
1399 	/* disable hardware VLAN support */
1400 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1401 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1402 }
1403 
1404 /**
1405  * rhine_update_vcam - update VLAN CAM filters
1406  * @rp: rhine_private data of this Rhine
1407  *
1408  * Update VLAN CAM filters to match configuration change.
1409  */
1410 static void rhine_update_vcam(struct net_device *dev)
1411 {
1412 	struct rhine_private *rp = netdev_priv(dev);
1413 	void __iomem *ioaddr = rp->base;
1414 	u16 vid;
1415 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1416 	unsigned int i = 0;
1417 
1418 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1419 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1420 		vCAMmask |= 1 << i;
1421 		if (++i >= VCAM_SIZE)
1422 			break;
1423 	}
1424 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1425 }
1426 
1427 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1428 {
1429 	struct rhine_private *rp = netdev_priv(dev);
1430 
1431 	spin_lock_bh(&rp->lock);
1432 	set_bit(vid, rp->active_vlans);
1433 	rhine_update_vcam(dev);
1434 	spin_unlock_bh(&rp->lock);
1435 	return 0;
1436 }
1437 
1438 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1439 {
1440 	struct rhine_private *rp = netdev_priv(dev);
1441 
1442 	spin_lock_bh(&rp->lock);
1443 	clear_bit(vid, rp->active_vlans);
1444 	rhine_update_vcam(dev);
1445 	spin_unlock_bh(&rp->lock);
1446 	return 0;
1447 }
1448 
1449 static void init_registers(struct net_device *dev)
1450 {
1451 	struct rhine_private *rp = netdev_priv(dev);
1452 	void __iomem *ioaddr = rp->base;
1453 	int i;
1454 
1455 	for (i = 0; i < 6; i++)
1456 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1457 
1458 	/* Initialize other registers. */
1459 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1460 	/* Configure initial FIFO thresholds. */
1461 	iowrite8(0x20, ioaddr + TxConfig);
1462 	rp->tx_thresh = 0x20;
1463 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1464 
1465 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1466 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1467 
1468 	rhine_set_rx_mode(dev);
1469 
1470 	if (rp->pdev->revision >= VT6105M)
1471 		rhine_init_cam_filter(dev);
1472 
1473 	napi_enable(&rp->napi);
1474 
1475 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1476 
1477 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1478 	       ioaddr + ChipCmd);
1479 	rhine_check_media(dev, 1);
1480 }
1481 
1482 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1483 static void rhine_enable_linkmon(struct rhine_private *rp)
1484 {
1485 	void __iomem *ioaddr = rp->base;
1486 
1487 	iowrite8(0, ioaddr + MIICmd);
1488 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1489 	iowrite8(0x80, ioaddr + MIICmd);
1490 
1491 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1492 
1493 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1494 }
1495 
1496 /* Disable MII link status auto-polling (required for MDIO access) */
1497 static void rhine_disable_linkmon(struct rhine_private *rp)
1498 {
1499 	void __iomem *ioaddr = rp->base;
1500 
1501 	iowrite8(0, ioaddr + MIICmd);
1502 
1503 	if (rp->quirks & rqRhineI) {
1504 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1505 
1506 		/* Can be called from ISR. Evil. */
1507 		mdelay(1);
1508 
1509 		/* 0x80 must be set immediately before turning it off */
1510 		iowrite8(0x80, ioaddr + MIICmd);
1511 
1512 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1513 
1514 		/* Heh. Now clear 0x80 again. */
1515 		iowrite8(0, ioaddr + MIICmd);
1516 	}
1517 	else
1518 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1519 }
1520 
1521 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1522 
1523 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1524 {
1525 	struct rhine_private *rp = netdev_priv(dev);
1526 	void __iomem *ioaddr = rp->base;
1527 	int result;
1528 
1529 	rhine_disable_linkmon(rp);
1530 
1531 	/* rhine_disable_linkmon already cleared MIICmd */
1532 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1533 	iowrite8(regnum, ioaddr + MIIRegAddr);
1534 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1535 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1536 	result = ioread16(ioaddr + MIIData);
1537 
1538 	rhine_enable_linkmon(rp);
1539 	return result;
1540 }
1541 
1542 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1543 {
1544 	struct rhine_private *rp = netdev_priv(dev);
1545 	void __iomem *ioaddr = rp->base;
1546 
1547 	rhine_disable_linkmon(rp);
1548 
1549 	/* rhine_disable_linkmon already cleared MIICmd */
1550 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1551 	iowrite8(regnum, ioaddr + MIIRegAddr);
1552 	iowrite16(value, ioaddr + MIIData);
1553 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1554 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1555 
1556 	rhine_enable_linkmon(rp);
1557 }
1558 
1559 static void rhine_task_disable(struct rhine_private *rp)
1560 {
1561 	mutex_lock(&rp->task_lock);
1562 	rp->task_enable = false;
1563 	mutex_unlock(&rp->task_lock);
1564 
1565 	cancel_work_sync(&rp->slow_event_task);
1566 	cancel_work_sync(&rp->reset_task);
1567 }
1568 
1569 static void rhine_task_enable(struct rhine_private *rp)
1570 {
1571 	mutex_lock(&rp->task_lock);
1572 	rp->task_enable = true;
1573 	mutex_unlock(&rp->task_lock);
1574 }
1575 
1576 static int rhine_open(struct net_device *dev)
1577 {
1578 	struct rhine_private *rp = netdev_priv(dev);
1579 	void __iomem *ioaddr = rp->base;
1580 	int rc;
1581 
1582 	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1583 			dev);
1584 	if (rc)
1585 		return rc;
1586 
1587 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1588 
1589 	rc = alloc_ring(dev);
1590 	if (rc) {
1591 		free_irq(rp->pdev->irq, dev);
1592 		return rc;
1593 	}
1594 	alloc_rbufs(dev);
1595 	alloc_tbufs(dev);
1596 	rhine_chip_reset(dev);
1597 	rhine_task_enable(rp);
1598 	init_registers(dev);
1599 
1600 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1601 		  __func__, ioread16(ioaddr + ChipCmd),
1602 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1603 
1604 	netif_start_queue(dev);
1605 
1606 	return 0;
1607 }
1608 
1609 static void rhine_reset_task(struct work_struct *work)
1610 {
1611 	struct rhine_private *rp = container_of(work, struct rhine_private,
1612 						reset_task);
1613 	struct net_device *dev = rp->dev;
1614 
1615 	mutex_lock(&rp->task_lock);
1616 
1617 	if (!rp->task_enable)
1618 		goto out_unlock;
1619 
1620 	napi_disable(&rp->napi);
1621 	spin_lock_bh(&rp->lock);
1622 
1623 	/* clear all descriptors */
1624 	free_tbufs(dev);
1625 	free_rbufs(dev);
1626 	alloc_tbufs(dev);
1627 	alloc_rbufs(dev);
1628 
1629 	/* Reinitialize the hardware. */
1630 	rhine_chip_reset(dev);
1631 	init_registers(dev);
1632 
1633 	spin_unlock_bh(&rp->lock);
1634 
1635 	dev->trans_start = jiffies; /* prevent tx timeout */
1636 	dev->stats.tx_errors++;
1637 	netif_wake_queue(dev);
1638 
1639 out_unlock:
1640 	mutex_unlock(&rp->task_lock);
1641 }
1642 
1643 static void rhine_tx_timeout(struct net_device *dev)
1644 {
1645 	struct rhine_private *rp = netdev_priv(dev);
1646 	void __iomem *ioaddr = rp->base;
1647 
1648 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1649 		    ioread16(ioaddr + IntrStatus),
1650 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1651 
1652 	schedule_work(&rp->reset_task);
1653 }
1654 
1655 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1656 				  struct net_device *dev)
1657 {
1658 	struct rhine_private *rp = netdev_priv(dev);
1659 	void __iomem *ioaddr = rp->base;
1660 	unsigned entry;
1661 
1662 	/* Caution: the write order is important here, set the field
1663 	   with the "ownership" bits last. */
1664 
1665 	/* Calculate the next Tx descriptor entry. */
1666 	entry = rp->cur_tx % TX_RING_SIZE;
1667 
1668 	if (skb_padto(skb, ETH_ZLEN))
1669 		return NETDEV_TX_OK;
1670 
1671 	rp->tx_skbuff[entry] = skb;
1672 
1673 	if ((rp->quirks & rqRhineI) &&
1674 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1675 		/* Must use alignment buffer. */
1676 		if (skb->len > PKT_BUF_SZ) {
1677 			/* packet too long, drop it */
1678 			dev_kfree_skb(skb);
1679 			rp->tx_skbuff[entry] = NULL;
1680 			dev->stats.tx_dropped++;
1681 			return NETDEV_TX_OK;
1682 		}
1683 
1684 		/* Padding is not copied and so must be redone. */
1685 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1686 		if (skb->len < ETH_ZLEN)
1687 			memset(rp->tx_buf[entry] + skb->len, 0,
1688 			       ETH_ZLEN - skb->len);
1689 		rp->tx_skbuff_dma[entry] = 0;
1690 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1691 						      (rp->tx_buf[entry] -
1692 						       rp->tx_bufs));
1693 	} else {
1694 		rp->tx_skbuff_dma[entry] =
1695 			pci_map_single(rp->pdev, skb->data, skb->len,
1696 				       PCI_DMA_TODEVICE);
1697 		if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1698 			dev_kfree_skb(skb);
1699 			rp->tx_skbuff_dma[entry] = 0;
1700 			dev->stats.tx_dropped++;
1701 			return NETDEV_TX_OK;
1702 		}
1703 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1704 	}
1705 
1706 	rp->tx_ring[entry].desc_length =
1707 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1708 
1709 	if (unlikely(vlan_tx_tag_present(skb))) {
1710 		u16 vid_pcp = vlan_tx_tag_get(skb);
1711 
1712 		/* drop CFI/DEI bit, register needs VID and PCP */
1713 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1714 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1715 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1716 		/* request tagging */
1717 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1718 	}
1719 	else
1720 		rp->tx_ring[entry].tx_status = 0;
1721 
1722 	/* lock eth irq */
1723 	wmb();
1724 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1725 	wmb();
1726 
1727 	rp->cur_tx++;
1728 
1729 	/* Non-x86 Todo: explicitly flush cache lines here. */
1730 
1731 	if (vlan_tx_tag_present(skb))
1732 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1733 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1734 
1735 	/* Wake the potentially-idle transmit channel */
1736 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1737 	       ioaddr + ChipCmd1);
1738 	IOSYNC;
1739 
1740 	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1741 		netif_stop_queue(dev);
1742 
1743 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1744 		  rp->cur_tx - 1, entry);
1745 
1746 	return NETDEV_TX_OK;
1747 }
1748 
1749 static void rhine_irq_disable(struct rhine_private *rp)
1750 {
1751 	iowrite16(0x0000, rp->base + IntrEnable);
1752 	mmiowb();
1753 }
1754 
1755 /* The interrupt handler does all of the Rx thread work and cleans up
1756    after the Tx thread. */
1757 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1758 {
1759 	struct net_device *dev = dev_instance;
1760 	struct rhine_private *rp = netdev_priv(dev);
1761 	u32 status;
1762 	int handled = 0;
1763 
1764 	status = rhine_get_events(rp);
1765 
1766 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1767 
1768 	if (status & RHINE_EVENT) {
1769 		handled = 1;
1770 
1771 		rhine_irq_disable(rp);
1772 		napi_schedule(&rp->napi);
1773 	}
1774 
1775 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1776 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1777 			  status);
1778 	}
1779 
1780 	return IRQ_RETVAL(handled);
1781 }
1782 
1783 /* This routine is logically part of the interrupt handler, but isolated
1784    for clarity. */
1785 static void rhine_tx(struct net_device *dev)
1786 {
1787 	struct rhine_private *rp = netdev_priv(dev);
1788 	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1789 
1790 	/* find and cleanup dirty tx descriptors */
1791 	while (rp->dirty_tx != rp->cur_tx) {
1792 		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1793 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1794 			  entry, txstatus);
1795 		if (txstatus & DescOwn)
1796 			break;
1797 		if (txstatus & 0x8000) {
1798 			netif_dbg(rp, tx_done, dev,
1799 				  "Transmit error, Tx status %08x\n", txstatus);
1800 			dev->stats.tx_errors++;
1801 			if (txstatus & 0x0400)
1802 				dev->stats.tx_carrier_errors++;
1803 			if (txstatus & 0x0200)
1804 				dev->stats.tx_window_errors++;
1805 			if (txstatus & 0x0100)
1806 				dev->stats.tx_aborted_errors++;
1807 			if (txstatus & 0x0080)
1808 				dev->stats.tx_heartbeat_errors++;
1809 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1810 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1811 				dev->stats.tx_fifo_errors++;
1812 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1813 				break; /* Keep the skb - we try again */
1814 			}
1815 			/* Transmitter restarted in 'abnormal' handler. */
1816 		} else {
1817 			if (rp->quirks & rqRhineI)
1818 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1819 			else
1820 				dev->stats.collisions += txstatus & 0x0F;
1821 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1822 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1823 
1824 			u64_stats_update_begin(&rp->tx_stats.syncp);
1825 			rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1826 			rp->tx_stats.packets++;
1827 			u64_stats_update_end(&rp->tx_stats.syncp);
1828 		}
1829 		/* Free the original skb. */
1830 		if (rp->tx_skbuff_dma[entry]) {
1831 			pci_unmap_single(rp->pdev,
1832 					 rp->tx_skbuff_dma[entry],
1833 					 rp->tx_skbuff[entry]->len,
1834 					 PCI_DMA_TODEVICE);
1835 		}
1836 		dev_kfree_skb(rp->tx_skbuff[entry]);
1837 		rp->tx_skbuff[entry] = NULL;
1838 		entry = (++rp->dirty_tx) % TX_RING_SIZE;
1839 	}
1840 	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1841 		netif_wake_queue(dev);
1842 }
1843 
1844 /**
1845  * rhine_get_vlan_tci - extract TCI from Rx data buffer
1846  * @skb: pointer to sk_buff
1847  * @data_size: used data area of the buffer including CRC
1848  *
1849  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1850  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1851  * aligned following the CRC.
1852  */
1853 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1854 {
1855 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1856 	return be16_to_cpup((__be16 *)trailer);
1857 }
1858 
1859 /* Process up to limit frames from receive ring */
1860 static int rhine_rx(struct net_device *dev, int limit)
1861 {
1862 	struct rhine_private *rp = netdev_priv(dev);
1863 	int count;
1864 	int entry = rp->cur_rx % RX_RING_SIZE;
1865 
1866 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1867 		  entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1868 
1869 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1870 	for (count = 0; count < limit; ++count) {
1871 		struct rx_desc *desc = rp->rx_head_desc;
1872 		u32 desc_status = le32_to_cpu(desc->rx_status);
1873 		u32 desc_length = le32_to_cpu(desc->desc_length);
1874 		int data_size = desc_status >> 16;
1875 
1876 		if (desc_status & DescOwn)
1877 			break;
1878 
1879 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1880 			  desc_status);
1881 
1882 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1883 			if ((desc_status & RxWholePkt) != RxWholePkt) {
1884 				netdev_warn(dev,
1885 	"Oversized Ethernet frame spanned multiple buffers, "
1886 	"entry %#x length %d status %08x!\n",
1887 					    entry, data_size,
1888 					    desc_status);
1889 				netdev_warn(dev,
1890 					    "Oversized Ethernet frame %p vs %p\n",
1891 					    rp->rx_head_desc,
1892 					    &rp->rx_ring[entry]);
1893 				dev->stats.rx_length_errors++;
1894 			} else if (desc_status & RxErr) {
1895 				/* There was a error. */
1896 				netif_dbg(rp, rx_err, dev,
1897 					  "%s() Rx error %08x\n", __func__,
1898 					  desc_status);
1899 				dev->stats.rx_errors++;
1900 				if (desc_status & 0x0030)
1901 					dev->stats.rx_length_errors++;
1902 				if (desc_status & 0x0048)
1903 					dev->stats.rx_fifo_errors++;
1904 				if (desc_status & 0x0004)
1905 					dev->stats.rx_frame_errors++;
1906 				if (desc_status & 0x0002) {
1907 					/* this can also be updated outside the interrupt handler */
1908 					spin_lock(&rp->lock);
1909 					dev->stats.rx_crc_errors++;
1910 					spin_unlock(&rp->lock);
1911 				}
1912 			}
1913 		} else {
1914 			struct sk_buff *skb = NULL;
1915 			/* Length should omit the CRC */
1916 			int pkt_len = data_size - 4;
1917 			u16 vlan_tci = 0;
1918 
1919 			/* Check if the packet is long enough to accept without
1920 			   copying to a minimally-sized skbuff. */
1921 			if (pkt_len < rx_copybreak)
1922 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1923 			if (skb) {
1924 				pci_dma_sync_single_for_cpu(rp->pdev,
1925 							    rp->rx_skbuff_dma[entry],
1926 							    rp->rx_buf_sz,
1927 							    PCI_DMA_FROMDEVICE);
1928 
1929 				skb_copy_to_linear_data(skb,
1930 						 rp->rx_skbuff[entry]->data,
1931 						 pkt_len);
1932 				skb_put(skb, pkt_len);
1933 				pci_dma_sync_single_for_device(rp->pdev,
1934 							       rp->rx_skbuff_dma[entry],
1935 							       rp->rx_buf_sz,
1936 							       PCI_DMA_FROMDEVICE);
1937 			} else {
1938 				skb = rp->rx_skbuff[entry];
1939 				if (skb == NULL) {
1940 					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1941 					break;
1942 				}
1943 				rp->rx_skbuff[entry] = NULL;
1944 				skb_put(skb, pkt_len);
1945 				pci_unmap_single(rp->pdev,
1946 						 rp->rx_skbuff_dma[entry],
1947 						 rp->rx_buf_sz,
1948 						 PCI_DMA_FROMDEVICE);
1949 			}
1950 
1951 			if (unlikely(desc_length & DescTag))
1952 				vlan_tci = rhine_get_vlan_tci(skb, data_size);
1953 
1954 			skb->protocol = eth_type_trans(skb, dev);
1955 
1956 			if (unlikely(desc_length & DescTag))
1957 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
1958 			netif_receive_skb(skb);
1959 
1960 			u64_stats_update_begin(&rp->rx_stats.syncp);
1961 			rp->rx_stats.bytes += pkt_len;
1962 			rp->rx_stats.packets++;
1963 			u64_stats_update_end(&rp->rx_stats.syncp);
1964 		}
1965 		entry = (++rp->cur_rx) % RX_RING_SIZE;
1966 		rp->rx_head_desc = &rp->rx_ring[entry];
1967 	}
1968 
1969 	/* Refill the Rx ring buffers. */
1970 	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1971 		struct sk_buff *skb;
1972 		entry = rp->dirty_rx % RX_RING_SIZE;
1973 		if (rp->rx_skbuff[entry] == NULL) {
1974 			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1975 			rp->rx_skbuff[entry] = skb;
1976 			if (skb == NULL)
1977 				break;	/* Better luck next round. */
1978 			rp->rx_skbuff_dma[entry] =
1979 				pci_map_single(rp->pdev, skb->data,
1980 					       rp->rx_buf_sz,
1981 					       PCI_DMA_FROMDEVICE);
1982 			if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1983 				dev_kfree_skb(skb);
1984 				rp->rx_skbuff_dma[entry] = 0;
1985 				break;
1986 			}
1987 			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1988 		}
1989 		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1990 	}
1991 
1992 	return count;
1993 }
1994 
1995 static void rhine_restart_tx(struct net_device *dev) {
1996 	struct rhine_private *rp = netdev_priv(dev);
1997 	void __iomem *ioaddr = rp->base;
1998 	int entry = rp->dirty_tx % TX_RING_SIZE;
1999 	u32 intr_status;
2000 
2001 	/*
2002 	 * If new errors occurred, we need to sort them out before doing Tx.
2003 	 * In that case the ISR will be back here RSN anyway.
2004 	 */
2005 	intr_status = rhine_get_events(rp);
2006 
2007 	if ((intr_status & IntrTxErrSummary) == 0) {
2008 
2009 		/* We know better than the chip where it should continue. */
2010 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2011 		       ioaddr + TxRingPtr);
2012 
2013 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2014 		       ioaddr + ChipCmd);
2015 
2016 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2017 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2018 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2019 
2020 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2021 		       ioaddr + ChipCmd1);
2022 		IOSYNC;
2023 	}
2024 	else {
2025 		/* This should never happen */
2026 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2027 			   intr_status);
2028 	}
2029 
2030 }
2031 
2032 static void rhine_slow_event_task(struct work_struct *work)
2033 {
2034 	struct rhine_private *rp =
2035 		container_of(work, struct rhine_private, slow_event_task);
2036 	struct net_device *dev = rp->dev;
2037 	u32 intr_status;
2038 
2039 	mutex_lock(&rp->task_lock);
2040 
2041 	if (!rp->task_enable)
2042 		goto out_unlock;
2043 
2044 	intr_status = rhine_get_events(rp);
2045 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2046 
2047 	if (intr_status & IntrLinkChange)
2048 		rhine_check_media(dev, 0);
2049 
2050 	if (intr_status & IntrPCIErr)
2051 		netif_warn(rp, hw, dev, "PCI error\n");
2052 
2053 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2054 
2055 out_unlock:
2056 	mutex_unlock(&rp->task_lock);
2057 }
2058 
2059 static struct rtnl_link_stats64 *
2060 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2061 {
2062 	struct rhine_private *rp = netdev_priv(dev);
2063 	unsigned int start;
2064 
2065 	spin_lock_bh(&rp->lock);
2066 	rhine_update_rx_crc_and_missed_errord(rp);
2067 	spin_unlock_bh(&rp->lock);
2068 
2069 	netdev_stats_to_stats64(stats, &dev->stats);
2070 
2071 	do {
2072 		start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2073 		stats->rx_packets = rp->rx_stats.packets;
2074 		stats->rx_bytes = rp->rx_stats.bytes;
2075 	} while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2076 
2077 	do {
2078 		start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2079 		stats->tx_packets = rp->tx_stats.packets;
2080 		stats->tx_bytes = rp->tx_stats.bytes;
2081 	} while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2082 
2083 	return stats;
2084 }
2085 
2086 static void rhine_set_rx_mode(struct net_device *dev)
2087 {
2088 	struct rhine_private *rp = netdev_priv(dev);
2089 	void __iomem *ioaddr = rp->base;
2090 	u32 mc_filter[2];	/* Multicast hash filter */
2091 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2092 	struct netdev_hw_addr *ha;
2093 
2094 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2095 		rx_mode = 0x1C;
2096 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2097 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2098 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2099 		   (dev->flags & IFF_ALLMULTI)) {
2100 		/* Too many to match, or accept all multicasts. */
2101 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2102 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2103 	} else if (rp->pdev->revision >= VT6105M) {
2104 		int i = 0;
2105 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2106 		netdev_for_each_mc_addr(ha, dev) {
2107 			if (i == MCAM_SIZE)
2108 				break;
2109 			rhine_set_cam(ioaddr, i, ha->addr);
2110 			mCAMmask |= 1 << i;
2111 			i++;
2112 		}
2113 		rhine_set_cam_mask(ioaddr, mCAMmask);
2114 	} else {
2115 		memset(mc_filter, 0, sizeof(mc_filter));
2116 		netdev_for_each_mc_addr(ha, dev) {
2117 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2118 
2119 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2120 		}
2121 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2122 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2123 	}
2124 	/* enable/disable VLAN receive filtering */
2125 	if (rp->pdev->revision >= VT6105M) {
2126 		if (dev->flags & IFF_PROMISC)
2127 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2128 		else
2129 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2130 	}
2131 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2132 }
2133 
2134 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2135 {
2136 	struct rhine_private *rp = netdev_priv(dev);
2137 
2138 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2139 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2140 	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2141 }
2142 
2143 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2144 {
2145 	struct rhine_private *rp = netdev_priv(dev);
2146 	int rc;
2147 
2148 	mutex_lock(&rp->task_lock);
2149 	rc = mii_ethtool_gset(&rp->mii_if, cmd);
2150 	mutex_unlock(&rp->task_lock);
2151 
2152 	return rc;
2153 }
2154 
2155 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2156 {
2157 	struct rhine_private *rp = netdev_priv(dev);
2158 	int rc;
2159 
2160 	mutex_lock(&rp->task_lock);
2161 	rc = mii_ethtool_sset(&rp->mii_if, cmd);
2162 	rhine_set_carrier(&rp->mii_if);
2163 	mutex_unlock(&rp->task_lock);
2164 
2165 	return rc;
2166 }
2167 
2168 static int netdev_nway_reset(struct net_device *dev)
2169 {
2170 	struct rhine_private *rp = netdev_priv(dev);
2171 
2172 	return mii_nway_restart(&rp->mii_if);
2173 }
2174 
2175 static u32 netdev_get_link(struct net_device *dev)
2176 {
2177 	struct rhine_private *rp = netdev_priv(dev);
2178 
2179 	return mii_link_ok(&rp->mii_if);
2180 }
2181 
2182 static u32 netdev_get_msglevel(struct net_device *dev)
2183 {
2184 	struct rhine_private *rp = netdev_priv(dev);
2185 
2186 	return rp->msg_enable;
2187 }
2188 
2189 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2190 {
2191 	struct rhine_private *rp = netdev_priv(dev);
2192 
2193 	rp->msg_enable = value;
2194 }
2195 
2196 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2197 {
2198 	struct rhine_private *rp = netdev_priv(dev);
2199 
2200 	if (!(rp->quirks & rqWOL))
2201 		return;
2202 
2203 	spin_lock_irq(&rp->lock);
2204 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2205 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2206 	wol->wolopts = rp->wolopts;
2207 	spin_unlock_irq(&rp->lock);
2208 }
2209 
2210 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2211 {
2212 	struct rhine_private *rp = netdev_priv(dev);
2213 	u32 support = WAKE_PHY | WAKE_MAGIC |
2214 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2215 
2216 	if (!(rp->quirks & rqWOL))
2217 		return -EINVAL;
2218 
2219 	if (wol->wolopts & ~support)
2220 		return -EINVAL;
2221 
2222 	spin_lock_irq(&rp->lock);
2223 	rp->wolopts = wol->wolopts;
2224 	spin_unlock_irq(&rp->lock);
2225 
2226 	return 0;
2227 }
2228 
2229 static const struct ethtool_ops netdev_ethtool_ops = {
2230 	.get_drvinfo		= netdev_get_drvinfo,
2231 	.get_settings		= netdev_get_settings,
2232 	.set_settings		= netdev_set_settings,
2233 	.nway_reset		= netdev_nway_reset,
2234 	.get_link		= netdev_get_link,
2235 	.get_msglevel		= netdev_get_msglevel,
2236 	.set_msglevel		= netdev_set_msglevel,
2237 	.get_wol		= rhine_get_wol,
2238 	.set_wol		= rhine_set_wol,
2239 };
2240 
2241 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2242 {
2243 	struct rhine_private *rp = netdev_priv(dev);
2244 	int rc;
2245 
2246 	if (!netif_running(dev))
2247 		return -EINVAL;
2248 
2249 	mutex_lock(&rp->task_lock);
2250 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2251 	rhine_set_carrier(&rp->mii_if);
2252 	mutex_unlock(&rp->task_lock);
2253 
2254 	return rc;
2255 }
2256 
2257 static int rhine_close(struct net_device *dev)
2258 {
2259 	struct rhine_private *rp = netdev_priv(dev);
2260 	void __iomem *ioaddr = rp->base;
2261 
2262 	rhine_task_disable(rp);
2263 	napi_disable(&rp->napi);
2264 	netif_stop_queue(dev);
2265 
2266 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2267 		  ioread16(ioaddr + ChipCmd));
2268 
2269 	/* Switch to loopback mode to avoid hardware races. */
2270 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2271 
2272 	rhine_irq_disable(rp);
2273 
2274 	/* Stop the chip's Tx and Rx processes. */
2275 	iowrite16(CmdStop, ioaddr + ChipCmd);
2276 
2277 	free_irq(rp->pdev->irq, dev);
2278 	free_rbufs(dev);
2279 	free_tbufs(dev);
2280 	free_ring(dev);
2281 
2282 	return 0;
2283 }
2284 
2285 
2286 static void rhine_remove_one(struct pci_dev *pdev)
2287 {
2288 	struct net_device *dev = pci_get_drvdata(pdev);
2289 	struct rhine_private *rp = netdev_priv(dev);
2290 
2291 	unregister_netdev(dev);
2292 
2293 	pci_iounmap(pdev, rp->base);
2294 	pci_release_regions(pdev);
2295 
2296 	free_netdev(dev);
2297 	pci_disable_device(pdev);
2298 }
2299 
2300 static void rhine_shutdown (struct pci_dev *pdev)
2301 {
2302 	struct net_device *dev = pci_get_drvdata(pdev);
2303 	struct rhine_private *rp = netdev_priv(dev);
2304 	void __iomem *ioaddr = rp->base;
2305 
2306 	if (!(rp->quirks & rqWOL))
2307 		return; /* Nothing to do for non-WOL adapters */
2308 
2309 	rhine_power_init(dev);
2310 
2311 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2312 	if (rp->quirks & rq6patterns)
2313 		iowrite8(0x04, ioaddr + WOLcgClr);
2314 
2315 	spin_lock(&rp->lock);
2316 
2317 	if (rp->wolopts & WAKE_MAGIC) {
2318 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2319 		/*
2320 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2321 		 * not cooperate otherwise.
2322 		 */
2323 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2324 	}
2325 
2326 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2327 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2328 
2329 	if (rp->wolopts & WAKE_PHY)
2330 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2331 
2332 	if (rp->wolopts & WAKE_UCAST)
2333 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2334 
2335 	if (rp->wolopts) {
2336 		/* Enable legacy WOL (for old motherboards) */
2337 		iowrite8(0x01, ioaddr + PwcfgSet);
2338 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2339 	}
2340 
2341 	spin_unlock(&rp->lock);
2342 
2343 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2344 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2345 
2346 		pci_wake_from_d3(pdev, true);
2347 		pci_set_power_state(pdev, PCI_D3hot);
2348 	}
2349 }
2350 
2351 #ifdef CONFIG_PM_SLEEP
2352 static int rhine_suspend(struct device *device)
2353 {
2354 	struct pci_dev *pdev = to_pci_dev(device);
2355 	struct net_device *dev = pci_get_drvdata(pdev);
2356 	struct rhine_private *rp = netdev_priv(dev);
2357 
2358 	if (!netif_running(dev))
2359 		return 0;
2360 
2361 	rhine_task_disable(rp);
2362 	rhine_irq_disable(rp);
2363 	napi_disable(&rp->napi);
2364 
2365 	netif_device_detach(dev);
2366 
2367 	rhine_shutdown(pdev);
2368 
2369 	return 0;
2370 }
2371 
2372 static int rhine_resume(struct device *device)
2373 {
2374 	struct pci_dev *pdev = to_pci_dev(device);
2375 	struct net_device *dev = pci_get_drvdata(pdev);
2376 	struct rhine_private *rp = netdev_priv(dev);
2377 
2378 	if (!netif_running(dev))
2379 		return 0;
2380 
2381 #ifdef USE_MMIO
2382 	enable_mmio(rp->pioaddr, rp->quirks);
2383 #endif
2384 	rhine_power_init(dev);
2385 	free_tbufs(dev);
2386 	free_rbufs(dev);
2387 	alloc_tbufs(dev);
2388 	alloc_rbufs(dev);
2389 	rhine_task_enable(rp);
2390 	spin_lock_bh(&rp->lock);
2391 	init_registers(dev);
2392 	spin_unlock_bh(&rp->lock);
2393 
2394 	netif_device_attach(dev);
2395 
2396 	return 0;
2397 }
2398 
2399 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2400 #define RHINE_PM_OPS	(&rhine_pm_ops)
2401 
2402 #else
2403 
2404 #define RHINE_PM_OPS	NULL
2405 
2406 #endif /* !CONFIG_PM_SLEEP */
2407 
2408 static struct pci_driver rhine_driver = {
2409 	.name		= DRV_NAME,
2410 	.id_table	= rhine_pci_tbl,
2411 	.probe		= rhine_init_one,
2412 	.remove		= rhine_remove_one,
2413 	.shutdown	= rhine_shutdown,
2414 	.driver.pm	= RHINE_PM_OPS,
2415 };
2416 
2417 static struct dmi_system_id rhine_dmi_table[] __initdata = {
2418 	{
2419 		.ident = "EPIA-M",
2420 		.matches = {
2421 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2422 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2423 		},
2424 	},
2425 	{
2426 		.ident = "KV7",
2427 		.matches = {
2428 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2429 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2430 		},
2431 	},
2432 	{ NULL }
2433 };
2434 
2435 static int __init rhine_init(void)
2436 {
2437 /* when a module, this is printed whether or not devices are found in probe */
2438 #ifdef MODULE
2439 	pr_info("%s\n", version);
2440 #endif
2441 	if (dmi_check_system(rhine_dmi_table)) {
2442 		/* these BIOSes fail at PXE boot if chip is in D3 */
2443 		avoid_D3 = true;
2444 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2445 	}
2446 	else if (avoid_D3)
2447 		pr_info("avoid_D3 set\n");
2448 
2449 	return pci_register_driver(&rhine_driver);
2450 }
2451 
2452 
2453 static void __exit rhine_cleanup(void)
2454 {
2455 	pci_unregister_driver(&rhine_driver);
2456 }
2457 
2458 
2459 module_init(rhine_init);
2460 module_exit(rhine_cleanup);
2461