1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 36 #include <linux/types.h> 37 38 /* A few user-configurable values. 39 These may be modified when a driver module is loaded. */ 40 static int debug = 0; 41 #define RHINE_MSG_DEFAULT \ 42 (0x0000) 43 44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 45 Setting to > 1518 effectively disables this feature. */ 46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 47 defined(CONFIG_SPARC) || defined(__ia64__) || \ 48 defined(__sh__) || defined(__mips__) 49 static int rx_copybreak = 1518; 50 #else 51 static int rx_copybreak; 52 #endif 53 54 /* Work-around for broken BIOSes: they are unable to get the chip back out of 55 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 56 static bool avoid_D3; 57 58 /* 59 * In case you are looking for 'options[]' or 'full_duplex[]', they 60 * are gone. Use ethtool(8) instead. 61 */ 62 63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 64 The Rhine has a 64 element 8390-like hash table. */ 65 static const int multicast_filter_limit = 32; 66 67 68 /* Operational parameters that are set at compile time. */ 69 70 /* Keep the ring sizes a power of two for compile efficiency. 71 * The compiler will convert <unsigned>'%'<2^N> into a bit mask. 72 * Making the Tx ring too large decreases the effectiveness of channel 73 * bonding and packet priority. 74 * With BQL support, we can increase TX ring safely. 75 * There are no ill effects from too-large receive rings. 76 */ 77 #define TX_RING_SIZE 64 78 #define TX_QUEUE_LEN (TX_RING_SIZE - 6) /* Limit ring entries actually used. */ 79 #define RX_RING_SIZE 64 80 81 /* Operational parameters that usually are not changed. */ 82 83 /* Time in jiffies before concluding the transmitter is hung. */ 84 #define TX_TIMEOUT (2*HZ) 85 86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 87 88 #include <linux/module.h> 89 #include <linux/moduleparam.h> 90 #include <linux/kernel.h> 91 #include <linux/string.h> 92 #include <linux/timer.h> 93 #include <linux/errno.h> 94 #include <linux/ioport.h> 95 #include <linux/interrupt.h> 96 #include <linux/pci.h> 97 #include <linux/of_device.h> 98 #include <linux/of_irq.h> 99 #include <linux/platform_device.h> 100 #include <linux/dma-mapping.h> 101 #include <linux/netdevice.h> 102 #include <linux/etherdevice.h> 103 #include <linux/skbuff.h> 104 #include <linux/init.h> 105 #include <linux/delay.h> 106 #include <linux/mii.h> 107 #include <linux/ethtool.h> 108 #include <linux/crc32.h> 109 #include <linux/if_vlan.h> 110 #include <linux/bitops.h> 111 #include <linux/workqueue.h> 112 #include <asm/processor.h> /* Processor type for cache alignment. */ 113 #include <asm/io.h> 114 #include <asm/irq.h> 115 #include <linux/uaccess.h> 116 #include <linux/dmi.h> 117 118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 120 MODULE_LICENSE("GPL"); 121 122 module_param(debug, int, 0); 123 module_param(rx_copybreak, int, 0); 124 module_param(avoid_D3, bool, 0); 125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); 126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 128 129 #define MCAM_SIZE 32 130 #define VCAM_SIZE 32 131 132 /* 133 Theory of Operation 134 135 I. Board Compatibility 136 137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 138 controller. 139 140 II. Board-specific settings 141 142 Boards with this chip are functional only in a bus-master PCI slot. 143 144 Many operational settings are loaded from the EEPROM to the Config word at 145 offset 0x78. For most of these settings, this driver assumes that they are 146 correct. 147 If this driver is compiled to use PCI memory space operations the EEPROM 148 must be configured to enable memory ops. 149 150 III. Driver operation 151 152 IIIa. Ring buffers 153 154 This driver uses two statically allocated fixed-size descriptor lists 155 formed into rings by a branch from the final descriptor to the beginning of 156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 157 158 IIIb/c. Transmit/Receive Structure 159 160 This driver attempts to use a zero-copy receive and transmit scheme. 161 162 Alas, all data buffers are required to start on a 32 bit boundary, so 163 the driver must often copy transmit packets into bounce buffers. 164 165 The driver allocates full frame size skbuffs for the Rx ring buffers at 166 open() time and passes the skb->data field to the chip as receive data 167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 168 a fresh skbuff is allocated and the frame is copied to the new skbuff. 169 When the incoming frame is larger, the skbuff is passed directly up the 170 protocol stack. Buffers consumed this way are replaced by newly allocated 171 skbuffs in the last phase of rhine_rx(). 172 173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 174 using a full-sized skbuff for small frames vs. the copying costs of larger 175 frames. New boards are typically used in generously configured machines 176 and the underfilled buffers have negligible impact compared to the benefit of 177 a single allocation size, so the default value of zero results in never 178 copying packets. When copying is done, the cost is usually mitigated by using 179 a combined copy/checksum routine. Copying also preloads the cache, which is 180 most useful with small frames. 181 182 Since the VIA chips are only able to transfer data to buffers on 32 bit 183 boundaries, the IP header at offset 14 in an ethernet frame isn't 184 longword aligned for further processing. Copying these unaligned buffers 185 has the beneficial effect of 16-byte aligning the IP header. 186 187 IIId. Synchronization 188 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 192 which is single threaded by the hardware and interrupt handling software. 193 194 The send packet thread has partial control over the Tx ring. It locks the 195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 196 the ring is not available it stops the transmit queue by 197 calling netif_stop_queue. 198 199 The interrupt handler has exclusive control over the Rx ring and records stats 200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 201 empty by incrementing the dirty_tx mark. If at least half of the entries in 202 the Rx ring are available the transmit queue is woken up if it was stopped. 203 204 IV. Notes 205 206 IVb. References 207 208 Preliminary VT86C100A manual from http://www.via.com.tw/ 209 http://www.scyld.com/expert/100mbps.html 210 http://www.scyld.com/expert/NWay.html 211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 213 214 215 IVc. Errata 216 217 The VT86C100A manual is not reliable information. 218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 219 in significant performance degradation for bounce buffer copies on transmit 220 and unaligned IP headers on receive. 221 The chip does not pad to minimum transmit length. 222 223 */ 224 225 226 /* This table drives the PCI probe routines. It's mostly boilerplate in all 227 of the drivers, and will likely be provided by some future kernel. 228 Note the matching code -- the first table entry matchs all 56** cards but 229 second only the 1234 card. 230 */ 231 232 enum rhine_revs { 233 VT86C100A = 0x00, 234 VTunknown0 = 0x20, 235 VT6102 = 0x40, 236 VT8231 = 0x50, /* Integrated MAC */ 237 VT8233 = 0x60, /* Integrated MAC */ 238 VT8235 = 0x74, /* Integrated MAC */ 239 VT8237 = 0x78, /* Integrated MAC */ 240 VT8251 = 0x7C, /* Integrated MAC */ 241 VT6105 = 0x80, 242 VT6105_B0 = 0x83, 243 VT6105L = 0x8A, 244 VT6107 = 0x8C, 245 VTunknown2 = 0x8E, 246 VT6105M = 0x90, /* Management adapter */ 247 }; 248 249 enum rhine_quirks { 250 rqWOL = 0x0001, /* Wake-On-LAN support */ 251 rqForceReset = 0x0002, 252 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 253 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 254 rqRhineI = 0x0100, /* See comment below */ 255 rqIntPHY = 0x0200, /* Integrated PHY */ 256 rqMgmt = 0x0400, /* Management adapter */ 257 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be 258 * switched from PIO mode to MMIO 259 * (only applies to PCI) 260 */ 261 }; 262 /* 263 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 264 * MMIO as well as for the collision counter and the Tx FIFO underflow 265 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 266 */ 267 268 /* Beware of PCI posted writes */ 269 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 270 271 static const struct pci_device_id rhine_pci_tbl[] = { 272 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 273 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 274 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 275 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 276 { } /* terminate list */ 277 }; 278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 279 280 /* OpenFirmware identifiers for platform-bus devices 281 * The .data field is currently only used to store quirks 282 */ 283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns; 284 static const struct of_device_id rhine_of_tbl[] = { 285 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks }, 286 { } /* terminate list */ 287 }; 288 MODULE_DEVICE_TABLE(of, rhine_of_tbl); 289 290 /* Offsets to the device registers. */ 291 enum register_offsets { 292 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 293 ChipCmd1=0x09, TQWake=0x0A, 294 IntrStatus=0x0C, IntrEnable=0x0E, 295 MulticastFilter0=0x10, MulticastFilter1=0x14, 296 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 297 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 298 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 299 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 300 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 301 StickyHW=0x83, IntrStatus2=0x84, 302 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 303 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 304 WOLcrClr1=0xA6, WOLcgClr=0xA7, 305 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 306 }; 307 308 /* Bits in ConfigD */ 309 enum backoff_bits { 310 BackOptional=0x01, BackModify=0x02, 311 BackCaptureEffect=0x04, BackRandom=0x08 312 }; 313 314 /* Bits in the TxConfig (TCR) register */ 315 enum tcr_bits { 316 TCR_PQEN=0x01, 317 TCR_LB0=0x02, /* loopback[0] */ 318 TCR_LB1=0x04, /* loopback[1] */ 319 TCR_OFSET=0x08, 320 TCR_RTGOPT=0x10, 321 TCR_RTFT0=0x20, 322 TCR_RTFT1=0x40, 323 TCR_RTSF=0x80, 324 }; 325 326 /* Bits in the CamCon (CAMC) register */ 327 enum camcon_bits { 328 CAMC_CAMEN=0x01, 329 CAMC_VCAMSL=0x02, 330 CAMC_CAMWR=0x04, 331 CAMC_CAMRD=0x08, 332 }; 333 334 /* Bits in the PCIBusConfig1 (BCR1) register */ 335 enum bcr1_bits { 336 BCR1_POT0=0x01, 337 BCR1_POT1=0x02, 338 BCR1_POT2=0x04, 339 BCR1_CTFT0=0x08, 340 BCR1_CTFT1=0x10, 341 BCR1_CTSF=0x20, 342 BCR1_TXQNOBK=0x40, /* for VT6105 */ 343 BCR1_VIDFR=0x80, /* for VT6105 */ 344 BCR1_MED0=0x40, /* for VT6102 */ 345 BCR1_MED1=0x80, /* for VT6102 */ 346 }; 347 348 /* Registers we check that mmio and reg are the same. */ 349 static const int mmio_verify_registers[] = { 350 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 351 0 352 }; 353 354 /* Bits in the interrupt status/mask registers. */ 355 enum intr_status_bits { 356 IntrRxDone = 0x0001, 357 IntrTxDone = 0x0002, 358 IntrRxErr = 0x0004, 359 IntrTxError = 0x0008, 360 IntrRxEmpty = 0x0020, 361 IntrPCIErr = 0x0040, 362 IntrStatsMax = 0x0080, 363 IntrRxEarly = 0x0100, 364 IntrTxUnderrun = 0x0210, 365 IntrRxOverflow = 0x0400, 366 IntrRxDropped = 0x0800, 367 IntrRxNoBuf = 0x1000, 368 IntrTxAborted = 0x2000, 369 IntrLinkChange = 0x4000, 370 IntrRxWakeUp = 0x8000, 371 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ 372 IntrNormalSummary = IntrRxDone | IntrTxDone, 373 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | 374 IntrTxUnderrun, 375 }; 376 377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 378 enum wol_bits { 379 WOLucast = 0x10, 380 WOLmagic = 0x20, 381 WOLbmcast = 0x30, 382 WOLlnkon = 0x40, 383 WOLlnkoff = 0x80, 384 }; 385 386 /* The Rx and Tx buffer descriptors. */ 387 struct rx_desc { 388 __le32 rx_status; 389 __le32 desc_length; /* Chain flag, Buffer/frame length */ 390 __le32 addr; 391 __le32 next_desc; 392 }; 393 struct tx_desc { 394 __le32 tx_status; 395 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 396 __le32 addr; 397 __le32 next_desc; 398 }; 399 400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 401 #define TXDESC 0x00e08000 402 403 enum rx_status_bits { 404 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 405 }; 406 407 /* Bits in *_desc.*_status */ 408 enum desc_status_bits { 409 DescOwn=0x80000000 410 }; 411 412 /* Bits in *_desc.*_length */ 413 enum desc_length_bits { 414 DescTag=0x00010000 415 }; 416 417 /* Bits in ChipCmd. */ 418 enum chip_cmd_bits { 419 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 420 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 421 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 422 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 423 }; 424 425 struct rhine_stats { 426 u64 packets; 427 u64 bytes; 428 struct u64_stats_sync syncp; 429 }; 430 431 struct rhine_private { 432 /* Bit mask for configured VLAN ids */ 433 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 434 435 /* Descriptor rings */ 436 struct rx_desc *rx_ring; 437 struct tx_desc *tx_ring; 438 dma_addr_t rx_ring_dma; 439 dma_addr_t tx_ring_dma; 440 441 /* The addresses of receive-in-place skbuffs. */ 442 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 443 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 444 445 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 446 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 447 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 448 449 /* Tx bounce buffers (Rhine-I only) */ 450 unsigned char *tx_buf[TX_RING_SIZE]; 451 unsigned char *tx_bufs; 452 dma_addr_t tx_bufs_dma; 453 454 int irq; 455 long pioaddr; 456 struct net_device *dev; 457 struct napi_struct napi; 458 spinlock_t lock; 459 struct mutex task_lock; 460 bool task_enable; 461 struct work_struct slow_event_task; 462 struct work_struct reset_task; 463 464 u32 msg_enable; 465 466 /* Frequently used values: keep some adjacent for cache effect. */ 467 u32 quirks; 468 unsigned int cur_rx; 469 unsigned int cur_tx, dirty_tx; 470 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 471 struct rhine_stats rx_stats; 472 struct rhine_stats tx_stats; 473 u8 wolopts; 474 475 u8 tx_thresh, rx_thresh; 476 477 struct mii_if_info mii_if; 478 void __iomem *base; 479 }; 480 481 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 482 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 483 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 484 485 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 486 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 487 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 488 489 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 490 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 491 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 492 493 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 494 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 495 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 496 497 498 static int mdio_read(struct net_device *dev, int phy_id, int location); 499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 500 static int rhine_open(struct net_device *dev); 501 static void rhine_reset_task(struct work_struct *work); 502 static void rhine_slow_event_task(struct work_struct *work); 503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue); 504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 505 struct net_device *dev); 506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 507 static void rhine_tx(struct net_device *dev); 508 static int rhine_rx(struct net_device *dev, int limit); 509 static void rhine_set_rx_mode(struct net_device *dev); 510 static void rhine_get_stats64(struct net_device *dev, 511 struct rtnl_link_stats64 *stats); 512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 513 static const struct ethtool_ops netdev_ethtool_ops; 514 static int rhine_close(struct net_device *dev); 515 static int rhine_vlan_rx_add_vid(struct net_device *dev, 516 __be16 proto, u16 vid); 517 static int rhine_vlan_rx_kill_vid(struct net_device *dev, 518 __be16 proto, u16 vid); 519 static void rhine_restart_tx(struct net_device *dev); 520 521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) 522 { 523 void __iomem *ioaddr = rp->base; 524 int i; 525 526 for (i = 0; i < 1024; i++) { 527 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); 528 529 if (low ^ has_mask_bits) 530 break; 531 udelay(10); 532 } 533 if (i > 64) { 534 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " 535 "count: %04d\n", low ? "low" : "high", reg, mask, i); 536 } 537 } 538 539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) 540 { 541 rhine_wait_bit(rp, reg, mask, false); 542 } 543 544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) 545 { 546 rhine_wait_bit(rp, reg, mask, true); 547 } 548 549 static u32 rhine_get_events(struct rhine_private *rp) 550 { 551 void __iomem *ioaddr = rp->base; 552 u32 intr_status; 553 554 intr_status = ioread16(ioaddr + IntrStatus); 555 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 556 if (rp->quirks & rqStatusWBRace) 557 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 558 return intr_status; 559 } 560 561 static void rhine_ack_events(struct rhine_private *rp, u32 mask) 562 { 563 void __iomem *ioaddr = rp->base; 564 565 if (rp->quirks & rqStatusWBRace) 566 iowrite8(mask >> 16, ioaddr + IntrStatus2); 567 iowrite16(mask, ioaddr + IntrStatus); 568 } 569 570 /* 571 * Get power related registers into sane state. 572 * Notify user about past WOL event. 573 */ 574 static void rhine_power_init(struct net_device *dev) 575 { 576 struct rhine_private *rp = netdev_priv(dev); 577 void __iomem *ioaddr = rp->base; 578 u16 wolstat; 579 580 if (rp->quirks & rqWOL) { 581 /* Make sure chip is in power state D0 */ 582 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 583 584 /* Disable "force PME-enable" */ 585 iowrite8(0x80, ioaddr + WOLcgClr); 586 587 /* Clear power-event config bits (WOL) */ 588 iowrite8(0xFF, ioaddr + WOLcrClr); 589 /* More recent cards can manage two additional patterns */ 590 if (rp->quirks & rq6patterns) 591 iowrite8(0x03, ioaddr + WOLcrClr1); 592 593 /* Save power-event status bits */ 594 wolstat = ioread8(ioaddr + PwrcsrSet); 595 if (rp->quirks & rq6patterns) 596 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 597 598 /* Clear power-event status bits */ 599 iowrite8(0xFF, ioaddr + PwrcsrClr); 600 if (rp->quirks & rq6patterns) 601 iowrite8(0x03, ioaddr + PwrcsrClr1); 602 603 if (wolstat) { 604 char *reason; 605 switch (wolstat) { 606 case WOLmagic: 607 reason = "Magic packet"; 608 break; 609 case WOLlnkon: 610 reason = "Link went up"; 611 break; 612 case WOLlnkoff: 613 reason = "Link went down"; 614 break; 615 case WOLucast: 616 reason = "Unicast packet"; 617 break; 618 case WOLbmcast: 619 reason = "Multicast/broadcast packet"; 620 break; 621 default: 622 reason = "Unknown"; 623 } 624 netdev_info(dev, "Woke system up. Reason: %s\n", 625 reason); 626 } 627 } 628 } 629 630 static void rhine_chip_reset(struct net_device *dev) 631 { 632 struct rhine_private *rp = netdev_priv(dev); 633 void __iomem *ioaddr = rp->base; 634 u8 cmd1; 635 636 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 637 IOSYNC; 638 639 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 640 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 641 642 /* Force reset */ 643 if (rp->quirks & rqForceReset) 644 iowrite8(0x40, ioaddr + MiscCmd); 645 646 /* Reset can take somewhat longer (rare) */ 647 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); 648 } 649 650 cmd1 = ioread8(ioaddr + ChipCmd1); 651 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? 652 "failed" : "succeeded"); 653 } 654 655 static void enable_mmio(long pioaddr, u32 quirks) 656 { 657 int n; 658 659 if (quirks & rqNeedEnMMIO) { 660 if (quirks & rqRhineI) { 661 /* More recent docs say that this bit is reserved */ 662 n = inb(pioaddr + ConfigA) | 0x20; 663 outb(n, pioaddr + ConfigA); 664 } else { 665 n = inb(pioaddr + ConfigD) | 0x80; 666 outb(n, pioaddr + ConfigD); 667 } 668 } 669 } 670 671 static inline int verify_mmio(struct device *hwdev, 672 long pioaddr, 673 void __iomem *ioaddr, 674 u32 quirks) 675 { 676 if (quirks & rqNeedEnMMIO) { 677 int i = 0; 678 679 /* Check that selected MMIO registers match the PIO ones */ 680 while (mmio_verify_registers[i]) { 681 int reg = mmio_verify_registers[i++]; 682 unsigned char a = inb(pioaddr+reg); 683 unsigned char b = readb(ioaddr+reg); 684 685 if (a != b) { 686 dev_err(hwdev, 687 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 688 reg, a, b); 689 return -EIO; 690 } 691 } 692 } 693 return 0; 694 } 695 696 /* 697 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 698 * (plus 0x6C for Rhine-I/II) 699 */ 700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) 701 { 702 struct rhine_private *rp = netdev_priv(dev); 703 void __iomem *ioaddr = rp->base; 704 int i; 705 706 outb(0x20, pioaddr + MACRegEEcsr); 707 for (i = 0; i < 1024; i++) { 708 if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) 709 break; 710 } 711 if (i > 512) 712 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); 713 714 /* 715 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 716 * MMIO. If reloading EEPROM was done first this could be avoided, but 717 * it is not known if that still works with the "win98-reboot" problem. 718 */ 719 enable_mmio(pioaddr, rp->quirks); 720 721 /* Turn off EEPROM-controlled wake-up (magic packet) */ 722 if (rp->quirks & rqWOL) 723 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 724 725 } 726 727 #ifdef CONFIG_NET_POLL_CONTROLLER 728 static void rhine_poll(struct net_device *dev) 729 { 730 struct rhine_private *rp = netdev_priv(dev); 731 const int irq = rp->irq; 732 733 disable_irq(irq); 734 rhine_interrupt(irq, dev); 735 enable_irq(irq); 736 } 737 #endif 738 739 static void rhine_kick_tx_threshold(struct rhine_private *rp) 740 { 741 if (rp->tx_thresh < 0xe0) { 742 void __iomem *ioaddr = rp->base; 743 744 rp->tx_thresh += 0x20; 745 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); 746 } 747 } 748 749 static void rhine_tx_err(struct rhine_private *rp, u32 status) 750 { 751 struct net_device *dev = rp->dev; 752 753 if (status & IntrTxAborted) { 754 netif_info(rp, tx_err, dev, 755 "Abort %08x, frame dropped\n", status); 756 } 757 758 if (status & IntrTxUnderrun) { 759 rhine_kick_tx_threshold(rp); 760 netif_info(rp, tx_err ,dev, "Transmitter underrun, " 761 "Tx threshold now %02x\n", rp->tx_thresh); 762 } 763 764 if (status & IntrTxDescRace) 765 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); 766 767 if ((status & IntrTxError) && 768 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { 769 rhine_kick_tx_threshold(rp); 770 netif_info(rp, tx_err, dev, "Unspecified error. " 771 "Tx threshold now %02x\n", rp->tx_thresh); 772 } 773 774 rhine_restart_tx(dev); 775 } 776 777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) 778 { 779 void __iomem *ioaddr = rp->base; 780 struct net_device_stats *stats = &rp->dev->stats; 781 782 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 783 stats->rx_missed_errors += ioread16(ioaddr + RxMissed); 784 785 /* 786 * Clears the "tally counters" for CRC errors and missed frames(?). 787 * It has been reported that some chips need a write of 0 to clear 788 * these, for others the counters are set to 1 when written to and 789 * instead cleared when read. So we clear them both ways ... 790 */ 791 iowrite32(0, ioaddr + RxMissed); 792 ioread16(ioaddr + RxCRCErrs); 793 ioread16(ioaddr + RxMissed); 794 } 795 796 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ 797 IntrRxErr | \ 798 IntrRxEmpty | \ 799 IntrRxOverflow | \ 800 IntrRxDropped | \ 801 IntrRxNoBuf | \ 802 IntrRxWakeUp) 803 804 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ 805 IntrTxAborted | \ 806 IntrTxUnderrun | \ 807 IntrTxDescRace) 808 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) 809 810 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ 811 RHINE_EVENT_NAPI_TX | \ 812 IntrStatsMax) 813 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) 814 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) 815 816 static int rhine_napipoll(struct napi_struct *napi, int budget) 817 { 818 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 819 struct net_device *dev = rp->dev; 820 void __iomem *ioaddr = rp->base; 821 u16 enable_mask = RHINE_EVENT & 0xffff; 822 int work_done = 0; 823 u32 status; 824 825 status = rhine_get_events(rp); 826 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); 827 828 if (status & RHINE_EVENT_NAPI_RX) 829 work_done += rhine_rx(dev, budget); 830 831 if (status & RHINE_EVENT_NAPI_TX) { 832 if (status & RHINE_EVENT_NAPI_TX_ERR) { 833 /* Avoid scavenging before Tx engine turned off */ 834 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); 835 if (ioread8(ioaddr + ChipCmd) & CmdTxOn) 836 netif_warn(rp, tx_err, dev, "Tx still on\n"); 837 } 838 839 rhine_tx(dev); 840 841 if (status & RHINE_EVENT_NAPI_TX_ERR) 842 rhine_tx_err(rp, status); 843 } 844 845 if (status & IntrStatsMax) { 846 spin_lock(&rp->lock); 847 rhine_update_rx_crc_and_missed_errord(rp); 848 spin_unlock(&rp->lock); 849 } 850 851 if (status & RHINE_EVENT_SLOW) { 852 enable_mask &= ~RHINE_EVENT_SLOW; 853 schedule_work(&rp->slow_event_task); 854 } 855 856 if (work_done < budget) { 857 napi_complete_done(napi, work_done); 858 iowrite16(enable_mask, ioaddr + IntrEnable); 859 } 860 return work_done; 861 } 862 863 static void rhine_hw_init(struct net_device *dev, long pioaddr) 864 { 865 struct rhine_private *rp = netdev_priv(dev); 866 867 /* Reset the chip to erase previous misconfiguration. */ 868 rhine_chip_reset(dev); 869 870 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 871 if (rp->quirks & rqRhineI) 872 msleep(5); 873 874 /* Reload EEPROM controlled bytes cleared by soft reset */ 875 if (dev_is_pci(dev->dev.parent)) 876 rhine_reload_eeprom(pioaddr, dev); 877 } 878 879 static const struct net_device_ops rhine_netdev_ops = { 880 .ndo_open = rhine_open, 881 .ndo_stop = rhine_close, 882 .ndo_start_xmit = rhine_start_tx, 883 .ndo_get_stats64 = rhine_get_stats64, 884 .ndo_set_rx_mode = rhine_set_rx_mode, 885 .ndo_validate_addr = eth_validate_addr, 886 .ndo_set_mac_address = eth_mac_addr, 887 .ndo_eth_ioctl = netdev_ioctl, 888 .ndo_tx_timeout = rhine_tx_timeout, 889 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 890 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 891 #ifdef CONFIG_NET_POLL_CONTROLLER 892 .ndo_poll_controller = rhine_poll, 893 #endif 894 }; 895 896 static int rhine_init_one_common(struct device *hwdev, u32 quirks, 897 long pioaddr, void __iomem *ioaddr, int irq) 898 { 899 struct net_device *dev; 900 struct rhine_private *rp; 901 int i, rc, phy_id; 902 const char *name; 903 904 /* this should always be supported */ 905 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32)); 906 if (rc) { 907 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n"); 908 goto err_out; 909 } 910 911 dev = alloc_etherdev(sizeof(struct rhine_private)); 912 if (!dev) { 913 rc = -ENOMEM; 914 goto err_out; 915 } 916 SET_NETDEV_DEV(dev, hwdev); 917 918 rp = netdev_priv(dev); 919 rp->dev = dev; 920 rp->quirks = quirks; 921 rp->pioaddr = pioaddr; 922 rp->base = ioaddr; 923 rp->irq = irq; 924 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); 925 926 phy_id = rp->quirks & rqIntPHY ? 1 : 0; 927 928 u64_stats_init(&rp->tx_stats.syncp); 929 u64_stats_init(&rp->rx_stats.syncp); 930 931 /* Get chip registers into a sane state */ 932 rhine_power_init(dev); 933 rhine_hw_init(dev, pioaddr); 934 935 for (i = 0; i < 6; i++) 936 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); 937 938 if (!is_valid_ether_addr(dev->dev_addr)) { 939 /* Report it and use a random ethernet address instead */ 940 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 941 eth_hw_addr_random(dev); 942 netdev_info(dev, "Using random MAC address: %pM\n", 943 dev->dev_addr); 944 } 945 946 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 947 if (!phy_id) 948 phy_id = ioread8(ioaddr + 0x6C); 949 950 spin_lock_init(&rp->lock); 951 mutex_init(&rp->task_lock); 952 INIT_WORK(&rp->reset_task, rhine_reset_task); 953 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); 954 955 rp->mii_if.dev = dev; 956 rp->mii_if.mdio_read = mdio_read; 957 rp->mii_if.mdio_write = mdio_write; 958 rp->mii_if.phy_id_mask = 0x1f; 959 rp->mii_if.reg_num_mask = 0x1f; 960 961 /* The chip-specific entries in the device structure. */ 962 dev->netdev_ops = &rhine_netdev_ops; 963 dev->ethtool_ops = &netdev_ethtool_ops; 964 dev->watchdog_timeo = TX_TIMEOUT; 965 966 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); 967 968 if (rp->quirks & rqRhineI) 969 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 970 971 if (rp->quirks & rqMgmt) 972 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 973 NETIF_F_HW_VLAN_CTAG_RX | 974 NETIF_F_HW_VLAN_CTAG_FILTER; 975 976 /* dev->name not defined before register_netdev()! */ 977 rc = register_netdev(dev); 978 if (rc) 979 goto err_out_free_netdev; 980 981 if (rp->quirks & rqRhineI) 982 name = "Rhine"; 983 else if (rp->quirks & rqStatusWBRace) 984 name = "Rhine II"; 985 else if (rp->quirks & rqMgmt) 986 name = "Rhine III (Management Adapter)"; 987 else 988 name = "Rhine III"; 989 990 netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n", 991 name, ioaddr, dev->dev_addr, rp->irq); 992 993 dev_set_drvdata(hwdev, dev); 994 995 { 996 u16 mii_cmd; 997 int mii_status = mdio_read(dev, phy_id, 1); 998 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 999 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 1000 if (mii_status != 0xffff && mii_status != 0x0000) { 1001 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 1002 netdev_info(dev, 1003 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 1004 phy_id, 1005 mii_status, rp->mii_if.advertising, 1006 mdio_read(dev, phy_id, 5)); 1007 1008 /* set IFF_RUNNING */ 1009 if (mii_status & BMSR_LSTATUS) 1010 netif_carrier_on(dev); 1011 else 1012 netif_carrier_off(dev); 1013 1014 } 1015 } 1016 rp->mii_if.phy_id = phy_id; 1017 if (avoid_D3) 1018 netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); 1019 1020 return 0; 1021 1022 err_out_free_netdev: 1023 free_netdev(dev); 1024 err_out: 1025 return rc; 1026 } 1027 1028 static int rhine_init_one_pci(struct pci_dev *pdev, 1029 const struct pci_device_id *ent) 1030 { 1031 struct device *hwdev = &pdev->dev; 1032 int rc; 1033 long pioaddr, memaddr; 1034 void __iomem *ioaddr; 1035 int io_size = pdev->revision < VTunknown0 ? 128 : 256; 1036 1037 /* This driver was written to use PCI memory space. Some early versions 1038 * of the Rhine may only work correctly with I/O space accesses. 1039 * TODO: determine for which revisions this is true and assign the flag 1040 * in code as opposed to this Kconfig option (???) 1041 */ 1042 #ifdef CONFIG_VIA_RHINE_MMIO 1043 u32 quirks = rqNeedEnMMIO; 1044 #else 1045 u32 quirks = 0; 1046 #endif 1047 1048 rc = pci_enable_device(pdev); 1049 if (rc) 1050 goto err_out; 1051 1052 if (pdev->revision < VTunknown0) { 1053 quirks |= rqRhineI; 1054 } else if (pdev->revision >= VT6102) { 1055 quirks |= rqWOL | rqForceReset; 1056 if (pdev->revision < VT6105) { 1057 quirks |= rqStatusWBRace; 1058 } else { 1059 quirks |= rqIntPHY; 1060 if (pdev->revision >= VT6105_B0) 1061 quirks |= rq6patterns; 1062 if (pdev->revision >= VT6105M) 1063 quirks |= rqMgmt; 1064 } 1065 } 1066 1067 /* sanity check */ 1068 if ((pci_resource_len(pdev, 0) < io_size) || 1069 (pci_resource_len(pdev, 1) < io_size)) { 1070 rc = -EIO; 1071 dev_err(hwdev, "Insufficient PCI resources, aborting\n"); 1072 goto err_out_pci_disable; 1073 } 1074 1075 pioaddr = pci_resource_start(pdev, 0); 1076 memaddr = pci_resource_start(pdev, 1); 1077 1078 pci_set_master(pdev); 1079 1080 rc = pci_request_regions(pdev, DRV_NAME); 1081 if (rc) 1082 goto err_out_pci_disable; 1083 1084 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size); 1085 if (!ioaddr) { 1086 rc = -EIO; 1087 dev_err(hwdev, 1088 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 1089 dev_name(hwdev), io_size, memaddr); 1090 goto err_out_free_res; 1091 } 1092 1093 enable_mmio(pioaddr, quirks); 1094 1095 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks); 1096 if (rc) 1097 goto err_out_unmap; 1098 1099 rc = rhine_init_one_common(&pdev->dev, quirks, 1100 pioaddr, ioaddr, pdev->irq); 1101 if (!rc) 1102 return 0; 1103 1104 err_out_unmap: 1105 pci_iounmap(pdev, ioaddr); 1106 err_out_free_res: 1107 pci_release_regions(pdev); 1108 err_out_pci_disable: 1109 pci_disable_device(pdev); 1110 err_out: 1111 return rc; 1112 } 1113 1114 static int rhine_init_one_platform(struct platform_device *pdev) 1115 { 1116 const u32 *quirks; 1117 int irq; 1118 void __iomem *ioaddr; 1119 1120 quirks = of_device_get_match_data(&pdev->dev); 1121 if (!quirks) 1122 return -EINVAL; 1123 1124 ioaddr = devm_platform_ioremap_resource(pdev, 0); 1125 if (IS_ERR(ioaddr)) 1126 return PTR_ERR(ioaddr); 1127 1128 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1129 if (!irq) 1130 return -EINVAL; 1131 1132 return rhine_init_one_common(&pdev->dev, *quirks, 1133 (long)ioaddr, ioaddr, irq); 1134 } 1135 1136 static int alloc_ring(struct net_device* dev) 1137 { 1138 struct rhine_private *rp = netdev_priv(dev); 1139 struct device *hwdev = dev->dev.parent; 1140 void *ring; 1141 dma_addr_t ring_dma; 1142 1143 ring = dma_alloc_coherent(hwdev, 1144 RX_RING_SIZE * sizeof(struct rx_desc) + 1145 TX_RING_SIZE * sizeof(struct tx_desc), 1146 &ring_dma, 1147 GFP_ATOMIC); 1148 if (!ring) { 1149 netdev_err(dev, "Could not allocate DMA memory\n"); 1150 return -ENOMEM; 1151 } 1152 if (rp->quirks & rqRhineI) { 1153 rp->tx_bufs = dma_alloc_coherent(hwdev, 1154 PKT_BUF_SZ * TX_RING_SIZE, 1155 &rp->tx_bufs_dma, 1156 GFP_ATOMIC); 1157 if (rp->tx_bufs == NULL) { 1158 dma_free_coherent(hwdev, 1159 RX_RING_SIZE * sizeof(struct rx_desc) + 1160 TX_RING_SIZE * sizeof(struct tx_desc), 1161 ring, ring_dma); 1162 return -ENOMEM; 1163 } 1164 } 1165 1166 rp->rx_ring = ring; 1167 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 1168 rp->rx_ring_dma = ring_dma; 1169 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 1170 1171 return 0; 1172 } 1173 1174 static void free_ring(struct net_device* dev) 1175 { 1176 struct rhine_private *rp = netdev_priv(dev); 1177 struct device *hwdev = dev->dev.parent; 1178 1179 dma_free_coherent(hwdev, 1180 RX_RING_SIZE * sizeof(struct rx_desc) + 1181 TX_RING_SIZE * sizeof(struct tx_desc), 1182 rp->rx_ring, rp->rx_ring_dma); 1183 rp->tx_ring = NULL; 1184 1185 if (rp->tx_bufs) 1186 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE, 1187 rp->tx_bufs, rp->tx_bufs_dma); 1188 1189 rp->tx_bufs = NULL; 1190 1191 } 1192 1193 struct rhine_skb_dma { 1194 struct sk_buff *skb; 1195 dma_addr_t dma; 1196 }; 1197 1198 static inline int rhine_skb_dma_init(struct net_device *dev, 1199 struct rhine_skb_dma *sd) 1200 { 1201 struct rhine_private *rp = netdev_priv(dev); 1202 struct device *hwdev = dev->dev.parent; 1203 const int size = rp->rx_buf_sz; 1204 1205 sd->skb = netdev_alloc_skb(dev, size); 1206 if (!sd->skb) 1207 return -ENOMEM; 1208 1209 sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE); 1210 if (unlikely(dma_mapping_error(hwdev, sd->dma))) { 1211 netif_err(rp, drv, dev, "Rx DMA mapping failure\n"); 1212 dev_kfree_skb_any(sd->skb); 1213 return -EIO; 1214 } 1215 1216 return 0; 1217 } 1218 1219 static void rhine_reset_rbufs(struct rhine_private *rp) 1220 { 1221 int i; 1222 1223 rp->cur_rx = 0; 1224 1225 for (i = 0; i < RX_RING_SIZE; i++) 1226 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1227 } 1228 1229 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp, 1230 struct rhine_skb_dma *sd, int entry) 1231 { 1232 rp->rx_skbuff_dma[entry] = sd->dma; 1233 rp->rx_skbuff[entry] = sd->skb; 1234 1235 rp->rx_ring[entry].addr = cpu_to_le32(sd->dma); 1236 dma_wmb(); 1237 } 1238 1239 static void free_rbufs(struct net_device* dev); 1240 1241 static int alloc_rbufs(struct net_device *dev) 1242 { 1243 struct rhine_private *rp = netdev_priv(dev); 1244 dma_addr_t next; 1245 int rc, i; 1246 1247 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1248 next = rp->rx_ring_dma; 1249 1250 /* Init the ring entries */ 1251 for (i = 0; i < RX_RING_SIZE; i++) { 1252 rp->rx_ring[i].rx_status = 0; 1253 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1254 next += sizeof(struct rx_desc); 1255 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1256 rp->rx_skbuff[i] = NULL; 1257 } 1258 /* Mark the last entry as wrapping the ring. */ 1259 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1260 1261 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1262 for (i = 0; i < RX_RING_SIZE; i++) { 1263 struct rhine_skb_dma sd; 1264 1265 rc = rhine_skb_dma_init(dev, &sd); 1266 if (rc < 0) { 1267 free_rbufs(dev); 1268 goto out; 1269 } 1270 1271 rhine_skb_dma_nic_store(rp, &sd, i); 1272 } 1273 1274 rhine_reset_rbufs(rp); 1275 out: 1276 return rc; 1277 } 1278 1279 static void free_rbufs(struct net_device* dev) 1280 { 1281 struct rhine_private *rp = netdev_priv(dev); 1282 struct device *hwdev = dev->dev.parent; 1283 int i; 1284 1285 /* Free all the skbuffs in the Rx queue. */ 1286 for (i = 0; i < RX_RING_SIZE; i++) { 1287 rp->rx_ring[i].rx_status = 0; 1288 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1289 if (rp->rx_skbuff[i]) { 1290 dma_unmap_single(hwdev, 1291 rp->rx_skbuff_dma[i], 1292 rp->rx_buf_sz, DMA_FROM_DEVICE); 1293 dev_kfree_skb(rp->rx_skbuff[i]); 1294 } 1295 rp->rx_skbuff[i] = NULL; 1296 } 1297 } 1298 1299 static void alloc_tbufs(struct net_device* dev) 1300 { 1301 struct rhine_private *rp = netdev_priv(dev); 1302 dma_addr_t next; 1303 int i; 1304 1305 rp->dirty_tx = rp->cur_tx = 0; 1306 next = rp->tx_ring_dma; 1307 for (i = 0; i < TX_RING_SIZE; i++) { 1308 rp->tx_skbuff[i] = NULL; 1309 rp->tx_ring[i].tx_status = 0; 1310 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1311 next += sizeof(struct tx_desc); 1312 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1313 if (rp->quirks & rqRhineI) 1314 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1315 } 1316 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1317 1318 netdev_reset_queue(dev); 1319 } 1320 1321 static void free_tbufs(struct net_device* dev) 1322 { 1323 struct rhine_private *rp = netdev_priv(dev); 1324 struct device *hwdev = dev->dev.parent; 1325 int i; 1326 1327 for (i = 0; i < TX_RING_SIZE; i++) { 1328 rp->tx_ring[i].tx_status = 0; 1329 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1330 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1331 if (rp->tx_skbuff[i]) { 1332 if (rp->tx_skbuff_dma[i]) { 1333 dma_unmap_single(hwdev, 1334 rp->tx_skbuff_dma[i], 1335 rp->tx_skbuff[i]->len, 1336 DMA_TO_DEVICE); 1337 } 1338 dev_kfree_skb(rp->tx_skbuff[i]); 1339 } 1340 rp->tx_skbuff[i] = NULL; 1341 rp->tx_buf[i] = NULL; 1342 } 1343 } 1344 1345 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1346 { 1347 struct rhine_private *rp = netdev_priv(dev); 1348 void __iomem *ioaddr = rp->base; 1349 1350 if (!rp->mii_if.force_media) 1351 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); 1352 1353 if (rp->mii_if.full_duplex) 1354 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1355 ioaddr + ChipCmd1); 1356 else 1357 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1358 ioaddr + ChipCmd1); 1359 1360 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1361 rp->mii_if.force_media, netif_carrier_ok(dev)); 1362 } 1363 1364 /* Called after status of force_media possibly changed */ 1365 static void rhine_set_carrier(struct mii_if_info *mii) 1366 { 1367 struct net_device *dev = mii->dev; 1368 struct rhine_private *rp = netdev_priv(dev); 1369 1370 if (mii->force_media) { 1371 /* autoneg is off: Link is always assumed to be up */ 1372 if (!netif_carrier_ok(dev)) 1373 netif_carrier_on(dev); 1374 } 1375 1376 rhine_check_media(dev, 0); 1377 1378 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1379 mii->force_media, netif_carrier_ok(dev)); 1380 } 1381 1382 /** 1383 * rhine_set_cam - set CAM multicast filters 1384 * @ioaddr: register block of this Rhine 1385 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1386 * @addr: multicast address (6 bytes) 1387 * 1388 * Load addresses into multicast filters. 1389 */ 1390 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1391 { 1392 int i; 1393 1394 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1395 wmb(); 1396 1397 /* Paranoid -- idx out of range should never happen */ 1398 idx &= (MCAM_SIZE - 1); 1399 1400 iowrite8((u8) idx, ioaddr + CamAddr); 1401 1402 for (i = 0; i < 6; i++, addr++) 1403 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1404 udelay(10); 1405 wmb(); 1406 1407 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1408 udelay(10); 1409 1410 iowrite8(0, ioaddr + CamCon); 1411 } 1412 1413 /** 1414 * rhine_set_vlan_cam - set CAM VLAN filters 1415 * @ioaddr: register block of this Rhine 1416 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1417 * @addr: VLAN ID (2 bytes) 1418 * 1419 * Load addresses into VLAN filters. 1420 */ 1421 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1422 { 1423 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1424 wmb(); 1425 1426 /* Paranoid -- idx out of range should never happen */ 1427 idx &= (VCAM_SIZE - 1); 1428 1429 iowrite8((u8) idx, ioaddr + CamAddr); 1430 1431 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1432 udelay(10); 1433 wmb(); 1434 1435 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1436 udelay(10); 1437 1438 iowrite8(0, ioaddr + CamCon); 1439 } 1440 1441 /** 1442 * rhine_set_cam_mask - set multicast CAM mask 1443 * @ioaddr: register block of this Rhine 1444 * @mask: multicast CAM mask 1445 * 1446 * Mask sets multicast filters active/inactive. 1447 */ 1448 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1449 { 1450 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1451 wmb(); 1452 1453 /* write mask */ 1454 iowrite32(mask, ioaddr + CamMask); 1455 1456 /* disable CAMEN */ 1457 iowrite8(0, ioaddr + CamCon); 1458 } 1459 1460 /** 1461 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1462 * @ioaddr: register block of this Rhine 1463 * @mask: VLAN CAM mask 1464 * 1465 * Mask sets VLAN filters active/inactive. 1466 */ 1467 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1468 { 1469 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1470 wmb(); 1471 1472 /* write mask */ 1473 iowrite32(mask, ioaddr + CamMask); 1474 1475 /* disable CAMEN */ 1476 iowrite8(0, ioaddr + CamCon); 1477 } 1478 1479 /** 1480 * rhine_init_cam_filter - initialize CAM filters 1481 * @dev: network device 1482 * 1483 * Initialize (disable) hardware VLAN and multicast support on this 1484 * Rhine. 1485 */ 1486 static void rhine_init_cam_filter(struct net_device *dev) 1487 { 1488 struct rhine_private *rp = netdev_priv(dev); 1489 void __iomem *ioaddr = rp->base; 1490 1491 /* Disable all CAMs */ 1492 rhine_set_vlan_cam_mask(ioaddr, 0); 1493 rhine_set_cam_mask(ioaddr, 0); 1494 1495 /* disable hardware VLAN support */ 1496 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1497 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1498 } 1499 1500 /** 1501 * rhine_update_vcam - update VLAN CAM filters 1502 * @dev: rhine_private data of this Rhine 1503 * 1504 * Update VLAN CAM filters to match configuration change. 1505 */ 1506 static void rhine_update_vcam(struct net_device *dev) 1507 { 1508 struct rhine_private *rp = netdev_priv(dev); 1509 void __iomem *ioaddr = rp->base; 1510 u16 vid; 1511 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1512 unsigned int i = 0; 1513 1514 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1515 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1516 vCAMmask |= 1 << i; 1517 if (++i >= VCAM_SIZE) 1518 break; 1519 } 1520 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1521 } 1522 1523 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1524 { 1525 struct rhine_private *rp = netdev_priv(dev); 1526 1527 spin_lock_bh(&rp->lock); 1528 set_bit(vid, rp->active_vlans); 1529 rhine_update_vcam(dev); 1530 spin_unlock_bh(&rp->lock); 1531 return 0; 1532 } 1533 1534 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1535 { 1536 struct rhine_private *rp = netdev_priv(dev); 1537 1538 spin_lock_bh(&rp->lock); 1539 clear_bit(vid, rp->active_vlans); 1540 rhine_update_vcam(dev); 1541 spin_unlock_bh(&rp->lock); 1542 return 0; 1543 } 1544 1545 static void init_registers(struct net_device *dev) 1546 { 1547 struct rhine_private *rp = netdev_priv(dev); 1548 void __iomem *ioaddr = rp->base; 1549 int i; 1550 1551 for (i = 0; i < 6; i++) 1552 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1553 1554 /* Initialize other registers. */ 1555 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1556 /* Configure initial FIFO thresholds. */ 1557 iowrite8(0x20, ioaddr + TxConfig); 1558 rp->tx_thresh = 0x20; 1559 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1560 1561 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1562 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1563 1564 rhine_set_rx_mode(dev); 1565 1566 if (rp->quirks & rqMgmt) 1567 rhine_init_cam_filter(dev); 1568 1569 napi_enable(&rp->napi); 1570 1571 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); 1572 1573 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1574 ioaddr + ChipCmd); 1575 rhine_check_media(dev, 1); 1576 } 1577 1578 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1579 static void rhine_enable_linkmon(struct rhine_private *rp) 1580 { 1581 void __iomem *ioaddr = rp->base; 1582 1583 iowrite8(0, ioaddr + MIICmd); 1584 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1585 iowrite8(0x80, ioaddr + MIICmd); 1586 1587 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1588 1589 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1590 } 1591 1592 /* Disable MII link status auto-polling (required for MDIO access) */ 1593 static void rhine_disable_linkmon(struct rhine_private *rp) 1594 { 1595 void __iomem *ioaddr = rp->base; 1596 1597 iowrite8(0, ioaddr + MIICmd); 1598 1599 if (rp->quirks & rqRhineI) { 1600 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1601 1602 /* Can be called from ISR. Evil. */ 1603 mdelay(1); 1604 1605 /* 0x80 must be set immediately before turning it off */ 1606 iowrite8(0x80, ioaddr + MIICmd); 1607 1608 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1609 1610 /* Heh. Now clear 0x80 again. */ 1611 iowrite8(0, ioaddr + MIICmd); 1612 } 1613 else 1614 rhine_wait_bit_high(rp, MIIRegAddr, 0x80); 1615 } 1616 1617 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1618 1619 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1620 { 1621 struct rhine_private *rp = netdev_priv(dev); 1622 void __iomem *ioaddr = rp->base; 1623 int result; 1624 1625 rhine_disable_linkmon(rp); 1626 1627 /* rhine_disable_linkmon already cleared MIICmd */ 1628 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1629 iowrite8(regnum, ioaddr + MIIRegAddr); 1630 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1631 rhine_wait_bit_low(rp, MIICmd, 0x40); 1632 result = ioread16(ioaddr + MIIData); 1633 1634 rhine_enable_linkmon(rp); 1635 return result; 1636 } 1637 1638 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1639 { 1640 struct rhine_private *rp = netdev_priv(dev); 1641 void __iomem *ioaddr = rp->base; 1642 1643 rhine_disable_linkmon(rp); 1644 1645 /* rhine_disable_linkmon already cleared MIICmd */ 1646 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1647 iowrite8(regnum, ioaddr + MIIRegAddr); 1648 iowrite16(value, ioaddr + MIIData); 1649 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1650 rhine_wait_bit_low(rp, MIICmd, 0x20); 1651 1652 rhine_enable_linkmon(rp); 1653 } 1654 1655 static void rhine_task_disable(struct rhine_private *rp) 1656 { 1657 mutex_lock(&rp->task_lock); 1658 rp->task_enable = false; 1659 mutex_unlock(&rp->task_lock); 1660 1661 cancel_work_sync(&rp->slow_event_task); 1662 cancel_work_sync(&rp->reset_task); 1663 } 1664 1665 static void rhine_task_enable(struct rhine_private *rp) 1666 { 1667 mutex_lock(&rp->task_lock); 1668 rp->task_enable = true; 1669 mutex_unlock(&rp->task_lock); 1670 } 1671 1672 static int rhine_open(struct net_device *dev) 1673 { 1674 struct rhine_private *rp = netdev_priv(dev); 1675 void __iomem *ioaddr = rp->base; 1676 int rc; 1677 1678 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev); 1679 if (rc) 1680 goto out; 1681 1682 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq); 1683 1684 rc = alloc_ring(dev); 1685 if (rc < 0) 1686 goto out_free_irq; 1687 1688 rc = alloc_rbufs(dev); 1689 if (rc < 0) 1690 goto out_free_ring; 1691 1692 alloc_tbufs(dev); 1693 enable_mmio(rp->pioaddr, rp->quirks); 1694 rhine_power_init(dev); 1695 rhine_chip_reset(dev); 1696 rhine_task_enable(rp); 1697 init_registers(dev); 1698 1699 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", 1700 __func__, ioread16(ioaddr + ChipCmd), 1701 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1702 1703 netif_start_queue(dev); 1704 1705 out: 1706 return rc; 1707 1708 out_free_ring: 1709 free_ring(dev); 1710 out_free_irq: 1711 free_irq(rp->irq, dev); 1712 goto out; 1713 } 1714 1715 static void rhine_reset_task(struct work_struct *work) 1716 { 1717 struct rhine_private *rp = container_of(work, struct rhine_private, 1718 reset_task); 1719 struct net_device *dev = rp->dev; 1720 1721 mutex_lock(&rp->task_lock); 1722 1723 if (!rp->task_enable) 1724 goto out_unlock; 1725 1726 napi_disable(&rp->napi); 1727 netif_tx_disable(dev); 1728 spin_lock_bh(&rp->lock); 1729 1730 /* clear all descriptors */ 1731 free_tbufs(dev); 1732 alloc_tbufs(dev); 1733 1734 rhine_reset_rbufs(rp); 1735 1736 /* Reinitialize the hardware. */ 1737 rhine_chip_reset(dev); 1738 init_registers(dev); 1739 1740 spin_unlock_bh(&rp->lock); 1741 1742 netif_trans_update(dev); /* prevent tx timeout */ 1743 dev->stats.tx_errors++; 1744 netif_wake_queue(dev); 1745 1746 out_unlock: 1747 mutex_unlock(&rp->task_lock); 1748 } 1749 1750 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue) 1751 { 1752 struct rhine_private *rp = netdev_priv(dev); 1753 void __iomem *ioaddr = rp->base; 1754 1755 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1756 ioread16(ioaddr + IntrStatus), 1757 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1758 1759 schedule_work(&rp->reset_task); 1760 } 1761 1762 static inline bool rhine_tx_queue_full(struct rhine_private *rp) 1763 { 1764 return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN; 1765 } 1766 1767 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1768 struct net_device *dev) 1769 { 1770 struct rhine_private *rp = netdev_priv(dev); 1771 struct device *hwdev = dev->dev.parent; 1772 void __iomem *ioaddr = rp->base; 1773 unsigned entry; 1774 1775 /* Caution: the write order is important here, set the field 1776 with the "ownership" bits last. */ 1777 1778 /* Calculate the next Tx descriptor entry. */ 1779 entry = rp->cur_tx % TX_RING_SIZE; 1780 1781 if (skb_padto(skb, ETH_ZLEN)) 1782 return NETDEV_TX_OK; 1783 1784 rp->tx_skbuff[entry] = skb; 1785 1786 if ((rp->quirks & rqRhineI) && 1787 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1788 /* Must use alignment buffer. */ 1789 if (skb->len > PKT_BUF_SZ) { 1790 /* packet too long, drop it */ 1791 dev_kfree_skb_any(skb); 1792 rp->tx_skbuff[entry] = NULL; 1793 dev->stats.tx_dropped++; 1794 return NETDEV_TX_OK; 1795 } 1796 1797 /* Padding is not copied and so must be redone. */ 1798 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1799 if (skb->len < ETH_ZLEN) 1800 memset(rp->tx_buf[entry] + skb->len, 0, 1801 ETH_ZLEN - skb->len); 1802 rp->tx_skbuff_dma[entry] = 0; 1803 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1804 (rp->tx_buf[entry] - 1805 rp->tx_bufs)); 1806 } else { 1807 rp->tx_skbuff_dma[entry] = 1808 dma_map_single(hwdev, skb->data, skb->len, 1809 DMA_TO_DEVICE); 1810 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) { 1811 dev_kfree_skb_any(skb); 1812 rp->tx_skbuff_dma[entry] = 0; 1813 dev->stats.tx_dropped++; 1814 return NETDEV_TX_OK; 1815 } 1816 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1817 } 1818 1819 rp->tx_ring[entry].desc_length = 1820 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1821 1822 if (unlikely(skb_vlan_tag_present(skb))) { 1823 u16 vid_pcp = skb_vlan_tag_get(skb); 1824 1825 /* drop CFI/DEI bit, register needs VID and PCP */ 1826 vid_pcp = (vid_pcp & VLAN_VID_MASK) | 1827 ((vid_pcp & VLAN_PRIO_MASK) >> 1); 1828 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16); 1829 /* request tagging */ 1830 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1831 } 1832 else 1833 rp->tx_ring[entry].tx_status = 0; 1834 1835 netdev_sent_queue(dev, skb->len); 1836 /* lock eth irq */ 1837 dma_wmb(); 1838 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1839 wmb(); 1840 1841 rp->cur_tx++; 1842 /* 1843 * Nobody wants cur_tx write to rot for ages after the NIC will have 1844 * seen the transmit request, especially as the transmit completion 1845 * handler could miss it. 1846 */ 1847 smp_wmb(); 1848 1849 /* Non-x86 Todo: explicitly flush cache lines here. */ 1850 1851 if (skb_vlan_tag_present(skb)) 1852 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1853 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1854 1855 /* Wake the potentially-idle transmit channel */ 1856 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1857 ioaddr + ChipCmd1); 1858 IOSYNC; 1859 1860 /* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */ 1861 if (rhine_tx_queue_full(rp)) { 1862 netif_stop_queue(dev); 1863 smp_rmb(); 1864 /* Rejuvenate. */ 1865 if (!rhine_tx_queue_full(rp)) 1866 netif_wake_queue(dev); 1867 } 1868 1869 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", 1870 rp->cur_tx - 1, entry); 1871 1872 return NETDEV_TX_OK; 1873 } 1874 1875 static void rhine_irq_disable(struct rhine_private *rp) 1876 { 1877 iowrite16(0x0000, rp->base + IntrEnable); 1878 } 1879 1880 /* The interrupt handler does all of the Rx thread work and cleans up 1881 after the Tx thread. */ 1882 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1883 { 1884 struct net_device *dev = dev_instance; 1885 struct rhine_private *rp = netdev_priv(dev); 1886 u32 status; 1887 int handled = 0; 1888 1889 status = rhine_get_events(rp); 1890 1891 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); 1892 1893 if (status & RHINE_EVENT) { 1894 handled = 1; 1895 1896 rhine_irq_disable(rp); 1897 napi_schedule(&rp->napi); 1898 } 1899 1900 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { 1901 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", 1902 status); 1903 } 1904 1905 return IRQ_RETVAL(handled); 1906 } 1907 1908 /* This routine is logically part of the interrupt handler, but isolated 1909 for clarity. */ 1910 static void rhine_tx(struct net_device *dev) 1911 { 1912 struct rhine_private *rp = netdev_priv(dev); 1913 struct device *hwdev = dev->dev.parent; 1914 unsigned int pkts_compl = 0, bytes_compl = 0; 1915 unsigned int dirty_tx = rp->dirty_tx; 1916 unsigned int cur_tx; 1917 struct sk_buff *skb; 1918 1919 /* 1920 * The race with rhine_start_tx does not matter here as long as the 1921 * driver enforces a value of cur_tx that was relevant when the 1922 * packet was scheduled to the network chipset. 1923 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx. 1924 */ 1925 smp_rmb(); 1926 cur_tx = rp->cur_tx; 1927 /* find and cleanup dirty tx descriptors */ 1928 while (dirty_tx != cur_tx) { 1929 unsigned int entry = dirty_tx % TX_RING_SIZE; 1930 u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1931 1932 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", 1933 entry, txstatus); 1934 if (txstatus & DescOwn) 1935 break; 1936 skb = rp->tx_skbuff[entry]; 1937 if (txstatus & 0x8000) { 1938 netif_dbg(rp, tx_done, dev, 1939 "Transmit error, Tx status %08x\n", txstatus); 1940 dev->stats.tx_errors++; 1941 if (txstatus & 0x0400) 1942 dev->stats.tx_carrier_errors++; 1943 if (txstatus & 0x0200) 1944 dev->stats.tx_window_errors++; 1945 if (txstatus & 0x0100) 1946 dev->stats.tx_aborted_errors++; 1947 if (txstatus & 0x0080) 1948 dev->stats.tx_heartbeat_errors++; 1949 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1950 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1951 dev->stats.tx_fifo_errors++; 1952 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1953 break; /* Keep the skb - we try again */ 1954 } 1955 /* Transmitter restarted in 'abnormal' handler. */ 1956 } else { 1957 if (rp->quirks & rqRhineI) 1958 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1959 else 1960 dev->stats.collisions += txstatus & 0x0F; 1961 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", 1962 (txstatus >> 3) & 0xF, txstatus & 0xF); 1963 1964 u64_stats_update_begin(&rp->tx_stats.syncp); 1965 rp->tx_stats.bytes += skb->len; 1966 rp->tx_stats.packets++; 1967 u64_stats_update_end(&rp->tx_stats.syncp); 1968 } 1969 /* Free the original skb. */ 1970 if (rp->tx_skbuff_dma[entry]) { 1971 dma_unmap_single(hwdev, 1972 rp->tx_skbuff_dma[entry], 1973 skb->len, 1974 DMA_TO_DEVICE); 1975 } 1976 bytes_compl += skb->len; 1977 pkts_compl++; 1978 dev_consume_skb_any(skb); 1979 rp->tx_skbuff[entry] = NULL; 1980 dirty_tx++; 1981 } 1982 1983 rp->dirty_tx = dirty_tx; 1984 /* Pity we can't rely on the nearby BQL completion implicit barrier. */ 1985 smp_wmb(); 1986 1987 netdev_completed_queue(dev, pkts_compl, bytes_compl); 1988 1989 /* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */ 1990 if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) { 1991 netif_wake_queue(dev); 1992 smp_rmb(); 1993 /* Rejuvenate. */ 1994 if (rhine_tx_queue_full(rp)) 1995 netif_stop_queue(dev); 1996 } 1997 } 1998 1999 /** 2000 * rhine_get_vlan_tci - extract TCI from Rx data buffer 2001 * @skb: pointer to sk_buff 2002 * @data_size: used data area of the buffer including CRC 2003 * 2004 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 2005 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 2006 * aligned following the CRC. 2007 */ 2008 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 2009 { 2010 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 2011 return be16_to_cpup((__be16 *)trailer); 2012 } 2013 2014 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc, 2015 int data_size) 2016 { 2017 dma_rmb(); 2018 if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) { 2019 u16 vlan_tci; 2020 2021 vlan_tci = rhine_get_vlan_tci(skb, data_size); 2022 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 2023 } 2024 } 2025 2026 /* Process up to limit frames from receive ring */ 2027 static int rhine_rx(struct net_device *dev, int limit) 2028 { 2029 struct rhine_private *rp = netdev_priv(dev); 2030 struct device *hwdev = dev->dev.parent; 2031 int entry = rp->cur_rx % RX_RING_SIZE; 2032 int count; 2033 2034 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, 2035 entry, le32_to_cpu(rp->rx_ring[entry].rx_status)); 2036 2037 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 2038 for (count = 0; count < limit; ++count) { 2039 struct rx_desc *desc = rp->rx_ring + entry; 2040 u32 desc_status = le32_to_cpu(desc->rx_status); 2041 int data_size = desc_status >> 16; 2042 2043 if (desc_status & DescOwn) 2044 break; 2045 2046 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, 2047 desc_status); 2048 2049 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 2050 if ((desc_status & RxWholePkt) != RxWholePkt) { 2051 netdev_warn(dev, 2052 "Oversized Ethernet frame spanned multiple buffers, " 2053 "entry %#x length %d status %08x!\n", 2054 entry, data_size, 2055 desc_status); 2056 dev->stats.rx_length_errors++; 2057 } else if (desc_status & RxErr) { 2058 /* There was a error. */ 2059 netif_dbg(rp, rx_err, dev, 2060 "%s() Rx error %08x\n", __func__, 2061 desc_status); 2062 dev->stats.rx_errors++; 2063 if (desc_status & 0x0030) 2064 dev->stats.rx_length_errors++; 2065 if (desc_status & 0x0048) 2066 dev->stats.rx_fifo_errors++; 2067 if (desc_status & 0x0004) 2068 dev->stats.rx_frame_errors++; 2069 if (desc_status & 0x0002) { 2070 /* this can also be updated outside the interrupt handler */ 2071 spin_lock(&rp->lock); 2072 dev->stats.rx_crc_errors++; 2073 spin_unlock(&rp->lock); 2074 } 2075 } 2076 } else { 2077 /* Length should omit the CRC */ 2078 int pkt_len = data_size - 4; 2079 struct sk_buff *skb; 2080 2081 /* Check if the packet is long enough to accept without 2082 copying to a minimally-sized skbuff. */ 2083 if (pkt_len < rx_copybreak) { 2084 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 2085 if (unlikely(!skb)) 2086 goto drop; 2087 2088 dma_sync_single_for_cpu(hwdev, 2089 rp->rx_skbuff_dma[entry], 2090 rp->rx_buf_sz, 2091 DMA_FROM_DEVICE); 2092 2093 skb_copy_to_linear_data(skb, 2094 rp->rx_skbuff[entry]->data, 2095 pkt_len); 2096 2097 dma_sync_single_for_device(hwdev, 2098 rp->rx_skbuff_dma[entry], 2099 rp->rx_buf_sz, 2100 DMA_FROM_DEVICE); 2101 } else { 2102 struct rhine_skb_dma sd; 2103 2104 if (unlikely(rhine_skb_dma_init(dev, &sd) < 0)) 2105 goto drop; 2106 2107 skb = rp->rx_skbuff[entry]; 2108 2109 dma_unmap_single(hwdev, 2110 rp->rx_skbuff_dma[entry], 2111 rp->rx_buf_sz, 2112 DMA_FROM_DEVICE); 2113 rhine_skb_dma_nic_store(rp, &sd, entry); 2114 } 2115 2116 skb_put(skb, pkt_len); 2117 2118 rhine_rx_vlan_tag(skb, desc, data_size); 2119 2120 skb->protocol = eth_type_trans(skb, dev); 2121 2122 netif_receive_skb(skb); 2123 2124 u64_stats_update_begin(&rp->rx_stats.syncp); 2125 rp->rx_stats.bytes += pkt_len; 2126 rp->rx_stats.packets++; 2127 u64_stats_update_end(&rp->rx_stats.syncp); 2128 } 2129 give_descriptor_to_nic: 2130 desc->rx_status = cpu_to_le32(DescOwn); 2131 entry = (++rp->cur_rx) % RX_RING_SIZE; 2132 } 2133 2134 return count; 2135 2136 drop: 2137 dev->stats.rx_dropped++; 2138 goto give_descriptor_to_nic; 2139 } 2140 2141 static void rhine_restart_tx(struct net_device *dev) { 2142 struct rhine_private *rp = netdev_priv(dev); 2143 void __iomem *ioaddr = rp->base; 2144 int entry = rp->dirty_tx % TX_RING_SIZE; 2145 u32 intr_status; 2146 2147 /* 2148 * If new errors occurred, we need to sort them out before doing Tx. 2149 * In that case the ISR will be back here RSN anyway. 2150 */ 2151 intr_status = rhine_get_events(rp); 2152 2153 if ((intr_status & IntrTxErrSummary) == 0) { 2154 2155 /* We know better than the chip where it should continue. */ 2156 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 2157 ioaddr + TxRingPtr); 2158 2159 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 2160 ioaddr + ChipCmd); 2161 2162 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 2163 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 2164 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 2165 2166 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 2167 ioaddr + ChipCmd1); 2168 IOSYNC; 2169 } 2170 else { 2171 /* This should never happen */ 2172 netif_warn(rp, tx_err, dev, "another error occurred %08x\n", 2173 intr_status); 2174 } 2175 2176 } 2177 2178 static void rhine_slow_event_task(struct work_struct *work) 2179 { 2180 struct rhine_private *rp = 2181 container_of(work, struct rhine_private, slow_event_task); 2182 struct net_device *dev = rp->dev; 2183 u32 intr_status; 2184 2185 mutex_lock(&rp->task_lock); 2186 2187 if (!rp->task_enable) 2188 goto out_unlock; 2189 2190 intr_status = rhine_get_events(rp); 2191 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); 2192 2193 if (intr_status & IntrLinkChange) 2194 rhine_check_media(dev, 0); 2195 2196 if (intr_status & IntrPCIErr) 2197 netif_warn(rp, hw, dev, "PCI error\n"); 2198 2199 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); 2200 2201 out_unlock: 2202 mutex_unlock(&rp->task_lock); 2203 } 2204 2205 static void 2206 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 2207 { 2208 struct rhine_private *rp = netdev_priv(dev); 2209 unsigned int start; 2210 2211 spin_lock_bh(&rp->lock); 2212 rhine_update_rx_crc_and_missed_errord(rp); 2213 spin_unlock_bh(&rp->lock); 2214 2215 netdev_stats_to_stats64(stats, &dev->stats); 2216 2217 do { 2218 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp); 2219 stats->rx_packets = rp->rx_stats.packets; 2220 stats->rx_bytes = rp->rx_stats.bytes; 2221 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start)); 2222 2223 do { 2224 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp); 2225 stats->tx_packets = rp->tx_stats.packets; 2226 stats->tx_bytes = rp->tx_stats.bytes; 2227 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start)); 2228 } 2229 2230 static void rhine_set_rx_mode(struct net_device *dev) 2231 { 2232 struct rhine_private *rp = netdev_priv(dev); 2233 void __iomem *ioaddr = rp->base; 2234 u32 mc_filter[2]; /* Multicast hash filter */ 2235 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 2236 struct netdev_hw_addr *ha; 2237 2238 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2239 rx_mode = 0x1C; 2240 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2241 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2242 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2243 (dev->flags & IFF_ALLMULTI)) { 2244 /* Too many to match, or accept all multicasts. */ 2245 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2246 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2247 } else if (rp->quirks & rqMgmt) { 2248 int i = 0; 2249 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 2250 netdev_for_each_mc_addr(ha, dev) { 2251 if (i == MCAM_SIZE) 2252 break; 2253 rhine_set_cam(ioaddr, i, ha->addr); 2254 mCAMmask |= 1 << i; 2255 i++; 2256 } 2257 rhine_set_cam_mask(ioaddr, mCAMmask); 2258 } else { 2259 memset(mc_filter, 0, sizeof(mc_filter)); 2260 netdev_for_each_mc_addr(ha, dev) { 2261 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 2262 2263 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 2264 } 2265 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 2266 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 2267 } 2268 /* enable/disable VLAN receive filtering */ 2269 if (rp->quirks & rqMgmt) { 2270 if (dev->flags & IFF_PROMISC) 2271 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2272 else 2273 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2274 } 2275 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2276 } 2277 2278 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2279 { 2280 struct device *hwdev = dev->dev.parent; 2281 2282 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2283 strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info)); 2284 } 2285 2286 static int netdev_get_link_ksettings(struct net_device *dev, 2287 struct ethtool_link_ksettings *cmd) 2288 { 2289 struct rhine_private *rp = netdev_priv(dev); 2290 2291 mutex_lock(&rp->task_lock); 2292 mii_ethtool_get_link_ksettings(&rp->mii_if, cmd); 2293 mutex_unlock(&rp->task_lock); 2294 2295 return 0; 2296 } 2297 2298 static int netdev_set_link_ksettings(struct net_device *dev, 2299 const struct ethtool_link_ksettings *cmd) 2300 { 2301 struct rhine_private *rp = netdev_priv(dev); 2302 int rc; 2303 2304 mutex_lock(&rp->task_lock); 2305 rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd); 2306 rhine_set_carrier(&rp->mii_if); 2307 mutex_unlock(&rp->task_lock); 2308 2309 return rc; 2310 } 2311 2312 static int netdev_nway_reset(struct net_device *dev) 2313 { 2314 struct rhine_private *rp = netdev_priv(dev); 2315 2316 return mii_nway_restart(&rp->mii_if); 2317 } 2318 2319 static u32 netdev_get_link(struct net_device *dev) 2320 { 2321 struct rhine_private *rp = netdev_priv(dev); 2322 2323 return mii_link_ok(&rp->mii_if); 2324 } 2325 2326 static u32 netdev_get_msglevel(struct net_device *dev) 2327 { 2328 struct rhine_private *rp = netdev_priv(dev); 2329 2330 return rp->msg_enable; 2331 } 2332 2333 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2334 { 2335 struct rhine_private *rp = netdev_priv(dev); 2336 2337 rp->msg_enable = value; 2338 } 2339 2340 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2341 { 2342 struct rhine_private *rp = netdev_priv(dev); 2343 2344 if (!(rp->quirks & rqWOL)) 2345 return; 2346 2347 spin_lock_irq(&rp->lock); 2348 wol->supported = WAKE_PHY | WAKE_MAGIC | 2349 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2350 wol->wolopts = rp->wolopts; 2351 spin_unlock_irq(&rp->lock); 2352 } 2353 2354 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2355 { 2356 struct rhine_private *rp = netdev_priv(dev); 2357 u32 support = WAKE_PHY | WAKE_MAGIC | 2358 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2359 2360 if (!(rp->quirks & rqWOL)) 2361 return -EINVAL; 2362 2363 if (wol->wolopts & ~support) 2364 return -EINVAL; 2365 2366 spin_lock_irq(&rp->lock); 2367 rp->wolopts = wol->wolopts; 2368 spin_unlock_irq(&rp->lock); 2369 2370 return 0; 2371 } 2372 2373 static const struct ethtool_ops netdev_ethtool_ops = { 2374 .get_drvinfo = netdev_get_drvinfo, 2375 .nway_reset = netdev_nway_reset, 2376 .get_link = netdev_get_link, 2377 .get_msglevel = netdev_get_msglevel, 2378 .set_msglevel = netdev_set_msglevel, 2379 .get_wol = rhine_get_wol, 2380 .set_wol = rhine_set_wol, 2381 .get_link_ksettings = netdev_get_link_ksettings, 2382 .set_link_ksettings = netdev_set_link_ksettings, 2383 }; 2384 2385 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2386 { 2387 struct rhine_private *rp = netdev_priv(dev); 2388 int rc; 2389 2390 if (!netif_running(dev)) 2391 return -EINVAL; 2392 2393 mutex_lock(&rp->task_lock); 2394 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2395 rhine_set_carrier(&rp->mii_if); 2396 mutex_unlock(&rp->task_lock); 2397 2398 return rc; 2399 } 2400 2401 static int rhine_close(struct net_device *dev) 2402 { 2403 struct rhine_private *rp = netdev_priv(dev); 2404 void __iomem *ioaddr = rp->base; 2405 2406 rhine_task_disable(rp); 2407 napi_disable(&rp->napi); 2408 netif_stop_queue(dev); 2409 2410 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", 2411 ioread16(ioaddr + ChipCmd)); 2412 2413 /* Switch to loopback mode to avoid hardware races. */ 2414 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2415 2416 rhine_irq_disable(rp); 2417 2418 /* Stop the chip's Tx and Rx processes. */ 2419 iowrite16(CmdStop, ioaddr + ChipCmd); 2420 2421 free_irq(rp->irq, dev); 2422 free_rbufs(dev); 2423 free_tbufs(dev); 2424 free_ring(dev); 2425 2426 return 0; 2427 } 2428 2429 2430 static void rhine_remove_one_pci(struct pci_dev *pdev) 2431 { 2432 struct net_device *dev = pci_get_drvdata(pdev); 2433 struct rhine_private *rp = netdev_priv(dev); 2434 2435 unregister_netdev(dev); 2436 2437 pci_iounmap(pdev, rp->base); 2438 pci_release_regions(pdev); 2439 2440 free_netdev(dev); 2441 pci_disable_device(pdev); 2442 } 2443 2444 static int rhine_remove_one_platform(struct platform_device *pdev) 2445 { 2446 struct net_device *dev = platform_get_drvdata(pdev); 2447 struct rhine_private *rp = netdev_priv(dev); 2448 2449 unregister_netdev(dev); 2450 2451 iounmap(rp->base); 2452 2453 free_netdev(dev); 2454 2455 return 0; 2456 } 2457 2458 static void rhine_shutdown_pci(struct pci_dev *pdev) 2459 { 2460 struct net_device *dev = pci_get_drvdata(pdev); 2461 struct rhine_private *rp = netdev_priv(dev); 2462 void __iomem *ioaddr = rp->base; 2463 2464 if (!(rp->quirks & rqWOL)) 2465 return; /* Nothing to do for non-WOL adapters */ 2466 2467 rhine_power_init(dev); 2468 2469 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2470 if (rp->quirks & rq6patterns) 2471 iowrite8(0x04, ioaddr + WOLcgClr); 2472 2473 spin_lock(&rp->lock); 2474 2475 if (rp->wolopts & WAKE_MAGIC) { 2476 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2477 /* 2478 * Turn EEPROM-controlled wake-up back on -- some hardware may 2479 * not cooperate otherwise. 2480 */ 2481 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2482 } 2483 2484 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2485 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2486 2487 if (rp->wolopts & WAKE_PHY) 2488 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2489 2490 if (rp->wolopts & WAKE_UCAST) 2491 iowrite8(WOLucast, ioaddr + WOLcrSet); 2492 2493 if (rp->wolopts) { 2494 /* Enable legacy WOL (for old motherboards) */ 2495 iowrite8(0x01, ioaddr + PwcfgSet); 2496 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2497 } 2498 2499 spin_unlock(&rp->lock); 2500 2501 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { 2502 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2503 2504 pci_wake_from_d3(pdev, true); 2505 pci_set_power_state(pdev, PCI_D3hot); 2506 } 2507 } 2508 2509 #ifdef CONFIG_PM_SLEEP 2510 static int rhine_suspend(struct device *device) 2511 { 2512 struct net_device *dev = dev_get_drvdata(device); 2513 struct rhine_private *rp = netdev_priv(dev); 2514 2515 if (!netif_running(dev)) 2516 return 0; 2517 2518 rhine_task_disable(rp); 2519 rhine_irq_disable(rp); 2520 napi_disable(&rp->napi); 2521 2522 netif_device_detach(dev); 2523 2524 if (dev_is_pci(device)) 2525 rhine_shutdown_pci(to_pci_dev(device)); 2526 2527 return 0; 2528 } 2529 2530 static int rhine_resume(struct device *device) 2531 { 2532 struct net_device *dev = dev_get_drvdata(device); 2533 struct rhine_private *rp = netdev_priv(dev); 2534 2535 if (!netif_running(dev)) 2536 return 0; 2537 2538 enable_mmio(rp->pioaddr, rp->quirks); 2539 rhine_power_init(dev); 2540 free_tbufs(dev); 2541 alloc_tbufs(dev); 2542 rhine_reset_rbufs(rp); 2543 rhine_task_enable(rp); 2544 spin_lock_bh(&rp->lock); 2545 init_registers(dev); 2546 spin_unlock_bh(&rp->lock); 2547 2548 netif_device_attach(dev); 2549 2550 return 0; 2551 } 2552 2553 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); 2554 #define RHINE_PM_OPS (&rhine_pm_ops) 2555 2556 #else 2557 2558 #define RHINE_PM_OPS NULL 2559 2560 #endif /* !CONFIG_PM_SLEEP */ 2561 2562 static struct pci_driver rhine_driver_pci = { 2563 .name = DRV_NAME, 2564 .id_table = rhine_pci_tbl, 2565 .probe = rhine_init_one_pci, 2566 .remove = rhine_remove_one_pci, 2567 .shutdown = rhine_shutdown_pci, 2568 .driver.pm = RHINE_PM_OPS, 2569 }; 2570 2571 static struct platform_driver rhine_driver_platform = { 2572 .probe = rhine_init_one_platform, 2573 .remove = rhine_remove_one_platform, 2574 .driver = { 2575 .name = DRV_NAME, 2576 .of_match_table = rhine_of_tbl, 2577 .pm = RHINE_PM_OPS, 2578 } 2579 }; 2580 2581 static const struct dmi_system_id rhine_dmi_table[] __initconst = { 2582 { 2583 .ident = "EPIA-M", 2584 .matches = { 2585 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2586 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2587 }, 2588 }, 2589 { 2590 .ident = "KV7", 2591 .matches = { 2592 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2593 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2594 }, 2595 }, 2596 { NULL } 2597 }; 2598 2599 static int __init rhine_init(void) 2600 { 2601 int ret_pci, ret_platform; 2602 2603 /* when a module, this is printed whether or not devices are found in probe */ 2604 if (dmi_check_system(rhine_dmi_table)) { 2605 /* these BIOSes fail at PXE boot if chip is in D3 */ 2606 avoid_D3 = true; 2607 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2608 } 2609 else if (avoid_D3) 2610 pr_info("avoid_D3 set\n"); 2611 2612 ret_pci = pci_register_driver(&rhine_driver_pci); 2613 ret_platform = platform_driver_register(&rhine_driver_platform); 2614 if ((ret_pci < 0) && (ret_platform < 0)) 2615 return ret_pci; 2616 2617 return 0; 2618 } 2619 2620 2621 static void __exit rhine_cleanup(void) 2622 { 2623 platform_driver_unregister(&rhine_driver_platform); 2624 pci_unregister_driver(&rhine_driver_pci); 2625 } 2626 2627 2628 module_init(rhine_init); 2629 module_exit(rhine_cleanup); 2630