1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 
36 #include <linux/types.h>
37 
38 /* A few user-configurable values.
39    These may be modified when a driver module is loaded. */
40 static int debug = 0;
41 #define RHINE_MSG_DEFAULT \
42         (0x0000)
43 
44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
45    Setting to > 1518 effectively disables this feature. */
46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
47 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
48 	defined(__sh__) || defined(__mips__)
49 static int rx_copybreak = 1518;
50 #else
51 static int rx_copybreak;
52 #endif
53 
54 /* Work-around for broken BIOSes: they are unable to get the chip back out of
55    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
56 static bool avoid_D3;
57 
58 /*
59  * In case you are looking for 'options[]' or 'full_duplex[]', they
60  * are gone. Use ethtool(8) instead.
61  */
62 
63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
64    The Rhine has a 64 element 8390-like hash table. */
65 static const int multicast_filter_limit = 32;
66 
67 
68 /* Operational parameters that are set at compile time. */
69 
70 /* Keep the ring sizes a power of two for compile efficiency.
71  * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
72  * Making the Tx ring too large decreases the effectiveness of channel
73  * bonding and packet priority.
74  * With BQL support, we can increase TX ring safely.
75  * There are no ill effects from too-large receive rings.
76  */
77 #define TX_RING_SIZE	64
78 #define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/of_device.h>
98 #include <linux/of_irq.h>
99 #include <linux/platform_device.h>
100 #include <linux/dma-mapping.h>
101 #include <linux/netdevice.h>
102 #include <linux/etherdevice.h>
103 #include <linux/skbuff.h>
104 #include <linux/init.h>
105 #include <linux/delay.h>
106 #include <linux/mii.h>
107 #include <linux/ethtool.h>
108 #include <linux/crc32.h>
109 #include <linux/if_vlan.h>
110 #include <linux/bitops.h>
111 #include <linux/workqueue.h>
112 #include <asm/processor.h>	/* Processor type for cache alignment. */
113 #include <asm/io.h>
114 #include <asm/irq.h>
115 #include <linux/uaccess.h>
116 #include <linux/dmi.h>
117 
118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
120 MODULE_LICENSE("GPL");
121 
122 module_param(debug, int, 0);
123 module_param(rx_copybreak, int, 0);
124 module_param(avoid_D3, bool, 0);
125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
128 
129 #define MCAM_SIZE	32
130 #define VCAM_SIZE	32
131 
132 /*
133 		Theory of Operation
134 
135 I. Board Compatibility
136 
137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
138 controller.
139 
140 II. Board-specific settings
141 
142 Boards with this chip are functional only in a bus-master PCI slot.
143 
144 Many operational settings are loaded from the EEPROM to the Config word at
145 offset 0x78. For most of these settings, this driver assumes that they are
146 correct.
147 If this driver is compiled to use PCI memory space operations the EEPROM
148 must be configured to enable memory ops.
149 
150 III. Driver operation
151 
152 IIIa. Ring buffers
153 
154 This driver uses two statically allocated fixed-size descriptor lists
155 formed into rings by a branch from the final descriptor to the beginning of
156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
157 
158 IIIb/c. Transmit/Receive Structure
159 
160 This driver attempts to use a zero-copy receive and transmit scheme.
161 
162 Alas, all data buffers are required to start on a 32 bit boundary, so
163 the driver must often copy transmit packets into bounce buffers.
164 
165 The driver allocates full frame size skbuffs for the Rx ring buffers at
166 open() time and passes the skb->data field to the chip as receive data
167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
168 a fresh skbuff is allocated and the frame is copied to the new skbuff.
169 When the incoming frame is larger, the skbuff is passed directly up the
170 protocol stack. Buffers consumed this way are replaced by newly allocated
171 skbuffs in the last phase of rhine_rx().
172 
173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
174 using a full-sized skbuff for small frames vs. the copying costs of larger
175 frames. New boards are typically used in generously configured machines
176 and the underfilled buffers have negligible impact compared to the benefit of
177 a single allocation size, so the default value of zero results in never
178 copying packets. When copying is done, the cost is usually mitigated by using
179 a combined copy/checksum routine. Copying also preloads the cache, which is
180 most useful with small frames.
181 
182 Since the VIA chips are only able to transfer data to buffers on 32 bit
183 boundaries, the IP header at offset 14 in an ethernet frame isn't
184 longword aligned for further processing. Copying these unaligned buffers
185 has the beneficial effect of 16-byte aligning the IP header.
186 
187 IIId. Synchronization
188 
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
192 which is single threaded by the hardware and interrupt handling software.
193 
194 The send packet thread has partial control over the Tx ring. It locks the
195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
196 the ring is not available it stops the transmit queue by
197 calling netif_stop_queue.
198 
199 The interrupt handler has exclusive control over the Rx ring and records stats
200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
201 empty by incrementing the dirty_tx mark. If at least half of the entries in
202 the Rx ring are available the transmit queue is woken up if it was stopped.
203 
204 IV. Notes
205 
206 IVb. References
207 
208 Preliminary VT86C100A manual from http://www.via.com.tw/
209 http://www.scyld.com/expert/100mbps.html
210 http://www.scyld.com/expert/NWay.html
211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
213 
214 
215 IVc. Errata
216 
217 The VT86C100A manual is not reliable information.
218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
219 in significant performance degradation for bounce buffer copies on transmit
220 and unaligned IP headers on receive.
221 The chip does not pad to minimum transmit length.
222 
223 */
224 
225 
226 /* This table drives the PCI probe routines. It's mostly boilerplate in all
227    of the drivers, and will likely be provided by some future kernel.
228    Note the matching code -- the first table entry matchs all 56** cards but
229    second only the 1234 card.
230 */
231 
232 enum rhine_revs {
233 	VT86C100A	= 0x00,
234 	VTunknown0	= 0x20,
235 	VT6102		= 0x40,
236 	VT8231		= 0x50,	/* Integrated MAC */
237 	VT8233		= 0x60,	/* Integrated MAC */
238 	VT8235		= 0x74,	/* Integrated MAC */
239 	VT8237		= 0x78,	/* Integrated MAC */
240 	VT8251		= 0x7C,	/* Integrated MAC */
241 	VT6105		= 0x80,
242 	VT6105_B0	= 0x83,
243 	VT6105L		= 0x8A,
244 	VT6107		= 0x8C,
245 	VTunknown2	= 0x8E,
246 	VT6105M		= 0x90,	/* Management adapter */
247 };
248 
249 enum rhine_quirks {
250 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
251 	rqForceReset	= 0x0002,
252 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
253 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
254 	rqRhineI	= 0x0100,	/* See comment below */
255 	rqIntPHY	= 0x0200,	/* Integrated PHY */
256 	rqMgmt		= 0x0400,	/* Management adapter */
257 	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
258 					 * switched from PIO mode to MMIO
259 					 * (only applies to PCI)
260 					 */
261 };
262 /*
263  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
264  * MMIO as well as for the collision counter and the Tx FIFO underflow
265  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266  */
267 
268 /* Beware of PCI posted writes */
269 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
270 
271 static const struct pci_device_id rhine_pci_tbl[] = {
272 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
273 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
274 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
275 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
276 	{ }	/* terminate list */
277 };
278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 
280 /* OpenFirmware identifiers for platform-bus devices
281  * The .data field is currently only used to store quirks
282  */
283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
284 static const struct of_device_id rhine_of_tbl[] = {
285 	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
286 	{ }	/* terminate list */
287 };
288 MODULE_DEVICE_TABLE(of, rhine_of_tbl);
289 
290 /* Offsets to the device registers. */
291 enum register_offsets {
292 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
293 	ChipCmd1=0x09, TQWake=0x0A,
294 	IntrStatus=0x0C, IntrEnable=0x0E,
295 	MulticastFilter0=0x10, MulticastFilter1=0x14,
296 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
297 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
298 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
299 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
300 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
301 	StickyHW=0x83, IntrStatus2=0x84,
302 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
303 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
304 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
305 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
306 };
307 
308 /* Bits in ConfigD */
309 enum backoff_bits {
310 	BackOptional=0x01, BackModify=0x02,
311 	BackCaptureEffect=0x04, BackRandom=0x08
312 };
313 
314 /* Bits in the TxConfig (TCR) register */
315 enum tcr_bits {
316 	TCR_PQEN=0x01,
317 	TCR_LB0=0x02,		/* loopback[0] */
318 	TCR_LB1=0x04,		/* loopback[1] */
319 	TCR_OFSET=0x08,
320 	TCR_RTGOPT=0x10,
321 	TCR_RTFT0=0x20,
322 	TCR_RTFT1=0x40,
323 	TCR_RTSF=0x80,
324 };
325 
326 /* Bits in the CamCon (CAMC) register */
327 enum camcon_bits {
328 	CAMC_CAMEN=0x01,
329 	CAMC_VCAMSL=0x02,
330 	CAMC_CAMWR=0x04,
331 	CAMC_CAMRD=0x08,
332 };
333 
334 /* Bits in the PCIBusConfig1 (BCR1) register */
335 enum bcr1_bits {
336 	BCR1_POT0=0x01,
337 	BCR1_POT1=0x02,
338 	BCR1_POT2=0x04,
339 	BCR1_CTFT0=0x08,
340 	BCR1_CTFT1=0x10,
341 	BCR1_CTSF=0x20,
342 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
343 	BCR1_VIDFR=0x80,	/* for VT6105 */
344 	BCR1_MED0=0x40,		/* for VT6102 */
345 	BCR1_MED1=0x80,		/* for VT6102 */
346 };
347 
348 /* Registers we check that mmio and reg are the same. */
349 static const int mmio_verify_registers[] = {
350 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
351 	0
352 };
353 
354 /* Bits in the interrupt status/mask registers. */
355 enum intr_status_bits {
356 	IntrRxDone	= 0x0001,
357 	IntrTxDone	= 0x0002,
358 	IntrRxErr	= 0x0004,
359 	IntrTxError	= 0x0008,
360 	IntrRxEmpty	= 0x0020,
361 	IntrPCIErr	= 0x0040,
362 	IntrStatsMax	= 0x0080,
363 	IntrRxEarly	= 0x0100,
364 	IntrTxUnderrun	= 0x0210,
365 	IntrRxOverflow	= 0x0400,
366 	IntrRxDropped	= 0x0800,
367 	IntrRxNoBuf	= 0x1000,
368 	IntrTxAborted	= 0x2000,
369 	IntrLinkChange	= 0x4000,
370 	IntrRxWakeUp	= 0x8000,
371 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
372 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
373 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
374 				  IntrTxUnderrun,
375 };
376 
377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
378 enum wol_bits {
379 	WOLucast	= 0x10,
380 	WOLmagic	= 0x20,
381 	WOLbmcast	= 0x30,
382 	WOLlnkon	= 0x40,
383 	WOLlnkoff	= 0x80,
384 };
385 
386 /* The Rx and Tx buffer descriptors. */
387 struct rx_desc {
388 	__le32 rx_status;
389 	__le32 desc_length; /* Chain flag, Buffer/frame length */
390 	__le32 addr;
391 	__le32 next_desc;
392 };
393 struct tx_desc {
394 	__le32 tx_status;
395 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
396 	__le32 addr;
397 	__le32 next_desc;
398 };
399 
400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
401 #define TXDESC		0x00e08000
402 
403 enum rx_status_bits {
404 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
405 };
406 
407 /* Bits in *_desc.*_status */
408 enum desc_status_bits {
409 	DescOwn=0x80000000
410 };
411 
412 /* Bits in *_desc.*_length */
413 enum desc_length_bits {
414 	DescTag=0x00010000
415 };
416 
417 /* Bits in ChipCmd. */
418 enum chip_cmd_bits {
419 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
420 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
421 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
422 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
423 };
424 
425 struct rhine_stats {
426 	u64		packets;
427 	u64		bytes;
428 	struct u64_stats_sync syncp;
429 };
430 
431 struct rhine_private {
432 	/* Bit mask for configured VLAN ids */
433 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
434 
435 	/* Descriptor rings */
436 	struct rx_desc *rx_ring;
437 	struct tx_desc *tx_ring;
438 	dma_addr_t rx_ring_dma;
439 	dma_addr_t tx_ring_dma;
440 
441 	/* The addresses of receive-in-place skbuffs. */
442 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
443 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
444 
445 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
446 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
447 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
448 
449 	/* Tx bounce buffers (Rhine-I only) */
450 	unsigned char *tx_buf[TX_RING_SIZE];
451 	unsigned char *tx_bufs;
452 	dma_addr_t tx_bufs_dma;
453 
454 	int irq;
455 	long pioaddr;
456 	struct net_device *dev;
457 	struct napi_struct napi;
458 	spinlock_t lock;
459 	struct mutex task_lock;
460 	bool task_enable;
461 	struct work_struct slow_event_task;
462 	struct work_struct reset_task;
463 
464 	u32 msg_enable;
465 
466 	/* Frequently used values: keep some adjacent for cache effect. */
467 	u32 quirks;
468 	unsigned int cur_rx;
469 	unsigned int cur_tx, dirty_tx;
470 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
471 	struct rhine_stats rx_stats;
472 	struct rhine_stats tx_stats;
473 	u8 wolopts;
474 
475 	u8 tx_thresh, rx_thresh;
476 
477 	struct mii_if_info mii_if;
478 	void __iomem *base;
479 };
480 
481 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
482 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
483 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
484 
485 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
486 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
487 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
488 
489 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
490 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
491 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
492 
493 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
494 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
495 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
496 
497 
498 static int  mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int  rhine_open(struct net_device *dev);
501 static void rhine_reset_task(struct work_struct *work);
502 static void rhine_slow_event_task(struct work_struct *work);
503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
505 				  struct net_device *dev);
506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
507 static void rhine_tx(struct net_device *dev);
508 static int rhine_rx(struct net_device *dev, int limit);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static void rhine_get_stats64(struct net_device *dev,
511 			      struct rtnl_link_stats64 *stats);
512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
513 static const struct ethtool_ops netdev_ethtool_ops;
514 static int  rhine_close(struct net_device *dev);
515 static int rhine_vlan_rx_add_vid(struct net_device *dev,
516 				 __be16 proto, u16 vid);
517 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
518 				  __be16 proto, u16 vid);
519 static void rhine_restart_tx(struct net_device *dev);
520 
521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
522 {
523 	void __iomem *ioaddr = rp->base;
524 	int i;
525 
526 	for (i = 0; i < 1024; i++) {
527 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
528 
529 		if (low ^ has_mask_bits)
530 			break;
531 		udelay(10);
532 	}
533 	if (i > 64) {
534 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
535 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
536 	}
537 }
538 
539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
540 {
541 	rhine_wait_bit(rp, reg, mask, false);
542 }
543 
544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
545 {
546 	rhine_wait_bit(rp, reg, mask, true);
547 }
548 
549 static u32 rhine_get_events(struct rhine_private *rp)
550 {
551 	void __iomem *ioaddr = rp->base;
552 	u32 intr_status;
553 
554 	intr_status = ioread16(ioaddr + IntrStatus);
555 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
556 	if (rp->quirks & rqStatusWBRace)
557 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
558 	return intr_status;
559 }
560 
561 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
562 {
563 	void __iomem *ioaddr = rp->base;
564 
565 	if (rp->quirks & rqStatusWBRace)
566 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
567 	iowrite16(mask, ioaddr + IntrStatus);
568 }
569 
570 /*
571  * Get power related registers into sane state.
572  * Notify user about past WOL event.
573  */
574 static void rhine_power_init(struct net_device *dev)
575 {
576 	struct rhine_private *rp = netdev_priv(dev);
577 	void __iomem *ioaddr = rp->base;
578 	u16 wolstat;
579 
580 	if (rp->quirks & rqWOL) {
581 		/* Make sure chip is in power state D0 */
582 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
583 
584 		/* Disable "force PME-enable" */
585 		iowrite8(0x80, ioaddr + WOLcgClr);
586 
587 		/* Clear power-event config bits (WOL) */
588 		iowrite8(0xFF, ioaddr + WOLcrClr);
589 		/* More recent cards can manage two additional patterns */
590 		if (rp->quirks & rq6patterns)
591 			iowrite8(0x03, ioaddr + WOLcrClr1);
592 
593 		/* Save power-event status bits */
594 		wolstat = ioread8(ioaddr + PwrcsrSet);
595 		if (rp->quirks & rq6patterns)
596 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
597 
598 		/* Clear power-event status bits */
599 		iowrite8(0xFF, ioaddr + PwrcsrClr);
600 		if (rp->quirks & rq6patterns)
601 			iowrite8(0x03, ioaddr + PwrcsrClr1);
602 
603 		if (wolstat) {
604 			char *reason;
605 			switch (wolstat) {
606 			case WOLmagic:
607 				reason = "Magic packet";
608 				break;
609 			case WOLlnkon:
610 				reason = "Link went up";
611 				break;
612 			case WOLlnkoff:
613 				reason = "Link went down";
614 				break;
615 			case WOLucast:
616 				reason = "Unicast packet";
617 				break;
618 			case WOLbmcast:
619 				reason = "Multicast/broadcast packet";
620 				break;
621 			default:
622 				reason = "Unknown";
623 			}
624 			netdev_info(dev, "Woke system up. Reason: %s\n",
625 				    reason);
626 		}
627 	}
628 }
629 
630 static void rhine_chip_reset(struct net_device *dev)
631 {
632 	struct rhine_private *rp = netdev_priv(dev);
633 	void __iomem *ioaddr = rp->base;
634 	u8 cmd1;
635 
636 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
637 	IOSYNC;
638 
639 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
640 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
641 
642 		/* Force reset */
643 		if (rp->quirks & rqForceReset)
644 			iowrite8(0x40, ioaddr + MiscCmd);
645 
646 		/* Reset can take somewhat longer (rare) */
647 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
648 	}
649 
650 	cmd1 = ioread8(ioaddr + ChipCmd1);
651 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
652 		   "failed" : "succeeded");
653 }
654 
655 static void enable_mmio(long pioaddr, u32 quirks)
656 {
657 	int n;
658 
659 	if (quirks & rqNeedEnMMIO) {
660 		if (quirks & rqRhineI) {
661 			/* More recent docs say that this bit is reserved */
662 			n = inb(pioaddr + ConfigA) | 0x20;
663 			outb(n, pioaddr + ConfigA);
664 		} else {
665 			n = inb(pioaddr + ConfigD) | 0x80;
666 			outb(n, pioaddr + ConfigD);
667 		}
668 	}
669 }
670 
671 static inline int verify_mmio(struct device *hwdev,
672 			      long pioaddr,
673 			      void __iomem *ioaddr,
674 			      u32 quirks)
675 {
676 	if (quirks & rqNeedEnMMIO) {
677 		int i = 0;
678 
679 		/* Check that selected MMIO registers match the PIO ones */
680 		while (mmio_verify_registers[i]) {
681 			int reg = mmio_verify_registers[i++];
682 			unsigned char a = inb(pioaddr+reg);
683 			unsigned char b = readb(ioaddr+reg);
684 
685 			if (a != b) {
686 				dev_err(hwdev,
687 					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
688 					reg, a, b);
689 				return -EIO;
690 			}
691 		}
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
698  * (plus 0x6C for Rhine-I/II)
699  */
700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
701 {
702 	struct rhine_private *rp = netdev_priv(dev);
703 	void __iomem *ioaddr = rp->base;
704 	int i;
705 
706 	outb(0x20, pioaddr + MACRegEEcsr);
707 	for (i = 0; i < 1024; i++) {
708 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
709 			break;
710 	}
711 	if (i > 512)
712 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
713 
714 	/*
715 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
716 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
717 	 * it is not known if that still works with the "win98-reboot" problem.
718 	 */
719 	enable_mmio(pioaddr, rp->quirks);
720 
721 	/* Turn off EEPROM-controlled wake-up (magic packet) */
722 	if (rp->quirks & rqWOL)
723 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
724 
725 }
726 
727 #ifdef CONFIG_NET_POLL_CONTROLLER
728 static void rhine_poll(struct net_device *dev)
729 {
730 	struct rhine_private *rp = netdev_priv(dev);
731 	const int irq = rp->irq;
732 
733 	disable_irq(irq);
734 	rhine_interrupt(irq, dev);
735 	enable_irq(irq);
736 }
737 #endif
738 
739 static void rhine_kick_tx_threshold(struct rhine_private *rp)
740 {
741 	if (rp->tx_thresh < 0xe0) {
742 		void __iomem *ioaddr = rp->base;
743 
744 		rp->tx_thresh += 0x20;
745 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
746 	}
747 }
748 
749 static void rhine_tx_err(struct rhine_private *rp, u32 status)
750 {
751 	struct net_device *dev = rp->dev;
752 
753 	if (status & IntrTxAborted) {
754 		netif_info(rp, tx_err, dev,
755 			   "Abort %08x, frame dropped\n", status);
756 	}
757 
758 	if (status & IntrTxUnderrun) {
759 		rhine_kick_tx_threshold(rp);
760 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
761 			   "Tx threshold now %02x\n", rp->tx_thresh);
762 	}
763 
764 	if (status & IntrTxDescRace)
765 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
766 
767 	if ((status & IntrTxError) &&
768 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
769 		rhine_kick_tx_threshold(rp);
770 		netif_info(rp, tx_err, dev, "Unspecified error. "
771 			   "Tx threshold now %02x\n", rp->tx_thresh);
772 	}
773 
774 	rhine_restart_tx(dev);
775 }
776 
777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
778 {
779 	void __iomem *ioaddr = rp->base;
780 	struct net_device_stats *stats = &rp->dev->stats;
781 
782 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
783 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
784 
785 	/*
786 	 * Clears the "tally counters" for CRC errors and missed frames(?).
787 	 * It has been reported that some chips need a write of 0 to clear
788 	 * these, for others the counters are set to 1 when written to and
789 	 * instead cleared when read. So we clear them both ways ...
790 	 */
791 	iowrite32(0, ioaddr + RxMissed);
792 	ioread16(ioaddr + RxCRCErrs);
793 	ioread16(ioaddr + RxMissed);
794 }
795 
796 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
797 				 IntrRxErr | \
798 				 IntrRxEmpty | \
799 				 IntrRxOverflow	| \
800 				 IntrRxDropped | \
801 				 IntrRxNoBuf | \
802 				 IntrRxWakeUp)
803 
804 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
805 				 IntrTxAborted | \
806 				 IntrTxUnderrun | \
807 				 IntrTxDescRace)
808 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
809 
810 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
811 				 RHINE_EVENT_NAPI_TX | \
812 				 IntrStatsMax)
813 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
814 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
815 
816 static int rhine_napipoll(struct napi_struct *napi, int budget)
817 {
818 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
819 	struct net_device *dev = rp->dev;
820 	void __iomem *ioaddr = rp->base;
821 	u16 enable_mask = RHINE_EVENT & 0xffff;
822 	int work_done = 0;
823 	u32 status;
824 
825 	status = rhine_get_events(rp);
826 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
827 
828 	if (status & RHINE_EVENT_NAPI_RX)
829 		work_done += rhine_rx(dev, budget);
830 
831 	if (status & RHINE_EVENT_NAPI_TX) {
832 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
833 			/* Avoid scavenging before Tx engine turned off */
834 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
835 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
836 				netif_warn(rp, tx_err, dev, "Tx still on\n");
837 		}
838 
839 		rhine_tx(dev);
840 
841 		if (status & RHINE_EVENT_NAPI_TX_ERR)
842 			rhine_tx_err(rp, status);
843 	}
844 
845 	if (status & IntrStatsMax) {
846 		spin_lock(&rp->lock);
847 		rhine_update_rx_crc_and_missed_errord(rp);
848 		spin_unlock(&rp->lock);
849 	}
850 
851 	if (status & RHINE_EVENT_SLOW) {
852 		enable_mask &= ~RHINE_EVENT_SLOW;
853 		schedule_work(&rp->slow_event_task);
854 	}
855 
856 	if (work_done < budget) {
857 		napi_complete_done(napi, work_done);
858 		iowrite16(enable_mask, ioaddr + IntrEnable);
859 	}
860 	return work_done;
861 }
862 
863 static void rhine_hw_init(struct net_device *dev, long pioaddr)
864 {
865 	struct rhine_private *rp = netdev_priv(dev);
866 
867 	/* Reset the chip to erase previous misconfiguration. */
868 	rhine_chip_reset(dev);
869 
870 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
871 	if (rp->quirks & rqRhineI)
872 		msleep(5);
873 
874 	/* Reload EEPROM controlled bytes cleared by soft reset */
875 	if (dev_is_pci(dev->dev.parent))
876 		rhine_reload_eeprom(pioaddr, dev);
877 }
878 
879 static const struct net_device_ops rhine_netdev_ops = {
880 	.ndo_open		 = rhine_open,
881 	.ndo_stop		 = rhine_close,
882 	.ndo_start_xmit		 = rhine_start_tx,
883 	.ndo_get_stats64	 = rhine_get_stats64,
884 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
885 	.ndo_validate_addr	 = eth_validate_addr,
886 	.ndo_set_mac_address 	 = eth_mac_addr,
887 	.ndo_do_ioctl		 = netdev_ioctl,
888 	.ndo_tx_timeout 	 = rhine_tx_timeout,
889 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
890 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
891 #ifdef CONFIG_NET_POLL_CONTROLLER
892 	.ndo_poll_controller	 = rhine_poll,
893 #endif
894 };
895 
896 static int rhine_init_one_common(struct device *hwdev, u32 quirks,
897 				 long pioaddr, void __iomem *ioaddr, int irq)
898 {
899 	struct net_device *dev;
900 	struct rhine_private *rp;
901 	int i, rc, phy_id;
902 	const char *name;
903 
904 	/* this should always be supported */
905 	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
906 	if (rc) {
907 		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
908 		goto err_out;
909 	}
910 
911 	dev = alloc_etherdev(sizeof(struct rhine_private));
912 	if (!dev) {
913 		rc = -ENOMEM;
914 		goto err_out;
915 	}
916 	SET_NETDEV_DEV(dev, hwdev);
917 
918 	rp = netdev_priv(dev);
919 	rp->dev = dev;
920 	rp->quirks = quirks;
921 	rp->pioaddr = pioaddr;
922 	rp->base = ioaddr;
923 	rp->irq = irq;
924 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
925 
926 	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
927 
928 	u64_stats_init(&rp->tx_stats.syncp);
929 	u64_stats_init(&rp->rx_stats.syncp);
930 
931 	/* Get chip registers into a sane state */
932 	rhine_power_init(dev);
933 	rhine_hw_init(dev, pioaddr);
934 
935 	for (i = 0; i < 6; i++)
936 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
937 
938 	if (!is_valid_ether_addr(dev->dev_addr)) {
939 		/* Report it and use a random ethernet address instead */
940 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
941 		eth_hw_addr_random(dev);
942 		netdev_info(dev, "Using random MAC address: %pM\n",
943 			    dev->dev_addr);
944 	}
945 
946 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
947 	if (!phy_id)
948 		phy_id = ioread8(ioaddr + 0x6C);
949 
950 	spin_lock_init(&rp->lock);
951 	mutex_init(&rp->task_lock);
952 	INIT_WORK(&rp->reset_task, rhine_reset_task);
953 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
954 
955 	rp->mii_if.dev = dev;
956 	rp->mii_if.mdio_read = mdio_read;
957 	rp->mii_if.mdio_write = mdio_write;
958 	rp->mii_if.phy_id_mask = 0x1f;
959 	rp->mii_if.reg_num_mask = 0x1f;
960 
961 	/* The chip-specific entries in the device structure. */
962 	dev->netdev_ops = &rhine_netdev_ops;
963 	dev->ethtool_ops = &netdev_ethtool_ops;
964 	dev->watchdog_timeo = TX_TIMEOUT;
965 
966 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
967 
968 	if (rp->quirks & rqRhineI)
969 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
970 
971 	if (rp->quirks & rqMgmt)
972 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
973 				 NETIF_F_HW_VLAN_CTAG_RX |
974 				 NETIF_F_HW_VLAN_CTAG_FILTER;
975 
976 	/* dev->name not defined before register_netdev()! */
977 	rc = register_netdev(dev);
978 	if (rc)
979 		goto err_out_free_netdev;
980 
981 	if (rp->quirks & rqRhineI)
982 		name = "Rhine";
983 	else if (rp->quirks & rqStatusWBRace)
984 		name = "Rhine II";
985 	else if (rp->quirks & rqMgmt)
986 		name = "Rhine III (Management Adapter)";
987 	else
988 		name = "Rhine III";
989 
990 	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
991 		    name, ioaddr, dev->dev_addr, rp->irq);
992 
993 	dev_set_drvdata(hwdev, dev);
994 
995 	{
996 		u16 mii_cmd;
997 		int mii_status = mdio_read(dev, phy_id, 1);
998 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
999 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1000 		if (mii_status != 0xffff && mii_status != 0x0000) {
1001 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1002 			netdev_info(dev,
1003 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1004 				    phy_id,
1005 				    mii_status, rp->mii_if.advertising,
1006 				    mdio_read(dev, phy_id, 5));
1007 
1008 			/* set IFF_RUNNING */
1009 			if (mii_status & BMSR_LSTATUS)
1010 				netif_carrier_on(dev);
1011 			else
1012 				netif_carrier_off(dev);
1013 
1014 		}
1015 	}
1016 	rp->mii_if.phy_id = phy_id;
1017 	if (avoid_D3)
1018 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1019 
1020 	return 0;
1021 
1022 err_out_free_netdev:
1023 	free_netdev(dev);
1024 err_out:
1025 	return rc;
1026 }
1027 
1028 static int rhine_init_one_pci(struct pci_dev *pdev,
1029 			      const struct pci_device_id *ent)
1030 {
1031 	struct device *hwdev = &pdev->dev;
1032 	int rc;
1033 	long pioaddr, memaddr;
1034 	void __iomem *ioaddr;
1035 	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1036 
1037 /* This driver was written to use PCI memory space. Some early versions
1038  * of the Rhine may only work correctly with I/O space accesses.
1039  * TODO: determine for which revisions this is true and assign the flag
1040  *	 in code as opposed to this Kconfig option (???)
1041  */
1042 #ifdef CONFIG_VIA_RHINE_MMIO
1043 	u32 quirks = rqNeedEnMMIO;
1044 #else
1045 	u32 quirks = 0;
1046 #endif
1047 
1048 	rc = pci_enable_device(pdev);
1049 	if (rc)
1050 		goto err_out;
1051 
1052 	if (pdev->revision < VTunknown0) {
1053 		quirks |= rqRhineI;
1054 	} else if (pdev->revision >= VT6102) {
1055 		quirks |= rqWOL | rqForceReset;
1056 		if (pdev->revision < VT6105) {
1057 			quirks |= rqStatusWBRace;
1058 		} else {
1059 			quirks |= rqIntPHY;
1060 			if (pdev->revision >= VT6105_B0)
1061 				quirks |= rq6patterns;
1062 			if (pdev->revision >= VT6105M)
1063 				quirks |= rqMgmt;
1064 		}
1065 	}
1066 
1067 	/* sanity check */
1068 	if ((pci_resource_len(pdev, 0) < io_size) ||
1069 	    (pci_resource_len(pdev, 1) < io_size)) {
1070 		rc = -EIO;
1071 		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1072 		goto err_out_pci_disable;
1073 	}
1074 
1075 	pioaddr = pci_resource_start(pdev, 0);
1076 	memaddr = pci_resource_start(pdev, 1);
1077 
1078 	pci_set_master(pdev);
1079 
1080 	rc = pci_request_regions(pdev, DRV_NAME);
1081 	if (rc)
1082 		goto err_out_pci_disable;
1083 
1084 	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1085 	if (!ioaddr) {
1086 		rc = -EIO;
1087 		dev_err(hwdev,
1088 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1089 			dev_name(hwdev), io_size, memaddr);
1090 		goto err_out_free_res;
1091 	}
1092 
1093 	enable_mmio(pioaddr, quirks);
1094 
1095 	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1096 	if (rc)
1097 		goto err_out_unmap;
1098 
1099 	rc = rhine_init_one_common(&pdev->dev, quirks,
1100 				   pioaddr, ioaddr, pdev->irq);
1101 	if (!rc)
1102 		return 0;
1103 
1104 err_out_unmap:
1105 	pci_iounmap(pdev, ioaddr);
1106 err_out_free_res:
1107 	pci_release_regions(pdev);
1108 err_out_pci_disable:
1109 	pci_disable_device(pdev);
1110 err_out:
1111 	return rc;
1112 }
1113 
1114 static int rhine_init_one_platform(struct platform_device *pdev)
1115 {
1116 	const struct of_device_id *match;
1117 	const u32 *quirks;
1118 	int irq;
1119 	void __iomem *ioaddr;
1120 
1121 	match = of_match_device(rhine_of_tbl, &pdev->dev);
1122 	if (!match)
1123 		return -EINVAL;
1124 
1125 	ioaddr = devm_platform_ioremap_resource(pdev, 0);
1126 	if (IS_ERR(ioaddr))
1127 		return PTR_ERR(ioaddr);
1128 
1129 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1130 	if (!irq)
1131 		return -EINVAL;
1132 
1133 	quirks = match->data;
1134 	if (!quirks)
1135 		return -EINVAL;
1136 
1137 	return rhine_init_one_common(&pdev->dev, *quirks,
1138 				     (long)ioaddr, ioaddr, irq);
1139 }
1140 
1141 static int alloc_ring(struct net_device* dev)
1142 {
1143 	struct rhine_private *rp = netdev_priv(dev);
1144 	struct device *hwdev = dev->dev.parent;
1145 	void *ring;
1146 	dma_addr_t ring_dma;
1147 
1148 	ring = dma_alloc_coherent(hwdev,
1149 				  RX_RING_SIZE * sizeof(struct rx_desc) +
1150 				  TX_RING_SIZE * sizeof(struct tx_desc),
1151 				  &ring_dma,
1152 				  GFP_ATOMIC);
1153 	if (!ring) {
1154 		netdev_err(dev, "Could not allocate DMA memory\n");
1155 		return -ENOMEM;
1156 	}
1157 	if (rp->quirks & rqRhineI) {
1158 		rp->tx_bufs = dma_alloc_coherent(hwdev,
1159 						 PKT_BUF_SZ * TX_RING_SIZE,
1160 						 &rp->tx_bufs_dma,
1161 						 GFP_ATOMIC);
1162 		if (rp->tx_bufs == NULL) {
1163 			dma_free_coherent(hwdev,
1164 					  RX_RING_SIZE * sizeof(struct rx_desc) +
1165 					  TX_RING_SIZE * sizeof(struct tx_desc),
1166 					  ring, ring_dma);
1167 			return -ENOMEM;
1168 		}
1169 	}
1170 
1171 	rp->rx_ring = ring;
1172 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1173 	rp->rx_ring_dma = ring_dma;
1174 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1175 
1176 	return 0;
1177 }
1178 
1179 static void free_ring(struct net_device* dev)
1180 {
1181 	struct rhine_private *rp = netdev_priv(dev);
1182 	struct device *hwdev = dev->dev.parent;
1183 
1184 	dma_free_coherent(hwdev,
1185 			  RX_RING_SIZE * sizeof(struct rx_desc) +
1186 			  TX_RING_SIZE * sizeof(struct tx_desc),
1187 			  rp->rx_ring, rp->rx_ring_dma);
1188 	rp->tx_ring = NULL;
1189 
1190 	if (rp->tx_bufs)
1191 		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1192 				  rp->tx_bufs, rp->tx_bufs_dma);
1193 
1194 	rp->tx_bufs = NULL;
1195 
1196 }
1197 
1198 struct rhine_skb_dma {
1199 	struct sk_buff *skb;
1200 	dma_addr_t dma;
1201 };
1202 
1203 static inline int rhine_skb_dma_init(struct net_device *dev,
1204 				     struct rhine_skb_dma *sd)
1205 {
1206 	struct rhine_private *rp = netdev_priv(dev);
1207 	struct device *hwdev = dev->dev.parent;
1208 	const int size = rp->rx_buf_sz;
1209 
1210 	sd->skb = netdev_alloc_skb(dev, size);
1211 	if (!sd->skb)
1212 		return -ENOMEM;
1213 
1214 	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1215 	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1216 		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1217 		dev_kfree_skb_any(sd->skb);
1218 		return -EIO;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static void rhine_reset_rbufs(struct rhine_private *rp)
1225 {
1226 	int i;
1227 
1228 	rp->cur_rx = 0;
1229 
1230 	for (i = 0; i < RX_RING_SIZE; i++)
1231 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1232 }
1233 
1234 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1235 					   struct rhine_skb_dma *sd, int entry)
1236 {
1237 	rp->rx_skbuff_dma[entry] = sd->dma;
1238 	rp->rx_skbuff[entry] = sd->skb;
1239 
1240 	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1241 	dma_wmb();
1242 }
1243 
1244 static void free_rbufs(struct net_device* dev);
1245 
1246 static int alloc_rbufs(struct net_device *dev)
1247 {
1248 	struct rhine_private *rp = netdev_priv(dev);
1249 	dma_addr_t next;
1250 	int rc, i;
1251 
1252 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1253 	next = rp->rx_ring_dma;
1254 
1255 	/* Init the ring entries */
1256 	for (i = 0; i < RX_RING_SIZE; i++) {
1257 		rp->rx_ring[i].rx_status = 0;
1258 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1259 		next += sizeof(struct rx_desc);
1260 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1261 		rp->rx_skbuff[i] = NULL;
1262 	}
1263 	/* Mark the last entry as wrapping the ring. */
1264 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1265 
1266 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1267 	for (i = 0; i < RX_RING_SIZE; i++) {
1268 		struct rhine_skb_dma sd;
1269 
1270 		rc = rhine_skb_dma_init(dev, &sd);
1271 		if (rc < 0) {
1272 			free_rbufs(dev);
1273 			goto out;
1274 		}
1275 
1276 		rhine_skb_dma_nic_store(rp, &sd, i);
1277 	}
1278 
1279 	rhine_reset_rbufs(rp);
1280 out:
1281 	return rc;
1282 }
1283 
1284 static void free_rbufs(struct net_device* dev)
1285 {
1286 	struct rhine_private *rp = netdev_priv(dev);
1287 	struct device *hwdev = dev->dev.parent;
1288 	int i;
1289 
1290 	/* Free all the skbuffs in the Rx queue. */
1291 	for (i = 0; i < RX_RING_SIZE; i++) {
1292 		rp->rx_ring[i].rx_status = 0;
1293 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1294 		if (rp->rx_skbuff[i]) {
1295 			dma_unmap_single(hwdev,
1296 					 rp->rx_skbuff_dma[i],
1297 					 rp->rx_buf_sz, DMA_FROM_DEVICE);
1298 			dev_kfree_skb(rp->rx_skbuff[i]);
1299 		}
1300 		rp->rx_skbuff[i] = NULL;
1301 	}
1302 }
1303 
1304 static void alloc_tbufs(struct net_device* dev)
1305 {
1306 	struct rhine_private *rp = netdev_priv(dev);
1307 	dma_addr_t next;
1308 	int i;
1309 
1310 	rp->dirty_tx = rp->cur_tx = 0;
1311 	next = rp->tx_ring_dma;
1312 	for (i = 0; i < TX_RING_SIZE; i++) {
1313 		rp->tx_skbuff[i] = NULL;
1314 		rp->tx_ring[i].tx_status = 0;
1315 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1316 		next += sizeof(struct tx_desc);
1317 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1318 		if (rp->quirks & rqRhineI)
1319 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1320 	}
1321 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1322 
1323 	netdev_reset_queue(dev);
1324 }
1325 
1326 static void free_tbufs(struct net_device* dev)
1327 {
1328 	struct rhine_private *rp = netdev_priv(dev);
1329 	struct device *hwdev = dev->dev.parent;
1330 	int i;
1331 
1332 	for (i = 0; i < TX_RING_SIZE; i++) {
1333 		rp->tx_ring[i].tx_status = 0;
1334 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1335 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1336 		if (rp->tx_skbuff[i]) {
1337 			if (rp->tx_skbuff_dma[i]) {
1338 				dma_unmap_single(hwdev,
1339 						 rp->tx_skbuff_dma[i],
1340 						 rp->tx_skbuff[i]->len,
1341 						 DMA_TO_DEVICE);
1342 			}
1343 			dev_kfree_skb(rp->tx_skbuff[i]);
1344 		}
1345 		rp->tx_skbuff[i] = NULL;
1346 		rp->tx_buf[i] = NULL;
1347 	}
1348 }
1349 
1350 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1351 {
1352 	struct rhine_private *rp = netdev_priv(dev);
1353 	void __iomem *ioaddr = rp->base;
1354 
1355 	if (!rp->mii_if.force_media)
1356 		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1357 
1358 	if (rp->mii_if.full_duplex)
1359 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1360 		   ioaddr + ChipCmd1);
1361 	else
1362 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1363 		   ioaddr + ChipCmd1);
1364 
1365 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1366 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1367 }
1368 
1369 /* Called after status of force_media possibly changed */
1370 static void rhine_set_carrier(struct mii_if_info *mii)
1371 {
1372 	struct net_device *dev = mii->dev;
1373 	struct rhine_private *rp = netdev_priv(dev);
1374 
1375 	if (mii->force_media) {
1376 		/* autoneg is off: Link is always assumed to be up */
1377 		if (!netif_carrier_ok(dev))
1378 			netif_carrier_on(dev);
1379 	}
1380 
1381 	rhine_check_media(dev, 0);
1382 
1383 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1384 		   mii->force_media, netif_carrier_ok(dev));
1385 }
1386 
1387 /**
1388  * rhine_set_cam - set CAM multicast filters
1389  * @ioaddr: register block of this Rhine
1390  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1391  * @addr: multicast address (6 bytes)
1392  *
1393  * Load addresses into multicast filters.
1394  */
1395 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1396 {
1397 	int i;
1398 
1399 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1400 	wmb();
1401 
1402 	/* Paranoid -- idx out of range should never happen */
1403 	idx &= (MCAM_SIZE - 1);
1404 
1405 	iowrite8((u8) idx, ioaddr + CamAddr);
1406 
1407 	for (i = 0; i < 6; i++, addr++)
1408 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1409 	udelay(10);
1410 	wmb();
1411 
1412 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1413 	udelay(10);
1414 
1415 	iowrite8(0, ioaddr + CamCon);
1416 }
1417 
1418 /**
1419  * rhine_set_vlan_cam - set CAM VLAN filters
1420  * @ioaddr: register block of this Rhine
1421  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1422  * @addr: VLAN ID (2 bytes)
1423  *
1424  * Load addresses into VLAN filters.
1425  */
1426 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1427 {
1428 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1429 	wmb();
1430 
1431 	/* Paranoid -- idx out of range should never happen */
1432 	idx &= (VCAM_SIZE - 1);
1433 
1434 	iowrite8((u8) idx, ioaddr + CamAddr);
1435 
1436 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1437 	udelay(10);
1438 	wmb();
1439 
1440 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1441 	udelay(10);
1442 
1443 	iowrite8(0, ioaddr + CamCon);
1444 }
1445 
1446 /**
1447  * rhine_set_cam_mask - set multicast CAM mask
1448  * @ioaddr: register block of this Rhine
1449  * @mask: multicast CAM mask
1450  *
1451  * Mask sets multicast filters active/inactive.
1452  */
1453 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1454 {
1455 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1456 	wmb();
1457 
1458 	/* write mask */
1459 	iowrite32(mask, ioaddr + CamMask);
1460 
1461 	/* disable CAMEN */
1462 	iowrite8(0, ioaddr + CamCon);
1463 }
1464 
1465 /**
1466  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1467  * @ioaddr: register block of this Rhine
1468  * @mask: VLAN CAM mask
1469  *
1470  * Mask sets VLAN filters active/inactive.
1471  */
1472 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1473 {
1474 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1475 	wmb();
1476 
1477 	/* write mask */
1478 	iowrite32(mask, ioaddr + CamMask);
1479 
1480 	/* disable CAMEN */
1481 	iowrite8(0, ioaddr + CamCon);
1482 }
1483 
1484 /**
1485  * rhine_init_cam_filter - initialize CAM filters
1486  * @dev: network device
1487  *
1488  * Initialize (disable) hardware VLAN and multicast support on this
1489  * Rhine.
1490  */
1491 static void rhine_init_cam_filter(struct net_device *dev)
1492 {
1493 	struct rhine_private *rp = netdev_priv(dev);
1494 	void __iomem *ioaddr = rp->base;
1495 
1496 	/* Disable all CAMs */
1497 	rhine_set_vlan_cam_mask(ioaddr, 0);
1498 	rhine_set_cam_mask(ioaddr, 0);
1499 
1500 	/* disable hardware VLAN support */
1501 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1502 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1503 }
1504 
1505 /**
1506  * rhine_update_vcam - update VLAN CAM filters
1507  * @dev: rhine_private data of this Rhine
1508  *
1509  * Update VLAN CAM filters to match configuration change.
1510  */
1511 static void rhine_update_vcam(struct net_device *dev)
1512 {
1513 	struct rhine_private *rp = netdev_priv(dev);
1514 	void __iomem *ioaddr = rp->base;
1515 	u16 vid;
1516 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1517 	unsigned int i = 0;
1518 
1519 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1520 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1521 		vCAMmask |= 1 << i;
1522 		if (++i >= VCAM_SIZE)
1523 			break;
1524 	}
1525 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1526 }
1527 
1528 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1529 {
1530 	struct rhine_private *rp = netdev_priv(dev);
1531 
1532 	spin_lock_bh(&rp->lock);
1533 	set_bit(vid, rp->active_vlans);
1534 	rhine_update_vcam(dev);
1535 	spin_unlock_bh(&rp->lock);
1536 	return 0;
1537 }
1538 
1539 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1540 {
1541 	struct rhine_private *rp = netdev_priv(dev);
1542 
1543 	spin_lock_bh(&rp->lock);
1544 	clear_bit(vid, rp->active_vlans);
1545 	rhine_update_vcam(dev);
1546 	spin_unlock_bh(&rp->lock);
1547 	return 0;
1548 }
1549 
1550 static void init_registers(struct net_device *dev)
1551 {
1552 	struct rhine_private *rp = netdev_priv(dev);
1553 	void __iomem *ioaddr = rp->base;
1554 	int i;
1555 
1556 	for (i = 0; i < 6; i++)
1557 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1558 
1559 	/* Initialize other registers. */
1560 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1561 	/* Configure initial FIFO thresholds. */
1562 	iowrite8(0x20, ioaddr + TxConfig);
1563 	rp->tx_thresh = 0x20;
1564 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1565 
1566 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1567 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1568 
1569 	rhine_set_rx_mode(dev);
1570 
1571 	if (rp->quirks & rqMgmt)
1572 		rhine_init_cam_filter(dev);
1573 
1574 	napi_enable(&rp->napi);
1575 
1576 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1577 
1578 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1579 	       ioaddr + ChipCmd);
1580 	rhine_check_media(dev, 1);
1581 }
1582 
1583 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1584 static void rhine_enable_linkmon(struct rhine_private *rp)
1585 {
1586 	void __iomem *ioaddr = rp->base;
1587 
1588 	iowrite8(0, ioaddr + MIICmd);
1589 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1590 	iowrite8(0x80, ioaddr + MIICmd);
1591 
1592 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1593 
1594 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1595 }
1596 
1597 /* Disable MII link status auto-polling (required for MDIO access) */
1598 static void rhine_disable_linkmon(struct rhine_private *rp)
1599 {
1600 	void __iomem *ioaddr = rp->base;
1601 
1602 	iowrite8(0, ioaddr + MIICmd);
1603 
1604 	if (rp->quirks & rqRhineI) {
1605 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1606 
1607 		/* Can be called from ISR. Evil. */
1608 		mdelay(1);
1609 
1610 		/* 0x80 must be set immediately before turning it off */
1611 		iowrite8(0x80, ioaddr + MIICmd);
1612 
1613 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1614 
1615 		/* Heh. Now clear 0x80 again. */
1616 		iowrite8(0, ioaddr + MIICmd);
1617 	}
1618 	else
1619 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1620 }
1621 
1622 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1623 
1624 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1625 {
1626 	struct rhine_private *rp = netdev_priv(dev);
1627 	void __iomem *ioaddr = rp->base;
1628 	int result;
1629 
1630 	rhine_disable_linkmon(rp);
1631 
1632 	/* rhine_disable_linkmon already cleared MIICmd */
1633 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1634 	iowrite8(regnum, ioaddr + MIIRegAddr);
1635 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1636 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1637 	result = ioread16(ioaddr + MIIData);
1638 
1639 	rhine_enable_linkmon(rp);
1640 	return result;
1641 }
1642 
1643 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1644 {
1645 	struct rhine_private *rp = netdev_priv(dev);
1646 	void __iomem *ioaddr = rp->base;
1647 
1648 	rhine_disable_linkmon(rp);
1649 
1650 	/* rhine_disable_linkmon already cleared MIICmd */
1651 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1652 	iowrite8(regnum, ioaddr + MIIRegAddr);
1653 	iowrite16(value, ioaddr + MIIData);
1654 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1655 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1656 
1657 	rhine_enable_linkmon(rp);
1658 }
1659 
1660 static void rhine_task_disable(struct rhine_private *rp)
1661 {
1662 	mutex_lock(&rp->task_lock);
1663 	rp->task_enable = false;
1664 	mutex_unlock(&rp->task_lock);
1665 
1666 	cancel_work_sync(&rp->slow_event_task);
1667 	cancel_work_sync(&rp->reset_task);
1668 }
1669 
1670 static void rhine_task_enable(struct rhine_private *rp)
1671 {
1672 	mutex_lock(&rp->task_lock);
1673 	rp->task_enable = true;
1674 	mutex_unlock(&rp->task_lock);
1675 }
1676 
1677 static int rhine_open(struct net_device *dev)
1678 {
1679 	struct rhine_private *rp = netdev_priv(dev);
1680 	void __iomem *ioaddr = rp->base;
1681 	int rc;
1682 
1683 	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1684 	if (rc)
1685 		goto out;
1686 
1687 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1688 
1689 	rc = alloc_ring(dev);
1690 	if (rc < 0)
1691 		goto out_free_irq;
1692 
1693 	rc = alloc_rbufs(dev);
1694 	if (rc < 0)
1695 		goto out_free_ring;
1696 
1697 	alloc_tbufs(dev);
1698 	enable_mmio(rp->pioaddr, rp->quirks);
1699 	rhine_power_init(dev);
1700 	rhine_chip_reset(dev);
1701 	rhine_task_enable(rp);
1702 	init_registers(dev);
1703 
1704 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1705 		  __func__, ioread16(ioaddr + ChipCmd),
1706 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1707 
1708 	netif_start_queue(dev);
1709 
1710 out:
1711 	return rc;
1712 
1713 out_free_ring:
1714 	free_ring(dev);
1715 out_free_irq:
1716 	free_irq(rp->irq, dev);
1717 	goto out;
1718 }
1719 
1720 static void rhine_reset_task(struct work_struct *work)
1721 {
1722 	struct rhine_private *rp = container_of(work, struct rhine_private,
1723 						reset_task);
1724 	struct net_device *dev = rp->dev;
1725 
1726 	mutex_lock(&rp->task_lock);
1727 
1728 	if (!rp->task_enable)
1729 		goto out_unlock;
1730 
1731 	napi_disable(&rp->napi);
1732 	netif_tx_disable(dev);
1733 	spin_lock_bh(&rp->lock);
1734 
1735 	/* clear all descriptors */
1736 	free_tbufs(dev);
1737 	alloc_tbufs(dev);
1738 
1739 	rhine_reset_rbufs(rp);
1740 
1741 	/* Reinitialize the hardware. */
1742 	rhine_chip_reset(dev);
1743 	init_registers(dev);
1744 
1745 	spin_unlock_bh(&rp->lock);
1746 
1747 	netif_trans_update(dev); /* prevent tx timeout */
1748 	dev->stats.tx_errors++;
1749 	netif_wake_queue(dev);
1750 
1751 out_unlock:
1752 	mutex_unlock(&rp->task_lock);
1753 }
1754 
1755 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
1756 {
1757 	struct rhine_private *rp = netdev_priv(dev);
1758 	void __iomem *ioaddr = rp->base;
1759 
1760 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1761 		    ioread16(ioaddr + IntrStatus),
1762 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1763 
1764 	schedule_work(&rp->reset_task);
1765 }
1766 
1767 static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1768 {
1769 	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1770 }
1771 
1772 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1773 				  struct net_device *dev)
1774 {
1775 	struct rhine_private *rp = netdev_priv(dev);
1776 	struct device *hwdev = dev->dev.parent;
1777 	void __iomem *ioaddr = rp->base;
1778 	unsigned entry;
1779 
1780 	/* Caution: the write order is important here, set the field
1781 	   with the "ownership" bits last. */
1782 
1783 	/* Calculate the next Tx descriptor entry. */
1784 	entry = rp->cur_tx % TX_RING_SIZE;
1785 
1786 	if (skb_padto(skb, ETH_ZLEN))
1787 		return NETDEV_TX_OK;
1788 
1789 	rp->tx_skbuff[entry] = skb;
1790 
1791 	if ((rp->quirks & rqRhineI) &&
1792 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1793 		/* Must use alignment buffer. */
1794 		if (skb->len > PKT_BUF_SZ) {
1795 			/* packet too long, drop it */
1796 			dev_kfree_skb_any(skb);
1797 			rp->tx_skbuff[entry] = NULL;
1798 			dev->stats.tx_dropped++;
1799 			return NETDEV_TX_OK;
1800 		}
1801 
1802 		/* Padding is not copied and so must be redone. */
1803 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1804 		if (skb->len < ETH_ZLEN)
1805 			memset(rp->tx_buf[entry] + skb->len, 0,
1806 			       ETH_ZLEN - skb->len);
1807 		rp->tx_skbuff_dma[entry] = 0;
1808 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1809 						      (rp->tx_buf[entry] -
1810 						       rp->tx_bufs));
1811 	} else {
1812 		rp->tx_skbuff_dma[entry] =
1813 			dma_map_single(hwdev, skb->data, skb->len,
1814 				       DMA_TO_DEVICE);
1815 		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1816 			dev_kfree_skb_any(skb);
1817 			rp->tx_skbuff_dma[entry] = 0;
1818 			dev->stats.tx_dropped++;
1819 			return NETDEV_TX_OK;
1820 		}
1821 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1822 	}
1823 
1824 	rp->tx_ring[entry].desc_length =
1825 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1826 
1827 	if (unlikely(skb_vlan_tag_present(skb))) {
1828 		u16 vid_pcp = skb_vlan_tag_get(skb);
1829 
1830 		/* drop CFI/DEI bit, register needs VID and PCP */
1831 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1832 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1833 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1834 		/* request tagging */
1835 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1836 	}
1837 	else
1838 		rp->tx_ring[entry].tx_status = 0;
1839 
1840 	netdev_sent_queue(dev, skb->len);
1841 	/* lock eth irq */
1842 	dma_wmb();
1843 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1844 	wmb();
1845 
1846 	rp->cur_tx++;
1847 	/*
1848 	 * Nobody wants cur_tx write to rot for ages after the NIC will have
1849 	 * seen the transmit request, especially as the transmit completion
1850 	 * handler could miss it.
1851 	 */
1852 	smp_wmb();
1853 
1854 	/* Non-x86 Todo: explicitly flush cache lines here. */
1855 
1856 	if (skb_vlan_tag_present(skb))
1857 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1858 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1859 
1860 	/* Wake the potentially-idle transmit channel */
1861 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1862 	       ioaddr + ChipCmd1);
1863 	IOSYNC;
1864 
1865 	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1866 	if (rhine_tx_queue_full(rp)) {
1867 		netif_stop_queue(dev);
1868 		smp_rmb();
1869 		/* Rejuvenate. */
1870 		if (!rhine_tx_queue_full(rp))
1871 			netif_wake_queue(dev);
1872 	}
1873 
1874 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1875 		  rp->cur_tx - 1, entry);
1876 
1877 	return NETDEV_TX_OK;
1878 }
1879 
1880 static void rhine_irq_disable(struct rhine_private *rp)
1881 {
1882 	iowrite16(0x0000, rp->base + IntrEnable);
1883 }
1884 
1885 /* The interrupt handler does all of the Rx thread work and cleans up
1886    after the Tx thread. */
1887 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1888 {
1889 	struct net_device *dev = dev_instance;
1890 	struct rhine_private *rp = netdev_priv(dev);
1891 	u32 status;
1892 	int handled = 0;
1893 
1894 	status = rhine_get_events(rp);
1895 
1896 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1897 
1898 	if (status & RHINE_EVENT) {
1899 		handled = 1;
1900 
1901 		rhine_irq_disable(rp);
1902 		napi_schedule(&rp->napi);
1903 	}
1904 
1905 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1906 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1907 			  status);
1908 	}
1909 
1910 	return IRQ_RETVAL(handled);
1911 }
1912 
1913 /* This routine is logically part of the interrupt handler, but isolated
1914    for clarity. */
1915 static void rhine_tx(struct net_device *dev)
1916 {
1917 	struct rhine_private *rp = netdev_priv(dev);
1918 	struct device *hwdev = dev->dev.parent;
1919 	unsigned int pkts_compl = 0, bytes_compl = 0;
1920 	unsigned int dirty_tx = rp->dirty_tx;
1921 	unsigned int cur_tx;
1922 	struct sk_buff *skb;
1923 
1924 	/*
1925 	 * The race with rhine_start_tx does not matter here as long as the
1926 	 * driver enforces a value of cur_tx that was relevant when the
1927 	 * packet was scheduled to the network chipset.
1928 	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1929 	 */
1930 	smp_rmb();
1931 	cur_tx = rp->cur_tx;
1932 	/* find and cleanup dirty tx descriptors */
1933 	while (dirty_tx != cur_tx) {
1934 		unsigned int entry = dirty_tx % TX_RING_SIZE;
1935 		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1936 
1937 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1938 			  entry, txstatus);
1939 		if (txstatus & DescOwn)
1940 			break;
1941 		skb = rp->tx_skbuff[entry];
1942 		if (txstatus & 0x8000) {
1943 			netif_dbg(rp, tx_done, dev,
1944 				  "Transmit error, Tx status %08x\n", txstatus);
1945 			dev->stats.tx_errors++;
1946 			if (txstatus & 0x0400)
1947 				dev->stats.tx_carrier_errors++;
1948 			if (txstatus & 0x0200)
1949 				dev->stats.tx_window_errors++;
1950 			if (txstatus & 0x0100)
1951 				dev->stats.tx_aborted_errors++;
1952 			if (txstatus & 0x0080)
1953 				dev->stats.tx_heartbeat_errors++;
1954 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1955 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1956 				dev->stats.tx_fifo_errors++;
1957 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1958 				break; /* Keep the skb - we try again */
1959 			}
1960 			/* Transmitter restarted in 'abnormal' handler. */
1961 		} else {
1962 			if (rp->quirks & rqRhineI)
1963 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1964 			else
1965 				dev->stats.collisions += txstatus & 0x0F;
1966 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1967 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1968 
1969 			u64_stats_update_begin(&rp->tx_stats.syncp);
1970 			rp->tx_stats.bytes += skb->len;
1971 			rp->tx_stats.packets++;
1972 			u64_stats_update_end(&rp->tx_stats.syncp);
1973 		}
1974 		/* Free the original skb. */
1975 		if (rp->tx_skbuff_dma[entry]) {
1976 			dma_unmap_single(hwdev,
1977 					 rp->tx_skbuff_dma[entry],
1978 					 skb->len,
1979 					 DMA_TO_DEVICE);
1980 		}
1981 		bytes_compl += skb->len;
1982 		pkts_compl++;
1983 		dev_consume_skb_any(skb);
1984 		rp->tx_skbuff[entry] = NULL;
1985 		dirty_tx++;
1986 	}
1987 
1988 	rp->dirty_tx = dirty_tx;
1989 	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
1990 	smp_wmb();
1991 
1992 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
1993 
1994 	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
1995 	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1996 		netif_wake_queue(dev);
1997 		smp_rmb();
1998 		/* Rejuvenate. */
1999 		if (rhine_tx_queue_full(rp))
2000 			netif_stop_queue(dev);
2001 	}
2002 }
2003 
2004 /**
2005  * rhine_get_vlan_tci - extract TCI from Rx data buffer
2006  * @skb: pointer to sk_buff
2007  * @data_size: used data area of the buffer including CRC
2008  *
2009  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2010  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2011  * aligned following the CRC.
2012  */
2013 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2014 {
2015 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
2016 	return be16_to_cpup((__be16 *)trailer);
2017 }
2018 
2019 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2020 				     int data_size)
2021 {
2022 	dma_rmb();
2023 	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2024 		u16 vlan_tci;
2025 
2026 		vlan_tci = rhine_get_vlan_tci(skb, data_size);
2027 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2028 	}
2029 }
2030 
2031 /* Process up to limit frames from receive ring */
2032 static int rhine_rx(struct net_device *dev, int limit)
2033 {
2034 	struct rhine_private *rp = netdev_priv(dev);
2035 	struct device *hwdev = dev->dev.parent;
2036 	int entry = rp->cur_rx % RX_RING_SIZE;
2037 	int count;
2038 
2039 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
2040 		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
2041 
2042 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
2043 	for (count = 0; count < limit; ++count) {
2044 		struct rx_desc *desc = rp->rx_ring + entry;
2045 		u32 desc_status = le32_to_cpu(desc->rx_status);
2046 		int data_size = desc_status >> 16;
2047 
2048 		if (desc_status & DescOwn)
2049 			break;
2050 
2051 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2052 			  desc_status);
2053 
2054 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2055 			if ((desc_status & RxWholePkt) != RxWholePkt) {
2056 				netdev_warn(dev,
2057 	"Oversized Ethernet frame spanned multiple buffers, "
2058 	"entry %#x length %d status %08x!\n",
2059 					    entry, data_size,
2060 					    desc_status);
2061 				dev->stats.rx_length_errors++;
2062 			} else if (desc_status & RxErr) {
2063 				/* There was a error. */
2064 				netif_dbg(rp, rx_err, dev,
2065 					  "%s() Rx error %08x\n", __func__,
2066 					  desc_status);
2067 				dev->stats.rx_errors++;
2068 				if (desc_status & 0x0030)
2069 					dev->stats.rx_length_errors++;
2070 				if (desc_status & 0x0048)
2071 					dev->stats.rx_fifo_errors++;
2072 				if (desc_status & 0x0004)
2073 					dev->stats.rx_frame_errors++;
2074 				if (desc_status & 0x0002) {
2075 					/* this can also be updated outside the interrupt handler */
2076 					spin_lock(&rp->lock);
2077 					dev->stats.rx_crc_errors++;
2078 					spin_unlock(&rp->lock);
2079 				}
2080 			}
2081 		} else {
2082 			/* Length should omit the CRC */
2083 			int pkt_len = data_size - 4;
2084 			struct sk_buff *skb;
2085 
2086 			/* Check if the packet is long enough to accept without
2087 			   copying to a minimally-sized skbuff. */
2088 			if (pkt_len < rx_copybreak) {
2089 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2090 				if (unlikely(!skb))
2091 					goto drop;
2092 
2093 				dma_sync_single_for_cpu(hwdev,
2094 							rp->rx_skbuff_dma[entry],
2095 							rp->rx_buf_sz,
2096 							DMA_FROM_DEVICE);
2097 
2098 				skb_copy_to_linear_data(skb,
2099 						 rp->rx_skbuff[entry]->data,
2100 						 pkt_len);
2101 
2102 				dma_sync_single_for_device(hwdev,
2103 							   rp->rx_skbuff_dma[entry],
2104 							   rp->rx_buf_sz,
2105 							   DMA_FROM_DEVICE);
2106 			} else {
2107 				struct rhine_skb_dma sd;
2108 
2109 				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2110 					goto drop;
2111 
2112 				skb = rp->rx_skbuff[entry];
2113 
2114 				dma_unmap_single(hwdev,
2115 						 rp->rx_skbuff_dma[entry],
2116 						 rp->rx_buf_sz,
2117 						 DMA_FROM_DEVICE);
2118 				rhine_skb_dma_nic_store(rp, &sd, entry);
2119 			}
2120 
2121 			skb_put(skb, pkt_len);
2122 
2123 			rhine_rx_vlan_tag(skb, desc, data_size);
2124 
2125 			skb->protocol = eth_type_trans(skb, dev);
2126 
2127 			netif_receive_skb(skb);
2128 
2129 			u64_stats_update_begin(&rp->rx_stats.syncp);
2130 			rp->rx_stats.bytes += pkt_len;
2131 			rp->rx_stats.packets++;
2132 			u64_stats_update_end(&rp->rx_stats.syncp);
2133 		}
2134 give_descriptor_to_nic:
2135 		desc->rx_status = cpu_to_le32(DescOwn);
2136 		entry = (++rp->cur_rx) % RX_RING_SIZE;
2137 	}
2138 
2139 	return count;
2140 
2141 drop:
2142 	dev->stats.rx_dropped++;
2143 	goto give_descriptor_to_nic;
2144 }
2145 
2146 static void rhine_restart_tx(struct net_device *dev) {
2147 	struct rhine_private *rp = netdev_priv(dev);
2148 	void __iomem *ioaddr = rp->base;
2149 	int entry = rp->dirty_tx % TX_RING_SIZE;
2150 	u32 intr_status;
2151 
2152 	/*
2153 	 * If new errors occurred, we need to sort them out before doing Tx.
2154 	 * In that case the ISR will be back here RSN anyway.
2155 	 */
2156 	intr_status = rhine_get_events(rp);
2157 
2158 	if ((intr_status & IntrTxErrSummary) == 0) {
2159 
2160 		/* We know better than the chip where it should continue. */
2161 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2162 		       ioaddr + TxRingPtr);
2163 
2164 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2165 		       ioaddr + ChipCmd);
2166 
2167 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2168 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2169 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2170 
2171 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2172 		       ioaddr + ChipCmd1);
2173 		IOSYNC;
2174 	}
2175 	else {
2176 		/* This should never happen */
2177 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2178 			   intr_status);
2179 	}
2180 
2181 }
2182 
2183 static void rhine_slow_event_task(struct work_struct *work)
2184 {
2185 	struct rhine_private *rp =
2186 		container_of(work, struct rhine_private, slow_event_task);
2187 	struct net_device *dev = rp->dev;
2188 	u32 intr_status;
2189 
2190 	mutex_lock(&rp->task_lock);
2191 
2192 	if (!rp->task_enable)
2193 		goto out_unlock;
2194 
2195 	intr_status = rhine_get_events(rp);
2196 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2197 
2198 	if (intr_status & IntrLinkChange)
2199 		rhine_check_media(dev, 0);
2200 
2201 	if (intr_status & IntrPCIErr)
2202 		netif_warn(rp, hw, dev, "PCI error\n");
2203 
2204 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2205 
2206 out_unlock:
2207 	mutex_unlock(&rp->task_lock);
2208 }
2209 
2210 static void
2211 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2212 {
2213 	struct rhine_private *rp = netdev_priv(dev);
2214 	unsigned int start;
2215 
2216 	spin_lock_bh(&rp->lock);
2217 	rhine_update_rx_crc_and_missed_errord(rp);
2218 	spin_unlock_bh(&rp->lock);
2219 
2220 	netdev_stats_to_stats64(stats, &dev->stats);
2221 
2222 	do {
2223 		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2224 		stats->rx_packets = rp->rx_stats.packets;
2225 		stats->rx_bytes = rp->rx_stats.bytes;
2226 	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2227 
2228 	do {
2229 		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2230 		stats->tx_packets = rp->tx_stats.packets;
2231 		stats->tx_bytes = rp->tx_stats.bytes;
2232 	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2233 }
2234 
2235 static void rhine_set_rx_mode(struct net_device *dev)
2236 {
2237 	struct rhine_private *rp = netdev_priv(dev);
2238 	void __iomem *ioaddr = rp->base;
2239 	u32 mc_filter[2];	/* Multicast hash filter */
2240 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2241 	struct netdev_hw_addr *ha;
2242 
2243 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2244 		rx_mode = 0x1C;
2245 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2246 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2247 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2248 		   (dev->flags & IFF_ALLMULTI)) {
2249 		/* Too many to match, or accept all multicasts. */
2250 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2251 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2252 	} else if (rp->quirks & rqMgmt) {
2253 		int i = 0;
2254 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2255 		netdev_for_each_mc_addr(ha, dev) {
2256 			if (i == MCAM_SIZE)
2257 				break;
2258 			rhine_set_cam(ioaddr, i, ha->addr);
2259 			mCAMmask |= 1 << i;
2260 			i++;
2261 		}
2262 		rhine_set_cam_mask(ioaddr, mCAMmask);
2263 	} else {
2264 		memset(mc_filter, 0, sizeof(mc_filter));
2265 		netdev_for_each_mc_addr(ha, dev) {
2266 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2267 
2268 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2269 		}
2270 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2271 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2272 	}
2273 	/* enable/disable VLAN receive filtering */
2274 	if (rp->quirks & rqMgmt) {
2275 		if (dev->flags & IFF_PROMISC)
2276 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2277 		else
2278 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2279 	}
2280 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2281 }
2282 
2283 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2284 {
2285 	struct device *hwdev = dev->dev.parent;
2286 
2287 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2288 	strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2289 }
2290 
2291 static int netdev_get_link_ksettings(struct net_device *dev,
2292 				     struct ethtool_link_ksettings *cmd)
2293 {
2294 	struct rhine_private *rp = netdev_priv(dev);
2295 
2296 	mutex_lock(&rp->task_lock);
2297 	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
2298 	mutex_unlock(&rp->task_lock);
2299 
2300 	return 0;
2301 }
2302 
2303 static int netdev_set_link_ksettings(struct net_device *dev,
2304 				     const struct ethtool_link_ksettings *cmd)
2305 {
2306 	struct rhine_private *rp = netdev_priv(dev);
2307 	int rc;
2308 
2309 	mutex_lock(&rp->task_lock);
2310 	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
2311 	rhine_set_carrier(&rp->mii_if);
2312 	mutex_unlock(&rp->task_lock);
2313 
2314 	return rc;
2315 }
2316 
2317 static int netdev_nway_reset(struct net_device *dev)
2318 {
2319 	struct rhine_private *rp = netdev_priv(dev);
2320 
2321 	return mii_nway_restart(&rp->mii_if);
2322 }
2323 
2324 static u32 netdev_get_link(struct net_device *dev)
2325 {
2326 	struct rhine_private *rp = netdev_priv(dev);
2327 
2328 	return mii_link_ok(&rp->mii_if);
2329 }
2330 
2331 static u32 netdev_get_msglevel(struct net_device *dev)
2332 {
2333 	struct rhine_private *rp = netdev_priv(dev);
2334 
2335 	return rp->msg_enable;
2336 }
2337 
2338 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2339 {
2340 	struct rhine_private *rp = netdev_priv(dev);
2341 
2342 	rp->msg_enable = value;
2343 }
2344 
2345 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2346 {
2347 	struct rhine_private *rp = netdev_priv(dev);
2348 
2349 	if (!(rp->quirks & rqWOL))
2350 		return;
2351 
2352 	spin_lock_irq(&rp->lock);
2353 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2354 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2355 	wol->wolopts = rp->wolopts;
2356 	spin_unlock_irq(&rp->lock);
2357 }
2358 
2359 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2360 {
2361 	struct rhine_private *rp = netdev_priv(dev);
2362 	u32 support = WAKE_PHY | WAKE_MAGIC |
2363 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2364 
2365 	if (!(rp->quirks & rqWOL))
2366 		return -EINVAL;
2367 
2368 	if (wol->wolopts & ~support)
2369 		return -EINVAL;
2370 
2371 	spin_lock_irq(&rp->lock);
2372 	rp->wolopts = wol->wolopts;
2373 	spin_unlock_irq(&rp->lock);
2374 
2375 	return 0;
2376 }
2377 
2378 static const struct ethtool_ops netdev_ethtool_ops = {
2379 	.get_drvinfo		= netdev_get_drvinfo,
2380 	.nway_reset		= netdev_nway_reset,
2381 	.get_link		= netdev_get_link,
2382 	.get_msglevel		= netdev_get_msglevel,
2383 	.set_msglevel		= netdev_set_msglevel,
2384 	.get_wol		= rhine_get_wol,
2385 	.set_wol		= rhine_set_wol,
2386 	.get_link_ksettings	= netdev_get_link_ksettings,
2387 	.set_link_ksettings	= netdev_set_link_ksettings,
2388 };
2389 
2390 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2391 {
2392 	struct rhine_private *rp = netdev_priv(dev);
2393 	int rc;
2394 
2395 	if (!netif_running(dev))
2396 		return -EINVAL;
2397 
2398 	mutex_lock(&rp->task_lock);
2399 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2400 	rhine_set_carrier(&rp->mii_if);
2401 	mutex_unlock(&rp->task_lock);
2402 
2403 	return rc;
2404 }
2405 
2406 static int rhine_close(struct net_device *dev)
2407 {
2408 	struct rhine_private *rp = netdev_priv(dev);
2409 	void __iomem *ioaddr = rp->base;
2410 
2411 	rhine_task_disable(rp);
2412 	napi_disable(&rp->napi);
2413 	netif_stop_queue(dev);
2414 
2415 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2416 		  ioread16(ioaddr + ChipCmd));
2417 
2418 	/* Switch to loopback mode to avoid hardware races. */
2419 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2420 
2421 	rhine_irq_disable(rp);
2422 
2423 	/* Stop the chip's Tx and Rx processes. */
2424 	iowrite16(CmdStop, ioaddr + ChipCmd);
2425 
2426 	free_irq(rp->irq, dev);
2427 	free_rbufs(dev);
2428 	free_tbufs(dev);
2429 	free_ring(dev);
2430 
2431 	return 0;
2432 }
2433 
2434 
2435 static void rhine_remove_one_pci(struct pci_dev *pdev)
2436 {
2437 	struct net_device *dev = pci_get_drvdata(pdev);
2438 	struct rhine_private *rp = netdev_priv(dev);
2439 
2440 	unregister_netdev(dev);
2441 
2442 	pci_iounmap(pdev, rp->base);
2443 	pci_release_regions(pdev);
2444 
2445 	free_netdev(dev);
2446 	pci_disable_device(pdev);
2447 }
2448 
2449 static int rhine_remove_one_platform(struct platform_device *pdev)
2450 {
2451 	struct net_device *dev = platform_get_drvdata(pdev);
2452 	struct rhine_private *rp = netdev_priv(dev);
2453 
2454 	unregister_netdev(dev);
2455 
2456 	iounmap(rp->base);
2457 
2458 	free_netdev(dev);
2459 
2460 	return 0;
2461 }
2462 
2463 static void rhine_shutdown_pci(struct pci_dev *pdev)
2464 {
2465 	struct net_device *dev = pci_get_drvdata(pdev);
2466 	struct rhine_private *rp = netdev_priv(dev);
2467 	void __iomem *ioaddr = rp->base;
2468 
2469 	if (!(rp->quirks & rqWOL))
2470 		return; /* Nothing to do for non-WOL adapters */
2471 
2472 	rhine_power_init(dev);
2473 
2474 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2475 	if (rp->quirks & rq6patterns)
2476 		iowrite8(0x04, ioaddr + WOLcgClr);
2477 
2478 	spin_lock(&rp->lock);
2479 
2480 	if (rp->wolopts & WAKE_MAGIC) {
2481 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2482 		/*
2483 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2484 		 * not cooperate otherwise.
2485 		 */
2486 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2487 	}
2488 
2489 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2490 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2491 
2492 	if (rp->wolopts & WAKE_PHY)
2493 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2494 
2495 	if (rp->wolopts & WAKE_UCAST)
2496 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2497 
2498 	if (rp->wolopts) {
2499 		/* Enable legacy WOL (for old motherboards) */
2500 		iowrite8(0x01, ioaddr + PwcfgSet);
2501 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2502 	}
2503 
2504 	spin_unlock(&rp->lock);
2505 
2506 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2507 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2508 
2509 		pci_wake_from_d3(pdev, true);
2510 		pci_set_power_state(pdev, PCI_D3hot);
2511 	}
2512 }
2513 
2514 #ifdef CONFIG_PM_SLEEP
2515 static int rhine_suspend(struct device *device)
2516 {
2517 	struct net_device *dev = dev_get_drvdata(device);
2518 	struct rhine_private *rp = netdev_priv(dev);
2519 
2520 	if (!netif_running(dev))
2521 		return 0;
2522 
2523 	rhine_task_disable(rp);
2524 	rhine_irq_disable(rp);
2525 	napi_disable(&rp->napi);
2526 
2527 	netif_device_detach(dev);
2528 
2529 	if (dev_is_pci(device))
2530 		rhine_shutdown_pci(to_pci_dev(device));
2531 
2532 	return 0;
2533 }
2534 
2535 static int rhine_resume(struct device *device)
2536 {
2537 	struct net_device *dev = dev_get_drvdata(device);
2538 	struct rhine_private *rp = netdev_priv(dev);
2539 
2540 	if (!netif_running(dev))
2541 		return 0;
2542 
2543 	enable_mmio(rp->pioaddr, rp->quirks);
2544 	rhine_power_init(dev);
2545 	free_tbufs(dev);
2546 	alloc_tbufs(dev);
2547 	rhine_reset_rbufs(rp);
2548 	rhine_task_enable(rp);
2549 	spin_lock_bh(&rp->lock);
2550 	init_registers(dev);
2551 	spin_unlock_bh(&rp->lock);
2552 
2553 	netif_device_attach(dev);
2554 
2555 	return 0;
2556 }
2557 
2558 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2559 #define RHINE_PM_OPS	(&rhine_pm_ops)
2560 
2561 #else
2562 
2563 #define RHINE_PM_OPS	NULL
2564 
2565 #endif /* !CONFIG_PM_SLEEP */
2566 
2567 static struct pci_driver rhine_driver_pci = {
2568 	.name		= DRV_NAME,
2569 	.id_table	= rhine_pci_tbl,
2570 	.probe		= rhine_init_one_pci,
2571 	.remove		= rhine_remove_one_pci,
2572 	.shutdown	= rhine_shutdown_pci,
2573 	.driver.pm	= RHINE_PM_OPS,
2574 };
2575 
2576 static struct platform_driver rhine_driver_platform = {
2577 	.probe		= rhine_init_one_platform,
2578 	.remove		= rhine_remove_one_platform,
2579 	.driver = {
2580 		.name	= DRV_NAME,
2581 		.of_match_table	= rhine_of_tbl,
2582 		.pm		= RHINE_PM_OPS,
2583 	}
2584 };
2585 
2586 static const struct dmi_system_id rhine_dmi_table[] __initconst = {
2587 	{
2588 		.ident = "EPIA-M",
2589 		.matches = {
2590 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2591 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2592 		},
2593 	},
2594 	{
2595 		.ident = "KV7",
2596 		.matches = {
2597 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2598 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2599 		},
2600 	},
2601 	{ NULL }
2602 };
2603 
2604 static int __init rhine_init(void)
2605 {
2606 	int ret_pci, ret_platform;
2607 
2608 /* when a module, this is printed whether or not devices are found in probe */
2609 	if (dmi_check_system(rhine_dmi_table)) {
2610 		/* these BIOSes fail at PXE boot if chip is in D3 */
2611 		avoid_D3 = true;
2612 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2613 	}
2614 	else if (avoid_D3)
2615 		pr_info("avoid_D3 set\n");
2616 
2617 	ret_pci = pci_register_driver(&rhine_driver_pci);
2618 	ret_platform = platform_driver_register(&rhine_driver_platform);
2619 	if ((ret_pci < 0) && (ret_platform < 0))
2620 		return ret_pci;
2621 
2622 	return 0;
2623 }
2624 
2625 
2626 static void __exit rhine_cleanup(void)
2627 {
2628 	platform_driver_unregister(&rhine_driver_platform);
2629 	pci_unregister_driver(&rhine_driver_pci);
2630 }
2631 
2632 
2633 module_init(rhine_init);
2634 module_exit(rhine_cleanup);
2635