1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 
36 #include <linux/types.h>
37 
38 /* A few user-configurable values.
39    These may be modified when a driver module is loaded. */
40 static int debug = 0;
41 #define RHINE_MSG_DEFAULT \
42         (0x0000)
43 
44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
45    Setting to > 1518 effectively disables this feature. */
46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
47 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
48 	defined(__sh__) || defined(__mips__)
49 static int rx_copybreak = 1518;
50 #else
51 static int rx_copybreak;
52 #endif
53 
54 /* Work-around for broken BIOSes: they are unable to get the chip back out of
55    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
56 static bool avoid_D3;
57 
58 /*
59  * In case you are looking for 'options[]' or 'full_duplex[]', they
60  * are gone. Use ethtool(8) instead.
61  */
62 
63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
64    The Rhine has a 64 element 8390-like hash table. */
65 static const int multicast_filter_limit = 32;
66 
67 
68 /* Operational parameters that are set at compile time. */
69 
70 /* Keep the ring sizes a power of two for compile efficiency.
71  * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
72  * Making the Tx ring too large decreases the effectiveness of channel
73  * bonding and packet priority.
74  * With BQL support, we can increase TX ring safely.
75  * There are no ill effects from too-large receive rings.
76  */
77 #define TX_RING_SIZE	64
78 #define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/of_device.h>
98 #include <linux/of_irq.h>
99 #include <linux/platform_device.h>
100 #include <linux/dma-mapping.h>
101 #include <linux/netdevice.h>
102 #include <linux/etherdevice.h>
103 #include <linux/skbuff.h>
104 #include <linux/init.h>
105 #include <linux/delay.h>
106 #include <linux/mii.h>
107 #include <linux/ethtool.h>
108 #include <linux/crc32.h>
109 #include <linux/if_vlan.h>
110 #include <linux/bitops.h>
111 #include <linux/workqueue.h>
112 #include <asm/processor.h>	/* Processor type for cache alignment. */
113 #include <asm/io.h>
114 #include <asm/irq.h>
115 #include <linux/uaccess.h>
116 #include <linux/dmi.h>
117 
118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
120 MODULE_LICENSE("GPL");
121 
122 module_param(debug, int, 0);
123 module_param(rx_copybreak, int, 0);
124 module_param(avoid_D3, bool, 0);
125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
128 
129 #define MCAM_SIZE	32
130 #define VCAM_SIZE	32
131 
132 /*
133 		Theory of Operation
134 
135 I. Board Compatibility
136 
137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
138 controller.
139 
140 II. Board-specific settings
141 
142 Boards with this chip are functional only in a bus-master PCI slot.
143 
144 Many operational settings are loaded from the EEPROM to the Config word at
145 offset 0x78. For most of these settings, this driver assumes that they are
146 correct.
147 If this driver is compiled to use PCI memory space operations the EEPROM
148 must be configured to enable memory ops.
149 
150 III. Driver operation
151 
152 IIIa. Ring buffers
153 
154 This driver uses two statically allocated fixed-size descriptor lists
155 formed into rings by a branch from the final descriptor to the beginning of
156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
157 
158 IIIb/c. Transmit/Receive Structure
159 
160 This driver attempts to use a zero-copy receive and transmit scheme.
161 
162 Alas, all data buffers are required to start on a 32 bit boundary, so
163 the driver must often copy transmit packets into bounce buffers.
164 
165 The driver allocates full frame size skbuffs for the Rx ring buffers at
166 open() time and passes the skb->data field to the chip as receive data
167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
168 a fresh skbuff is allocated and the frame is copied to the new skbuff.
169 When the incoming frame is larger, the skbuff is passed directly up the
170 protocol stack. Buffers consumed this way are replaced by newly allocated
171 skbuffs in the last phase of rhine_rx().
172 
173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
174 using a full-sized skbuff for small frames vs. the copying costs of larger
175 frames. New boards are typically used in generously configured machines
176 and the underfilled buffers have negligible impact compared to the benefit of
177 a single allocation size, so the default value of zero results in never
178 copying packets. When copying is done, the cost is usually mitigated by using
179 a combined copy/checksum routine. Copying also preloads the cache, which is
180 most useful with small frames.
181 
182 Since the VIA chips are only able to transfer data to buffers on 32 bit
183 boundaries, the IP header at offset 14 in an ethernet frame isn't
184 longword aligned for further processing. Copying these unaligned buffers
185 has the beneficial effect of 16-byte aligning the IP header.
186 
187 IIId. Synchronization
188 
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
192 which is single threaded by the hardware and interrupt handling software.
193 
194 The send packet thread has partial control over the Tx ring. It locks the
195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
196 the ring is not available it stops the transmit queue by
197 calling netif_stop_queue.
198 
199 The interrupt handler has exclusive control over the Rx ring and records stats
200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
201 empty by incrementing the dirty_tx mark. If at least half of the entries in
202 the Rx ring are available the transmit queue is woken up if it was stopped.
203 
204 IV. Notes
205 
206 IVb. References
207 
208 Preliminary VT86C100A manual from http://www.via.com.tw/
209 http://www.scyld.com/expert/100mbps.html
210 http://www.scyld.com/expert/NWay.html
211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
213 
214 
215 IVc. Errata
216 
217 The VT86C100A manual is not reliable information.
218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
219 in significant performance degradation for bounce buffer copies on transmit
220 and unaligned IP headers on receive.
221 The chip does not pad to minimum transmit length.
222 
223 */
224 
225 
226 /* This table drives the PCI probe routines. It's mostly boilerplate in all
227    of the drivers, and will likely be provided by some future kernel.
228    Note the matching code -- the first table entry matchs all 56** cards but
229    second only the 1234 card.
230 */
231 
232 enum rhine_revs {
233 	VT86C100A	= 0x00,
234 	VTunknown0	= 0x20,
235 	VT6102		= 0x40,
236 	VT8231		= 0x50,	/* Integrated MAC */
237 	VT8233		= 0x60,	/* Integrated MAC */
238 	VT8235		= 0x74,	/* Integrated MAC */
239 	VT8237		= 0x78,	/* Integrated MAC */
240 	VT8251		= 0x7C,	/* Integrated MAC */
241 	VT6105		= 0x80,
242 	VT6105_B0	= 0x83,
243 	VT6105L		= 0x8A,
244 	VT6107		= 0x8C,
245 	VTunknown2	= 0x8E,
246 	VT6105M		= 0x90,	/* Management adapter */
247 };
248 
249 enum rhine_quirks {
250 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
251 	rqForceReset	= 0x0002,
252 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
253 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
254 	rqRhineI	= 0x0100,	/* See comment below */
255 	rqIntPHY	= 0x0200,	/* Integrated PHY */
256 	rqMgmt		= 0x0400,	/* Management adapter */
257 	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
258 					 * switched from PIO mode to MMIO
259 					 * (only applies to PCI)
260 					 */
261 };
262 /*
263  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
264  * MMIO as well as for the collision counter and the Tx FIFO underflow
265  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266  */
267 
268 /* Beware of PCI posted writes */
269 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
270 
271 static const struct pci_device_id rhine_pci_tbl[] = {
272 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
273 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
274 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
275 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
276 	{ }	/* terminate list */
277 };
278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 
280 /* OpenFirmware identifiers for platform-bus devices
281  * The .data field is currently only used to store quirks
282  */
283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
284 static const struct of_device_id rhine_of_tbl[] = {
285 	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
286 	{ }	/* terminate list */
287 };
288 MODULE_DEVICE_TABLE(of, rhine_of_tbl);
289 
290 /* Offsets to the device registers. */
291 enum register_offsets {
292 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
293 	ChipCmd1=0x09, TQWake=0x0A,
294 	IntrStatus=0x0C, IntrEnable=0x0E,
295 	MulticastFilter0=0x10, MulticastFilter1=0x14,
296 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
297 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
298 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
299 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
300 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
301 	StickyHW=0x83, IntrStatus2=0x84,
302 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
303 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
304 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
305 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
306 };
307 
308 /* Bits in ConfigD */
309 enum backoff_bits {
310 	BackOptional=0x01, BackModify=0x02,
311 	BackCaptureEffect=0x04, BackRandom=0x08
312 };
313 
314 /* Bits in the TxConfig (TCR) register */
315 enum tcr_bits {
316 	TCR_PQEN=0x01,
317 	TCR_LB0=0x02,		/* loopback[0] */
318 	TCR_LB1=0x04,		/* loopback[1] */
319 	TCR_OFSET=0x08,
320 	TCR_RTGOPT=0x10,
321 	TCR_RTFT0=0x20,
322 	TCR_RTFT1=0x40,
323 	TCR_RTSF=0x80,
324 };
325 
326 /* Bits in the CamCon (CAMC) register */
327 enum camcon_bits {
328 	CAMC_CAMEN=0x01,
329 	CAMC_VCAMSL=0x02,
330 	CAMC_CAMWR=0x04,
331 	CAMC_CAMRD=0x08,
332 };
333 
334 /* Bits in the PCIBusConfig1 (BCR1) register */
335 enum bcr1_bits {
336 	BCR1_POT0=0x01,
337 	BCR1_POT1=0x02,
338 	BCR1_POT2=0x04,
339 	BCR1_CTFT0=0x08,
340 	BCR1_CTFT1=0x10,
341 	BCR1_CTSF=0x20,
342 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
343 	BCR1_VIDFR=0x80,	/* for VT6105 */
344 	BCR1_MED0=0x40,		/* for VT6102 */
345 	BCR1_MED1=0x80,		/* for VT6102 */
346 };
347 
348 /* Registers we check that mmio and reg are the same. */
349 static const int mmio_verify_registers[] = {
350 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
351 	0
352 };
353 
354 /* Bits in the interrupt status/mask registers. */
355 enum intr_status_bits {
356 	IntrRxDone	= 0x0001,
357 	IntrTxDone	= 0x0002,
358 	IntrRxErr	= 0x0004,
359 	IntrTxError	= 0x0008,
360 	IntrRxEmpty	= 0x0020,
361 	IntrPCIErr	= 0x0040,
362 	IntrStatsMax	= 0x0080,
363 	IntrRxEarly	= 0x0100,
364 	IntrTxUnderrun	= 0x0210,
365 	IntrRxOverflow	= 0x0400,
366 	IntrRxDropped	= 0x0800,
367 	IntrRxNoBuf	= 0x1000,
368 	IntrTxAborted	= 0x2000,
369 	IntrLinkChange	= 0x4000,
370 	IntrRxWakeUp	= 0x8000,
371 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
372 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
373 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
374 				  IntrTxUnderrun,
375 };
376 
377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
378 enum wol_bits {
379 	WOLucast	= 0x10,
380 	WOLmagic	= 0x20,
381 	WOLbmcast	= 0x30,
382 	WOLlnkon	= 0x40,
383 	WOLlnkoff	= 0x80,
384 };
385 
386 /* The Rx and Tx buffer descriptors. */
387 struct rx_desc {
388 	__le32 rx_status;
389 	__le32 desc_length; /* Chain flag, Buffer/frame length */
390 	__le32 addr;
391 	__le32 next_desc;
392 };
393 struct tx_desc {
394 	__le32 tx_status;
395 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
396 	__le32 addr;
397 	__le32 next_desc;
398 };
399 
400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
401 #define TXDESC		0x00e08000
402 
403 enum rx_status_bits {
404 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
405 };
406 
407 /* Bits in *_desc.*_status */
408 enum desc_status_bits {
409 	DescOwn=0x80000000
410 };
411 
412 /* Bits in *_desc.*_length */
413 enum desc_length_bits {
414 	DescTag=0x00010000
415 };
416 
417 /* Bits in ChipCmd. */
418 enum chip_cmd_bits {
419 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
420 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
421 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
422 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
423 };
424 
425 struct rhine_stats {
426 	u64		packets;
427 	u64		bytes;
428 	struct u64_stats_sync syncp;
429 };
430 
431 struct rhine_private {
432 	/* Bit mask for configured VLAN ids */
433 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
434 
435 	/* Descriptor rings */
436 	struct rx_desc *rx_ring;
437 	struct tx_desc *tx_ring;
438 	dma_addr_t rx_ring_dma;
439 	dma_addr_t tx_ring_dma;
440 
441 	/* The addresses of receive-in-place skbuffs. */
442 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
443 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
444 
445 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
446 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
447 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
448 
449 	/* Tx bounce buffers (Rhine-I only) */
450 	unsigned char *tx_buf[TX_RING_SIZE];
451 	unsigned char *tx_bufs;
452 	dma_addr_t tx_bufs_dma;
453 
454 	int irq;
455 	long pioaddr;
456 	struct net_device *dev;
457 	struct napi_struct napi;
458 	spinlock_t lock;
459 	struct mutex task_lock;
460 	bool task_enable;
461 	struct work_struct slow_event_task;
462 	struct work_struct reset_task;
463 
464 	u32 msg_enable;
465 
466 	/* Frequently used values: keep some adjacent for cache effect. */
467 	u32 quirks;
468 	unsigned int cur_rx;
469 	unsigned int cur_tx, dirty_tx;
470 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
471 	struct rhine_stats rx_stats;
472 	struct rhine_stats tx_stats;
473 	u8 wolopts;
474 
475 	u8 tx_thresh, rx_thresh;
476 
477 	struct mii_if_info mii_if;
478 	void __iomem *base;
479 };
480 
481 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
482 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
483 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
484 
485 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
486 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
487 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
488 
489 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
490 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
491 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
492 
493 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
494 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
495 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
496 
497 
498 static int  mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int  rhine_open(struct net_device *dev);
501 static void rhine_reset_task(struct work_struct *work);
502 static void rhine_slow_event_task(struct work_struct *work);
503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
505 				  struct net_device *dev);
506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
507 static void rhine_tx(struct net_device *dev);
508 static int rhine_rx(struct net_device *dev, int limit);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static void rhine_get_stats64(struct net_device *dev,
511 			      struct rtnl_link_stats64 *stats);
512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
513 static const struct ethtool_ops netdev_ethtool_ops;
514 static int  rhine_close(struct net_device *dev);
515 static int rhine_vlan_rx_add_vid(struct net_device *dev,
516 				 __be16 proto, u16 vid);
517 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
518 				  __be16 proto, u16 vid);
519 static void rhine_restart_tx(struct net_device *dev);
520 
521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
522 {
523 	void __iomem *ioaddr = rp->base;
524 	int i;
525 
526 	for (i = 0; i < 1024; i++) {
527 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
528 
529 		if (low ^ has_mask_bits)
530 			break;
531 		udelay(10);
532 	}
533 	if (i > 64) {
534 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
535 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
536 	}
537 }
538 
539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
540 {
541 	rhine_wait_bit(rp, reg, mask, false);
542 }
543 
544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
545 {
546 	rhine_wait_bit(rp, reg, mask, true);
547 }
548 
549 static u32 rhine_get_events(struct rhine_private *rp)
550 {
551 	void __iomem *ioaddr = rp->base;
552 	u32 intr_status;
553 
554 	intr_status = ioread16(ioaddr + IntrStatus);
555 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
556 	if (rp->quirks & rqStatusWBRace)
557 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
558 	return intr_status;
559 }
560 
561 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
562 {
563 	void __iomem *ioaddr = rp->base;
564 
565 	if (rp->quirks & rqStatusWBRace)
566 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
567 	iowrite16(mask, ioaddr + IntrStatus);
568 }
569 
570 /*
571  * Get power related registers into sane state.
572  * Notify user about past WOL event.
573  */
574 static void rhine_power_init(struct net_device *dev)
575 {
576 	struct rhine_private *rp = netdev_priv(dev);
577 	void __iomem *ioaddr = rp->base;
578 	u16 wolstat;
579 
580 	if (rp->quirks & rqWOL) {
581 		/* Make sure chip is in power state D0 */
582 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
583 
584 		/* Disable "force PME-enable" */
585 		iowrite8(0x80, ioaddr + WOLcgClr);
586 
587 		/* Clear power-event config bits (WOL) */
588 		iowrite8(0xFF, ioaddr + WOLcrClr);
589 		/* More recent cards can manage two additional patterns */
590 		if (rp->quirks & rq6patterns)
591 			iowrite8(0x03, ioaddr + WOLcrClr1);
592 
593 		/* Save power-event status bits */
594 		wolstat = ioread8(ioaddr + PwrcsrSet);
595 		if (rp->quirks & rq6patterns)
596 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
597 
598 		/* Clear power-event status bits */
599 		iowrite8(0xFF, ioaddr + PwrcsrClr);
600 		if (rp->quirks & rq6patterns)
601 			iowrite8(0x03, ioaddr + PwrcsrClr1);
602 
603 		if (wolstat) {
604 			char *reason;
605 			switch (wolstat) {
606 			case WOLmagic:
607 				reason = "Magic packet";
608 				break;
609 			case WOLlnkon:
610 				reason = "Link went up";
611 				break;
612 			case WOLlnkoff:
613 				reason = "Link went down";
614 				break;
615 			case WOLucast:
616 				reason = "Unicast packet";
617 				break;
618 			case WOLbmcast:
619 				reason = "Multicast/broadcast packet";
620 				break;
621 			default:
622 				reason = "Unknown";
623 			}
624 			netdev_info(dev, "Woke system up. Reason: %s\n",
625 				    reason);
626 		}
627 	}
628 }
629 
630 static void rhine_chip_reset(struct net_device *dev)
631 {
632 	struct rhine_private *rp = netdev_priv(dev);
633 	void __iomem *ioaddr = rp->base;
634 	u8 cmd1;
635 
636 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
637 	IOSYNC;
638 
639 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
640 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
641 
642 		/* Force reset */
643 		if (rp->quirks & rqForceReset)
644 			iowrite8(0x40, ioaddr + MiscCmd);
645 
646 		/* Reset can take somewhat longer (rare) */
647 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
648 	}
649 
650 	cmd1 = ioread8(ioaddr + ChipCmd1);
651 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
652 		   "failed" : "succeeded");
653 }
654 
655 static void enable_mmio(long pioaddr, u32 quirks)
656 {
657 	int n;
658 
659 	if (quirks & rqNeedEnMMIO) {
660 		if (quirks & rqRhineI) {
661 			/* More recent docs say that this bit is reserved */
662 			n = inb(pioaddr + ConfigA) | 0x20;
663 			outb(n, pioaddr + ConfigA);
664 		} else {
665 			n = inb(pioaddr + ConfigD) | 0x80;
666 			outb(n, pioaddr + ConfigD);
667 		}
668 	}
669 }
670 
671 static inline int verify_mmio(struct device *hwdev,
672 			      long pioaddr,
673 			      void __iomem *ioaddr,
674 			      u32 quirks)
675 {
676 	if (quirks & rqNeedEnMMIO) {
677 		int i = 0;
678 
679 		/* Check that selected MMIO registers match the PIO ones */
680 		while (mmio_verify_registers[i]) {
681 			int reg = mmio_verify_registers[i++];
682 			unsigned char a = inb(pioaddr+reg);
683 			unsigned char b = readb(ioaddr+reg);
684 
685 			if (a != b) {
686 				dev_err(hwdev,
687 					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
688 					reg, a, b);
689 				return -EIO;
690 			}
691 		}
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
698  * (plus 0x6C for Rhine-I/II)
699  */
700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
701 {
702 	struct rhine_private *rp = netdev_priv(dev);
703 	void __iomem *ioaddr = rp->base;
704 	int i;
705 
706 	outb(0x20, pioaddr + MACRegEEcsr);
707 	for (i = 0; i < 1024; i++) {
708 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
709 			break;
710 	}
711 	if (i > 512)
712 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
713 
714 	/*
715 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
716 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
717 	 * it is not known if that still works with the "win98-reboot" problem.
718 	 */
719 	enable_mmio(pioaddr, rp->quirks);
720 
721 	/* Turn off EEPROM-controlled wake-up (magic packet) */
722 	if (rp->quirks & rqWOL)
723 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
724 
725 }
726 
727 #ifdef CONFIG_NET_POLL_CONTROLLER
728 static void rhine_poll(struct net_device *dev)
729 {
730 	struct rhine_private *rp = netdev_priv(dev);
731 	const int irq = rp->irq;
732 
733 	disable_irq(irq);
734 	rhine_interrupt(irq, dev);
735 	enable_irq(irq);
736 }
737 #endif
738 
739 static void rhine_kick_tx_threshold(struct rhine_private *rp)
740 {
741 	if (rp->tx_thresh < 0xe0) {
742 		void __iomem *ioaddr = rp->base;
743 
744 		rp->tx_thresh += 0x20;
745 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
746 	}
747 }
748 
749 static void rhine_tx_err(struct rhine_private *rp, u32 status)
750 {
751 	struct net_device *dev = rp->dev;
752 
753 	if (status & IntrTxAborted) {
754 		netif_info(rp, tx_err, dev,
755 			   "Abort %08x, frame dropped\n", status);
756 	}
757 
758 	if (status & IntrTxUnderrun) {
759 		rhine_kick_tx_threshold(rp);
760 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
761 			   "Tx threshold now %02x\n", rp->tx_thresh);
762 	}
763 
764 	if (status & IntrTxDescRace)
765 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
766 
767 	if ((status & IntrTxError) &&
768 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
769 		rhine_kick_tx_threshold(rp);
770 		netif_info(rp, tx_err, dev, "Unspecified error. "
771 			   "Tx threshold now %02x\n", rp->tx_thresh);
772 	}
773 
774 	rhine_restart_tx(dev);
775 }
776 
777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
778 {
779 	void __iomem *ioaddr = rp->base;
780 	struct net_device_stats *stats = &rp->dev->stats;
781 
782 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
783 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
784 
785 	/*
786 	 * Clears the "tally counters" for CRC errors and missed frames(?).
787 	 * It has been reported that some chips need a write of 0 to clear
788 	 * these, for others the counters are set to 1 when written to and
789 	 * instead cleared when read. So we clear them both ways ...
790 	 */
791 	iowrite32(0, ioaddr + RxMissed);
792 	ioread16(ioaddr + RxCRCErrs);
793 	ioread16(ioaddr + RxMissed);
794 }
795 
796 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
797 				 IntrRxErr | \
798 				 IntrRxEmpty | \
799 				 IntrRxOverflow	| \
800 				 IntrRxDropped | \
801 				 IntrRxNoBuf | \
802 				 IntrRxWakeUp)
803 
804 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
805 				 IntrTxAborted | \
806 				 IntrTxUnderrun | \
807 				 IntrTxDescRace)
808 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
809 
810 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
811 				 RHINE_EVENT_NAPI_TX | \
812 				 IntrStatsMax)
813 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
814 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
815 
816 static int rhine_napipoll(struct napi_struct *napi, int budget)
817 {
818 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
819 	struct net_device *dev = rp->dev;
820 	void __iomem *ioaddr = rp->base;
821 	u16 enable_mask = RHINE_EVENT & 0xffff;
822 	int work_done = 0;
823 	u32 status;
824 
825 	status = rhine_get_events(rp);
826 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
827 
828 	if (status & RHINE_EVENT_NAPI_RX)
829 		work_done += rhine_rx(dev, budget);
830 
831 	if (status & RHINE_EVENT_NAPI_TX) {
832 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
833 			/* Avoid scavenging before Tx engine turned off */
834 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
835 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
836 				netif_warn(rp, tx_err, dev, "Tx still on\n");
837 		}
838 
839 		rhine_tx(dev);
840 
841 		if (status & RHINE_EVENT_NAPI_TX_ERR)
842 			rhine_tx_err(rp, status);
843 	}
844 
845 	if (status & IntrStatsMax) {
846 		spin_lock(&rp->lock);
847 		rhine_update_rx_crc_and_missed_errord(rp);
848 		spin_unlock(&rp->lock);
849 	}
850 
851 	if (status & RHINE_EVENT_SLOW) {
852 		enable_mask &= ~RHINE_EVENT_SLOW;
853 		schedule_work(&rp->slow_event_task);
854 	}
855 
856 	if (work_done < budget) {
857 		napi_complete_done(napi, work_done);
858 		iowrite16(enable_mask, ioaddr + IntrEnable);
859 	}
860 	return work_done;
861 }
862 
863 static void rhine_hw_init(struct net_device *dev, long pioaddr)
864 {
865 	struct rhine_private *rp = netdev_priv(dev);
866 
867 	/* Reset the chip to erase previous misconfiguration. */
868 	rhine_chip_reset(dev);
869 
870 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
871 	if (rp->quirks & rqRhineI)
872 		msleep(5);
873 
874 	/* Reload EEPROM controlled bytes cleared by soft reset */
875 	if (dev_is_pci(dev->dev.parent))
876 		rhine_reload_eeprom(pioaddr, dev);
877 }
878 
879 static const struct net_device_ops rhine_netdev_ops = {
880 	.ndo_open		 = rhine_open,
881 	.ndo_stop		 = rhine_close,
882 	.ndo_start_xmit		 = rhine_start_tx,
883 	.ndo_get_stats64	 = rhine_get_stats64,
884 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
885 	.ndo_validate_addr	 = eth_validate_addr,
886 	.ndo_set_mac_address 	 = eth_mac_addr,
887 	.ndo_eth_ioctl		 = netdev_ioctl,
888 	.ndo_tx_timeout 	 = rhine_tx_timeout,
889 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
890 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
891 #ifdef CONFIG_NET_POLL_CONTROLLER
892 	.ndo_poll_controller	 = rhine_poll,
893 #endif
894 };
895 
896 static int rhine_init_one_common(struct device *hwdev, u32 quirks,
897 				 long pioaddr, void __iomem *ioaddr, int irq)
898 {
899 	struct net_device *dev;
900 	struct rhine_private *rp;
901 	int i, rc, phy_id;
902 	const char *name;
903 
904 	/* this should always be supported */
905 	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
906 	if (rc) {
907 		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
908 		goto err_out;
909 	}
910 
911 	dev = alloc_etherdev(sizeof(struct rhine_private));
912 	if (!dev) {
913 		rc = -ENOMEM;
914 		goto err_out;
915 	}
916 	SET_NETDEV_DEV(dev, hwdev);
917 
918 	rp = netdev_priv(dev);
919 	rp->dev = dev;
920 	rp->quirks = quirks;
921 	rp->pioaddr = pioaddr;
922 	rp->base = ioaddr;
923 	rp->irq = irq;
924 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
925 
926 	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
927 
928 	u64_stats_init(&rp->tx_stats.syncp);
929 	u64_stats_init(&rp->rx_stats.syncp);
930 
931 	/* Get chip registers into a sane state */
932 	rhine_power_init(dev);
933 	rhine_hw_init(dev, pioaddr);
934 
935 	for (i = 0; i < 6; i++)
936 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
937 
938 	if (!is_valid_ether_addr(dev->dev_addr)) {
939 		/* Report it and use a random ethernet address instead */
940 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
941 		eth_hw_addr_random(dev);
942 		netdev_info(dev, "Using random MAC address: %pM\n",
943 			    dev->dev_addr);
944 	}
945 
946 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
947 	if (!phy_id)
948 		phy_id = ioread8(ioaddr + 0x6C);
949 
950 	spin_lock_init(&rp->lock);
951 	mutex_init(&rp->task_lock);
952 	INIT_WORK(&rp->reset_task, rhine_reset_task);
953 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
954 
955 	rp->mii_if.dev = dev;
956 	rp->mii_if.mdio_read = mdio_read;
957 	rp->mii_if.mdio_write = mdio_write;
958 	rp->mii_if.phy_id_mask = 0x1f;
959 	rp->mii_if.reg_num_mask = 0x1f;
960 
961 	/* The chip-specific entries in the device structure. */
962 	dev->netdev_ops = &rhine_netdev_ops;
963 	dev->ethtool_ops = &netdev_ethtool_ops;
964 	dev->watchdog_timeo = TX_TIMEOUT;
965 
966 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
967 
968 	if (rp->quirks & rqRhineI)
969 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
970 
971 	if (rp->quirks & rqMgmt)
972 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
973 				 NETIF_F_HW_VLAN_CTAG_RX |
974 				 NETIF_F_HW_VLAN_CTAG_FILTER;
975 
976 	/* dev->name not defined before register_netdev()! */
977 	rc = register_netdev(dev);
978 	if (rc)
979 		goto err_out_free_netdev;
980 
981 	if (rp->quirks & rqRhineI)
982 		name = "Rhine";
983 	else if (rp->quirks & rqStatusWBRace)
984 		name = "Rhine II";
985 	else if (rp->quirks & rqMgmt)
986 		name = "Rhine III (Management Adapter)";
987 	else
988 		name = "Rhine III";
989 
990 	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
991 		    name, ioaddr, dev->dev_addr, rp->irq);
992 
993 	dev_set_drvdata(hwdev, dev);
994 
995 	{
996 		u16 mii_cmd;
997 		int mii_status = mdio_read(dev, phy_id, 1);
998 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
999 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1000 		if (mii_status != 0xffff && mii_status != 0x0000) {
1001 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1002 			netdev_info(dev,
1003 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1004 				    phy_id,
1005 				    mii_status, rp->mii_if.advertising,
1006 				    mdio_read(dev, phy_id, 5));
1007 
1008 			/* set IFF_RUNNING */
1009 			if (mii_status & BMSR_LSTATUS)
1010 				netif_carrier_on(dev);
1011 			else
1012 				netif_carrier_off(dev);
1013 
1014 		}
1015 	}
1016 	rp->mii_if.phy_id = phy_id;
1017 	if (avoid_D3)
1018 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1019 
1020 	return 0;
1021 
1022 err_out_free_netdev:
1023 	free_netdev(dev);
1024 err_out:
1025 	return rc;
1026 }
1027 
1028 static int rhine_init_one_pci(struct pci_dev *pdev,
1029 			      const struct pci_device_id *ent)
1030 {
1031 	struct device *hwdev = &pdev->dev;
1032 	int rc;
1033 	long pioaddr, memaddr;
1034 	void __iomem *ioaddr;
1035 	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1036 
1037 /* This driver was written to use PCI memory space. Some early versions
1038  * of the Rhine may only work correctly with I/O space accesses.
1039  * TODO: determine for which revisions this is true and assign the flag
1040  *	 in code as opposed to this Kconfig option (???)
1041  */
1042 #ifdef CONFIG_VIA_RHINE_MMIO
1043 	u32 quirks = rqNeedEnMMIO;
1044 #else
1045 	u32 quirks = 0;
1046 #endif
1047 
1048 	rc = pci_enable_device(pdev);
1049 	if (rc)
1050 		goto err_out;
1051 
1052 	if (pdev->revision < VTunknown0) {
1053 		quirks |= rqRhineI;
1054 	} else if (pdev->revision >= VT6102) {
1055 		quirks |= rqWOL | rqForceReset;
1056 		if (pdev->revision < VT6105) {
1057 			quirks |= rqStatusWBRace;
1058 		} else {
1059 			quirks |= rqIntPHY;
1060 			if (pdev->revision >= VT6105_B0)
1061 				quirks |= rq6patterns;
1062 			if (pdev->revision >= VT6105M)
1063 				quirks |= rqMgmt;
1064 		}
1065 	}
1066 
1067 	/* sanity check */
1068 	if ((pci_resource_len(pdev, 0) < io_size) ||
1069 	    (pci_resource_len(pdev, 1) < io_size)) {
1070 		rc = -EIO;
1071 		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1072 		goto err_out_pci_disable;
1073 	}
1074 
1075 	pioaddr = pci_resource_start(pdev, 0);
1076 	memaddr = pci_resource_start(pdev, 1);
1077 
1078 	pci_set_master(pdev);
1079 
1080 	rc = pci_request_regions(pdev, DRV_NAME);
1081 	if (rc)
1082 		goto err_out_pci_disable;
1083 
1084 	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1085 	if (!ioaddr) {
1086 		rc = -EIO;
1087 		dev_err(hwdev,
1088 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1089 			dev_name(hwdev), io_size, memaddr);
1090 		goto err_out_free_res;
1091 	}
1092 
1093 	enable_mmio(pioaddr, quirks);
1094 
1095 	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1096 	if (rc)
1097 		goto err_out_unmap;
1098 
1099 	rc = rhine_init_one_common(&pdev->dev, quirks,
1100 				   pioaddr, ioaddr, pdev->irq);
1101 	if (!rc)
1102 		return 0;
1103 
1104 err_out_unmap:
1105 	pci_iounmap(pdev, ioaddr);
1106 err_out_free_res:
1107 	pci_release_regions(pdev);
1108 err_out_pci_disable:
1109 	pci_disable_device(pdev);
1110 err_out:
1111 	return rc;
1112 }
1113 
1114 static int rhine_init_one_platform(struct platform_device *pdev)
1115 {
1116 	const u32 *quirks;
1117 	int irq;
1118 	void __iomem *ioaddr;
1119 
1120 	quirks = of_device_get_match_data(&pdev->dev);
1121 	if (!quirks)
1122 		return -EINVAL;
1123 
1124 	ioaddr = devm_platform_ioremap_resource(pdev, 0);
1125 	if (IS_ERR(ioaddr))
1126 		return PTR_ERR(ioaddr);
1127 
1128 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1129 	if (!irq)
1130 		return -EINVAL;
1131 
1132 	return rhine_init_one_common(&pdev->dev, *quirks,
1133 				     (long)ioaddr, ioaddr, irq);
1134 }
1135 
1136 static int alloc_ring(struct net_device* dev)
1137 {
1138 	struct rhine_private *rp = netdev_priv(dev);
1139 	struct device *hwdev = dev->dev.parent;
1140 	void *ring;
1141 	dma_addr_t ring_dma;
1142 
1143 	ring = dma_alloc_coherent(hwdev,
1144 				  RX_RING_SIZE * sizeof(struct rx_desc) +
1145 				  TX_RING_SIZE * sizeof(struct tx_desc),
1146 				  &ring_dma,
1147 				  GFP_ATOMIC);
1148 	if (!ring) {
1149 		netdev_err(dev, "Could not allocate DMA memory\n");
1150 		return -ENOMEM;
1151 	}
1152 	if (rp->quirks & rqRhineI) {
1153 		rp->tx_bufs = dma_alloc_coherent(hwdev,
1154 						 PKT_BUF_SZ * TX_RING_SIZE,
1155 						 &rp->tx_bufs_dma,
1156 						 GFP_ATOMIC);
1157 		if (rp->tx_bufs == NULL) {
1158 			dma_free_coherent(hwdev,
1159 					  RX_RING_SIZE * sizeof(struct rx_desc) +
1160 					  TX_RING_SIZE * sizeof(struct tx_desc),
1161 					  ring, ring_dma);
1162 			return -ENOMEM;
1163 		}
1164 	}
1165 
1166 	rp->rx_ring = ring;
1167 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1168 	rp->rx_ring_dma = ring_dma;
1169 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1170 
1171 	return 0;
1172 }
1173 
1174 static void free_ring(struct net_device* dev)
1175 {
1176 	struct rhine_private *rp = netdev_priv(dev);
1177 	struct device *hwdev = dev->dev.parent;
1178 
1179 	dma_free_coherent(hwdev,
1180 			  RX_RING_SIZE * sizeof(struct rx_desc) +
1181 			  TX_RING_SIZE * sizeof(struct tx_desc),
1182 			  rp->rx_ring, rp->rx_ring_dma);
1183 	rp->tx_ring = NULL;
1184 
1185 	if (rp->tx_bufs)
1186 		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1187 				  rp->tx_bufs, rp->tx_bufs_dma);
1188 
1189 	rp->tx_bufs = NULL;
1190 
1191 }
1192 
1193 struct rhine_skb_dma {
1194 	struct sk_buff *skb;
1195 	dma_addr_t dma;
1196 };
1197 
1198 static inline int rhine_skb_dma_init(struct net_device *dev,
1199 				     struct rhine_skb_dma *sd)
1200 {
1201 	struct rhine_private *rp = netdev_priv(dev);
1202 	struct device *hwdev = dev->dev.parent;
1203 	const int size = rp->rx_buf_sz;
1204 
1205 	sd->skb = netdev_alloc_skb(dev, size);
1206 	if (!sd->skb)
1207 		return -ENOMEM;
1208 
1209 	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1210 	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1211 		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1212 		dev_kfree_skb_any(sd->skb);
1213 		return -EIO;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static void rhine_reset_rbufs(struct rhine_private *rp)
1220 {
1221 	int i;
1222 
1223 	rp->cur_rx = 0;
1224 
1225 	for (i = 0; i < RX_RING_SIZE; i++)
1226 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1227 }
1228 
1229 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1230 					   struct rhine_skb_dma *sd, int entry)
1231 {
1232 	rp->rx_skbuff_dma[entry] = sd->dma;
1233 	rp->rx_skbuff[entry] = sd->skb;
1234 
1235 	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1236 	dma_wmb();
1237 }
1238 
1239 static void free_rbufs(struct net_device* dev);
1240 
1241 static int alloc_rbufs(struct net_device *dev)
1242 {
1243 	struct rhine_private *rp = netdev_priv(dev);
1244 	dma_addr_t next;
1245 	int rc, i;
1246 
1247 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1248 	next = rp->rx_ring_dma;
1249 
1250 	/* Init the ring entries */
1251 	for (i = 0; i < RX_RING_SIZE; i++) {
1252 		rp->rx_ring[i].rx_status = 0;
1253 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1254 		next += sizeof(struct rx_desc);
1255 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1256 		rp->rx_skbuff[i] = NULL;
1257 	}
1258 	/* Mark the last entry as wrapping the ring. */
1259 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1260 
1261 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1262 	for (i = 0; i < RX_RING_SIZE; i++) {
1263 		struct rhine_skb_dma sd;
1264 
1265 		rc = rhine_skb_dma_init(dev, &sd);
1266 		if (rc < 0) {
1267 			free_rbufs(dev);
1268 			goto out;
1269 		}
1270 
1271 		rhine_skb_dma_nic_store(rp, &sd, i);
1272 	}
1273 
1274 	rhine_reset_rbufs(rp);
1275 out:
1276 	return rc;
1277 }
1278 
1279 static void free_rbufs(struct net_device* dev)
1280 {
1281 	struct rhine_private *rp = netdev_priv(dev);
1282 	struct device *hwdev = dev->dev.parent;
1283 	int i;
1284 
1285 	/* Free all the skbuffs in the Rx queue. */
1286 	for (i = 0; i < RX_RING_SIZE; i++) {
1287 		rp->rx_ring[i].rx_status = 0;
1288 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1289 		if (rp->rx_skbuff[i]) {
1290 			dma_unmap_single(hwdev,
1291 					 rp->rx_skbuff_dma[i],
1292 					 rp->rx_buf_sz, DMA_FROM_DEVICE);
1293 			dev_kfree_skb(rp->rx_skbuff[i]);
1294 		}
1295 		rp->rx_skbuff[i] = NULL;
1296 	}
1297 }
1298 
1299 static void alloc_tbufs(struct net_device* dev)
1300 {
1301 	struct rhine_private *rp = netdev_priv(dev);
1302 	dma_addr_t next;
1303 	int i;
1304 
1305 	rp->dirty_tx = rp->cur_tx = 0;
1306 	next = rp->tx_ring_dma;
1307 	for (i = 0; i < TX_RING_SIZE; i++) {
1308 		rp->tx_skbuff[i] = NULL;
1309 		rp->tx_ring[i].tx_status = 0;
1310 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1311 		next += sizeof(struct tx_desc);
1312 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1313 		if (rp->quirks & rqRhineI)
1314 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1315 	}
1316 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1317 
1318 	netdev_reset_queue(dev);
1319 }
1320 
1321 static void free_tbufs(struct net_device* dev)
1322 {
1323 	struct rhine_private *rp = netdev_priv(dev);
1324 	struct device *hwdev = dev->dev.parent;
1325 	int i;
1326 
1327 	for (i = 0; i < TX_RING_SIZE; i++) {
1328 		rp->tx_ring[i].tx_status = 0;
1329 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1330 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1331 		if (rp->tx_skbuff[i]) {
1332 			if (rp->tx_skbuff_dma[i]) {
1333 				dma_unmap_single(hwdev,
1334 						 rp->tx_skbuff_dma[i],
1335 						 rp->tx_skbuff[i]->len,
1336 						 DMA_TO_DEVICE);
1337 			}
1338 			dev_kfree_skb(rp->tx_skbuff[i]);
1339 		}
1340 		rp->tx_skbuff[i] = NULL;
1341 		rp->tx_buf[i] = NULL;
1342 	}
1343 }
1344 
1345 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1346 {
1347 	struct rhine_private *rp = netdev_priv(dev);
1348 	void __iomem *ioaddr = rp->base;
1349 
1350 	if (!rp->mii_if.force_media)
1351 		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1352 
1353 	if (rp->mii_if.full_duplex)
1354 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1355 		   ioaddr + ChipCmd1);
1356 	else
1357 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1358 		   ioaddr + ChipCmd1);
1359 
1360 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1361 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1362 }
1363 
1364 /* Called after status of force_media possibly changed */
1365 static void rhine_set_carrier(struct mii_if_info *mii)
1366 {
1367 	struct net_device *dev = mii->dev;
1368 	struct rhine_private *rp = netdev_priv(dev);
1369 
1370 	if (mii->force_media) {
1371 		/* autoneg is off: Link is always assumed to be up */
1372 		if (!netif_carrier_ok(dev))
1373 			netif_carrier_on(dev);
1374 	}
1375 
1376 	rhine_check_media(dev, 0);
1377 
1378 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1379 		   mii->force_media, netif_carrier_ok(dev));
1380 }
1381 
1382 /**
1383  * rhine_set_cam - set CAM multicast filters
1384  * @ioaddr: register block of this Rhine
1385  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1386  * @addr: multicast address (6 bytes)
1387  *
1388  * Load addresses into multicast filters.
1389  */
1390 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1391 {
1392 	int i;
1393 
1394 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1395 	wmb();
1396 
1397 	/* Paranoid -- idx out of range should never happen */
1398 	idx &= (MCAM_SIZE - 1);
1399 
1400 	iowrite8((u8) idx, ioaddr + CamAddr);
1401 
1402 	for (i = 0; i < 6; i++, addr++)
1403 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1404 	udelay(10);
1405 	wmb();
1406 
1407 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1408 	udelay(10);
1409 
1410 	iowrite8(0, ioaddr + CamCon);
1411 }
1412 
1413 /**
1414  * rhine_set_vlan_cam - set CAM VLAN filters
1415  * @ioaddr: register block of this Rhine
1416  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1417  * @addr: VLAN ID (2 bytes)
1418  *
1419  * Load addresses into VLAN filters.
1420  */
1421 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1422 {
1423 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1424 	wmb();
1425 
1426 	/* Paranoid -- idx out of range should never happen */
1427 	idx &= (VCAM_SIZE - 1);
1428 
1429 	iowrite8((u8) idx, ioaddr + CamAddr);
1430 
1431 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1432 	udelay(10);
1433 	wmb();
1434 
1435 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1436 	udelay(10);
1437 
1438 	iowrite8(0, ioaddr + CamCon);
1439 }
1440 
1441 /**
1442  * rhine_set_cam_mask - set multicast CAM mask
1443  * @ioaddr: register block of this Rhine
1444  * @mask: multicast CAM mask
1445  *
1446  * Mask sets multicast filters active/inactive.
1447  */
1448 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1449 {
1450 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1451 	wmb();
1452 
1453 	/* write mask */
1454 	iowrite32(mask, ioaddr + CamMask);
1455 
1456 	/* disable CAMEN */
1457 	iowrite8(0, ioaddr + CamCon);
1458 }
1459 
1460 /**
1461  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1462  * @ioaddr: register block of this Rhine
1463  * @mask: VLAN CAM mask
1464  *
1465  * Mask sets VLAN filters active/inactive.
1466  */
1467 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1468 {
1469 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1470 	wmb();
1471 
1472 	/* write mask */
1473 	iowrite32(mask, ioaddr + CamMask);
1474 
1475 	/* disable CAMEN */
1476 	iowrite8(0, ioaddr + CamCon);
1477 }
1478 
1479 /**
1480  * rhine_init_cam_filter - initialize CAM filters
1481  * @dev: network device
1482  *
1483  * Initialize (disable) hardware VLAN and multicast support on this
1484  * Rhine.
1485  */
1486 static void rhine_init_cam_filter(struct net_device *dev)
1487 {
1488 	struct rhine_private *rp = netdev_priv(dev);
1489 	void __iomem *ioaddr = rp->base;
1490 
1491 	/* Disable all CAMs */
1492 	rhine_set_vlan_cam_mask(ioaddr, 0);
1493 	rhine_set_cam_mask(ioaddr, 0);
1494 
1495 	/* disable hardware VLAN support */
1496 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1497 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1498 }
1499 
1500 /**
1501  * rhine_update_vcam - update VLAN CAM filters
1502  * @dev: rhine_private data of this Rhine
1503  *
1504  * Update VLAN CAM filters to match configuration change.
1505  */
1506 static void rhine_update_vcam(struct net_device *dev)
1507 {
1508 	struct rhine_private *rp = netdev_priv(dev);
1509 	void __iomem *ioaddr = rp->base;
1510 	u16 vid;
1511 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1512 	unsigned int i = 0;
1513 
1514 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1515 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1516 		vCAMmask |= 1 << i;
1517 		if (++i >= VCAM_SIZE)
1518 			break;
1519 	}
1520 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1521 }
1522 
1523 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1524 {
1525 	struct rhine_private *rp = netdev_priv(dev);
1526 
1527 	spin_lock_bh(&rp->lock);
1528 	set_bit(vid, rp->active_vlans);
1529 	rhine_update_vcam(dev);
1530 	spin_unlock_bh(&rp->lock);
1531 	return 0;
1532 }
1533 
1534 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1535 {
1536 	struct rhine_private *rp = netdev_priv(dev);
1537 
1538 	spin_lock_bh(&rp->lock);
1539 	clear_bit(vid, rp->active_vlans);
1540 	rhine_update_vcam(dev);
1541 	spin_unlock_bh(&rp->lock);
1542 	return 0;
1543 }
1544 
1545 static void init_registers(struct net_device *dev)
1546 {
1547 	struct rhine_private *rp = netdev_priv(dev);
1548 	void __iomem *ioaddr = rp->base;
1549 	int i;
1550 
1551 	for (i = 0; i < 6; i++)
1552 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1553 
1554 	/* Initialize other registers. */
1555 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1556 	/* Configure initial FIFO thresholds. */
1557 	iowrite8(0x20, ioaddr + TxConfig);
1558 	rp->tx_thresh = 0x20;
1559 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1560 
1561 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1562 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1563 
1564 	rhine_set_rx_mode(dev);
1565 
1566 	if (rp->quirks & rqMgmt)
1567 		rhine_init_cam_filter(dev);
1568 
1569 	napi_enable(&rp->napi);
1570 
1571 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1572 
1573 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1574 	       ioaddr + ChipCmd);
1575 	rhine_check_media(dev, 1);
1576 }
1577 
1578 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1579 static void rhine_enable_linkmon(struct rhine_private *rp)
1580 {
1581 	void __iomem *ioaddr = rp->base;
1582 
1583 	iowrite8(0, ioaddr + MIICmd);
1584 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1585 	iowrite8(0x80, ioaddr + MIICmd);
1586 
1587 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1588 
1589 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1590 }
1591 
1592 /* Disable MII link status auto-polling (required for MDIO access) */
1593 static void rhine_disable_linkmon(struct rhine_private *rp)
1594 {
1595 	void __iomem *ioaddr = rp->base;
1596 
1597 	iowrite8(0, ioaddr + MIICmd);
1598 
1599 	if (rp->quirks & rqRhineI) {
1600 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1601 
1602 		/* Can be called from ISR. Evil. */
1603 		mdelay(1);
1604 
1605 		/* 0x80 must be set immediately before turning it off */
1606 		iowrite8(0x80, ioaddr + MIICmd);
1607 
1608 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1609 
1610 		/* Heh. Now clear 0x80 again. */
1611 		iowrite8(0, ioaddr + MIICmd);
1612 	}
1613 	else
1614 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1615 }
1616 
1617 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1618 
1619 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1620 {
1621 	struct rhine_private *rp = netdev_priv(dev);
1622 	void __iomem *ioaddr = rp->base;
1623 	int result;
1624 
1625 	rhine_disable_linkmon(rp);
1626 
1627 	/* rhine_disable_linkmon already cleared MIICmd */
1628 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1629 	iowrite8(regnum, ioaddr + MIIRegAddr);
1630 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1631 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1632 	result = ioread16(ioaddr + MIIData);
1633 
1634 	rhine_enable_linkmon(rp);
1635 	return result;
1636 }
1637 
1638 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1639 {
1640 	struct rhine_private *rp = netdev_priv(dev);
1641 	void __iomem *ioaddr = rp->base;
1642 
1643 	rhine_disable_linkmon(rp);
1644 
1645 	/* rhine_disable_linkmon already cleared MIICmd */
1646 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1647 	iowrite8(regnum, ioaddr + MIIRegAddr);
1648 	iowrite16(value, ioaddr + MIIData);
1649 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1650 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1651 
1652 	rhine_enable_linkmon(rp);
1653 }
1654 
1655 static void rhine_task_disable(struct rhine_private *rp)
1656 {
1657 	mutex_lock(&rp->task_lock);
1658 	rp->task_enable = false;
1659 	mutex_unlock(&rp->task_lock);
1660 
1661 	cancel_work_sync(&rp->slow_event_task);
1662 	cancel_work_sync(&rp->reset_task);
1663 }
1664 
1665 static void rhine_task_enable(struct rhine_private *rp)
1666 {
1667 	mutex_lock(&rp->task_lock);
1668 	rp->task_enable = true;
1669 	mutex_unlock(&rp->task_lock);
1670 }
1671 
1672 static int rhine_open(struct net_device *dev)
1673 {
1674 	struct rhine_private *rp = netdev_priv(dev);
1675 	void __iomem *ioaddr = rp->base;
1676 	int rc;
1677 
1678 	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1679 	if (rc)
1680 		goto out;
1681 
1682 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1683 
1684 	rc = alloc_ring(dev);
1685 	if (rc < 0)
1686 		goto out_free_irq;
1687 
1688 	rc = alloc_rbufs(dev);
1689 	if (rc < 0)
1690 		goto out_free_ring;
1691 
1692 	alloc_tbufs(dev);
1693 	enable_mmio(rp->pioaddr, rp->quirks);
1694 	rhine_power_init(dev);
1695 	rhine_chip_reset(dev);
1696 	rhine_task_enable(rp);
1697 	init_registers(dev);
1698 
1699 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1700 		  __func__, ioread16(ioaddr + ChipCmd),
1701 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1702 
1703 	netif_start_queue(dev);
1704 
1705 out:
1706 	return rc;
1707 
1708 out_free_ring:
1709 	free_ring(dev);
1710 out_free_irq:
1711 	free_irq(rp->irq, dev);
1712 	goto out;
1713 }
1714 
1715 static void rhine_reset_task(struct work_struct *work)
1716 {
1717 	struct rhine_private *rp = container_of(work, struct rhine_private,
1718 						reset_task);
1719 	struct net_device *dev = rp->dev;
1720 
1721 	mutex_lock(&rp->task_lock);
1722 
1723 	if (!rp->task_enable)
1724 		goto out_unlock;
1725 
1726 	napi_disable(&rp->napi);
1727 	netif_tx_disable(dev);
1728 	spin_lock_bh(&rp->lock);
1729 
1730 	/* clear all descriptors */
1731 	free_tbufs(dev);
1732 	alloc_tbufs(dev);
1733 
1734 	rhine_reset_rbufs(rp);
1735 
1736 	/* Reinitialize the hardware. */
1737 	rhine_chip_reset(dev);
1738 	init_registers(dev);
1739 
1740 	spin_unlock_bh(&rp->lock);
1741 
1742 	netif_trans_update(dev); /* prevent tx timeout */
1743 	dev->stats.tx_errors++;
1744 	netif_wake_queue(dev);
1745 
1746 out_unlock:
1747 	mutex_unlock(&rp->task_lock);
1748 }
1749 
1750 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
1751 {
1752 	struct rhine_private *rp = netdev_priv(dev);
1753 	void __iomem *ioaddr = rp->base;
1754 
1755 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1756 		    ioread16(ioaddr + IntrStatus),
1757 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1758 
1759 	schedule_work(&rp->reset_task);
1760 }
1761 
1762 static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1763 {
1764 	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1765 }
1766 
1767 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1768 				  struct net_device *dev)
1769 {
1770 	struct rhine_private *rp = netdev_priv(dev);
1771 	struct device *hwdev = dev->dev.parent;
1772 	void __iomem *ioaddr = rp->base;
1773 	unsigned entry;
1774 
1775 	/* Caution: the write order is important here, set the field
1776 	   with the "ownership" bits last. */
1777 
1778 	/* Calculate the next Tx descriptor entry. */
1779 	entry = rp->cur_tx % TX_RING_SIZE;
1780 
1781 	if (skb_padto(skb, ETH_ZLEN))
1782 		return NETDEV_TX_OK;
1783 
1784 	rp->tx_skbuff[entry] = skb;
1785 
1786 	if ((rp->quirks & rqRhineI) &&
1787 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1788 		/* Must use alignment buffer. */
1789 		if (skb->len > PKT_BUF_SZ) {
1790 			/* packet too long, drop it */
1791 			dev_kfree_skb_any(skb);
1792 			rp->tx_skbuff[entry] = NULL;
1793 			dev->stats.tx_dropped++;
1794 			return NETDEV_TX_OK;
1795 		}
1796 
1797 		/* Padding is not copied and so must be redone. */
1798 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1799 		if (skb->len < ETH_ZLEN)
1800 			memset(rp->tx_buf[entry] + skb->len, 0,
1801 			       ETH_ZLEN - skb->len);
1802 		rp->tx_skbuff_dma[entry] = 0;
1803 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1804 						      (rp->tx_buf[entry] -
1805 						       rp->tx_bufs));
1806 	} else {
1807 		rp->tx_skbuff_dma[entry] =
1808 			dma_map_single(hwdev, skb->data, skb->len,
1809 				       DMA_TO_DEVICE);
1810 		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1811 			dev_kfree_skb_any(skb);
1812 			rp->tx_skbuff_dma[entry] = 0;
1813 			dev->stats.tx_dropped++;
1814 			return NETDEV_TX_OK;
1815 		}
1816 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1817 	}
1818 
1819 	rp->tx_ring[entry].desc_length =
1820 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1821 
1822 	if (unlikely(skb_vlan_tag_present(skb))) {
1823 		u16 vid_pcp = skb_vlan_tag_get(skb);
1824 
1825 		/* drop CFI/DEI bit, register needs VID and PCP */
1826 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1827 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1828 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1829 		/* request tagging */
1830 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1831 	}
1832 	else
1833 		rp->tx_ring[entry].tx_status = 0;
1834 
1835 	netdev_sent_queue(dev, skb->len);
1836 	/* lock eth irq */
1837 	dma_wmb();
1838 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1839 	wmb();
1840 
1841 	rp->cur_tx++;
1842 	/*
1843 	 * Nobody wants cur_tx write to rot for ages after the NIC will have
1844 	 * seen the transmit request, especially as the transmit completion
1845 	 * handler could miss it.
1846 	 */
1847 	smp_wmb();
1848 
1849 	/* Non-x86 Todo: explicitly flush cache lines here. */
1850 
1851 	if (skb_vlan_tag_present(skb))
1852 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1853 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1854 
1855 	/* Wake the potentially-idle transmit channel */
1856 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1857 	       ioaddr + ChipCmd1);
1858 	IOSYNC;
1859 
1860 	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1861 	if (rhine_tx_queue_full(rp)) {
1862 		netif_stop_queue(dev);
1863 		smp_rmb();
1864 		/* Rejuvenate. */
1865 		if (!rhine_tx_queue_full(rp))
1866 			netif_wake_queue(dev);
1867 	}
1868 
1869 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1870 		  rp->cur_tx - 1, entry);
1871 
1872 	return NETDEV_TX_OK;
1873 }
1874 
1875 static void rhine_irq_disable(struct rhine_private *rp)
1876 {
1877 	iowrite16(0x0000, rp->base + IntrEnable);
1878 }
1879 
1880 /* The interrupt handler does all of the Rx thread work and cleans up
1881    after the Tx thread. */
1882 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1883 {
1884 	struct net_device *dev = dev_instance;
1885 	struct rhine_private *rp = netdev_priv(dev);
1886 	u32 status;
1887 	int handled = 0;
1888 
1889 	status = rhine_get_events(rp);
1890 
1891 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1892 
1893 	if (status & RHINE_EVENT) {
1894 		handled = 1;
1895 
1896 		rhine_irq_disable(rp);
1897 		napi_schedule(&rp->napi);
1898 	}
1899 
1900 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1901 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1902 			  status);
1903 	}
1904 
1905 	return IRQ_RETVAL(handled);
1906 }
1907 
1908 /* This routine is logically part of the interrupt handler, but isolated
1909    for clarity. */
1910 static void rhine_tx(struct net_device *dev)
1911 {
1912 	struct rhine_private *rp = netdev_priv(dev);
1913 	struct device *hwdev = dev->dev.parent;
1914 	unsigned int pkts_compl = 0, bytes_compl = 0;
1915 	unsigned int dirty_tx = rp->dirty_tx;
1916 	unsigned int cur_tx;
1917 	struct sk_buff *skb;
1918 
1919 	/*
1920 	 * The race with rhine_start_tx does not matter here as long as the
1921 	 * driver enforces a value of cur_tx that was relevant when the
1922 	 * packet was scheduled to the network chipset.
1923 	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1924 	 */
1925 	smp_rmb();
1926 	cur_tx = rp->cur_tx;
1927 	/* find and cleanup dirty tx descriptors */
1928 	while (dirty_tx != cur_tx) {
1929 		unsigned int entry = dirty_tx % TX_RING_SIZE;
1930 		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1931 
1932 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1933 			  entry, txstatus);
1934 		if (txstatus & DescOwn)
1935 			break;
1936 		skb = rp->tx_skbuff[entry];
1937 		if (txstatus & 0x8000) {
1938 			netif_dbg(rp, tx_done, dev,
1939 				  "Transmit error, Tx status %08x\n", txstatus);
1940 			dev->stats.tx_errors++;
1941 			if (txstatus & 0x0400)
1942 				dev->stats.tx_carrier_errors++;
1943 			if (txstatus & 0x0200)
1944 				dev->stats.tx_window_errors++;
1945 			if (txstatus & 0x0100)
1946 				dev->stats.tx_aborted_errors++;
1947 			if (txstatus & 0x0080)
1948 				dev->stats.tx_heartbeat_errors++;
1949 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1950 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1951 				dev->stats.tx_fifo_errors++;
1952 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1953 				break; /* Keep the skb - we try again */
1954 			}
1955 			/* Transmitter restarted in 'abnormal' handler. */
1956 		} else {
1957 			if (rp->quirks & rqRhineI)
1958 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1959 			else
1960 				dev->stats.collisions += txstatus & 0x0F;
1961 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1962 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1963 
1964 			u64_stats_update_begin(&rp->tx_stats.syncp);
1965 			rp->tx_stats.bytes += skb->len;
1966 			rp->tx_stats.packets++;
1967 			u64_stats_update_end(&rp->tx_stats.syncp);
1968 		}
1969 		/* Free the original skb. */
1970 		if (rp->tx_skbuff_dma[entry]) {
1971 			dma_unmap_single(hwdev,
1972 					 rp->tx_skbuff_dma[entry],
1973 					 skb->len,
1974 					 DMA_TO_DEVICE);
1975 		}
1976 		bytes_compl += skb->len;
1977 		pkts_compl++;
1978 		dev_consume_skb_any(skb);
1979 		rp->tx_skbuff[entry] = NULL;
1980 		dirty_tx++;
1981 	}
1982 
1983 	rp->dirty_tx = dirty_tx;
1984 	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
1985 	smp_wmb();
1986 
1987 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
1988 
1989 	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
1990 	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1991 		netif_wake_queue(dev);
1992 		smp_rmb();
1993 		/* Rejuvenate. */
1994 		if (rhine_tx_queue_full(rp))
1995 			netif_stop_queue(dev);
1996 	}
1997 }
1998 
1999 /**
2000  * rhine_get_vlan_tci - extract TCI from Rx data buffer
2001  * @skb: pointer to sk_buff
2002  * @data_size: used data area of the buffer including CRC
2003  *
2004  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2005  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2006  * aligned following the CRC.
2007  */
2008 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2009 {
2010 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
2011 	return be16_to_cpup((__be16 *)trailer);
2012 }
2013 
2014 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2015 				     int data_size)
2016 {
2017 	dma_rmb();
2018 	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2019 		u16 vlan_tci;
2020 
2021 		vlan_tci = rhine_get_vlan_tci(skb, data_size);
2022 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2023 	}
2024 }
2025 
2026 /* Process up to limit frames from receive ring */
2027 static int rhine_rx(struct net_device *dev, int limit)
2028 {
2029 	struct rhine_private *rp = netdev_priv(dev);
2030 	struct device *hwdev = dev->dev.parent;
2031 	int entry = rp->cur_rx % RX_RING_SIZE;
2032 	int count;
2033 
2034 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
2035 		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
2036 
2037 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
2038 	for (count = 0; count < limit; ++count) {
2039 		struct rx_desc *desc = rp->rx_ring + entry;
2040 		u32 desc_status = le32_to_cpu(desc->rx_status);
2041 		int data_size = desc_status >> 16;
2042 
2043 		if (desc_status & DescOwn)
2044 			break;
2045 
2046 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2047 			  desc_status);
2048 
2049 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2050 			if ((desc_status & RxWholePkt) != RxWholePkt) {
2051 				netdev_warn(dev,
2052 	"Oversized Ethernet frame spanned multiple buffers, "
2053 	"entry %#x length %d status %08x!\n",
2054 					    entry, data_size,
2055 					    desc_status);
2056 				dev->stats.rx_length_errors++;
2057 			} else if (desc_status & RxErr) {
2058 				/* There was a error. */
2059 				netif_dbg(rp, rx_err, dev,
2060 					  "%s() Rx error %08x\n", __func__,
2061 					  desc_status);
2062 				dev->stats.rx_errors++;
2063 				if (desc_status & 0x0030)
2064 					dev->stats.rx_length_errors++;
2065 				if (desc_status & 0x0048)
2066 					dev->stats.rx_fifo_errors++;
2067 				if (desc_status & 0x0004)
2068 					dev->stats.rx_frame_errors++;
2069 				if (desc_status & 0x0002) {
2070 					/* this can also be updated outside the interrupt handler */
2071 					spin_lock(&rp->lock);
2072 					dev->stats.rx_crc_errors++;
2073 					spin_unlock(&rp->lock);
2074 				}
2075 			}
2076 		} else {
2077 			/* Length should omit the CRC */
2078 			int pkt_len = data_size - 4;
2079 			struct sk_buff *skb;
2080 
2081 			/* Check if the packet is long enough to accept without
2082 			   copying to a minimally-sized skbuff. */
2083 			if (pkt_len < rx_copybreak) {
2084 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2085 				if (unlikely(!skb))
2086 					goto drop;
2087 
2088 				dma_sync_single_for_cpu(hwdev,
2089 							rp->rx_skbuff_dma[entry],
2090 							rp->rx_buf_sz,
2091 							DMA_FROM_DEVICE);
2092 
2093 				skb_copy_to_linear_data(skb,
2094 						 rp->rx_skbuff[entry]->data,
2095 						 pkt_len);
2096 
2097 				dma_sync_single_for_device(hwdev,
2098 							   rp->rx_skbuff_dma[entry],
2099 							   rp->rx_buf_sz,
2100 							   DMA_FROM_DEVICE);
2101 			} else {
2102 				struct rhine_skb_dma sd;
2103 
2104 				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2105 					goto drop;
2106 
2107 				skb = rp->rx_skbuff[entry];
2108 
2109 				dma_unmap_single(hwdev,
2110 						 rp->rx_skbuff_dma[entry],
2111 						 rp->rx_buf_sz,
2112 						 DMA_FROM_DEVICE);
2113 				rhine_skb_dma_nic_store(rp, &sd, entry);
2114 			}
2115 
2116 			skb_put(skb, pkt_len);
2117 
2118 			rhine_rx_vlan_tag(skb, desc, data_size);
2119 
2120 			skb->protocol = eth_type_trans(skb, dev);
2121 
2122 			netif_receive_skb(skb);
2123 
2124 			u64_stats_update_begin(&rp->rx_stats.syncp);
2125 			rp->rx_stats.bytes += pkt_len;
2126 			rp->rx_stats.packets++;
2127 			u64_stats_update_end(&rp->rx_stats.syncp);
2128 		}
2129 give_descriptor_to_nic:
2130 		desc->rx_status = cpu_to_le32(DescOwn);
2131 		entry = (++rp->cur_rx) % RX_RING_SIZE;
2132 	}
2133 
2134 	return count;
2135 
2136 drop:
2137 	dev->stats.rx_dropped++;
2138 	goto give_descriptor_to_nic;
2139 }
2140 
2141 static void rhine_restart_tx(struct net_device *dev) {
2142 	struct rhine_private *rp = netdev_priv(dev);
2143 	void __iomem *ioaddr = rp->base;
2144 	int entry = rp->dirty_tx % TX_RING_SIZE;
2145 	u32 intr_status;
2146 
2147 	/*
2148 	 * If new errors occurred, we need to sort them out before doing Tx.
2149 	 * In that case the ISR will be back here RSN anyway.
2150 	 */
2151 	intr_status = rhine_get_events(rp);
2152 
2153 	if ((intr_status & IntrTxErrSummary) == 0) {
2154 
2155 		/* We know better than the chip where it should continue. */
2156 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2157 		       ioaddr + TxRingPtr);
2158 
2159 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2160 		       ioaddr + ChipCmd);
2161 
2162 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2163 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2164 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2165 
2166 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2167 		       ioaddr + ChipCmd1);
2168 		IOSYNC;
2169 	}
2170 	else {
2171 		/* This should never happen */
2172 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2173 			   intr_status);
2174 	}
2175 
2176 }
2177 
2178 static void rhine_slow_event_task(struct work_struct *work)
2179 {
2180 	struct rhine_private *rp =
2181 		container_of(work, struct rhine_private, slow_event_task);
2182 	struct net_device *dev = rp->dev;
2183 	u32 intr_status;
2184 
2185 	mutex_lock(&rp->task_lock);
2186 
2187 	if (!rp->task_enable)
2188 		goto out_unlock;
2189 
2190 	intr_status = rhine_get_events(rp);
2191 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2192 
2193 	if (intr_status & IntrLinkChange)
2194 		rhine_check_media(dev, 0);
2195 
2196 	if (intr_status & IntrPCIErr)
2197 		netif_warn(rp, hw, dev, "PCI error\n");
2198 
2199 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2200 
2201 out_unlock:
2202 	mutex_unlock(&rp->task_lock);
2203 }
2204 
2205 static void
2206 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2207 {
2208 	struct rhine_private *rp = netdev_priv(dev);
2209 	unsigned int start;
2210 
2211 	spin_lock_bh(&rp->lock);
2212 	rhine_update_rx_crc_and_missed_errord(rp);
2213 	spin_unlock_bh(&rp->lock);
2214 
2215 	netdev_stats_to_stats64(stats, &dev->stats);
2216 
2217 	do {
2218 		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2219 		stats->rx_packets = rp->rx_stats.packets;
2220 		stats->rx_bytes = rp->rx_stats.bytes;
2221 	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2222 
2223 	do {
2224 		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2225 		stats->tx_packets = rp->tx_stats.packets;
2226 		stats->tx_bytes = rp->tx_stats.bytes;
2227 	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2228 }
2229 
2230 static void rhine_set_rx_mode(struct net_device *dev)
2231 {
2232 	struct rhine_private *rp = netdev_priv(dev);
2233 	void __iomem *ioaddr = rp->base;
2234 	u32 mc_filter[2];	/* Multicast hash filter */
2235 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2236 	struct netdev_hw_addr *ha;
2237 
2238 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2239 		rx_mode = 0x1C;
2240 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2241 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2242 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2243 		   (dev->flags & IFF_ALLMULTI)) {
2244 		/* Too many to match, or accept all multicasts. */
2245 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2246 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2247 	} else if (rp->quirks & rqMgmt) {
2248 		int i = 0;
2249 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2250 		netdev_for_each_mc_addr(ha, dev) {
2251 			if (i == MCAM_SIZE)
2252 				break;
2253 			rhine_set_cam(ioaddr, i, ha->addr);
2254 			mCAMmask |= 1 << i;
2255 			i++;
2256 		}
2257 		rhine_set_cam_mask(ioaddr, mCAMmask);
2258 	} else {
2259 		memset(mc_filter, 0, sizeof(mc_filter));
2260 		netdev_for_each_mc_addr(ha, dev) {
2261 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2262 
2263 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2264 		}
2265 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2266 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2267 	}
2268 	/* enable/disable VLAN receive filtering */
2269 	if (rp->quirks & rqMgmt) {
2270 		if (dev->flags & IFF_PROMISC)
2271 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2272 		else
2273 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2274 	}
2275 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2276 }
2277 
2278 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2279 {
2280 	struct device *hwdev = dev->dev.parent;
2281 
2282 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2283 	strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2284 }
2285 
2286 static int netdev_get_link_ksettings(struct net_device *dev,
2287 				     struct ethtool_link_ksettings *cmd)
2288 {
2289 	struct rhine_private *rp = netdev_priv(dev);
2290 
2291 	mutex_lock(&rp->task_lock);
2292 	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
2293 	mutex_unlock(&rp->task_lock);
2294 
2295 	return 0;
2296 }
2297 
2298 static int netdev_set_link_ksettings(struct net_device *dev,
2299 				     const struct ethtool_link_ksettings *cmd)
2300 {
2301 	struct rhine_private *rp = netdev_priv(dev);
2302 	int rc;
2303 
2304 	mutex_lock(&rp->task_lock);
2305 	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
2306 	rhine_set_carrier(&rp->mii_if);
2307 	mutex_unlock(&rp->task_lock);
2308 
2309 	return rc;
2310 }
2311 
2312 static int netdev_nway_reset(struct net_device *dev)
2313 {
2314 	struct rhine_private *rp = netdev_priv(dev);
2315 
2316 	return mii_nway_restart(&rp->mii_if);
2317 }
2318 
2319 static u32 netdev_get_link(struct net_device *dev)
2320 {
2321 	struct rhine_private *rp = netdev_priv(dev);
2322 
2323 	return mii_link_ok(&rp->mii_if);
2324 }
2325 
2326 static u32 netdev_get_msglevel(struct net_device *dev)
2327 {
2328 	struct rhine_private *rp = netdev_priv(dev);
2329 
2330 	return rp->msg_enable;
2331 }
2332 
2333 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2334 {
2335 	struct rhine_private *rp = netdev_priv(dev);
2336 
2337 	rp->msg_enable = value;
2338 }
2339 
2340 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2341 {
2342 	struct rhine_private *rp = netdev_priv(dev);
2343 
2344 	if (!(rp->quirks & rqWOL))
2345 		return;
2346 
2347 	spin_lock_irq(&rp->lock);
2348 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2349 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2350 	wol->wolopts = rp->wolopts;
2351 	spin_unlock_irq(&rp->lock);
2352 }
2353 
2354 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2355 {
2356 	struct rhine_private *rp = netdev_priv(dev);
2357 	u32 support = WAKE_PHY | WAKE_MAGIC |
2358 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2359 
2360 	if (!(rp->quirks & rqWOL))
2361 		return -EINVAL;
2362 
2363 	if (wol->wolopts & ~support)
2364 		return -EINVAL;
2365 
2366 	spin_lock_irq(&rp->lock);
2367 	rp->wolopts = wol->wolopts;
2368 	spin_unlock_irq(&rp->lock);
2369 
2370 	return 0;
2371 }
2372 
2373 static const struct ethtool_ops netdev_ethtool_ops = {
2374 	.get_drvinfo		= netdev_get_drvinfo,
2375 	.nway_reset		= netdev_nway_reset,
2376 	.get_link		= netdev_get_link,
2377 	.get_msglevel		= netdev_get_msglevel,
2378 	.set_msglevel		= netdev_set_msglevel,
2379 	.get_wol		= rhine_get_wol,
2380 	.set_wol		= rhine_set_wol,
2381 	.get_link_ksettings	= netdev_get_link_ksettings,
2382 	.set_link_ksettings	= netdev_set_link_ksettings,
2383 };
2384 
2385 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2386 {
2387 	struct rhine_private *rp = netdev_priv(dev);
2388 	int rc;
2389 
2390 	if (!netif_running(dev))
2391 		return -EINVAL;
2392 
2393 	mutex_lock(&rp->task_lock);
2394 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2395 	rhine_set_carrier(&rp->mii_if);
2396 	mutex_unlock(&rp->task_lock);
2397 
2398 	return rc;
2399 }
2400 
2401 static int rhine_close(struct net_device *dev)
2402 {
2403 	struct rhine_private *rp = netdev_priv(dev);
2404 	void __iomem *ioaddr = rp->base;
2405 
2406 	rhine_task_disable(rp);
2407 	napi_disable(&rp->napi);
2408 	netif_stop_queue(dev);
2409 
2410 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2411 		  ioread16(ioaddr + ChipCmd));
2412 
2413 	/* Switch to loopback mode to avoid hardware races. */
2414 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2415 
2416 	rhine_irq_disable(rp);
2417 
2418 	/* Stop the chip's Tx and Rx processes. */
2419 	iowrite16(CmdStop, ioaddr + ChipCmd);
2420 
2421 	free_irq(rp->irq, dev);
2422 	free_rbufs(dev);
2423 	free_tbufs(dev);
2424 	free_ring(dev);
2425 
2426 	return 0;
2427 }
2428 
2429 
2430 static void rhine_remove_one_pci(struct pci_dev *pdev)
2431 {
2432 	struct net_device *dev = pci_get_drvdata(pdev);
2433 	struct rhine_private *rp = netdev_priv(dev);
2434 
2435 	unregister_netdev(dev);
2436 
2437 	pci_iounmap(pdev, rp->base);
2438 	pci_release_regions(pdev);
2439 
2440 	free_netdev(dev);
2441 	pci_disable_device(pdev);
2442 }
2443 
2444 static int rhine_remove_one_platform(struct platform_device *pdev)
2445 {
2446 	struct net_device *dev = platform_get_drvdata(pdev);
2447 	struct rhine_private *rp = netdev_priv(dev);
2448 
2449 	unregister_netdev(dev);
2450 
2451 	iounmap(rp->base);
2452 
2453 	free_netdev(dev);
2454 
2455 	return 0;
2456 }
2457 
2458 static void rhine_shutdown_pci(struct pci_dev *pdev)
2459 {
2460 	struct net_device *dev = pci_get_drvdata(pdev);
2461 	struct rhine_private *rp = netdev_priv(dev);
2462 	void __iomem *ioaddr = rp->base;
2463 
2464 	if (!(rp->quirks & rqWOL))
2465 		return; /* Nothing to do for non-WOL adapters */
2466 
2467 	rhine_power_init(dev);
2468 
2469 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2470 	if (rp->quirks & rq6patterns)
2471 		iowrite8(0x04, ioaddr + WOLcgClr);
2472 
2473 	spin_lock(&rp->lock);
2474 
2475 	if (rp->wolopts & WAKE_MAGIC) {
2476 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2477 		/*
2478 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2479 		 * not cooperate otherwise.
2480 		 */
2481 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2482 	}
2483 
2484 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2485 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2486 
2487 	if (rp->wolopts & WAKE_PHY)
2488 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2489 
2490 	if (rp->wolopts & WAKE_UCAST)
2491 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2492 
2493 	if (rp->wolopts) {
2494 		/* Enable legacy WOL (for old motherboards) */
2495 		iowrite8(0x01, ioaddr + PwcfgSet);
2496 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2497 	}
2498 
2499 	spin_unlock(&rp->lock);
2500 
2501 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2502 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2503 
2504 		pci_wake_from_d3(pdev, true);
2505 		pci_set_power_state(pdev, PCI_D3hot);
2506 	}
2507 }
2508 
2509 #ifdef CONFIG_PM_SLEEP
2510 static int rhine_suspend(struct device *device)
2511 {
2512 	struct net_device *dev = dev_get_drvdata(device);
2513 	struct rhine_private *rp = netdev_priv(dev);
2514 
2515 	if (!netif_running(dev))
2516 		return 0;
2517 
2518 	rhine_task_disable(rp);
2519 	rhine_irq_disable(rp);
2520 	napi_disable(&rp->napi);
2521 
2522 	netif_device_detach(dev);
2523 
2524 	if (dev_is_pci(device))
2525 		rhine_shutdown_pci(to_pci_dev(device));
2526 
2527 	return 0;
2528 }
2529 
2530 static int rhine_resume(struct device *device)
2531 {
2532 	struct net_device *dev = dev_get_drvdata(device);
2533 	struct rhine_private *rp = netdev_priv(dev);
2534 
2535 	if (!netif_running(dev))
2536 		return 0;
2537 
2538 	enable_mmio(rp->pioaddr, rp->quirks);
2539 	rhine_power_init(dev);
2540 	free_tbufs(dev);
2541 	alloc_tbufs(dev);
2542 	rhine_reset_rbufs(rp);
2543 	rhine_task_enable(rp);
2544 	spin_lock_bh(&rp->lock);
2545 	init_registers(dev);
2546 	spin_unlock_bh(&rp->lock);
2547 
2548 	netif_device_attach(dev);
2549 
2550 	return 0;
2551 }
2552 
2553 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2554 #define RHINE_PM_OPS	(&rhine_pm_ops)
2555 
2556 #else
2557 
2558 #define RHINE_PM_OPS	NULL
2559 
2560 #endif /* !CONFIG_PM_SLEEP */
2561 
2562 static struct pci_driver rhine_driver_pci = {
2563 	.name		= DRV_NAME,
2564 	.id_table	= rhine_pci_tbl,
2565 	.probe		= rhine_init_one_pci,
2566 	.remove		= rhine_remove_one_pci,
2567 	.shutdown	= rhine_shutdown_pci,
2568 	.driver.pm	= RHINE_PM_OPS,
2569 };
2570 
2571 static struct platform_driver rhine_driver_platform = {
2572 	.probe		= rhine_init_one_platform,
2573 	.remove		= rhine_remove_one_platform,
2574 	.driver = {
2575 		.name	= DRV_NAME,
2576 		.of_match_table	= rhine_of_tbl,
2577 		.pm		= RHINE_PM_OPS,
2578 	}
2579 };
2580 
2581 static const struct dmi_system_id rhine_dmi_table[] __initconst = {
2582 	{
2583 		.ident = "EPIA-M",
2584 		.matches = {
2585 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2586 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2587 		},
2588 	},
2589 	{
2590 		.ident = "KV7",
2591 		.matches = {
2592 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2593 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2594 		},
2595 	},
2596 	{ NULL }
2597 };
2598 
2599 static int __init rhine_init(void)
2600 {
2601 	int ret_pci, ret_platform;
2602 
2603 /* when a module, this is printed whether or not devices are found in probe */
2604 	if (dmi_check_system(rhine_dmi_table)) {
2605 		/* these BIOSes fail at PXE boot if chip is in D3 */
2606 		avoid_D3 = true;
2607 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2608 	}
2609 	else if (avoid_D3)
2610 		pr_info("avoid_D3 set\n");
2611 
2612 	ret_pci = pci_register_driver(&rhine_driver_pci);
2613 	ret_platform = platform_driver_register(&rhine_driver_platform);
2614 	if ((ret_pci < 0) && (ret_platform < 0))
2615 		return ret_pci;
2616 
2617 	return 0;
2618 }
2619 
2620 
2621 static void __exit rhine_cleanup(void)
2622 {
2623 	platform_driver_unregister(&rhine_driver_platform);
2624 	pci_unregister_driver(&rhine_driver_pci);
2625 }
2626 
2627 
2628 module_init(rhine_init);
2629 module_exit(rhine_cleanup);
2630