1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Roger Luethi <rl@hellgate.ch> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 #define DRV_VERSION "1.5.1" 36 #define DRV_RELDATE "2010-10-09" 37 38 #include <linux/types.h> 39 40 /* A few user-configurable values. 41 These may be modified when a driver module is loaded. */ 42 static int debug = 0; 43 #define RHINE_MSG_DEFAULT \ 44 (0x0000) 45 46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 47 Setting to > 1518 effectively disables this feature. */ 48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 49 defined(CONFIG_SPARC) || defined(__ia64__) || \ 50 defined(__sh__) || defined(__mips__) 51 static int rx_copybreak = 1518; 52 #else 53 static int rx_copybreak; 54 #endif 55 56 /* Work-around for broken BIOSes: they are unable to get the chip back out of 57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 58 static bool avoid_D3; 59 60 /* 61 * In case you are looking for 'options[]' or 'full_duplex[]', they 62 * are gone. Use ethtool(8) instead. 63 */ 64 65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 66 The Rhine has a 64 element 8390-like hash table. */ 67 static const int multicast_filter_limit = 32; 68 69 70 /* Operational parameters that are set at compile time. */ 71 72 /* Keep the ring sizes a power of two for compile efficiency. 73 * The compiler will convert <unsigned>'%'<2^N> into a bit mask. 74 * Making the Tx ring too large decreases the effectiveness of channel 75 * bonding and packet priority. 76 * With BQL support, we can increase TX ring safely. 77 * There are no ill effects from too-large receive rings. 78 */ 79 #define TX_RING_SIZE 64 80 #define TX_QUEUE_LEN (TX_RING_SIZE - 6) /* Limit ring entries actually used. */ 81 #define RX_RING_SIZE 64 82 83 /* Operational parameters that usually are not changed. */ 84 85 /* Time in jiffies before concluding the transmitter is hung. */ 86 #define TX_TIMEOUT (2*HZ) 87 88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 89 90 #include <linux/module.h> 91 #include <linux/moduleparam.h> 92 #include <linux/kernel.h> 93 #include <linux/string.h> 94 #include <linux/timer.h> 95 #include <linux/errno.h> 96 #include <linux/ioport.h> 97 #include <linux/interrupt.h> 98 #include <linux/pci.h> 99 #include <linux/of_device.h> 100 #include <linux/of_irq.h> 101 #include <linux/platform_device.h> 102 #include <linux/dma-mapping.h> 103 #include <linux/netdevice.h> 104 #include <linux/etherdevice.h> 105 #include <linux/skbuff.h> 106 #include <linux/init.h> 107 #include <linux/delay.h> 108 #include <linux/mii.h> 109 #include <linux/ethtool.h> 110 #include <linux/crc32.h> 111 #include <linux/if_vlan.h> 112 #include <linux/bitops.h> 113 #include <linux/workqueue.h> 114 #include <asm/processor.h> /* Processor type for cache alignment. */ 115 #include <asm/io.h> 116 #include <asm/irq.h> 117 #include <linux/uaccess.h> 118 #include <linux/dmi.h> 119 120 /* These identify the driver base version and may not be removed. */ 121 static const char version[] = 122 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; 123 124 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 125 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 126 MODULE_LICENSE("GPL"); 127 128 module_param(debug, int, 0); 129 module_param(rx_copybreak, int, 0); 130 module_param(avoid_D3, bool, 0); 131 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); 132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 134 135 #define MCAM_SIZE 32 136 #define VCAM_SIZE 32 137 138 /* 139 Theory of Operation 140 141 I. Board Compatibility 142 143 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 144 controller. 145 146 II. Board-specific settings 147 148 Boards with this chip are functional only in a bus-master PCI slot. 149 150 Many operational settings are loaded from the EEPROM to the Config word at 151 offset 0x78. For most of these settings, this driver assumes that they are 152 correct. 153 If this driver is compiled to use PCI memory space operations the EEPROM 154 must be configured to enable memory ops. 155 156 III. Driver operation 157 158 IIIa. Ring buffers 159 160 This driver uses two statically allocated fixed-size descriptor lists 161 formed into rings by a branch from the final descriptor to the beginning of 162 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 163 164 IIIb/c. Transmit/Receive Structure 165 166 This driver attempts to use a zero-copy receive and transmit scheme. 167 168 Alas, all data buffers are required to start on a 32 bit boundary, so 169 the driver must often copy transmit packets into bounce buffers. 170 171 The driver allocates full frame size skbuffs for the Rx ring buffers at 172 open() time and passes the skb->data field to the chip as receive data 173 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 174 a fresh skbuff is allocated and the frame is copied to the new skbuff. 175 When the incoming frame is larger, the skbuff is passed directly up the 176 protocol stack. Buffers consumed this way are replaced by newly allocated 177 skbuffs in the last phase of rhine_rx(). 178 179 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 180 using a full-sized skbuff for small frames vs. the copying costs of larger 181 frames. New boards are typically used in generously configured machines 182 and the underfilled buffers have negligible impact compared to the benefit of 183 a single allocation size, so the default value of zero results in never 184 copying packets. When copying is done, the cost is usually mitigated by using 185 a combined copy/checksum routine. Copying also preloads the cache, which is 186 most useful with small frames. 187 188 Since the VIA chips are only able to transfer data to buffers on 32 bit 189 boundaries, the IP header at offset 14 in an ethernet frame isn't 190 longword aligned for further processing. Copying these unaligned buffers 191 has the beneficial effect of 16-byte aligning the IP header. 192 193 IIId. Synchronization 194 195 The driver runs as two independent, single-threaded flows of control. One 196 is the send-packet routine, which enforces single-threaded use by the 197 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 198 which is single threaded by the hardware and interrupt handling software. 199 200 The send packet thread has partial control over the Tx ring. It locks the 201 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 202 the ring is not available it stops the transmit queue by 203 calling netif_stop_queue. 204 205 The interrupt handler has exclusive control over the Rx ring and records stats 206 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 207 empty by incrementing the dirty_tx mark. If at least half of the entries in 208 the Rx ring are available the transmit queue is woken up if it was stopped. 209 210 IV. Notes 211 212 IVb. References 213 214 Preliminary VT86C100A manual from http://www.via.com.tw/ 215 http://www.scyld.com/expert/100mbps.html 216 http://www.scyld.com/expert/NWay.html 217 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 218 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 219 220 221 IVc. Errata 222 223 The VT86C100A manual is not reliable information. 224 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 225 in significant performance degradation for bounce buffer copies on transmit 226 and unaligned IP headers on receive. 227 The chip does not pad to minimum transmit length. 228 229 */ 230 231 232 /* This table drives the PCI probe routines. It's mostly boilerplate in all 233 of the drivers, and will likely be provided by some future kernel. 234 Note the matching code -- the first table entry matchs all 56** cards but 235 second only the 1234 card. 236 */ 237 238 enum rhine_revs { 239 VT86C100A = 0x00, 240 VTunknown0 = 0x20, 241 VT6102 = 0x40, 242 VT8231 = 0x50, /* Integrated MAC */ 243 VT8233 = 0x60, /* Integrated MAC */ 244 VT8235 = 0x74, /* Integrated MAC */ 245 VT8237 = 0x78, /* Integrated MAC */ 246 VTunknown1 = 0x7C, 247 VT6105 = 0x80, 248 VT6105_B0 = 0x83, 249 VT6105L = 0x8A, 250 VT6107 = 0x8C, 251 VTunknown2 = 0x8E, 252 VT6105M = 0x90, /* Management adapter */ 253 }; 254 255 enum rhine_quirks { 256 rqWOL = 0x0001, /* Wake-On-LAN support */ 257 rqForceReset = 0x0002, 258 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 259 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 260 rqRhineI = 0x0100, /* See comment below */ 261 rqIntPHY = 0x0200, /* Integrated PHY */ 262 rqMgmt = 0x0400, /* Management adapter */ 263 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be 264 * switched from PIO mode to MMIO 265 * (only applies to PCI) 266 */ 267 }; 268 /* 269 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 270 * MMIO as well as for the collision counter and the Tx FIFO underflow 271 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 272 */ 273 274 /* Beware of PCI posted writes */ 275 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 276 277 static const struct pci_device_id rhine_pci_tbl[] = { 278 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 279 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 280 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 281 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 282 { } /* terminate list */ 283 }; 284 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 285 286 /* OpenFirmware identifiers for platform-bus devices 287 * The .data field is currently only used to store quirks 288 */ 289 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns; 290 static const struct of_device_id rhine_of_tbl[] = { 291 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks }, 292 { } /* terminate list */ 293 }; 294 MODULE_DEVICE_TABLE(of, rhine_of_tbl); 295 296 /* Offsets to the device registers. */ 297 enum register_offsets { 298 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 299 ChipCmd1=0x09, TQWake=0x0A, 300 IntrStatus=0x0C, IntrEnable=0x0E, 301 MulticastFilter0=0x10, MulticastFilter1=0x14, 302 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 303 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 304 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 305 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 306 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 307 StickyHW=0x83, IntrStatus2=0x84, 308 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 309 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 310 WOLcrClr1=0xA6, WOLcgClr=0xA7, 311 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 312 }; 313 314 /* Bits in ConfigD */ 315 enum backoff_bits { 316 BackOptional=0x01, BackModify=0x02, 317 BackCaptureEffect=0x04, BackRandom=0x08 318 }; 319 320 /* Bits in the TxConfig (TCR) register */ 321 enum tcr_bits { 322 TCR_PQEN=0x01, 323 TCR_LB0=0x02, /* loopback[0] */ 324 TCR_LB1=0x04, /* loopback[1] */ 325 TCR_OFSET=0x08, 326 TCR_RTGOPT=0x10, 327 TCR_RTFT0=0x20, 328 TCR_RTFT1=0x40, 329 TCR_RTSF=0x80, 330 }; 331 332 /* Bits in the CamCon (CAMC) register */ 333 enum camcon_bits { 334 CAMC_CAMEN=0x01, 335 CAMC_VCAMSL=0x02, 336 CAMC_CAMWR=0x04, 337 CAMC_CAMRD=0x08, 338 }; 339 340 /* Bits in the PCIBusConfig1 (BCR1) register */ 341 enum bcr1_bits { 342 BCR1_POT0=0x01, 343 BCR1_POT1=0x02, 344 BCR1_POT2=0x04, 345 BCR1_CTFT0=0x08, 346 BCR1_CTFT1=0x10, 347 BCR1_CTSF=0x20, 348 BCR1_TXQNOBK=0x40, /* for VT6105 */ 349 BCR1_VIDFR=0x80, /* for VT6105 */ 350 BCR1_MED0=0x40, /* for VT6102 */ 351 BCR1_MED1=0x80, /* for VT6102 */ 352 }; 353 354 /* Registers we check that mmio and reg are the same. */ 355 static const int mmio_verify_registers[] = { 356 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 357 0 358 }; 359 360 /* Bits in the interrupt status/mask registers. */ 361 enum intr_status_bits { 362 IntrRxDone = 0x0001, 363 IntrTxDone = 0x0002, 364 IntrRxErr = 0x0004, 365 IntrTxError = 0x0008, 366 IntrRxEmpty = 0x0020, 367 IntrPCIErr = 0x0040, 368 IntrStatsMax = 0x0080, 369 IntrRxEarly = 0x0100, 370 IntrTxUnderrun = 0x0210, 371 IntrRxOverflow = 0x0400, 372 IntrRxDropped = 0x0800, 373 IntrRxNoBuf = 0x1000, 374 IntrTxAborted = 0x2000, 375 IntrLinkChange = 0x4000, 376 IntrRxWakeUp = 0x8000, 377 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ 378 IntrNormalSummary = IntrRxDone | IntrTxDone, 379 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | 380 IntrTxUnderrun, 381 }; 382 383 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 384 enum wol_bits { 385 WOLucast = 0x10, 386 WOLmagic = 0x20, 387 WOLbmcast = 0x30, 388 WOLlnkon = 0x40, 389 WOLlnkoff = 0x80, 390 }; 391 392 /* The Rx and Tx buffer descriptors. */ 393 struct rx_desc { 394 __le32 rx_status; 395 __le32 desc_length; /* Chain flag, Buffer/frame length */ 396 __le32 addr; 397 __le32 next_desc; 398 }; 399 struct tx_desc { 400 __le32 tx_status; 401 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 402 __le32 addr; 403 __le32 next_desc; 404 }; 405 406 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 407 #define TXDESC 0x00e08000 408 409 enum rx_status_bits { 410 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 411 }; 412 413 /* Bits in *_desc.*_status */ 414 enum desc_status_bits { 415 DescOwn=0x80000000 416 }; 417 418 /* Bits in *_desc.*_length */ 419 enum desc_length_bits { 420 DescTag=0x00010000 421 }; 422 423 /* Bits in ChipCmd. */ 424 enum chip_cmd_bits { 425 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 426 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 427 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 428 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 429 }; 430 431 struct rhine_stats { 432 u64 packets; 433 u64 bytes; 434 struct u64_stats_sync syncp; 435 }; 436 437 struct rhine_private { 438 /* Bit mask for configured VLAN ids */ 439 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 440 441 /* Descriptor rings */ 442 struct rx_desc *rx_ring; 443 struct tx_desc *tx_ring; 444 dma_addr_t rx_ring_dma; 445 dma_addr_t tx_ring_dma; 446 447 /* The addresses of receive-in-place skbuffs. */ 448 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 449 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 450 451 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 452 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 453 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 454 455 /* Tx bounce buffers (Rhine-I only) */ 456 unsigned char *tx_buf[TX_RING_SIZE]; 457 unsigned char *tx_bufs; 458 dma_addr_t tx_bufs_dma; 459 460 int irq; 461 long pioaddr; 462 struct net_device *dev; 463 struct napi_struct napi; 464 spinlock_t lock; 465 struct mutex task_lock; 466 bool task_enable; 467 struct work_struct slow_event_task; 468 struct work_struct reset_task; 469 470 u32 msg_enable; 471 472 /* Frequently used values: keep some adjacent for cache effect. */ 473 u32 quirks; 474 unsigned int cur_rx; 475 unsigned int cur_tx, dirty_tx; 476 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 477 struct rhine_stats rx_stats; 478 struct rhine_stats tx_stats; 479 u8 wolopts; 480 481 u8 tx_thresh, rx_thresh; 482 483 struct mii_if_info mii_if; 484 void __iomem *base; 485 }; 486 487 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 488 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 489 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 490 491 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 492 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 493 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 494 495 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 496 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 497 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 498 499 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 500 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 501 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 502 503 504 static int mdio_read(struct net_device *dev, int phy_id, int location); 505 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 506 static int rhine_open(struct net_device *dev); 507 static void rhine_reset_task(struct work_struct *work); 508 static void rhine_slow_event_task(struct work_struct *work); 509 static void rhine_tx_timeout(struct net_device *dev); 510 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 511 struct net_device *dev); 512 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 513 static void rhine_tx(struct net_device *dev); 514 static int rhine_rx(struct net_device *dev, int limit); 515 static void rhine_set_rx_mode(struct net_device *dev); 516 static void rhine_get_stats64(struct net_device *dev, 517 struct rtnl_link_stats64 *stats); 518 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 519 static const struct ethtool_ops netdev_ethtool_ops; 520 static int rhine_close(struct net_device *dev); 521 static int rhine_vlan_rx_add_vid(struct net_device *dev, 522 __be16 proto, u16 vid); 523 static int rhine_vlan_rx_kill_vid(struct net_device *dev, 524 __be16 proto, u16 vid); 525 static void rhine_restart_tx(struct net_device *dev); 526 527 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) 528 { 529 void __iomem *ioaddr = rp->base; 530 int i; 531 532 for (i = 0; i < 1024; i++) { 533 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); 534 535 if (low ^ has_mask_bits) 536 break; 537 udelay(10); 538 } 539 if (i > 64) { 540 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " 541 "count: %04d\n", low ? "low" : "high", reg, mask, i); 542 } 543 } 544 545 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) 546 { 547 rhine_wait_bit(rp, reg, mask, false); 548 } 549 550 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) 551 { 552 rhine_wait_bit(rp, reg, mask, true); 553 } 554 555 static u32 rhine_get_events(struct rhine_private *rp) 556 { 557 void __iomem *ioaddr = rp->base; 558 u32 intr_status; 559 560 intr_status = ioread16(ioaddr + IntrStatus); 561 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 562 if (rp->quirks & rqStatusWBRace) 563 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 564 return intr_status; 565 } 566 567 static void rhine_ack_events(struct rhine_private *rp, u32 mask) 568 { 569 void __iomem *ioaddr = rp->base; 570 571 if (rp->quirks & rqStatusWBRace) 572 iowrite8(mask >> 16, ioaddr + IntrStatus2); 573 iowrite16(mask, ioaddr + IntrStatus); 574 mmiowb(); 575 } 576 577 /* 578 * Get power related registers into sane state. 579 * Notify user about past WOL event. 580 */ 581 static void rhine_power_init(struct net_device *dev) 582 { 583 struct rhine_private *rp = netdev_priv(dev); 584 void __iomem *ioaddr = rp->base; 585 u16 wolstat; 586 587 if (rp->quirks & rqWOL) { 588 /* Make sure chip is in power state D0 */ 589 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 590 591 /* Disable "force PME-enable" */ 592 iowrite8(0x80, ioaddr + WOLcgClr); 593 594 /* Clear power-event config bits (WOL) */ 595 iowrite8(0xFF, ioaddr + WOLcrClr); 596 /* More recent cards can manage two additional patterns */ 597 if (rp->quirks & rq6patterns) 598 iowrite8(0x03, ioaddr + WOLcrClr1); 599 600 /* Save power-event status bits */ 601 wolstat = ioread8(ioaddr + PwrcsrSet); 602 if (rp->quirks & rq6patterns) 603 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 604 605 /* Clear power-event status bits */ 606 iowrite8(0xFF, ioaddr + PwrcsrClr); 607 if (rp->quirks & rq6patterns) 608 iowrite8(0x03, ioaddr + PwrcsrClr1); 609 610 if (wolstat) { 611 char *reason; 612 switch (wolstat) { 613 case WOLmagic: 614 reason = "Magic packet"; 615 break; 616 case WOLlnkon: 617 reason = "Link went up"; 618 break; 619 case WOLlnkoff: 620 reason = "Link went down"; 621 break; 622 case WOLucast: 623 reason = "Unicast packet"; 624 break; 625 case WOLbmcast: 626 reason = "Multicast/broadcast packet"; 627 break; 628 default: 629 reason = "Unknown"; 630 } 631 netdev_info(dev, "Woke system up. Reason: %s\n", 632 reason); 633 } 634 } 635 } 636 637 static void rhine_chip_reset(struct net_device *dev) 638 { 639 struct rhine_private *rp = netdev_priv(dev); 640 void __iomem *ioaddr = rp->base; 641 u8 cmd1; 642 643 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 644 IOSYNC; 645 646 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 647 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 648 649 /* Force reset */ 650 if (rp->quirks & rqForceReset) 651 iowrite8(0x40, ioaddr + MiscCmd); 652 653 /* Reset can take somewhat longer (rare) */ 654 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); 655 } 656 657 cmd1 = ioread8(ioaddr + ChipCmd1); 658 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? 659 "failed" : "succeeded"); 660 } 661 662 static void enable_mmio(long pioaddr, u32 quirks) 663 { 664 int n; 665 666 if (quirks & rqNeedEnMMIO) { 667 if (quirks & rqRhineI) { 668 /* More recent docs say that this bit is reserved */ 669 n = inb(pioaddr + ConfigA) | 0x20; 670 outb(n, pioaddr + ConfigA); 671 } else { 672 n = inb(pioaddr + ConfigD) | 0x80; 673 outb(n, pioaddr + ConfigD); 674 } 675 } 676 } 677 678 static inline int verify_mmio(struct device *hwdev, 679 long pioaddr, 680 void __iomem *ioaddr, 681 u32 quirks) 682 { 683 if (quirks & rqNeedEnMMIO) { 684 int i = 0; 685 686 /* Check that selected MMIO registers match the PIO ones */ 687 while (mmio_verify_registers[i]) { 688 int reg = mmio_verify_registers[i++]; 689 unsigned char a = inb(pioaddr+reg); 690 unsigned char b = readb(ioaddr+reg); 691 692 if (a != b) { 693 dev_err(hwdev, 694 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 695 reg, a, b); 696 return -EIO; 697 } 698 } 699 } 700 return 0; 701 } 702 703 /* 704 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 705 * (plus 0x6C for Rhine-I/II) 706 */ 707 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) 708 { 709 struct rhine_private *rp = netdev_priv(dev); 710 void __iomem *ioaddr = rp->base; 711 int i; 712 713 outb(0x20, pioaddr + MACRegEEcsr); 714 for (i = 0; i < 1024; i++) { 715 if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) 716 break; 717 } 718 if (i > 512) 719 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); 720 721 /* 722 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 723 * MMIO. If reloading EEPROM was done first this could be avoided, but 724 * it is not known if that still works with the "win98-reboot" problem. 725 */ 726 enable_mmio(pioaddr, rp->quirks); 727 728 /* Turn off EEPROM-controlled wake-up (magic packet) */ 729 if (rp->quirks & rqWOL) 730 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 731 732 } 733 734 #ifdef CONFIG_NET_POLL_CONTROLLER 735 static void rhine_poll(struct net_device *dev) 736 { 737 struct rhine_private *rp = netdev_priv(dev); 738 const int irq = rp->irq; 739 740 disable_irq(irq); 741 rhine_interrupt(irq, dev); 742 enable_irq(irq); 743 } 744 #endif 745 746 static void rhine_kick_tx_threshold(struct rhine_private *rp) 747 { 748 if (rp->tx_thresh < 0xe0) { 749 void __iomem *ioaddr = rp->base; 750 751 rp->tx_thresh += 0x20; 752 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); 753 } 754 } 755 756 static void rhine_tx_err(struct rhine_private *rp, u32 status) 757 { 758 struct net_device *dev = rp->dev; 759 760 if (status & IntrTxAborted) { 761 netif_info(rp, tx_err, dev, 762 "Abort %08x, frame dropped\n", status); 763 } 764 765 if (status & IntrTxUnderrun) { 766 rhine_kick_tx_threshold(rp); 767 netif_info(rp, tx_err ,dev, "Transmitter underrun, " 768 "Tx threshold now %02x\n", rp->tx_thresh); 769 } 770 771 if (status & IntrTxDescRace) 772 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); 773 774 if ((status & IntrTxError) && 775 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { 776 rhine_kick_tx_threshold(rp); 777 netif_info(rp, tx_err, dev, "Unspecified error. " 778 "Tx threshold now %02x\n", rp->tx_thresh); 779 } 780 781 rhine_restart_tx(dev); 782 } 783 784 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) 785 { 786 void __iomem *ioaddr = rp->base; 787 struct net_device_stats *stats = &rp->dev->stats; 788 789 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 790 stats->rx_missed_errors += ioread16(ioaddr + RxMissed); 791 792 /* 793 * Clears the "tally counters" for CRC errors and missed frames(?). 794 * It has been reported that some chips need a write of 0 to clear 795 * these, for others the counters are set to 1 when written to and 796 * instead cleared when read. So we clear them both ways ... 797 */ 798 iowrite32(0, ioaddr + RxMissed); 799 ioread16(ioaddr + RxCRCErrs); 800 ioread16(ioaddr + RxMissed); 801 } 802 803 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ 804 IntrRxErr | \ 805 IntrRxEmpty | \ 806 IntrRxOverflow | \ 807 IntrRxDropped | \ 808 IntrRxNoBuf | \ 809 IntrRxWakeUp) 810 811 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ 812 IntrTxAborted | \ 813 IntrTxUnderrun | \ 814 IntrTxDescRace) 815 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) 816 817 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ 818 RHINE_EVENT_NAPI_TX | \ 819 IntrStatsMax) 820 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) 821 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) 822 823 static int rhine_napipoll(struct napi_struct *napi, int budget) 824 { 825 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 826 struct net_device *dev = rp->dev; 827 void __iomem *ioaddr = rp->base; 828 u16 enable_mask = RHINE_EVENT & 0xffff; 829 int work_done = 0; 830 u32 status; 831 832 status = rhine_get_events(rp); 833 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); 834 835 if (status & RHINE_EVENT_NAPI_RX) 836 work_done += rhine_rx(dev, budget); 837 838 if (status & RHINE_EVENT_NAPI_TX) { 839 if (status & RHINE_EVENT_NAPI_TX_ERR) { 840 /* Avoid scavenging before Tx engine turned off */ 841 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); 842 if (ioread8(ioaddr + ChipCmd) & CmdTxOn) 843 netif_warn(rp, tx_err, dev, "Tx still on\n"); 844 } 845 846 rhine_tx(dev); 847 848 if (status & RHINE_EVENT_NAPI_TX_ERR) 849 rhine_tx_err(rp, status); 850 } 851 852 if (status & IntrStatsMax) { 853 spin_lock(&rp->lock); 854 rhine_update_rx_crc_and_missed_errord(rp); 855 spin_unlock(&rp->lock); 856 } 857 858 if (status & RHINE_EVENT_SLOW) { 859 enable_mask &= ~RHINE_EVENT_SLOW; 860 schedule_work(&rp->slow_event_task); 861 } 862 863 if (work_done < budget) { 864 napi_complete_done(napi, work_done); 865 iowrite16(enable_mask, ioaddr + IntrEnable); 866 mmiowb(); 867 } 868 return work_done; 869 } 870 871 static void rhine_hw_init(struct net_device *dev, long pioaddr) 872 { 873 struct rhine_private *rp = netdev_priv(dev); 874 875 /* Reset the chip to erase previous misconfiguration. */ 876 rhine_chip_reset(dev); 877 878 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 879 if (rp->quirks & rqRhineI) 880 msleep(5); 881 882 /* Reload EEPROM controlled bytes cleared by soft reset */ 883 if (dev_is_pci(dev->dev.parent)) 884 rhine_reload_eeprom(pioaddr, dev); 885 } 886 887 static const struct net_device_ops rhine_netdev_ops = { 888 .ndo_open = rhine_open, 889 .ndo_stop = rhine_close, 890 .ndo_start_xmit = rhine_start_tx, 891 .ndo_get_stats64 = rhine_get_stats64, 892 .ndo_set_rx_mode = rhine_set_rx_mode, 893 .ndo_validate_addr = eth_validate_addr, 894 .ndo_set_mac_address = eth_mac_addr, 895 .ndo_do_ioctl = netdev_ioctl, 896 .ndo_tx_timeout = rhine_tx_timeout, 897 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 898 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 899 #ifdef CONFIG_NET_POLL_CONTROLLER 900 .ndo_poll_controller = rhine_poll, 901 #endif 902 }; 903 904 static int rhine_init_one_common(struct device *hwdev, u32 quirks, 905 long pioaddr, void __iomem *ioaddr, int irq) 906 { 907 struct net_device *dev; 908 struct rhine_private *rp; 909 int i, rc, phy_id; 910 const char *name; 911 912 /* this should always be supported */ 913 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32)); 914 if (rc) { 915 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n"); 916 goto err_out; 917 } 918 919 dev = alloc_etherdev(sizeof(struct rhine_private)); 920 if (!dev) { 921 rc = -ENOMEM; 922 goto err_out; 923 } 924 SET_NETDEV_DEV(dev, hwdev); 925 926 rp = netdev_priv(dev); 927 rp->dev = dev; 928 rp->quirks = quirks; 929 rp->pioaddr = pioaddr; 930 rp->base = ioaddr; 931 rp->irq = irq; 932 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); 933 934 phy_id = rp->quirks & rqIntPHY ? 1 : 0; 935 936 u64_stats_init(&rp->tx_stats.syncp); 937 u64_stats_init(&rp->rx_stats.syncp); 938 939 /* Get chip registers into a sane state */ 940 rhine_power_init(dev); 941 rhine_hw_init(dev, pioaddr); 942 943 for (i = 0; i < 6; i++) 944 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); 945 946 if (!is_valid_ether_addr(dev->dev_addr)) { 947 /* Report it and use a random ethernet address instead */ 948 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 949 eth_hw_addr_random(dev); 950 netdev_info(dev, "Using random MAC address: %pM\n", 951 dev->dev_addr); 952 } 953 954 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 955 if (!phy_id) 956 phy_id = ioread8(ioaddr + 0x6C); 957 958 spin_lock_init(&rp->lock); 959 mutex_init(&rp->task_lock); 960 INIT_WORK(&rp->reset_task, rhine_reset_task); 961 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); 962 963 rp->mii_if.dev = dev; 964 rp->mii_if.mdio_read = mdio_read; 965 rp->mii_if.mdio_write = mdio_write; 966 rp->mii_if.phy_id_mask = 0x1f; 967 rp->mii_if.reg_num_mask = 0x1f; 968 969 /* The chip-specific entries in the device structure. */ 970 dev->netdev_ops = &rhine_netdev_ops; 971 dev->ethtool_ops = &netdev_ethtool_ops; 972 dev->watchdog_timeo = TX_TIMEOUT; 973 974 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); 975 976 if (rp->quirks & rqRhineI) 977 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 978 979 if (rp->quirks & rqMgmt) 980 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 981 NETIF_F_HW_VLAN_CTAG_RX | 982 NETIF_F_HW_VLAN_CTAG_FILTER; 983 984 /* dev->name not defined before register_netdev()! */ 985 rc = register_netdev(dev); 986 if (rc) 987 goto err_out_free_netdev; 988 989 if (rp->quirks & rqRhineI) 990 name = "Rhine"; 991 else if (rp->quirks & rqStatusWBRace) 992 name = "Rhine II"; 993 else if (rp->quirks & rqMgmt) 994 name = "Rhine III (Management Adapter)"; 995 else 996 name = "Rhine III"; 997 998 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", 999 name, (long)ioaddr, dev->dev_addr, rp->irq); 1000 1001 dev_set_drvdata(hwdev, dev); 1002 1003 { 1004 u16 mii_cmd; 1005 int mii_status = mdio_read(dev, phy_id, 1); 1006 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 1007 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 1008 if (mii_status != 0xffff && mii_status != 0x0000) { 1009 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 1010 netdev_info(dev, 1011 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 1012 phy_id, 1013 mii_status, rp->mii_if.advertising, 1014 mdio_read(dev, phy_id, 5)); 1015 1016 /* set IFF_RUNNING */ 1017 if (mii_status & BMSR_LSTATUS) 1018 netif_carrier_on(dev); 1019 else 1020 netif_carrier_off(dev); 1021 1022 } 1023 } 1024 rp->mii_if.phy_id = phy_id; 1025 if (avoid_D3) 1026 netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); 1027 1028 return 0; 1029 1030 err_out_free_netdev: 1031 free_netdev(dev); 1032 err_out: 1033 return rc; 1034 } 1035 1036 static int rhine_init_one_pci(struct pci_dev *pdev, 1037 const struct pci_device_id *ent) 1038 { 1039 struct device *hwdev = &pdev->dev; 1040 int rc; 1041 long pioaddr, memaddr; 1042 void __iomem *ioaddr; 1043 int io_size = pdev->revision < VTunknown0 ? 128 : 256; 1044 1045 /* This driver was written to use PCI memory space. Some early versions 1046 * of the Rhine may only work correctly with I/O space accesses. 1047 * TODO: determine for which revisions this is true and assign the flag 1048 * in code as opposed to this Kconfig option (???) 1049 */ 1050 #ifdef CONFIG_VIA_RHINE_MMIO 1051 u32 quirks = rqNeedEnMMIO; 1052 #else 1053 u32 quirks = 0; 1054 #endif 1055 1056 /* when built into the kernel, we only print version if device is found */ 1057 #ifndef MODULE 1058 pr_info_once("%s\n", version); 1059 #endif 1060 1061 rc = pci_enable_device(pdev); 1062 if (rc) 1063 goto err_out; 1064 1065 if (pdev->revision < VTunknown0) { 1066 quirks |= rqRhineI; 1067 } else if (pdev->revision >= VT6102) { 1068 quirks |= rqWOL | rqForceReset; 1069 if (pdev->revision < VT6105) { 1070 quirks |= rqStatusWBRace; 1071 } else { 1072 quirks |= rqIntPHY; 1073 if (pdev->revision >= VT6105_B0) 1074 quirks |= rq6patterns; 1075 if (pdev->revision >= VT6105M) 1076 quirks |= rqMgmt; 1077 } 1078 } 1079 1080 /* sanity check */ 1081 if ((pci_resource_len(pdev, 0) < io_size) || 1082 (pci_resource_len(pdev, 1) < io_size)) { 1083 rc = -EIO; 1084 dev_err(hwdev, "Insufficient PCI resources, aborting\n"); 1085 goto err_out_pci_disable; 1086 } 1087 1088 pioaddr = pci_resource_start(pdev, 0); 1089 memaddr = pci_resource_start(pdev, 1); 1090 1091 pci_set_master(pdev); 1092 1093 rc = pci_request_regions(pdev, DRV_NAME); 1094 if (rc) 1095 goto err_out_pci_disable; 1096 1097 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size); 1098 if (!ioaddr) { 1099 rc = -EIO; 1100 dev_err(hwdev, 1101 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 1102 dev_name(hwdev), io_size, memaddr); 1103 goto err_out_free_res; 1104 } 1105 1106 enable_mmio(pioaddr, quirks); 1107 1108 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks); 1109 if (rc) 1110 goto err_out_unmap; 1111 1112 rc = rhine_init_one_common(&pdev->dev, quirks, 1113 pioaddr, ioaddr, pdev->irq); 1114 if (!rc) 1115 return 0; 1116 1117 err_out_unmap: 1118 pci_iounmap(pdev, ioaddr); 1119 err_out_free_res: 1120 pci_release_regions(pdev); 1121 err_out_pci_disable: 1122 pci_disable_device(pdev); 1123 err_out: 1124 return rc; 1125 } 1126 1127 static int rhine_init_one_platform(struct platform_device *pdev) 1128 { 1129 const struct of_device_id *match; 1130 const u32 *quirks; 1131 int irq; 1132 struct resource *res; 1133 void __iomem *ioaddr; 1134 1135 match = of_match_device(rhine_of_tbl, &pdev->dev); 1136 if (!match) 1137 return -EINVAL; 1138 1139 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1140 ioaddr = devm_ioremap_resource(&pdev->dev, res); 1141 if (IS_ERR(ioaddr)) 1142 return PTR_ERR(ioaddr); 1143 1144 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1145 if (!irq) 1146 return -EINVAL; 1147 1148 quirks = match->data; 1149 if (!quirks) 1150 return -EINVAL; 1151 1152 return rhine_init_one_common(&pdev->dev, *quirks, 1153 (long)ioaddr, ioaddr, irq); 1154 } 1155 1156 static int alloc_ring(struct net_device* dev) 1157 { 1158 struct rhine_private *rp = netdev_priv(dev); 1159 struct device *hwdev = dev->dev.parent; 1160 void *ring; 1161 dma_addr_t ring_dma; 1162 1163 ring = dma_alloc_coherent(hwdev, 1164 RX_RING_SIZE * sizeof(struct rx_desc) + 1165 TX_RING_SIZE * sizeof(struct tx_desc), 1166 &ring_dma, 1167 GFP_ATOMIC); 1168 if (!ring) { 1169 netdev_err(dev, "Could not allocate DMA memory\n"); 1170 return -ENOMEM; 1171 } 1172 if (rp->quirks & rqRhineI) { 1173 rp->tx_bufs = dma_alloc_coherent(hwdev, 1174 PKT_BUF_SZ * TX_RING_SIZE, 1175 &rp->tx_bufs_dma, 1176 GFP_ATOMIC); 1177 if (rp->tx_bufs == NULL) { 1178 dma_free_coherent(hwdev, 1179 RX_RING_SIZE * sizeof(struct rx_desc) + 1180 TX_RING_SIZE * sizeof(struct tx_desc), 1181 ring, ring_dma); 1182 return -ENOMEM; 1183 } 1184 } 1185 1186 rp->rx_ring = ring; 1187 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 1188 rp->rx_ring_dma = ring_dma; 1189 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 1190 1191 return 0; 1192 } 1193 1194 static void free_ring(struct net_device* dev) 1195 { 1196 struct rhine_private *rp = netdev_priv(dev); 1197 struct device *hwdev = dev->dev.parent; 1198 1199 dma_free_coherent(hwdev, 1200 RX_RING_SIZE * sizeof(struct rx_desc) + 1201 TX_RING_SIZE * sizeof(struct tx_desc), 1202 rp->rx_ring, rp->rx_ring_dma); 1203 rp->tx_ring = NULL; 1204 1205 if (rp->tx_bufs) 1206 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE, 1207 rp->tx_bufs, rp->tx_bufs_dma); 1208 1209 rp->tx_bufs = NULL; 1210 1211 } 1212 1213 struct rhine_skb_dma { 1214 struct sk_buff *skb; 1215 dma_addr_t dma; 1216 }; 1217 1218 static inline int rhine_skb_dma_init(struct net_device *dev, 1219 struct rhine_skb_dma *sd) 1220 { 1221 struct rhine_private *rp = netdev_priv(dev); 1222 struct device *hwdev = dev->dev.parent; 1223 const int size = rp->rx_buf_sz; 1224 1225 sd->skb = netdev_alloc_skb(dev, size); 1226 if (!sd->skb) 1227 return -ENOMEM; 1228 1229 sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE); 1230 if (unlikely(dma_mapping_error(hwdev, sd->dma))) { 1231 netif_err(rp, drv, dev, "Rx DMA mapping failure\n"); 1232 dev_kfree_skb_any(sd->skb); 1233 return -EIO; 1234 } 1235 1236 return 0; 1237 } 1238 1239 static void rhine_reset_rbufs(struct rhine_private *rp) 1240 { 1241 int i; 1242 1243 rp->cur_rx = 0; 1244 1245 for (i = 0; i < RX_RING_SIZE; i++) 1246 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1247 } 1248 1249 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp, 1250 struct rhine_skb_dma *sd, int entry) 1251 { 1252 rp->rx_skbuff_dma[entry] = sd->dma; 1253 rp->rx_skbuff[entry] = sd->skb; 1254 1255 rp->rx_ring[entry].addr = cpu_to_le32(sd->dma); 1256 dma_wmb(); 1257 } 1258 1259 static void free_rbufs(struct net_device* dev); 1260 1261 static int alloc_rbufs(struct net_device *dev) 1262 { 1263 struct rhine_private *rp = netdev_priv(dev); 1264 dma_addr_t next; 1265 int rc, i; 1266 1267 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1268 next = rp->rx_ring_dma; 1269 1270 /* Init the ring entries */ 1271 for (i = 0; i < RX_RING_SIZE; i++) { 1272 rp->rx_ring[i].rx_status = 0; 1273 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1274 next += sizeof(struct rx_desc); 1275 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1276 rp->rx_skbuff[i] = NULL; 1277 } 1278 /* Mark the last entry as wrapping the ring. */ 1279 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1280 1281 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1282 for (i = 0; i < RX_RING_SIZE; i++) { 1283 struct rhine_skb_dma sd; 1284 1285 rc = rhine_skb_dma_init(dev, &sd); 1286 if (rc < 0) { 1287 free_rbufs(dev); 1288 goto out; 1289 } 1290 1291 rhine_skb_dma_nic_store(rp, &sd, i); 1292 } 1293 1294 rhine_reset_rbufs(rp); 1295 out: 1296 return rc; 1297 } 1298 1299 static void free_rbufs(struct net_device* dev) 1300 { 1301 struct rhine_private *rp = netdev_priv(dev); 1302 struct device *hwdev = dev->dev.parent; 1303 int i; 1304 1305 /* Free all the skbuffs in the Rx queue. */ 1306 for (i = 0; i < RX_RING_SIZE; i++) { 1307 rp->rx_ring[i].rx_status = 0; 1308 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1309 if (rp->rx_skbuff[i]) { 1310 dma_unmap_single(hwdev, 1311 rp->rx_skbuff_dma[i], 1312 rp->rx_buf_sz, DMA_FROM_DEVICE); 1313 dev_kfree_skb(rp->rx_skbuff[i]); 1314 } 1315 rp->rx_skbuff[i] = NULL; 1316 } 1317 } 1318 1319 static void alloc_tbufs(struct net_device* dev) 1320 { 1321 struct rhine_private *rp = netdev_priv(dev); 1322 dma_addr_t next; 1323 int i; 1324 1325 rp->dirty_tx = rp->cur_tx = 0; 1326 next = rp->tx_ring_dma; 1327 for (i = 0; i < TX_RING_SIZE; i++) { 1328 rp->tx_skbuff[i] = NULL; 1329 rp->tx_ring[i].tx_status = 0; 1330 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1331 next += sizeof(struct tx_desc); 1332 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1333 if (rp->quirks & rqRhineI) 1334 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1335 } 1336 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1337 1338 netdev_reset_queue(dev); 1339 } 1340 1341 static void free_tbufs(struct net_device* dev) 1342 { 1343 struct rhine_private *rp = netdev_priv(dev); 1344 struct device *hwdev = dev->dev.parent; 1345 int i; 1346 1347 for (i = 0; i < TX_RING_SIZE; i++) { 1348 rp->tx_ring[i].tx_status = 0; 1349 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1350 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1351 if (rp->tx_skbuff[i]) { 1352 if (rp->tx_skbuff_dma[i]) { 1353 dma_unmap_single(hwdev, 1354 rp->tx_skbuff_dma[i], 1355 rp->tx_skbuff[i]->len, 1356 DMA_TO_DEVICE); 1357 } 1358 dev_kfree_skb(rp->tx_skbuff[i]); 1359 } 1360 rp->tx_skbuff[i] = NULL; 1361 rp->tx_buf[i] = NULL; 1362 } 1363 } 1364 1365 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1366 { 1367 struct rhine_private *rp = netdev_priv(dev); 1368 void __iomem *ioaddr = rp->base; 1369 1370 if (!rp->mii_if.force_media) 1371 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); 1372 1373 if (rp->mii_if.full_duplex) 1374 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1375 ioaddr + ChipCmd1); 1376 else 1377 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1378 ioaddr + ChipCmd1); 1379 1380 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1381 rp->mii_if.force_media, netif_carrier_ok(dev)); 1382 } 1383 1384 /* Called after status of force_media possibly changed */ 1385 static void rhine_set_carrier(struct mii_if_info *mii) 1386 { 1387 struct net_device *dev = mii->dev; 1388 struct rhine_private *rp = netdev_priv(dev); 1389 1390 if (mii->force_media) { 1391 /* autoneg is off: Link is always assumed to be up */ 1392 if (!netif_carrier_ok(dev)) 1393 netif_carrier_on(dev); 1394 } 1395 1396 rhine_check_media(dev, 0); 1397 1398 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1399 mii->force_media, netif_carrier_ok(dev)); 1400 } 1401 1402 /** 1403 * rhine_set_cam - set CAM multicast filters 1404 * @ioaddr: register block of this Rhine 1405 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1406 * @addr: multicast address (6 bytes) 1407 * 1408 * Load addresses into multicast filters. 1409 */ 1410 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1411 { 1412 int i; 1413 1414 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1415 wmb(); 1416 1417 /* Paranoid -- idx out of range should never happen */ 1418 idx &= (MCAM_SIZE - 1); 1419 1420 iowrite8((u8) idx, ioaddr + CamAddr); 1421 1422 for (i = 0; i < 6; i++, addr++) 1423 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1424 udelay(10); 1425 wmb(); 1426 1427 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1428 udelay(10); 1429 1430 iowrite8(0, ioaddr + CamCon); 1431 } 1432 1433 /** 1434 * rhine_set_vlan_cam - set CAM VLAN filters 1435 * @ioaddr: register block of this Rhine 1436 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1437 * @addr: VLAN ID (2 bytes) 1438 * 1439 * Load addresses into VLAN filters. 1440 */ 1441 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1442 { 1443 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1444 wmb(); 1445 1446 /* Paranoid -- idx out of range should never happen */ 1447 idx &= (VCAM_SIZE - 1); 1448 1449 iowrite8((u8) idx, ioaddr + CamAddr); 1450 1451 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1452 udelay(10); 1453 wmb(); 1454 1455 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1456 udelay(10); 1457 1458 iowrite8(0, ioaddr + CamCon); 1459 } 1460 1461 /** 1462 * rhine_set_cam_mask - set multicast CAM mask 1463 * @ioaddr: register block of this Rhine 1464 * @mask: multicast CAM mask 1465 * 1466 * Mask sets multicast filters active/inactive. 1467 */ 1468 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1469 { 1470 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1471 wmb(); 1472 1473 /* write mask */ 1474 iowrite32(mask, ioaddr + CamMask); 1475 1476 /* disable CAMEN */ 1477 iowrite8(0, ioaddr + CamCon); 1478 } 1479 1480 /** 1481 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1482 * @ioaddr: register block of this Rhine 1483 * @mask: VLAN CAM mask 1484 * 1485 * Mask sets VLAN filters active/inactive. 1486 */ 1487 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1488 { 1489 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1490 wmb(); 1491 1492 /* write mask */ 1493 iowrite32(mask, ioaddr + CamMask); 1494 1495 /* disable CAMEN */ 1496 iowrite8(0, ioaddr + CamCon); 1497 } 1498 1499 /** 1500 * rhine_init_cam_filter - initialize CAM filters 1501 * @dev: network device 1502 * 1503 * Initialize (disable) hardware VLAN and multicast support on this 1504 * Rhine. 1505 */ 1506 static void rhine_init_cam_filter(struct net_device *dev) 1507 { 1508 struct rhine_private *rp = netdev_priv(dev); 1509 void __iomem *ioaddr = rp->base; 1510 1511 /* Disable all CAMs */ 1512 rhine_set_vlan_cam_mask(ioaddr, 0); 1513 rhine_set_cam_mask(ioaddr, 0); 1514 1515 /* disable hardware VLAN support */ 1516 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1517 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1518 } 1519 1520 /** 1521 * rhine_update_vcam - update VLAN CAM filters 1522 * @rp: rhine_private data of this Rhine 1523 * 1524 * Update VLAN CAM filters to match configuration change. 1525 */ 1526 static void rhine_update_vcam(struct net_device *dev) 1527 { 1528 struct rhine_private *rp = netdev_priv(dev); 1529 void __iomem *ioaddr = rp->base; 1530 u16 vid; 1531 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1532 unsigned int i = 0; 1533 1534 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1535 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1536 vCAMmask |= 1 << i; 1537 if (++i >= VCAM_SIZE) 1538 break; 1539 } 1540 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1541 } 1542 1543 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1544 { 1545 struct rhine_private *rp = netdev_priv(dev); 1546 1547 spin_lock_bh(&rp->lock); 1548 set_bit(vid, rp->active_vlans); 1549 rhine_update_vcam(dev); 1550 spin_unlock_bh(&rp->lock); 1551 return 0; 1552 } 1553 1554 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1555 { 1556 struct rhine_private *rp = netdev_priv(dev); 1557 1558 spin_lock_bh(&rp->lock); 1559 clear_bit(vid, rp->active_vlans); 1560 rhine_update_vcam(dev); 1561 spin_unlock_bh(&rp->lock); 1562 return 0; 1563 } 1564 1565 static void init_registers(struct net_device *dev) 1566 { 1567 struct rhine_private *rp = netdev_priv(dev); 1568 void __iomem *ioaddr = rp->base; 1569 int i; 1570 1571 for (i = 0; i < 6; i++) 1572 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1573 1574 /* Initialize other registers. */ 1575 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1576 /* Configure initial FIFO thresholds. */ 1577 iowrite8(0x20, ioaddr + TxConfig); 1578 rp->tx_thresh = 0x20; 1579 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1580 1581 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1582 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1583 1584 rhine_set_rx_mode(dev); 1585 1586 if (rp->quirks & rqMgmt) 1587 rhine_init_cam_filter(dev); 1588 1589 napi_enable(&rp->napi); 1590 1591 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); 1592 1593 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1594 ioaddr + ChipCmd); 1595 rhine_check_media(dev, 1); 1596 } 1597 1598 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1599 static void rhine_enable_linkmon(struct rhine_private *rp) 1600 { 1601 void __iomem *ioaddr = rp->base; 1602 1603 iowrite8(0, ioaddr + MIICmd); 1604 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1605 iowrite8(0x80, ioaddr + MIICmd); 1606 1607 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1608 1609 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1610 } 1611 1612 /* Disable MII link status auto-polling (required for MDIO access) */ 1613 static void rhine_disable_linkmon(struct rhine_private *rp) 1614 { 1615 void __iomem *ioaddr = rp->base; 1616 1617 iowrite8(0, ioaddr + MIICmd); 1618 1619 if (rp->quirks & rqRhineI) { 1620 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1621 1622 /* Can be called from ISR. Evil. */ 1623 mdelay(1); 1624 1625 /* 0x80 must be set immediately before turning it off */ 1626 iowrite8(0x80, ioaddr + MIICmd); 1627 1628 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1629 1630 /* Heh. Now clear 0x80 again. */ 1631 iowrite8(0, ioaddr + MIICmd); 1632 } 1633 else 1634 rhine_wait_bit_high(rp, MIIRegAddr, 0x80); 1635 } 1636 1637 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1638 1639 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1640 { 1641 struct rhine_private *rp = netdev_priv(dev); 1642 void __iomem *ioaddr = rp->base; 1643 int result; 1644 1645 rhine_disable_linkmon(rp); 1646 1647 /* rhine_disable_linkmon already cleared MIICmd */ 1648 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1649 iowrite8(regnum, ioaddr + MIIRegAddr); 1650 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1651 rhine_wait_bit_low(rp, MIICmd, 0x40); 1652 result = ioread16(ioaddr + MIIData); 1653 1654 rhine_enable_linkmon(rp); 1655 return result; 1656 } 1657 1658 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1659 { 1660 struct rhine_private *rp = netdev_priv(dev); 1661 void __iomem *ioaddr = rp->base; 1662 1663 rhine_disable_linkmon(rp); 1664 1665 /* rhine_disable_linkmon already cleared MIICmd */ 1666 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1667 iowrite8(regnum, ioaddr + MIIRegAddr); 1668 iowrite16(value, ioaddr + MIIData); 1669 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1670 rhine_wait_bit_low(rp, MIICmd, 0x20); 1671 1672 rhine_enable_linkmon(rp); 1673 } 1674 1675 static void rhine_task_disable(struct rhine_private *rp) 1676 { 1677 mutex_lock(&rp->task_lock); 1678 rp->task_enable = false; 1679 mutex_unlock(&rp->task_lock); 1680 1681 cancel_work_sync(&rp->slow_event_task); 1682 cancel_work_sync(&rp->reset_task); 1683 } 1684 1685 static void rhine_task_enable(struct rhine_private *rp) 1686 { 1687 mutex_lock(&rp->task_lock); 1688 rp->task_enable = true; 1689 mutex_unlock(&rp->task_lock); 1690 } 1691 1692 static int rhine_open(struct net_device *dev) 1693 { 1694 struct rhine_private *rp = netdev_priv(dev); 1695 void __iomem *ioaddr = rp->base; 1696 int rc; 1697 1698 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev); 1699 if (rc) 1700 goto out; 1701 1702 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq); 1703 1704 rc = alloc_ring(dev); 1705 if (rc < 0) 1706 goto out_free_irq; 1707 1708 rc = alloc_rbufs(dev); 1709 if (rc < 0) 1710 goto out_free_ring; 1711 1712 alloc_tbufs(dev); 1713 rhine_chip_reset(dev); 1714 rhine_task_enable(rp); 1715 init_registers(dev); 1716 1717 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", 1718 __func__, ioread16(ioaddr + ChipCmd), 1719 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1720 1721 netif_start_queue(dev); 1722 1723 out: 1724 return rc; 1725 1726 out_free_ring: 1727 free_ring(dev); 1728 out_free_irq: 1729 free_irq(rp->irq, dev); 1730 goto out; 1731 } 1732 1733 static void rhine_reset_task(struct work_struct *work) 1734 { 1735 struct rhine_private *rp = container_of(work, struct rhine_private, 1736 reset_task); 1737 struct net_device *dev = rp->dev; 1738 1739 mutex_lock(&rp->task_lock); 1740 1741 if (!rp->task_enable) 1742 goto out_unlock; 1743 1744 napi_disable(&rp->napi); 1745 netif_tx_disable(dev); 1746 spin_lock_bh(&rp->lock); 1747 1748 /* clear all descriptors */ 1749 free_tbufs(dev); 1750 alloc_tbufs(dev); 1751 1752 rhine_reset_rbufs(rp); 1753 1754 /* Reinitialize the hardware. */ 1755 rhine_chip_reset(dev); 1756 init_registers(dev); 1757 1758 spin_unlock_bh(&rp->lock); 1759 1760 netif_trans_update(dev); /* prevent tx timeout */ 1761 dev->stats.tx_errors++; 1762 netif_wake_queue(dev); 1763 1764 out_unlock: 1765 mutex_unlock(&rp->task_lock); 1766 } 1767 1768 static void rhine_tx_timeout(struct net_device *dev) 1769 { 1770 struct rhine_private *rp = netdev_priv(dev); 1771 void __iomem *ioaddr = rp->base; 1772 1773 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1774 ioread16(ioaddr + IntrStatus), 1775 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1776 1777 schedule_work(&rp->reset_task); 1778 } 1779 1780 static inline bool rhine_tx_queue_full(struct rhine_private *rp) 1781 { 1782 return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN; 1783 } 1784 1785 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1786 struct net_device *dev) 1787 { 1788 struct rhine_private *rp = netdev_priv(dev); 1789 struct device *hwdev = dev->dev.parent; 1790 void __iomem *ioaddr = rp->base; 1791 unsigned entry; 1792 1793 /* Caution: the write order is important here, set the field 1794 with the "ownership" bits last. */ 1795 1796 /* Calculate the next Tx descriptor entry. */ 1797 entry = rp->cur_tx % TX_RING_SIZE; 1798 1799 if (skb_padto(skb, ETH_ZLEN)) 1800 return NETDEV_TX_OK; 1801 1802 rp->tx_skbuff[entry] = skb; 1803 1804 if ((rp->quirks & rqRhineI) && 1805 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1806 /* Must use alignment buffer. */ 1807 if (skb->len > PKT_BUF_SZ) { 1808 /* packet too long, drop it */ 1809 dev_kfree_skb_any(skb); 1810 rp->tx_skbuff[entry] = NULL; 1811 dev->stats.tx_dropped++; 1812 return NETDEV_TX_OK; 1813 } 1814 1815 /* Padding is not copied and so must be redone. */ 1816 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1817 if (skb->len < ETH_ZLEN) 1818 memset(rp->tx_buf[entry] + skb->len, 0, 1819 ETH_ZLEN - skb->len); 1820 rp->tx_skbuff_dma[entry] = 0; 1821 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1822 (rp->tx_buf[entry] - 1823 rp->tx_bufs)); 1824 } else { 1825 rp->tx_skbuff_dma[entry] = 1826 dma_map_single(hwdev, skb->data, skb->len, 1827 DMA_TO_DEVICE); 1828 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) { 1829 dev_kfree_skb_any(skb); 1830 rp->tx_skbuff_dma[entry] = 0; 1831 dev->stats.tx_dropped++; 1832 return NETDEV_TX_OK; 1833 } 1834 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1835 } 1836 1837 rp->tx_ring[entry].desc_length = 1838 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1839 1840 if (unlikely(skb_vlan_tag_present(skb))) { 1841 u16 vid_pcp = skb_vlan_tag_get(skb); 1842 1843 /* drop CFI/DEI bit, register needs VID and PCP */ 1844 vid_pcp = (vid_pcp & VLAN_VID_MASK) | 1845 ((vid_pcp & VLAN_PRIO_MASK) >> 1); 1846 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16); 1847 /* request tagging */ 1848 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1849 } 1850 else 1851 rp->tx_ring[entry].tx_status = 0; 1852 1853 netdev_sent_queue(dev, skb->len); 1854 /* lock eth irq */ 1855 dma_wmb(); 1856 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1857 wmb(); 1858 1859 rp->cur_tx++; 1860 /* 1861 * Nobody wants cur_tx write to rot for ages after the NIC will have 1862 * seen the transmit request, especially as the transmit completion 1863 * handler could miss it. 1864 */ 1865 smp_wmb(); 1866 1867 /* Non-x86 Todo: explicitly flush cache lines here. */ 1868 1869 if (skb_vlan_tag_present(skb)) 1870 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1871 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1872 1873 /* Wake the potentially-idle transmit channel */ 1874 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1875 ioaddr + ChipCmd1); 1876 IOSYNC; 1877 1878 /* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */ 1879 if (rhine_tx_queue_full(rp)) { 1880 netif_stop_queue(dev); 1881 smp_rmb(); 1882 /* Rejuvenate. */ 1883 if (!rhine_tx_queue_full(rp)) 1884 netif_wake_queue(dev); 1885 } 1886 1887 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", 1888 rp->cur_tx - 1, entry); 1889 1890 return NETDEV_TX_OK; 1891 } 1892 1893 static void rhine_irq_disable(struct rhine_private *rp) 1894 { 1895 iowrite16(0x0000, rp->base + IntrEnable); 1896 mmiowb(); 1897 } 1898 1899 /* The interrupt handler does all of the Rx thread work and cleans up 1900 after the Tx thread. */ 1901 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1902 { 1903 struct net_device *dev = dev_instance; 1904 struct rhine_private *rp = netdev_priv(dev); 1905 u32 status; 1906 int handled = 0; 1907 1908 status = rhine_get_events(rp); 1909 1910 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); 1911 1912 if (status & RHINE_EVENT) { 1913 handled = 1; 1914 1915 rhine_irq_disable(rp); 1916 napi_schedule(&rp->napi); 1917 } 1918 1919 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { 1920 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", 1921 status); 1922 } 1923 1924 return IRQ_RETVAL(handled); 1925 } 1926 1927 /* This routine is logically part of the interrupt handler, but isolated 1928 for clarity. */ 1929 static void rhine_tx(struct net_device *dev) 1930 { 1931 struct rhine_private *rp = netdev_priv(dev); 1932 struct device *hwdev = dev->dev.parent; 1933 unsigned int pkts_compl = 0, bytes_compl = 0; 1934 unsigned int dirty_tx = rp->dirty_tx; 1935 unsigned int cur_tx; 1936 struct sk_buff *skb; 1937 1938 /* 1939 * The race with rhine_start_tx does not matter here as long as the 1940 * driver enforces a value of cur_tx that was relevant when the 1941 * packet was scheduled to the network chipset. 1942 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx. 1943 */ 1944 smp_rmb(); 1945 cur_tx = rp->cur_tx; 1946 /* find and cleanup dirty tx descriptors */ 1947 while (dirty_tx != cur_tx) { 1948 unsigned int entry = dirty_tx % TX_RING_SIZE; 1949 u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1950 1951 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", 1952 entry, txstatus); 1953 if (txstatus & DescOwn) 1954 break; 1955 skb = rp->tx_skbuff[entry]; 1956 if (txstatus & 0x8000) { 1957 netif_dbg(rp, tx_done, dev, 1958 "Transmit error, Tx status %08x\n", txstatus); 1959 dev->stats.tx_errors++; 1960 if (txstatus & 0x0400) 1961 dev->stats.tx_carrier_errors++; 1962 if (txstatus & 0x0200) 1963 dev->stats.tx_window_errors++; 1964 if (txstatus & 0x0100) 1965 dev->stats.tx_aborted_errors++; 1966 if (txstatus & 0x0080) 1967 dev->stats.tx_heartbeat_errors++; 1968 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1969 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1970 dev->stats.tx_fifo_errors++; 1971 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1972 break; /* Keep the skb - we try again */ 1973 } 1974 /* Transmitter restarted in 'abnormal' handler. */ 1975 } else { 1976 if (rp->quirks & rqRhineI) 1977 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1978 else 1979 dev->stats.collisions += txstatus & 0x0F; 1980 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", 1981 (txstatus >> 3) & 0xF, txstatus & 0xF); 1982 1983 u64_stats_update_begin(&rp->tx_stats.syncp); 1984 rp->tx_stats.bytes += skb->len; 1985 rp->tx_stats.packets++; 1986 u64_stats_update_end(&rp->tx_stats.syncp); 1987 } 1988 /* Free the original skb. */ 1989 if (rp->tx_skbuff_dma[entry]) { 1990 dma_unmap_single(hwdev, 1991 rp->tx_skbuff_dma[entry], 1992 skb->len, 1993 DMA_TO_DEVICE); 1994 } 1995 bytes_compl += skb->len; 1996 pkts_compl++; 1997 dev_consume_skb_any(skb); 1998 rp->tx_skbuff[entry] = NULL; 1999 dirty_tx++; 2000 } 2001 2002 rp->dirty_tx = dirty_tx; 2003 /* Pity we can't rely on the nearby BQL completion implicit barrier. */ 2004 smp_wmb(); 2005 2006 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2007 2008 /* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */ 2009 if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) { 2010 netif_wake_queue(dev); 2011 smp_rmb(); 2012 /* Rejuvenate. */ 2013 if (rhine_tx_queue_full(rp)) 2014 netif_stop_queue(dev); 2015 } 2016 } 2017 2018 /** 2019 * rhine_get_vlan_tci - extract TCI from Rx data buffer 2020 * @skb: pointer to sk_buff 2021 * @data_size: used data area of the buffer including CRC 2022 * 2023 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 2024 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 2025 * aligned following the CRC. 2026 */ 2027 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 2028 { 2029 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 2030 return be16_to_cpup((__be16 *)trailer); 2031 } 2032 2033 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc, 2034 int data_size) 2035 { 2036 dma_rmb(); 2037 if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) { 2038 u16 vlan_tci; 2039 2040 vlan_tci = rhine_get_vlan_tci(skb, data_size); 2041 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 2042 } 2043 } 2044 2045 /* Process up to limit frames from receive ring */ 2046 static int rhine_rx(struct net_device *dev, int limit) 2047 { 2048 struct rhine_private *rp = netdev_priv(dev); 2049 struct device *hwdev = dev->dev.parent; 2050 int entry = rp->cur_rx % RX_RING_SIZE; 2051 int count; 2052 2053 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, 2054 entry, le32_to_cpu(rp->rx_ring[entry].rx_status)); 2055 2056 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 2057 for (count = 0; count < limit; ++count) { 2058 struct rx_desc *desc = rp->rx_ring + entry; 2059 u32 desc_status = le32_to_cpu(desc->rx_status); 2060 int data_size = desc_status >> 16; 2061 2062 if (desc_status & DescOwn) 2063 break; 2064 2065 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, 2066 desc_status); 2067 2068 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 2069 if ((desc_status & RxWholePkt) != RxWholePkt) { 2070 netdev_warn(dev, 2071 "Oversized Ethernet frame spanned multiple buffers, " 2072 "entry %#x length %d status %08x!\n", 2073 entry, data_size, 2074 desc_status); 2075 dev->stats.rx_length_errors++; 2076 } else if (desc_status & RxErr) { 2077 /* There was a error. */ 2078 netif_dbg(rp, rx_err, dev, 2079 "%s() Rx error %08x\n", __func__, 2080 desc_status); 2081 dev->stats.rx_errors++; 2082 if (desc_status & 0x0030) 2083 dev->stats.rx_length_errors++; 2084 if (desc_status & 0x0048) 2085 dev->stats.rx_fifo_errors++; 2086 if (desc_status & 0x0004) 2087 dev->stats.rx_frame_errors++; 2088 if (desc_status & 0x0002) { 2089 /* this can also be updated outside the interrupt handler */ 2090 spin_lock(&rp->lock); 2091 dev->stats.rx_crc_errors++; 2092 spin_unlock(&rp->lock); 2093 } 2094 } 2095 } else { 2096 /* Length should omit the CRC */ 2097 int pkt_len = data_size - 4; 2098 struct sk_buff *skb; 2099 2100 /* Check if the packet is long enough to accept without 2101 copying to a minimally-sized skbuff. */ 2102 if (pkt_len < rx_copybreak) { 2103 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 2104 if (unlikely(!skb)) 2105 goto drop; 2106 2107 dma_sync_single_for_cpu(hwdev, 2108 rp->rx_skbuff_dma[entry], 2109 rp->rx_buf_sz, 2110 DMA_FROM_DEVICE); 2111 2112 skb_copy_to_linear_data(skb, 2113 rp->rx_skbuff[entry]->data, 2114 pkt_len); 2115 2116 dma_sync_single_for_device(hwdev, 2117 rp->rx_skbuff_dma[entry], 2118 rp->rx_buf_sz, 2119 DMA_FROM_DEVICE); 2120 } else { 2121 struct rhine_skb_dma sd; 2122 2123 if (unlikely(rhine_skb_dma_init(dev, &sd) < 0)) 2124 goto drop; 2125 2126 skb = rp->rx_skbuff[entry]; 2127 2128 dma_unmap_single(hwdev, 2129 rp->rx_skbuff_dma[entry], 2130 rp->rx_buf_sz, 2131 DMA_FROM_DEVICE); 2132 rhine_skb_dma_nic_store(rp, &sd, entry); 2133 } 2134 2135 skb_put(skb, pkt_len); 2136 2137 rhine_rx_vlan_tag(skb, desc, data_size); 2138 2139 skb->protocol = eth_type_trans(skb, dev); 2140 2141 netif_receive_skb(skb); 2142 2143 u64_stats_update_begin(&rp->rx_stats.syncp); 2144 rp->rx_stats.bytes += pkt_len; 2145 rp->rx_stats.packets++; 2146 u64_stats_update_end(&rp->rx_stats.syncp); 2147 } 2148 give_descriptor_to_nic: 2149 desc->rx_status = cpu_to_le32(DescOwn); 2150 entry = (++rp->cur_rx) % RX_RING_SIZE; 2151 } 2152 2153 return count; 2154 2155 drop: 2156 dev->stats.rx_dropped++; 2157 goto give_descriptor_to_nic; 2158 } 2159 2160 static void rhine_restart_tx(struct net_device *dev) { 2161 struct rhine_private *rp = netdev_priv(dev); 2162 void __iomem *ioaddr = rp->base; 2163 int entry = rp->dirty_tx % TX_RING_SIZE; 2164 u32 intr_status; 2165 2166 /* 2167 * If new errors occurred, we need to sort them out before doing Tx. 2168 * In that case the ISR will be back here RSN anyway. 2169 */ 2170 intr_status = rhine_get_events(rp); 2171 2172 if ((intr_status & IntrTxErrSummary) == 0) { 2173 2174 /* We know better than the chip where it should continue. */ 2175 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 2176 ioaddr + TxRingPtr); 2177 2178 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 2179 ioaddr + ChipCmd); 2180 2181 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 2182 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 2183 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 2184 2185 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 2186 ioaddr + ChipCmd1); 2187 IOSYNC; 2188 } 2189 else { 2190 /* This should never happen */ 2191 netif_warn(rp, tx_err, dev, "another error occurred %08x\n", 2192 intr_status); 2193 } 2194 2195 } 2196 2197 static void rhine_slow_event_task(struct work_struct *work) 2198 { 2199 struct rhine_private *rp = 2200 container_of(work, struct rhine_private, slow_event_task); 2201 struct net_device *dev = rp->dev; 2202 u32 intr_status; 2203 2204 mutex_lock(&rp->task_lock); 2205 2206 if (!rp->task_enable) 2207 goto out_unlock; 2208 2209 intr_status = rhine_get_events(rp); 2210 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); 2211 2212 if (intr_status & IntrLinkChange) 2213 rhine_check_media(dev, 0); 2214 2215 if (intr_status & IntrPCIErr) 2216 netif_warn(rp, hw, dev, "PCI error\n"); 2217 2218 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); 2219 2220 out_unlock: 2221 mutex_unlock(&rp->task_lock); 2222 } 2223 2224 static void 2225 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 2226 { 2227 struct rhine_private *rp = netdev_priv(dev); 2228 unsigned int start; 2229 2230 spin_lock_bh(&rp->lock); 2231 rhine_update_rx_crc_and_missed_errord(rp); 2232 spin_unlock_bh(&rp->lock); 2233 2234 netdev_stats_to_stats64(stats, &dev->stats); 2235 2236 do { 2237 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp); 2238 stats->rx_packets = rp->rx_stats.packets; 2239 stats->rx_bytes = rp->rx_stats.bytes; 2240 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start)); 2241 2242 do { 2243 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp); 2244 stats->tx_packets = rp->tx_stats.packets; 2245 stats->tx_bytes = rp->tx_stats.bytes; 2246 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start)); 2247 } 2248 2249 static void rhine_set_rx_mode(struct net_device *dev) 2250 { 2251 struct rhine_private *rp = netdev_priv(dev); 2252 void __iomem *ioaddr = rp->base; 2253 u32 mc_filter[2]; /* Multicast hash filter */ 2254 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 2255 struct netdev_hw_addr *ha; 2256 2257 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2258 rx_mode = 0x1C; 2259 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2260 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2261 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2262 (dev->flags & IFF_ALLMULTI)) { 2263 /* Too many to match, or accept all multicasts. */ 2264 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2265 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2266 } else if (rp->quirks & rqMgmt) { 2267 int i = 0; 2268 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 2269 netdev_for_each_mc_addr(ha, dev) { 2270 if (i == MCAM_SIZE) 2271 break; 2272 rhine_set_cam(ioaddr, i, ha->addr); 2273 mCAMmask |= 1 << i; 2274 i++; 2275 } 2276 rhine_set_cam_mask(ioaddr, mCAMmask); 2277 } else { 2278 memset(mc_filter, 0, sizeof(mc_filter)); 2279 netdev_for_each_mc_addr(ha, dev) { 2280 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 2281 2282 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 2283 } 2284 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 2285 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 2286 } 2287 /* enable/disable VLAN receive filtering */ 2288 if (rp->quirks & rqMgmt) { 2289 if (dev->flags & IFF_PROMISC) 2290 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2291 else 2292 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2293 } 2294 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2295 } 2296 2297 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2298 { 2299 struct device *hwdev = dev->dev.parent; 2300 2301 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2302 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2303 strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info)); 2304 } 2305 2306 static int netdev_get_link_ksettings(struct net_device *dev, 2307 struct ethtool_link_ksettings *cmd) 2308 { 2309 struct rhine_private *rp = netdev_priv(dev); 2310 2311 mutex_lock(&rp->task_lock); 2312 mii_ethtool_get_link_ksettings(&rp->mii_if, cmd); 2313 mutex_unlock(&rp->task_lock); 2314 2315 return 0; 2316 } 2317 2318 static int netdev_set_link_ksettings(struct net_device *dev, 2319 const struct ethtool_link_ksettings *cmd) 2320 { 2321 struct rhine_private *rp = netdev_priv(dev); 2322 int rc; 2323 2324 mutex_lock(&rp->task_lock); 2325 rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd); 2326 rhine_set_carrier(&rp->mii_if); 2327 mutex_unlock(&rp->task_lock); 2328 2329 return rc; 2330 } 2331 2332 static int netdev_nway_reset(struct net_device *dev) 2333 { 2334 struct rhine_private *rp = netdev_priv(dev); 2335 2336 return mii_nway_restart(&rp->mii_if); 2337 } 2338 2339 static u32 netdev_get_link(struct net_device *dev) 2340 { 2341 struct rhine_private *rp = netdev_priv(dev); 2342 2343 return mii_link_ok(&rp->mii_if); 2344 } 2345 2346 static u32 netdev_get_msglevel(struct net_device *dev) 2347 { 2348 struct rhine_private *rp = netdev_priv(dev); 2349 2350 return rp->msg_enable; 2351 } 2352 2353 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2354 { 2355 struct rhine_private *rp = netdev_priv(dev); 2356 2357 rp->msg_enable = value; 2358 } 2359 2360 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2361 { 2362 struct rhine_private *rp = netdev_priv(dev); 2363 2364 if (!(rp->quirks & rqWOL)) 2365 return; 2366 2367 spin_lock_irq(&rp->lock); 2368 wol->supported = WAKE_PHY | WAKE_MAGIC | 2369 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2370 wol->wolopts = rp->wolopts; 2371 spin_unlock_irq(&rp->lock); 2372 } 2373 2374 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2375 { 2376 struct rhine_private *rp = netdev_priv(dev); 2377 u32 support = WAKE_PHY | WAKE_MAGIC | 2378 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2379 2380 if (!(rp->quirks & rqWOL)) 2381 return -EINVAL; 2382 2383 if (wol->wolopts & ~support) 2384 return -EINVAL; 2385 2386 spin_lock_irq(&rp->lock); 2387 rp->wolopts = wol->wolopts; 2388 spin_unlock_irq(&rp->lock); 2389 2390 return 0; 2391 } 2392 2393 static const struct ethtool_ops netdev_ethtool_ops = { 2394 .get_drvinfo = netdev_get_drvinfo, 2395 .nway_reset = netdev_nway_reset, 2396 .get_link = netdev_get_link, 2397 .get_msglevel = netdev_get_msglevel, 2398 .set_msglevel = netdev_set_msglevel, 2399 .get_wol = rhine_get_wol, 2400 .set_wol = rhine_set_wol, 2401 .get_link_ksettings = netdev_get_link_ksettings, 2402 .set_link_ksettings = netdev_set_link_ksettings, 2403 }; 2404 2405 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2406 { 2407 struct rhine_private *rp = netdev_priv(dev); 2408 int rc; 2409 2410 if (!netif_running(dev)) 2411 return -EINVAL; 2412 2413 mutex_lock(&rp->task_lock); 2414 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2415 rhine_set_carrier(&rp->mii_if); 2416 mutex_unlock(&rp->task_lock); 2417 2418 return rc; 2419 } 2420 2421 static int rhine_close(struct net_device *dev) 2422 { 2423 struct rhine_private *rp = netdev_priv(dev); 2424 void __iomem *ioaddr = rp->base; 2425 2426 rhine_task_disable(rp); 2427 napi_disable(&rp->napi); 2428 netif_stop_queue(dev); 2429 2430 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", 2431 ioread16(ioaddr + ChipCmd)); 2432 2433 /* Switch to loopback mode to avoid hardware races. */ 2434 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2435 2436 rhine_irq_disable(rp); 2437 2438 /* Stop the chip's Tx and Rx processes. */ 2439 iowrite16(CmdStop, ioaddr + ChipCmd); 2440 2441 free_irq(rp->irq, dev); 2442 free_rbufs(dev); 2443 free_tbufs(dev); 2444 free_ring(dev); 2445 2446 return 0; 2447 } 2448 2449 2450 static void rhine_remove_one_pci(struct pci_dev *pdev) 2451 { 2452 struct net_device *dev = pci_get_drvdata(pdev); 2453 struct rhine_private *rp = netdev_priv(dev); 2454 2455 unregister_netdev(dev); 2456 2457 pci_iounmap(pdev, rp->base); 2458 pci_release_regions(pdev); 2459 2460 free_netdev(dev); 2461 pci_disable_device(pdev); 2462 } 2463 2464 static int rhine_remove_one_platform(struct platform_device *pdev) 2465 { 2466 struct net_device *dev = platform_get_drvdata(pdev); 2467 struct rhine_private *rp = netdev_priv(dev); 2468 2469 unregister_netdev(dev); 2470 2471 iounmap(rp->base); 2472 2473 free_netdev(dev); 2474 2475 return 0; 2476 } 2477 2478 static void rhine_shutdown_pci(struct pci_dev *pdev) 2479 { 2480 struct net_device *dev = pci_get_drvdata(pdev); 2481 struct rhine_private *rp = netdev_priv(dev); 2482 void __iomem *ioaddr = rp->base; 2483 2484 if (!(rp->quirks & rqWOL)) 2485 return; /* Nothing to do for non-WOL adapters */ 2486 2487 rhine_power_init(dev); 2488 2489 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2490 if (rp->quirks & rq6patterns) 2491 iowrite8(0x04, ioaddr + WOLcgClr); 2492 2493 spin_lock(&rp->lock); 2494 2495 if (rp->wolopts & WAKE_MAGIC) { 2496 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2497 /* 2498 * Turn EEPROM-controlled wake-up back on -- some hardware may 2499 * not cooperate otherwise. 2500 */ 2501 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2502 } 2503 2504 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2505 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2506 2507 if (rp->wolopts & WAKE_PHY) 2508 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2509 2510 if (rp->wolopts & WAKE_UCAST) 2511 iowrite8(WOLucast, ioaddr + WOLcrSet); 2512 2513 if (rp->wolopts) { 2514 /* Enable legacy WOL (for old motherboards) */ 2515 iowrite8(0x01, ioaddr + PwcfgSet); 2516 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2517 } 2518 2519 spin_unlock(&rp->lock); 2520 2521 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { 2522 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2523 2524 pci_wake_from_d3(pdev, true); 2525 pci_set_power_state(pdev, PCI_D3hot); 2526 } 2527 } 2528 2529 #ifdef CONFIG_PM_SLEEP 2530 static int rhine_suspend(struct device *device) 2531 { 2532 struct net_device *dev = dev_get_drvdata(device); 2533 struct rhine_private *rp = netdev_priv(dev); 2534 2535 if (!netif_running(dev)) 2536 return 0; 2537 2538 rhine_task_disable(rp); 2539 rhine_irq_disable(rp); 2540 napi_disable(&rp->napi); 2541 2542 netif_device_detach(dev); 2543 2544 if (dev_is_pci(device)) 2545 rhine_shutdown_pci(to_pci_dev(device)); 2546 2547 return 0; 2548 } 2549 2550 static int rhine_resume(struct device *device) 2551 { 2552 struct net_device *dev = dev_get_drvdata(device); 2553 struct rhine_private *rp = netdev_priv(dev); 2554 2555 if (!netif_running(dev)) 2556 return 0; 2557 2558 enable_mmio(rp->pioaddr, rp->quirks); 2559 rhine_power_init(dev); 2560 free_tbufs(dev); 2561 alloc_tbufs(dev); 2562 rhine_reset_rbufs(rp); 2563 rhine_task_enable(rp); 2564 spin_lock_bh(&rp->lock); 2565 init_registers(dev); 2566 spin_unlock_bh(&rp->lock); 2567 2568 netif_device_attach(dev); 2569 2570 return 0; 2571 } 2572 2573 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); 2574 #define RHINE_PM_OPS (&rhine_pm_ops) 2575 2576 #else 2577 2578 #define RHINE_PM_OPS NULL 2579 2580 #endif /* !CONFIG_PM_SLEEP */ 2581 2582 static struct pci_driver rhine_driver_pci = { 2583 .name = DRV_NAME, 2584 .id_table = rhine_pci_tbl, 2585 .probe = rhine_init_one_pci, 2586 .remove = rhine_remove_one_pci, 2587 .shutdown = rhine_shutdown_pci, 2588 .driver.pm = RHINE_PM_OPS, 2589 }; 2590 2591 static struct platform_driver rhine_driver_platform = { 2592 .probe = rhine_init_one_platform, 2593 .remove = rhine_remove_one_platform, 2594 .driver = { 2595 .name = DRV_NAME, 2596 .of_match_table = rhine_of_tbl, 2597 .pm = RHINE_PM_OPS, 2598 } 2599 }; 2600 2601 static const struct dmi_system_id rhine_dmi_table[] __initconst = { 2602 { 2603 .ident = "EPIA-M", 2604 .matches = { 2605 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2606 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2607 }, 2608 }, 2609 { 2610 .ident = "KV7", 2611 .matches = { 2612 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2613 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2614 }, 2615 }, 2616 { NULL } 2617 }; 2618 2619 static int __init rhine_init(void) 2620 { 2621 int ret_pci, ret_platform; 2622 2623 /* when a module, this is printed whether or not devices are found in probe */ 2624 #ifdef MODULE 2625 pr_info("%s\n", version); 2626 #endif 2627 if (dmi_check_system(rhine_dmi_table)) { 2628 /* these BIOSes fail at PXE boot if chip is in D3 */ 2629 avoid_D3 = true; 2630 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2631 } 2632 else if (avoid_D3) 2633 pr_info("avoid_D3 set\n"); 2634 2635 ret_pci = pci_register_driver(&rhine_driver_pci); 2636 ret_platform = platform_driver_register(&rhine_driver_platform); 2637 if ((ret_pci < 0) && (ret_platform < 0)) 2638 return ret_pci; 2639 2640 return 0; 2641 } 2642 2643 2644 static void __exit rhine_cleanup(void) 2645 { 2646 platform_driver_unregister(&rhine_driver_platform); 2647 pci_unregister_driver(&rhine_driver_pci); 2648 } 2649 2650 2651 module_init(rhine_init); 2652 module_exit(rhine_cleanup); 2653