1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 Current Maintainer: Roger Luethi <rl@hellgate.ch> 6 7 This software may be used and distributed according to the terms of 8 the GNU General Public License (GPL), incorporated herein by reference. 9 Drivers based on or derived from this code fall under the GPL and must 10 retain the authorship, copyright and license notice. This file is not 11 a complete program and may only be used when the entire operating 12 system is licensed under the GPL. 13 14 This driver is designed for the VIA VT86C100A Rhine-I. 15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM 16 and management NIC 6105M). 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 24 This driver contains some changes from the original Donald Becker 25 version. He may or may not be interested in bug reports on this 26 code. You can find his versions at: 27 http://www.scyld.com/network/via-rhine.html 28 [link no longer provides useful info -jgarzik] 29 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #define DRV_NAME "via-rhine" 35 #define DRV_VERSION "1.5.0" 36 #define DRV_RELDATE "2010-10-09" 37 38 #include <linux/types.h> 39 40 /* A few user-configurable values. 41 These may be modified when a driver module is loaded. */ 42 static int debug = 0; 43 #define RHINE_MSG_DEFAULT \ 44 (0x0000) 45 46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 47 Setting to > 1518 effectively disables this feature. */ 48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 49 defined(CONFIG_SPARC) || defined(__ia64__) || \ 50 defined(__sh__) || defined(__mips__) 51 static int rx_copybreak = 1518; 52 #else 53 static int rx_copybreak; 54 #endif 55 56 /* Work-around for broken BIOSes: they are unable to get the chip back out of 57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ 58 static bool avoid_D3; 59 60 /* 61 * In case you are looking for 'options[]' or 'full_duplex[]', they 62 * are gone. Use ethtool(8) instead. 63 */ 64 65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 66 The Rhine has a 64 element 8390-like hash table. */ 67 static const int multicast_filter_limit = 32; 68 69 70 /* Operational parameters that are set at compile time. */ 71 72 /* Keep the ring sizes a power of two for compile efficiency. 73 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 74 Making the Tx ring too large decreases the effectiveness of channel 75 bonding and packet priority. 76 There are no ill effects from too-large receive rings. */ 77 #define TX_RING_SIZE 16 78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ 79 #define RX_RING_SIZE 64 80 81 /* Operational parameters that usually are not changed. */ 82 83 /* Time in jiffies before concluding the transmitter is hung. */ 84 #define TX_TIMEOUT (2*HZ) 85 86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 87 88 #include <linux/module.h> 89 #include <linux/moduleparam.h> 90 #include <linux/kernel.h> 91 #include <linux/string.h> 92 #include <linux/timer.h> 93 #include <linux/errno.h> 94 #include <linux/ioport.h> 95 #include <linux/interrupt.h> 96 #include <linux/pci.h> 97 #include <linux/dma-mapping.h> 98 #include <linux/netdevice.h> 99 #include <linux/etherdevice.h> 100 #include <linux/skbuff.h> 101 #include <linux/init.h> 102 #include <linux/delay.h> 103 #include <linux/mii.h> 104 #include <linux/ethtool.h> 105 #include <linux/crc32.h> 106 #include <linux/if_vlan.h> 107 #include <linux/bitops.h> 108 #include <linux/workqueue.h> 109 #include <asm/processor.h> /* Processor type for cache alignment. */ 110 #include <asm/io.h> 111 #include <asm/irq.h> 112 #include <asm/uaccess.h> 113 #include <linux/dmi.h> 114 115 /* These identify the driver base version and may not be removed. */ 116 static const char version[] = 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; 118 119 /* This driver was written to use PCI memory space. Some early versions 120 of the Rhine may only work correctly with I/O space accesses. */ 121 #ifdef CONFIG_VIA_RHINE_MMIO 122 #define USE_MMIO 123 #else 124 #endif 125 126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); 128 MODULE_LICENSE("GPL"); 129 130 module_param(debug, int, 0); 131 module_param(rx_copybreak, int, 0); 132 module_param(avoid_D3, bool, 0); 133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); 134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); 135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); 136 137 #define MCAM_SIZE 32 138 #define VCAM_SIZE 32 139 140 /* 141 Theory of Operation 142 143 I. Board Compatibility 144 145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 146 controller. 147 148 II. Board-specific settings 149 150 Boards with this chip are functional only in a bus-master PCI slot. 151 152 Many operational settings are loaded from the EEPROM to the Config word at 153 offset 0x78. For most of these settings, this driver assumes that they are 154 correct. 155 If this driver is compiled to use PCI memory space operations the EEPROM 156 must be configured to enable memory ops. 157 158 III. Driver operation 159 160 IIIa. Ring buffers 161 162 This driver uses two statically allocated fixed-size descriptor lists 163 formed into rings by a branch from the final descriptor to the beginning of 164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 165 166 IIIb/c. Transmit/Receive Structure 167 168 This driver attempts to use a zero-copy receive and transmit scheme. 169 170 Alas, all data buffers are required to start on a 32 bit boundary, so 171 the driver must often copy transmit packets into bounce buffers. 172 173 The driver allocates full frame size skbuffs for the Rx ring buffers at 174 open() time and passes the skb->data field to the chip as receive data 175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 176 a fresh skbuff is allocated and the frame is copied to the new skbuff. 177 When the incoming frame is larger, the skbuff is passed directly up the 178 protocol stack. Buffers consumed this way are replaced by newly allocated 179 skbuffs in the last phase of rhine_rx(). 180 181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 182 using a full-sized skbuff for small frames vs. the copying costs of larger 183 frames. New boards are typically used in generously configured machines 184 and the underfilled buffers have negligible impact compared to the benefit of 185 a single allocation size, so the default value of zero results in never 186 copying packets. When copying is done, the cost is usually mitigated by using 187 a combined copy/checksum routine. Copying also preloads the cache, which is 188 most useful with small frames. 189 190 Since the VIA chips are only able to transfer data to buffers on 32 bit 191 boundaries, the IP header at offset 14 in an ethernet frame isn't 192 longword aligned for further processing. Copying these unaligned buffers 193 has the beneficial effect of 16-byte aligning the IP header. 194 195 IIId. Synchronization 196 197 The driver runs as two independent, single-threaded flows of control. One 198 is the send-packet routine, which enforces single-threaded use by the 199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, 200 which is single threaded by the hardware and interrupt handling software. 201 202 The send packet thread has partial control over the Tx ring. It locks the 203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in 204 the ring is not available it stops the transmit queue by 205 calling netif_stop_queue. 206 207 The interrupt handler has exclusive control over the Rx ring and records stats 208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 209 empty by incrementing the dirty_tx mark. If at least half of the entries in 210 the Rx ring are available the transmit queue is woken up if it was stopped. 211 212 IV. Notes 213 214 IVb. References 215 216 Preliminary VT86C100A manual from http://www.via.com.tw/ 217 http://www.scyld.com/expert/100mbps.html 218 http://www.scyld.com/expert/NWay.html 219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf 220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF 221 222 223 IVc. Errata 224 225 The VT86C100A manual is not reliable information. 226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting 227 in significant performance degradation for bounce buffer copies on transmit 228 and unaligned IP headers on receive. 229 The chip does not pad to minimum transmit length. 230 231 */ 232 233 234 /* This table drives the PCI probe routines. It's mostly boilerplate in all 235 of the drivers, and will likely be provided by some future kernel. 236 Note the matching code -- the first table entry matchs all 56** cards but 237 second only the 1234 card. 238 */ 239 240 enum rhine_revs { 241 VT86C100A = 0x00, 242 VTunknown0 = 0x20, 243 VT6102 = 0x40, 244 VT8231 = 0x50, /* Integrated MAC */ 245 VT8233 = 0x60, /* Integrated MAC */ 246 VT8235 = 0x74, /* Integrated MAC */ 247 VT8237 = 0x78, /* Integrated MAC */ 248 VTunknown1 = 0x7C, 249 VT6105 = 0x80, 250 VT6105_B0 = 0x83, 251 VT6105L = 0x8A, 252 VT6107 = 0x8C, 253 VTunknown2 = 0x8E, 254 VT6105M = 0x90, /* Management adapter */ 255 }; 256 257 enum rhine_quirks { 258 rqWOL = 0x0001, /* Wake-On-LAN support */ 259 rqForceReset = 0x0002, 260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */ 261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */ 262 rqRhineI = 0x0100, /* See comment below */ 263 }; 264 /* 265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable 266 * MMIO as well as for the collision counter and the Tx FIFO underflow 267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. 268 */ 269 270 /* Beware of PCI posted writes */ 271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0) 272 273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = { 274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */ 275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */ 276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */ 277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */ 278 { } /* terminate list */ 279 }; 280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); 281 282 283 /* Offsets to the device registers. */ 284 enum register_offsets { 285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 286 ChipCmd1=0x09, TQWake=0x0A, 287 IntrStatus=0x0C, IntrEnable=0x0E, 288 MulticastFilter0=0x10, MulticastFilter1=0x14, 289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, 291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 294 StickyHW=0x83, IntrStatus2=0x84, 295 CamMask=0x88, CamCon=0x92, CamAddr=0x93, 296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, 297 WOLcrClr1=0xA6, WOLcgClr=0xA7, 298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, 299 }; 300 301 /* Bits in ConfigD */ 302 enum backoff_bits { 303 BackOptional=0x01, BackModify=0x02, 304 BackCaptureEffect=0x04, BackRandom=0x08 305 }; 306 307 /* Bits in the TxConfig (TCR) register */ 308 enum tcr_bits { 309 TCR_PQEN=0x01, 310 TCR_LB0=0x02, /* loopback[0] */ 311 TCR_LB1=0x04, /* loopback[1] */ 312 TCR_OFSET=0x08, 313 TCR_RTGOPT=0x10, 314 TCR_RTFT0=0x20, 315 TCR_RTFT1=0x40, 316 TCR_RTSF=0x80, 317 }; 318 319 /* Bits in the CamCon (CAMC) register */ 320 enum camcon_bits { 321 CAMC_CAMEN=0x01, 322 CAMC_VCAMSL=0x02, 323 CAMC_CAMWR=0x04, 324 CAMC_CAMRD=0x08, 325 }; 326 327 /* Bits in the PCIBusConfig1 (BCR1) register */ 328 enum bcr1_bits { 329 BCR1_POT0=0x01, 330 BCR1_POT1=0x02, 331 BCR1_POT2=0x04, 332 BCR1_CTFT0=0x08, 333 BCR1_CTFT1=0x10, 334 BCR1_CTSF=0x20, 335 BCR1_TXQNOBK=0x40, /* for VT6105 */ 336 BCR1_VIDFR=0x80, /* for VT6105 */ 337 BCR1_MED0=0x40, /* for VT6102 */ 338 BCR1_MED1=0x80, /* for VT6102 */ 339 }; 340 341 #ifdef USE_MMIO 342 /* Registers we check that mmio and reg are the same. */ 343 static const int mmio_verify_registers[] = { 344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, 345 0 346 }; 347 #endif 348 349 /* Bits in the interrupt status/mask registers. */ 350 enum intr_status_bits { 351 IntrRxDone = 0x0001, 352 IntrTxDone = 0x0002, 353 IntrRxErr = 0x0004, 354 IntrTxError = 0x0008, 355 IntrRxEmpty = 0x0020, 356 IntrPCIErr = 0x0040, 357 IntrStatsMax = 0x0080, 358 IntrRxEarly = 0x0100, 359 IntrTxUnderrun = 0x0210, 360 IntrRxOverflow = 0x0400, 361 IntrRxDropped = 0x0800, 362 IntrRxNoBuf = 0x1000, 363 IntrTxAborted = 0x2000, 364 IntrLinkChange = 0x4000, 365 IntrRxWakeUp = 0x8000, 366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */ 367 IntrNormalSummary = IntrRxDone | IntrTxDone, 368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError | 369 IntrTxUnderrun, 370 }; 371 372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ 373 enum wol_bits { 374 WOLucast = 0x10, 375 WOLmagic = 0x20, 376 WOLbmcast = 0x30, 377 WOLlnkon = 0x40, 378 WOLlnkoff = 0x80, 379 }; 380 381 /* The Rx and Tx buffer descriptors. */ 382 struct rx_desc { 383 __le32 rx_status; 384 __le32 desc_length; /* Chain flag, Buffer/frame length */ 385 __le32 addr; 386 __le32 next_desc; 387 }; 388 struct tx_desc { 389 __le32 tx_status; 390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */ 391 __le32 addr; 392 __le32 next_desc; 393 }; 394 395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ 396 #define TXDESC 0x00e08000 397 398 enum rx_status_bits { 399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F 400 }; 401 402 /* Bits in *_desc.*_status */ 403 enum desc_status_bits { 404 DescOwn=0x80000000 405 }; 406 407 /* Bits in *_desc.*_length */ 408 enum desc_length_bits { 409 DescTag=0x00010000 410 }; 411 412 /* Bits in ChipCmd. */ 413 enum chip_cmd_bits { 414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, 415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, 416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, 417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, 418 }; 419 420 struct rhine_stats { 421 u64 packets; 422 u64 bytes; 423 struct u64_stats_sync syncp; 424 }; 425 426 struct rhine_private { 427 /* Bit mask for configured VLAN ids */ 428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 429 430 /* Descriptor rings */ 431 struct rx_desc *rx_ring; 432 struct tx_desc *tx_ring; 433 dma_addr_t rx_ring_dma; 434 dma_addr_t tx_ring_dma; 435 436 /* The addresses of receive-in-place skbuffs. */ 437 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; 439 440 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 441 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; 443 444 /* Tx bounce buffers (Rhine-I only) */ 445 unsigned char *tx_buf[TX_RING_SIZE]; 446 unsigned char *tx_bufs; 447 dma_addr_t tx_bufs_dma; 448 449 struct pci_dev *pdev; 450 long pioaddr; 451 struct net_device *dev; 452 struct napi_struct napi; 453 spinlock_t lock; 454 struct mutex task_lock; 455 bool task_enable; 456 struct work_struct slow_event_task; 457 struct work_struct reset_task; 458 459 u32 msg_enable; 460 461 /* Frequently used values: keep some adjacent for cache effect. */ 462 u32 quirks; 463 struct rx_desc *rx_head_desc; 464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 465 unsigned int cur_tx, dirty_tx; 466 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 467 struct rhine_stats rx_stats; 468 struct rhine_stats tx_stats; 469 u8 wolopts; 470 471 u8 tx_thresh, rx_thresh; 472 473 struct mii_if_info mii_if; 474 void __iomem *base; 475 }; 476 477 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0) 478 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0) 479 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0) 480 481 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x)) 482 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x)) 483 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x)) 484 485 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) 486 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) 487 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) 488 489 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) 490 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) 491 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) 492 493 494 static int mdio_read(struct net_device *dev, int phy_id, int location); 495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 496 static int rhine_open(struct net_device *dev); 497 static void rhine_reset_task(struct work_struct *work); 498 static void rhine_slow_event_task(struct work_struct *work); 499 static void rhine_tx_timeout(struct net_device *dev); 500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 501 struct net_device *dev); 502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance); 503 static void rhine_tx(struct net_device *dev); 504 static int rhine_rx(struct net_device *dev, int limit); 505 static void rhine_set_rx_mode(struct net_device *dev); 506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev, 507 struct rtnl_link_stats64 *stats); 508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 509 static const struct ethtool_ops netdev_ethtool_ops; 510 static int rhine_close(struct net_device *dev); 511 static int rhine_vlan_rx_add_vid(struct net_device *dev, 512 __be16 proto, u16 vid); 513 static int rhine_vlan_rx_kill_vid(struct net_device *dev, 514 __be16 proto, u16 vid); 515 static void rhine_restart_tx(struct net_device *dev); 516 517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) 518 { 519 void __iomem *ioaddr = rp->base; 520 int i; 521 522 for (i = 0; i < 1024; i++) { 523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); 524 525 if (low ^ has_mask_bits) 526 break; 527 udelay(10); 528 } 529 if (i > 64) { 530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " 531 "count: %04d\n", low ? "low" : "high", reg, mask, i); 532 } 533 } 534 535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) 536 { 537 rhine_wait_bit(rp, reg, mask, false); 538 } 539 540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) 541 { 542 rhine_wait_bit(rp, reg, mask, true); 543 } 544 545 static u32 rhine_get_events(struct rhine_private *rp) 546 { 547 void __iomem *ioaddr = rp->base; 548 u32 intr_status; 549 550 intr_status = ioread16(ioaddr + IntrStatus); 551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 552 if (rp->quirks & rqStatusWBRace) 553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16; 554 return intr_status; 555 } 556 557 static void rhine_ack_events(struct rhine_private *rp, u32 mask) 558 { 559 void __iomem *ioaddr = rp->base; 560 561 if (rp->quirks & rqStatusWBRace) 562 iowrite8(mask >> 16, ioaddr + IntrStatus2); 563 iowrite16(mask, ioaddr + IntrStatus); 564 mmiowb(); 565 } 566 567 /* 568 * Get power related registers into sane state. 569 * Notify user about past WOL event. 570 */ 571 static void rhine_power_init(struct net_device *dev) 572 { 573 struct rhine_private *rp = netdev_priv(dev); 574 void __iomem *ioaddr = rp->base; 575 u16 wolstat; 576 577 if (rp->quirks & rqWOL) { 578 /* Make sure chip is in power state D0 */ 579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); 580 581 /* Disable "force PME-enable" */ 582 iowrite8(0x80, ioaddr + WOLcgClr); 583 584 /* Clear power-event config bits (WOL) */ 585 iowrite8(0xFF, ioaddr + WOLcrClr); 586 /* More recent cards can manage two additional patterns */ 587 if (rp->quirks & rq6patterns) 588 iowrite8(0x03, ioaddr + WOLcrClr1); 589 590 /* Save power-event status bits */ 591 wolstat = ioread8(ioaddr + PwrcsrSet); 592 if (rp->quirks & rq6patterns) 593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; 594 595 /* Clear power-event status bits */ 596 iowrite8(0xFF, ioaddr + PwrcsrClr); 597 if (rp->quirks & rq6patterns) 598 iowrite8(0x03, ioaddr + PwrcsrClr1); 599 600 if (wolstat) { 601 char *reason; 602 switch (wolstat) { 603 case WOLmagic: 604 reason = "Magic packet"; 605 break; 606 case WOLlnkon: 607 reason = "Link went up"; 608 break; 609 case WOLlnkoff: 610 reason = "Link went down"; 611 break; 612 case WOLucast: 613 reason = "Unicast packet"; 614 break; 615 case WOLbmcast: 616 reason = "Multicast/broadcast packet"; 617 break; 618 default: 619 reason = "Unknown"; 620 } 621 netdev_info(dev, "Woke system up. Reason: %s\n", 622 reason); 623 } 624 } 625 } 626 627 static void rhine_chip_reset(struct net_device *dev) 628 { 629 struct rhine_private *rp = netdev_priv(dev); 630 void __iomem *ioaddr = rp->base; 631 u8 cmd1; 632 633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1); 634 IOSYNC; 635 636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { 637 netdev_info(dev, "Reset not complete yet. Trying harder.\n"); 638 639 /* Force reset */ 640 if (rp->quirks & rqForceReset) 641 iowrite8(0x40, ioaddr + MiscCmd); 642 643 /* Reset can take somewhat longer (rare) */ 644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); 645 } 646 647 cmd1 = ioread8(ioaddr + ChipCmd1); 648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? 649 "failed" : "succeeded"); 650 } 651 652 #ifdef USE_MMIO 653 static void enable_mmio(long pioaddr, u32 quirks) 654 { 655 int n; 656 if (quirks & rqRhineI) { 657 /* More recent docs say that this bit is reserved ... */ 658 n = inb(pioaddr + ConfigA) | 0x20; 659 outb(n, pioaddr + ConfigA); 660 } else { 661 n = inb(pioaddr + ConfigD) | 0x80; 662 outb(n, pioaddr + ConfigD); 663 } 664 } 665 #endif 666 667 /* 668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM 669 * (plus 0x6C for Rhine-I/II) 670 */ 671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) 672 { 673 struct rhine_private *rp = netdev_priv(dev); 674 void __iomem *ioaddr = rp->base; 675 int i; 676 677 outb(0x20, pioaddr + MACRegEEcsr); 678 for (i = 0; i < 1024; i++) { 679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) 680 break; 681 } 682 if (i > 512) 683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); 684 685 #ifdef USE_MMIO 686 /* 687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable 688 * MMIO. If reloading EEPROM was done first this could be avoided, but 689 * it is not known if that still works with the "win98-reboot" problem. 690 */ 691 enable_mmio(pioaddr, rp->quirks); 692 #endif 693 694 /* Turn off EEPROM-controlled wake-up (magic packet) */ 695 if (rp->quirks & rqWOL) 696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); 697 698 } 699 700 #ifdef CONFIG_NET_POLL_CONTROLLER 701 static void rhine_poll(struct net_device *dev) 702 { 703 struct rhine_private *rp = netdev_priv(dev); 704 const int irq = rp->pdev->irq; 705 706 disable_irq(irq); 707 rhine_interrupt(irq, dev); 708 enable_irq(irq); 709 } 710 #endif 711 712 static void rhine_kick_tx_threshold(struct rhine_private *rp) 713 { 714 if (rp->tx_thresh < 0xe0) { 715 void __iomem *ioaddr = rp->base; 716 717 rp->tx_thresh += 0x20; 718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); 719 } 720 } 721 722 static void rhine_tx_err(struct rhine_private *rp, u32 status) 723 { 724 struct net_device *dev = rp->dev; 725 726 if (status & IntrTxAborted) { 727 netif_info(rp, tx_err, dev, 728 "Abort %08x, frame dropped\n", status); 729 } 730 731 if (status & IntrTxUnderrun) { 732 rhine_kick_tx_threshold(rp); 733 netif_info(rp, tx_err ,dev, "Transmitter underrun, " 734 "Tx threshold now %02x\n", rp->tx_thresh); 735 } 736 737 if (status & IntrTxDescRace) 738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); 739 740 if ((status & IntrTxError) && 741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { 742 rhine_kick_tx_threshold(rp); 743 netif_info(rp, tx_err, dev, "Unspecified error. " 744 "Tx threshold now %02x\n", rp->tx_thresh); 745 } 746 747 rhine_restart_tx(dev); 748 } 749 750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) 751 { 752 void __iomem *ioaddr = rp->base; 753 struct net_device_stats *stats = &rp->dev->stats; 754 755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs); 756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed); 757 758 /* 759 * Clears the "tally counters" for CRC errors and missed frames(?). 760 * It has been reported that some chips need a write of 0 to clear 761 * these, for others the counters are set to 1 when written to and 762 * instead cleared when read. So we clear them both ways ... 763 */ 764 iowrite32(0, ioaddr + RxMissed); 765 ioread16(ioaddr + RxCRCErrs); 766 ioread16(ioaddr + RxMissed); 767 } 768 769 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \ 770 IntrRxErr | \ 771 IntrRxEmpty | \ 772 IntrRxOverflow | \ 773 IntrRxDropped | \ 774 IntrRxNoBuf | \ 775 IntrRxWakeUp) 776 777 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \ 778 IntrTxAborted | \ 779 IntrTxUnderrun | \ 780 IntrTxDescRace) 781 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) 782 783 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \ 784 RHINE_EVENT_NAPI_TX | \ 785 IntrStatsMax) 786 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange) 787 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) 788 789 static int rhine_napipoll(struct napi_struct *napi, int budget) 790 { 791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi); 792 struct net_device *dev = rp->dev; 793 void __iomem *ioaddr = rp->base; 794 u16 enable_mask = RHINE_EVENT & 0xffff; 795 int work_done = 0; 796 u32 status; 797 798 status = rhine_get_events(rp); 799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); 800 801 if (status & RHINE_EVENT_NAPI_RX) 802 work_done += rhine_rx(dev, budget); 803 804 if (status & RHINE_EVENT_NAPI_TX) { 805 if (status & RHINE_EVENT_NAPI_TX_ERR) { 806 /* Avoid scavenging before Tx engine turned off */ 807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); 808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn) 809 netif_warn(rp, tx_err, dev, "Tx still on\n"); 810 } 811 812 rhine_tx(dev); 813 814 if (status & RHINE_EVENT_NAPI_TX_ERR) 815 rhine_tx_err(rp, status); 816 } 817 818 if (status & IntrStatsMax) { 819 spin_lock(&rp->lock); 820 rhine_update_rx_crc_and_missed_errord(rp); 821 spin_unlock(&rp->lock); 822 } 823 824 if (status & RHINE_EVENT_SLOW) { 825 enable_mask &= ~RHINE_EVENT_SLOW; 826 schedule_work(&rp->slow_event_task); 827 } 828 829 if (work_done < budget) { 830 napi_complete(napi); 831 iowrite16(enable_mask, ioaddr + IntrEnable); 832 mmiowb(); 833 } 834 return work_done; 835 } 836 837 static void rhine_hw_init(struct net_device *dev, long pioaddr) 838 { 839 struct rhine_private *rp = netdev_priv(dev); 840 841 /* Reset the chip to erase previous misconfiguration. */ 842 rhine_chip_reset(dev); 843 844 /* Rhine-I needs extra time to recuperate before EEPROM reload */ 845 if (rp->quirks & rqRhineI) 846 msleep(5); 847 848 /* Reload EEPROM controlled bytes cleared by soft reset */ 849 rhine_reload_eeprom(pioaddr, dev); 850 } 851 852 static const struct net_device_ops rhine_netdev_ops = { 853 .ndo_open = rhine_open, 854 .ndo_stop = rhine_close, 855 .ndo_start_xmit = rhine_start_tx, 856 .ndo_get_stats64 = rhine_get_stats64, 857 .ndo_set_rx_mode = rhine_set_rx_mode, 858 .ndo_change_mtu = eth_change_mtu, 859 .ndo_validate_addr = eth_validate_addr, 860 .ndo_set_mac_address = eth_mac_addr, 861 .ndo_do_ioctl = netdev_ioctl, 862 .ndo_tx_timeout = rhine_tx_timeout, 863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid, 864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid, 865 #ifdef CONFIG_NET_POLL_CONTROLLER 866 .ndo_poll_controller = rhine_poll, 867 #endif 868 }; 869 870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 871 { 872 struct net_device *dev; 873 struct rhine_private *rp; 874 int i, rc; 875 u32 quirks; 876 long pioaddr; 877 long memaddr; 878 void __iomem *ioaddr; 879 int io_size, phy_id; 880 const char *name; 881 #ifdef USE_MMIO 882 int bar = 1; 883 #else 884 int bar = 0; 885 #endif 886 887 /* when built into the kernel, we only print version if device is found */ 888 #ifndef MODULE 889 pr_info_once("%s\n", version); 890 #endif 891 892 io_size = 256; 893 phy_id = 0; 894 quirks = 0; 895 name = "Rhine"; 896 if (pdev->revision < VTunknown0) { 897 quirks = rqRhineI; 898 io_size = 128; 899 } 900 else if (pdev->revision >= VT6102) { 901 quirks = rqWOL | rqForceReset; 902 if (pdev->revision < VT6105) { 903 name = "Rhine II"; 904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */ 905 } 906 else { 907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */ 908 if (pdev->revision >= VT6105_B0) 909 quirks |= rq6patterns; 910 if (pdev->revision < VT6105M) 911 name = "Rhine III"; 912 else 913 name = "Rhine III (Management Adapter)"; 914 } 915 } 916 917 rc = pci_enable_device(pdev); 918 if (rc) 919 goto err_out; 920 921 /* this should always be supported */ 922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 923 if (rc) { 924 dev_err(&pdev->dev, 925 "32-bit PCI DMA addresses not supported by the card!?\n"); 926 goto err_out; 927 } 928 929 /* sanity check */ 930 if ((pci_resource_len(pdev, 0) < io_size) || 931 (pci_resource_len(pdev, 1) < io_size)) { 932 rc = -EIO; 933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n"); 934 goto err_out; 935 } 936 937 pioaddr = pci_resource_start(pdev, 0); 938 memaddr = pci_resource_start(pdev, 1); 939 940 pci_set_master(pdev); 941 942 dev = alloc_etherdev(sizeof(struct rhine_private)); 943 if (!dev) { 944 rc = -ENOMEM; 945 goto err_out; 946 } 947 SET_NETDEV_DEV(dev, &pdev->dev); 948 949 rp = netdev_priv(dev); 950 rp->dev = dev; 951 rp->quirks = quirks; 952 rp->pioaddr = pioaddr; 953 rp->pdev = pdev; 954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); 955 956 rc = pci_request_regions(pdev, DRV_NAME); 957 if (rc) 958 goto err_out_free_netdev; 959 960 ioaddr = pci_iomap(pdev, bar, io_size); 961 if (!ioaddr) { 962 rc = -EIO; 963 dev_err(&pdev->dev, 964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n", 965 pci_name(pdev), io_size, memaddr); 966 goto err_out_free_res; 967 } 968 969 #ifdef USE_MMIO 970 enable_mmio(pioaddr, quirks); 971 972 /* Check that selected MMIO registers match the PIO ones */ 973 i = 0; 974 while (mmio_verify_registers[i]) { 975 int reg = mmio_verify_registers[i++]; 976 unsigned char a = inb(pioaddr+reg); 977 unsigned char b = readb(ioaddr+reg); 978 if (a != b) { 979 rc = -EIO; 980 dev_err(&pdev->dev, 981 "MMIO do not match PIO [%02x] (%02x != %02x)\n", 982 reg, a, b); 983 goto err_out_unmap; 984 } 985 } 986 #endif /* USE_MMIO */ 987 988 rp->base = ioaddr; 989 990 /* Get chip registers into a sane state */ 991 rhine_power_init(dev); 992 rhine_hw_init(dev, pioaddr); 993 994 for (i = 0; i < 6; i++) 995 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); 996 997 if (!is_valid_ether_addr(dev->dev_addr)) { 998 /* Report it and use a random ethernet address instead */ 999 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); 1000 eth_hw_addr_random(dev); 1001 netdev_info(dev, "Using random MAC address: %pM\n", 1002 dev->dev_addr); 1003 } 1004 1005 /* For Rhine-I/II, phy_id is loaded from EEPROM */ 1006 if (!phy_id) 1007 phy_id = ioread8(ioaddr + 0x6C); 1008 1009 spin_lock_init(&rp->lock); 1010 mutex_init(&rp->task_lock); 1011 INIT_WORK(&rp->reset_task, rhine_reset_task); 1012 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); 1013 1014 rp->mii_if.dev = dev; 1015 rp->mii_if.mdio_read = mdio_read; 1016 rp->mii_if.mdio_write = mdio_write; 1017 rp->mii_if.phy_id_mask = 0x1f; 1018 rp->mii_if.reg_num_mask = 0x1f; 1019 1020 /* The chip-specific entries in the device structure. */ 1021 dev->netdev_ops = &rhine_netdev_ops; 1022 dev->ethtool_ops = &netdev_ethtool_ops, 1023 dev->watchdog_timeo = TX_TIMEOUT; 1024 1025 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); 1026 1027 if (rp->quirks & rqRhineI) 1028 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; 1029 1030 if (pdev->revision >= VT6105M) 1031 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1032 NETIF_F_HW_VLAN_CTAG_RX | 1033 NETIF_F_HW_VLAN_CTAG_FILTER; 1034 1035 /* dev->name not defined before register_netdev()! */ 1036 rc = register_netdev(dev); 1037 if (rc) 1038 goto err_out_unmap; 1039 1040 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", 1041 name, 1042 #ifdef USE_MMIO 1043 memaddr, 1044 #else 1045 (long)ioaddr, 1046 #endif 1047 dev->dev_addr, pdev->irq); 1048 1049 pci_set_drvdata(pdev, dev); 1050 1051 { 1052 u16 mii_cmd; 1053 int mii_status = mdio_read(dev, phy_id, 1); 1054 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; 1055 mdio_write(dev, phy_id, MII_BMCR, mii_cmd); 1056 if (mii_status != 0xffff && mii_status != 0x0000) { 1057 rp->mii_if.advertising = mdio_read(dev, phy_id, 4); 1058 netdev_info(dev, 1059 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", 1060 phy_id, 1061 mii_status, rp->mii_if.advertising, 1062 mdio_read(dev, phy_id, 5)); 1063 1064 /* set IFF_RUNNING */ 1065 if (mii_status & BMSR_LSTATUS) 1066 netif_carrier_on(dev); 1067 else 1068 netif_carrier_off(dev); 1069 1070 } 1071 } 1072 rp->mii_if.phy_id = phy_id; 1073 if (avoid_D3) 1074 netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); 1075 1076 return 0; 1077 1078 err_out_unmap: 1079 pci_iounmap(pdev, ioaddr); 1080 err_out_free_res: 1081 pci_release_regions(pdev); 1082 err_out_free_netdev: 1083 free_netdev(dev); 1084 err_out: 1085 return rc; 1086 } 1087 1088 static int alloc_ring(struct net_device* dev) 1089 { 1090 struct rhine_private *rp = netdev_priv(dev); 1091 void *ring; 1092 dma_addr_t ring_dma; 1093 1094 ring = pci_alloc_consistent(rp->pdev, 1095 RX_RING_SIZE * sizeof(struct rx_desc) + 1096 TX_RING_SIZE * sizeof(struct tx_desc), 1097 &ring_dma); 1098 if (!ring) { 1099 netdev_err(dev, "Could not allocate DMA memory\n"); 1100 return -ENOMEM; 1101 } 1102 if (rp->quirks & rqRhineI) { 1103 rp->tx_bufs = pci_alloc_consistent(rp->pdev, 1104 PKT_BUF_SZ * TX_RING_SIZE, 1105 &rp->tx_bufs_dma); 1106 if (rp->tx_bufs == NULL) { 1107 pci_free_consistent(rp->pdev, 1108 RX_RING_SIZE * sizeof(struct rx_desc) + 1109 TX_RING_SIZE * sizeof(struct tx_desc), 1110 ring, ring_dma); 1111 return -ENOMEM; 1112 } 1113 } 1114 1115 rp->rx_ring = ring; 1116 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); 1117 rp->rx_ring_dma = ring_dma; 1118 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); 1119 1120 return 0; 1121 } 1122 1123 static void free_ring(struct net_device* dev) 1124 { 1125 struct rhine_private *rp = netdev_priv(dev); 1126 1127 pci_free_consistent(rp->pdev, 1128 RX_RING_SIZE * sizeof(struct rx_desc) + 1129 TX_RING_SIZE * sizeof(struct tx_desc), 1130 rp->rx_ring, rp->rx_ring_dma); 1131 rp->tx_ring = NULL; 1132 1133 if (rp->tx_bufs) 1134 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE, 1135 rp->tx_bufs, rp->tx_bufs_dma); 1136 1137 rp->tx_bufs = NULL; 1138 1139 } 1140 1141 static void alloc_rbufs(struct net_device *dev) 1142 { 1143 struct rhine_private *rp = netdev_priv(dev); 1144 dma_addr_t next; 1145 int i; 1146 1147 rp->dirty_rx = rp->cur_rx = 0; 1148 1149 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1150 rp->rx_head_desc = &rp->rx_ring[0]; 1151 next = rp->rx_ring_dma; 1152 1153 /* Init the ring entries */ 1154 for (i = 0; i < RX_RING_SIZE; i++) { 1155 rp->rx_ring[i].rx_status = 0; 1156 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); 1157 next += sizeof(struct rx_desc); 1158 rp->rx_ring[i].next_desc = cpu_to_le32(next); 1159 rp->rx_skbuff[i] = NULL; 1160 } 1161 /* Mark the last entry as wrapping the ring. */ 1162 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); 1163 1164 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1165 for (i = 0; i < RX_RING_SIZE; i++) { 1166 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1167 rp->rx_skbuff[i] = skb; 1168 if (skb == NULL) 1169 break; 1170 1171 rp->rx_skbuff_dma[i] = 1172 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz, 1173 PCI_DMA_FROMDEVICE); 1174 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) { 1175 rp->rx_skbuff_dma[i] = 0; 1176 dev_kfree_skb(skb); 1177 break; 1178 } 1179 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]); 1180 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); 1181 } 1182 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1183 } 1184 1185 static void free_rbufs(struct net_device* dev) 1186 { 1187 struct rhine_private *rp = netdev_priv(dev); 1188 int i; 1189 1190 /* Free all the skbuffs in the Rx queue. */ 1191 for (i = 0; i < RX_RING_SIZE; i++) { 1192 rp->rx_ring[i].rx_status = 0; 1193 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1194 if (rp->rx_skbuff[i]) { 1195 pci_unmap_single(rp->pdev, 1196 rp->rx_skbuff_dma[i], 1197 rp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1198 dev_kfree_skb(rp->rx_skbuff[i]); 1199 } 1200 rp->rx_skbuff[i] = NULL; 1201 } 1202 } 1203 1204 static void alloc_tbufs(struct net_device* dev) 1205 { 1206 struct rhine_private *rp = netdev_priv(dev); 1207 dma_addr_t next; 1208 int i; 1209 1210 rp->dirty_tx = rp->cur_tx = 0; 1211 next = rp->tx_ring_dma; 1212 for (i = 0; i < TX_RING_SIZE; i++) { 1213 rp->tx_skbuff[i] = NULL; 1214 rp->tx_ring[i].tx_status = 0; 1215 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1216 next += sizeof(struct tx_desc); 1217 rp->tx_ring[i].next_desc = cpu_to_le32(next); 1218 if (rp->quirks & rqRhineI) 1219 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; 1220 } 1221 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); 1222 1223 } 1224 1225 static void free_tbufs(struct net_device* dev) 1226 { 1227 struct rhine_private *rp = netdev_priv(dev); 1228 int i; 1229 1230 for (i = 0; i < TX_RING_SIZE; i++) { 1231 rp->tx_ring[i].tx_status = 0; 1232 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); 1233 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1234 if (rp->tx_skbuff[i]) { 1235 if (rp->tx_skbuff_dma[i]) { 1236 pci_unmap_single(rp->pdev, 1237 rp->tx_skbuff_dma[i], 1238 rp->tx_skbuff[i]->len, 1239 PCI_DMA_TODEVICE); 1240 } 1241 dev_kfree_skb(rp->tx_skbuff[i]); 1242 } 1243 rp->tx_skbuff[i] = NULL; 1244 rp->tx_buf[i] = NULL; 1245 } 1246 } 1247 1248 static void rhine_check_media(struct net_device *dev, unsigned int init_media) 1249 { 1250 struct rhine_private *rp = netdev_priv(dev); 1251 void __iomem *ioaddr = rp->base; 1252 1253 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); 1254 1255 if (rp->mii_if.full_duplex) 1256 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, 1257 ioaddr + ChipCmd1); 1258 else 1259 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, 1260 ioaddr + ChipCmd1); 1261 1262 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1263 rp->mii_if.force_media, netif_carrier_ok(dev)); 1264 } 1265 1266 /* Called after status of force_media possibly changed */ 1267 static void rhine_set_carrier(struct mii_if_info *mii) 1268 { 1269 struct net_device *dev = mii->dev; 1270 struct rhine_private *rp = netdev_priv(dev); 1271 1272 if (mii->force_media) { 1273 /* autoneg is off: Link is always assumed to be up */ 1274 if (!netif_carrier_ok(dev)) 1275 netif_carrier_on(dev); 1276 } else /* Let MMI library update carrier status */ 1277 rhine_check_media(dev, 0); 1278 1279 netif_info(rp, link, dev, "force_media %d, carrier %d\n", 1280 mii->force_media, netif_carrier_ok(dev)); 1281 } 1282 1283 /** 1284 * rhine_set_cam - set CAM multicast filters 1285 * @ioaddr: register block of this Rhine 1286 * @idx: multicast CAM index [0..MCAM_SIZE-1] 1287 * @addr: multicast address (6 bytes) 1288 * 1289 * Load addresses into multicast filters. 1290 */ 1291 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) 1292 { 1293 int i; 1294 1295 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1296 wmb(); 1297 1298 /* Paranoid -- idx out of range should never happen */ 1299 idx &= (MCAM_SIZE - 1); 1300 1301 iowrite8((u8) idx, ioaddr + CamAddr); 1302 1303 for (i = 0; i < 6; i++, addr++) 1304 iowrite8(*addr, ioaddr + MulticastFilter0 + i); 1305 udelay(10); 1306 wmb(); 1307 1308 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1309 udelay(10); 1310 1311 iowrite8(0, ioaddr + CamCon); 1312 } 1313 1314 /** 1315 * rhine_set_vlan_cam - set CAM VLAN filters 1316 * @ioaddr: register block of this Rhine 1317 * @idx: VLAN CAM index [0..VCAM_SIZE-1] 1318 * @addr: VLAN ID (2 bytes) 1319 * 1320 * Load addresses into VLAN filters. 1321 */ 1322 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) 1323 { 1324 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1325 wmb(); 1326 1327 /* Paranoid -- idx out of range should never happen */ 1328 idx &= (VCAM_SIZE - 1); 1329 1330 iowrite8((u8) idx, ioaddr + CamAddr); 1331 1332 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); 1333 udelay(10); 1334 wmb(); 1335 1336 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); 1337 udelay(10); 1338 1339 iowrite8(0, ioaddr + CamCon); 1340 } 1341 1342 /** 1343 * rhine_set_cam_mask - set multicast CAM mask 1344 * @ioaddr: register block of this Rhine 1345 * @mask: multicast CAM mask 1346 * 1347 * Mask sets multicast filters active/inactive. 1348 */ 1349 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) 1350 { 1351 iowrite8(CAMC_CAMEN, ioaddr + CamCon); 1352 wmb(); 1353 1354 /* write mask */ 1355 iowrite32(mask, ioaddr + CamMask); 1356 1357 /* disable CAMEN */ 1358 iowrite8(0, ioaddr + CamCon); 1359 } 1360 1361 /** 1362 * rhine_set_vlan_cam_mask - set VLAN CAM mask 1363 * @ioaddr: register block of this Rhine 1364 * @mask: VLAN CAM mask 1365 * 1366 * Mask sets VLAN filters active/inactive. 1367 */ 1368 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) 1369 { 1370 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); 1371 wmb(); 1372 1373 /* write mask */ 1374 iowrite32(mask, ioaddr + CamMask); 1375 1376 /* disable CAMEN */ 1377 iowrite8(0, ioaddr + CamCon); 1378 } 1379 1380 /** 1381 * rhine_init_cam_filter - initialize CAM filters 1382 * @dev: network device 1383 * 1384 * Initialize (disable) hardware VLAN and multicast support on this 1385 * Rhine. 1386 */ 1387 static void rhine_init_cam_filter(struct net_device *dev) 1388 { 1389 struct rhine_private *rp = netdev_priv(dev); 1390 void __iomem *ioaddr = rp->base; 1391 1392 /* Disable all CAMs */ 1393 rhine_set_vlan_cam_mask(ioaddr, 0); 1394 rhine_set_cam_mask(ioaddr, 0); 1395 1396 /* disable hardware VLAN support */ 1397 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); 1398 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 1399 } 1400 1401 /** 1402 * rhine_update_vcam - update VLAN CAM filters 1403 * @rp: rhine_private data of this Rhine 1404 * 1405 * Update VLAN CAM filters to match configuration change. 1406 */ 1407 static void rhine_update_vcam(struct net_device *dev) 1408 { 1409 struct rhine_private *rp = netdev_priv(dev); 1410 void __iomem *ioaddr = rp->base; 1411 u16 vid; 1412 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */ 1413 unsigned int i = 0; 1414 1415 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { 1416 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); 1417 vCAMmask |= 1 << i; 1418 if (++i >= VCAM_SIZE) 1419 break; 1420 } 1421 rhine_set_vlan_cam_mask(ioaddr, vCAMmask); 1422 } 1423 1424 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1425 { 1426 struct rhine_private *rp = netdev_priv(dev); 1427 1428 spin_lock_bh(&rp->lock); 1429 set_bit(vid, rp->active_vlans); 1430 rhine_update_vcam(dev); 1431 spin_unlock_bh(&rp->lock); 1432 return 0; 1433 } 1434 1435 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1436 { 1437 struct rhine_private *rp = netdev_priv(dev); 1438 1439 spin_lock_bh(&rp->lock); 1440 clear_bit(vid, rp->active_vlans); 1441 rhine_update_vcam(dev); 1442 spin_unlock_bh(&rp->lock); 1443 return 0; 1444 } 1445 1446 static void init_registers(struct net_device *dev) 1447 { 1448 struct rhine_private *rp = netdev_priv(dev); 1449 void __iomem *ioaddr = rp->base; 1450 int i; 1451 1452 for (i = 0; i < 6; i++) 1453 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 1454 1455 /* Initialize other registers. */ 1456 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ 1457 /* Configure initial FIFO thresholds. */ 1458 iowrite8(0x20, ioaddr + TxConfig); 1459 rp->tx_thresh = 0x20; 1460 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */ 1461 1462 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); 1463 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); 1464 1465 rhine_set_rx_mode(dev); 1466 1467 if (rp->pdev->revision >= VT6105M) 1468 rhine_init_cam_filter(dev); 1469 1470 napi_enable(&rp->napi); 1471 1472 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); 1473 1474 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), 1475 ioaddr + ChipCmd); 1476 rhine_check_media(dev, 1); 1477 } 1478 1479 /* Enable MII link status auto-polling (required for IntrLinkChange) */ 1480 static void rhine_enable_linkmon(struct rhine_private *rp) 1481 { 1482 void __iomem *ioaddr = rp->base; 1483 1484 iowrite8(0, ioaddr + MIICmd); 1485 iowrite8(MII_BMSR, ioaddr + MIIRegAddr); 1486 iowrite8(0x80, ioaddr + MIICmd); 1487 1488 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1489 1490 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); 1491 } 1492 1493 /* Disable MII link status auto-polling (required for MDIO access) */ 1494 static void rhine_disable_linkmon(struct rhine_private *rp) 1495 { 1496 void __iomem *ioaddr = rp->base; 1497 1498 iowrite8(0, ioaddr + MIICmd); 1499 1500 if (rp->quirks & rqRhineI) { 1501 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR 1502 1503 /* Can be called from ISR. Evil. */ 1504 mdelay(1); 1505 1506 /* 0x80 must be set immediately before turning it off */ 1507 iowrite8(0x80, ioaddr + MIICmd); 1508 1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x20); 1510 1511 /* Heh. Now clear 0x80 again. */ 1512 iowrite8(0, ioaddr + MIICmd); 1513 } 1514 else 1515 rhine_wait_bit_high(rp, MIIRegAddr, 0x80); 1516 } 1517 1518 /* Read and write over the MII Management Data I/O (MDIO) interface. */ 1519 1520 static int mdio_read(struct net_device *dev, int phy_id, int regnum) 1521 { 1522 struct rhine_private *rp = netdev_priv(dev); 1523 void __iomem *ioaddr = rp->base; 1524 int result; 1525 1526 rhine_disable_linkmon(rp); 1527 1528 /* rhine_disable_linkmon already cleared MIICmd */ 1529 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1530 iowrite8(regnum, ioaddr + MIIRegAddr); 1531 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */ 1532 rhine_wait_bit_low(rp, MIICmd, 0x40); 1533 result = ioread16(ioaddr + MIIData); 1534 1535 rhine_enable_linkmon(rp); 1536 return result; 1537 } 1538 1539 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) 1540 { 1541 struct rhine_private *rp = netdev_priv(dev); 1542 void __iomem *ioaddr = rp->base; 1543 1544 rhine_disable_linkmon(rp); 1545 1546 /* rhine_disable_linkmon already cleared MIICmd */ 1547 iowrite8(phy_id, ioaddr + MIIPhyAddr); 1548 iowrite8(regnum, ioaddr + MIIRegAddr); 1549 iowrite16(value, ioaddr + MIIData); 1550 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */ 1551 rhine_wait_bit_low(rp, MIICmd, 0x20); 1552 1553 rhine_enable_linkmon(rp); 1554 } 1555 1556 static void rhine_task_disable(struct rhine_private *rp) 1557 { 1558 mutex_lock(&rp->task_lock); 1559 rp->task_enable = false; 1560 mutex_unlock(&rp->task_lock); 1561 1562 cancel_work_sync(&rp->slow_event_task); 1563 cancel_work_sync(&rp->reset_task); 1564 } 1565 1566 static void rhine_task_enable(struct rhine_private *rp) 1567 { 1568 mutex_lock(&rp->task_lock); 1569 rp->task_enable = true; 1570 mutex_unlock(&rp->task_lock); 1571 } 1572 1573 static int rhine_open(struct net_device *dev) 1574 { 1575 struct rhine_private *rp = netdev_priv(dev); 1576 void __iomem *ioaddr = rp->base; 1577 int rc; 1578 1579 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name, 1580 dev); 1581 if (rc) 1582 return rc; 1583 1584 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq); 1585 1586 rc = alloc_ring(dev); 1587 if (rc) { 1588 free_irq(rp->pdev->irq, dev); 1589 return rc; 1590 } 1591 alloc_rbufs(dev); 1592 alloc_tbufs(dev); 1593 rhine_chip_reset(dev); 1594 rhine_task_enable(rp); 1595 init_registers(dev); 1596 1597 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", 1598 __func__, ioread16(ioaddr + ChipCmd), 1599 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1600 1601 netif_start_queue(dev); 1602 1603 return 0; 1604 } 1605 1606 static void rhine_reset_task(struct work_struct *work) 1607 { 1608 struct rhine_private *rp = container_of(work, struct rhine_private, 1609 reset_task); 1610 struct net_device *dev = rp->dev; 1611 1612 mutex_lock(&rp->task_lock); 1613 1614 if (!rp->task_enable) 1615 goto out_unlock; 1616 1617 napi_disable(&rp->napi); 1618 spin_lock_bh(&rp->lock); 1619 1620 /* clear all descriptors */ 1621 free_tbufs(dev); 1622 free_rbufs(dev); 1623 alloc_tbufs(dev); 1624 alloc_rbufs(dev); 1625 1626 /* Reinitialize the hardware. */ 1627 rhine_chip_reset(dev); 1628 init_registers(dev); 1629 1630 spin_unlock_bh(&rp->lock); 1631 1632 dev->trans_start = jiffies; /* prevent tx timeout */ 1633 dev->stats.tx_errors++; 1634 netif_wake_queue(dev); 1635 1636 out_unlock: 1637 mutex_unlock(&rp->task_lock); 1638 } 1639 1640 static void rhine_tx_timeout(struct net_device *dev) 1641 { 1642 struct rhine_private *rp = netdev_priv(dev); 1643 void __iomem *ioaddr = rp->base; 1644 1645 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", 1646 ioread16(ioaddr + IntrStatus), 1647 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); 1648 1649 schedule_work(&rp->reset_task); 1650 } 1651 1652 static netdev_tx_t rhine_start_tx(struct sk_buff *skb, 1653 struct net_device *dev) 1654 { 1655 struct rhine_private *rp = netdev_priv(dev); 1656 void __iomem *ioaddr = rp->base; 1657 unsigned entry; 1658 1659 /* Caution: the write order is important here, set the field 1660 with the "ownership" bits last. */ 1661 1662 /* Calculate the next Tx descriptor entry. */ 1663 entry = rp->cur_tx % TX_RING_SIZE; 1664 1665 if (skb_padto(skb, ETH_ZLEN)) 1666 return NETDEV_TX_OK; 1667 1668 rp->tx_skbuff[entry] = skb; 1669 1670 if ((rp->quirks & rqRhineI) && 1671 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { 1672 /* Must use alignment buffer. */ 1673 if (skb->len > PKT_BUF_SZ) { 1674 /* packet too long, drop it */ 1675 dev_kfree_skb(skb); 1676 rp->tx_skbuff[entry] = NULL; 1677 dev->stats.tx_dropped++; 1678 return NETDEV_TX_OK; 1679 } 1680 1681 /* Padding is not copied and so must be redone. */ 1682 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); 1683 if (skb->len < ETH_ZLEN) 1684 memset(rp->tx_buf[entry] + skb->len, 0, 1685 ETH_ZLEN - skb->len); 1686 rp->tx_skbuff_dma[entry] = 0; 1687 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + 1688 (rp->tx_buf[entry] - 1689 rp->tx_bufs)); 1690 } else { 1691 rp->tx_skbuff_dma[entry] = 1692 pci_map_single(rp->pdev, skb->data, skb->len, 1693 PCI_DMA_TODEVICE); 1694 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) { 1695 dev_kfree_skb(skb); 1696 rp->tx_skbuff_dma[entry] = 0; 1697 dev->stats.tx_dropped++; 1698 return NETDEV_TX_OK; 1699 } 1700 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); 1701 } 1702 1703 rp->tx_ring[entry].desc_length = 1704 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); 1705 1706 if (unlikely(vlan_tx_tag_present(skb))) { 1707 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16); 1708 /* request tagging */ 1709 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); 1710 } 1711 else 1712 rp->tx_ring[entry].tx_status = 0; 1713 1714 /* lock eth irq */ 1715 wmb(); 1716 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); 1717 wmb(); 1718 1719 rp->cur_tx++; 1720 1721 /* Non-x86 Todo: explicitly flush cache lines here. */ 1722 1723 if (vlan_tx_tag_present(skb)) 1724 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 1725 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 1726 1727 /* Wake the potentially-idle transmit channel */ 1728 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 1729 ioaddr + ChipCmd1); 1730 IOSYNC; 1731 1732 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN) 1733 netif_stop_queue(dev); 1734 1735 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", 1736 rp->cur_tx - 1, entry); 1737 1738 return NETDEV_TX_OK; 1739 } 1740 1741 static void rhine_irq_disable(struct rhine_private *rp) 1742 { 1743 iowrite16(0x0000, rp->base + IntrEnable); 1744 mmiowb(); 1745 } 1746 1747 /* The interrupt handler does all of the Rx thread work and cleans up 1748 after the Tx thread. */ 1749 static irqreturn_t rhine_interrupt(int irq, void *dev_instance) 1750 { 1751 struct net_device *dev = dev_instance; 1752 struct rhine_private *rp = netdev_priv(dev); 1753 u32 status; 1754 int handled = 0; 1755 1756 status = rhine_get_events(rp); 1757 1758 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); 1759 1760 if (status & RHINE_EVENT) { 1761 handled = 1; 1762 1763 rhine_irq_disable(rp); 1764 napi_schedule(&rp->napi); 1765 } 1766 1767 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { 1768 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", 1769 status); 1770 } 1771 1772 return IRQ_RETVAL(handled); 1773 } 1774 1775 /* This routine is logically part of the interrupt handler, but isolated 1776 for clarity. */ 1777 static void rhine_tx(struct net_device *dev) 1778 { 1779 struct rhine_private *rp = netdev_priv(dev); 1780 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE; 1781 1782 /* find and cleanup dirty tx descriptors */ 1783 while (rp->dirty_tx != rp->cur_tx) { 1784 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); 1785 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", 1786 entry, txstatus); 1787 if (txstatus & DescOwn) 1788 break; 1789 if (txstatus & 0x8000) { 1790 netif_dbg(rp, tx_done, dev, 1791 "Transmit error, Tx status %08x\n", txstatus); 1792 dev->stats.tx_errors++; 1793 if (txstatus & 0x0400) 1794 dev->stats.tx_carrier_errors++; 1795 if (txstatus & 0x0200) 1796 dev->stats.tx_window_errors++; 1797 if (txstatus & 0x0100) 1798 dev->stats.tx_aborted_errors++; 1799 if (txstatus & 0x0080) 1800 dev->stats.tx_heartbeat_errors++; 1801 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || 1802 (txstatus & 0x0800) || (txstatus & 0x1000)) { 1803 dev->stats.tx_fifo_errors++; 1804 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); 1805 break; /* Keep the skb - we try again */ 1806 } 1807 /* Transmitter restarted in 'abnormal' handler. */ 1808 } else { 1809 if (rp->quirks & rqRhineI) 1810 dev->stats.collisions += (txstatus >> 3) & 0x0F; 1811 else 1812 dev->stats.collisions += txstatus & 0x0F; 1813 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", 1814 (txstatus >> 3) & 0xF, txstatus & 0xF); 1815 1816 u64_stats_update_begin(&rp->tx_stats.syncp); 1817 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len; 1818 rp->tx_stats.packets++; 1819 u64_stats_update_end(&rp->tx_stats.syncp); 1820 } 1821 /* Free the original skb. */ 1822 if (rp->tx_skbuff_dma[entry]) { 1823 pci_unmap_single(rp->pdev, 1824 rp->tx_skbuff_dma[entry], 1825 rp->tx_skbuff[entry]->len, 1826 PCI_DMA_TODEVICE); 1827 } 1828 dev_kfree_skb(rp->tx_skbuff[entry]); 1829 rp->tx_skbuff[entry] = NULL; 1830 entry = (++rp->dirty_tx) % TX_RING_SIZE; 1831 } 1832 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4) 1833 netif_wake_queue(dev); 1834 } 1835 1836 /** 1837 * rhine_get_vlan_tci - extract TCI from Rx data buffer 1838 * @skb: pointer to sk_buff 1839 * @data_size: used data area of the buffer including CRC 1840 * 1841 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q 1842 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte 1843 * aligned following the CRC. 1844 */ 1845 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) 1846 { 1847 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; 1848 return be16_to_cpup((__be16 *)trailer); 1849 } 1850 1851 /* Process up to limit frames from receive ring */ 1852 static int rhine_rx(struct net_device *dev, int limit) 1853 { 1854 struct rhine_private *rp = netdev_priv(dev); 1855 int count; 1856 int entry = rp->cur_rx % RX_RING_SIZE; 1857 1858 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, 1859 entry, le32_to_cpu(rp->rx_head_desc->rx_status)); 1860 1861 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1862 for (count = 0; count < limit; ++count) { 1863 struct rx_desc *desc = rp->rx_head_desc; 1864 u32 desc_status = le32_to_cpu(desc->rx_status); 1865 u32 desc_length = le32_to_cpu(desc->desc_length); 1866 int data_size = desc_status >> 16; 1867 1868 if (desc_status & DescOwn) 1869 break; 1870 1871 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, 1872 desc_status); 1873 1874 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { 1875 if ((desc_status & RxWholePkt) != RxWholePkt) { 1876 netdev_warn(dev, 1877 "Oversized Ethernet frame spanned multiple buffers, " 1878 "entry %#x length %d status %08x!\n", 1879 entry, data_size, 1880 desc_status); 1881 netdev_warn(dev, 1882 "Oversized Ethernet frame %p vs %p\n", 1883 rp->rx_head_desc, 1884 &rp->rx_ring[entry]); 1885 dev->stats.rx_length_errors++; 1886 } else if (desc_status & RxErr) { 1887 /* There was a error. */ 1888 netif_dbg(rp, rx_err, dev, 1889 "%s() Rx error %08x\n", __func__, 1890 desc_status); 1891 dev->stats.rx_errors++; 1892 if (desc_status & 0x0030) 1893 dev->stats.rx_length_errors++; 1894 if (desc_status & 0x0048) 1895 dev->stats.rx_fifo_errors++; 1896 if (desc_status & 0x0004) 1897 dev->stats.rx_frame_errors++; 1898 if (desc_status & 0x0002) { 1899 /* this can also be updated outside the interrupt handler */ 1900 spin_lock(&rp->lock); 1901 dev->stats.rx_crc_errors++; 1902 spin_unlock(&rp->lock); 1903 } 1904 } 1905 } else { 1906 struct sk_buff *skb = NULL; 1907 /* Length should omit the CRC */ 1908 int pkt_len = data_size - 4; 1909 u16 vlan_tci = 0; 1910 1911 /* Check if the packet is long enough to accept without 1912 copying to a minimally-sized skbuff. */ 1913 if (pkt_len < rx_copybreak) 1914 skb = netdev_alloc_skb_ip_align(dev, pkt_len); 1915 if (skb) { 1916 pci_dma_sync_single_for_cpu(rp->pdev, 1917 rp->rx_skbuff_dma[entry], 1918 rp->rx_buf_sz, 1919 PCI_DMA_FROMDEVICE); 1920 1921 skb_copy_to_linear_data(skb, 1922 rp->rx_skbuff[entry]->data, 1923 pkt_len); 1924 skb_put(skb, pkt_len); 1925 pci_dma_sync_single_for_device(rp->pdev, 1926 rp->rx_skbuff_dma[entry], 1927 rp->rx_buf_sz, 1928 PCI_DMA_FROMDEVICE); 1929 } else { 1930 skb = rp->rx_skbuff[entry]; 1931 if (skb == NULL) { 1932 netdev_err(dev, "Inconsistent Rx descriptor chain\n"); 1933 break; 1934 } 1935 rp->rx_skbuff[entry] = NULL; 1936 skb_put(skb, pkt_len); 1937 pci_unmap_single(rp->pdev, 1938 rp->rx_skbuff_dma[entry], 1939 rp->rx_buf_sz, 1940 PCI_DMA_FROMDEVICE); 1941 } 1942 1943 if (unlikely(desc_length & DescTag)) 1944 vlan_tci = rhine_get_vlan_tci(skb, data_size); 1945 1946 skb->protocol = eth_type_trans(skb, dev); 1947 1948 if (unlikely(desc_length & DescTag)) 1949 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); 1950 netif_receive_skb(skb); 1951 1952 u64_stats_update_begin(&rp->rx_stats.syncp); 1953 rp->rx_stats.bytes += pkt_len; 1954 rp->rx_stats.packets++; 1955 u64_stats_update_end(&rp->rx_stats.syncp); 1956 } 1957 entry = (++rp->cur_rx) % RX_RING_SIZE; 1958 rp->rx_head_desc = &rp->rx_ring[entry]; 1959 } 1960 1961 /* Refill the Rx ring buffers. */ 1962 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) { 1963 struct sk_buff *skb; 1964 entry = rp->dirty_rx % RX_RING_SIZE; 1965 if (rp->rx_skbuff[entry] == NULL) { 1966 skb = netdev_alloc_skb(dev, rp->rx_buf_sz); 1967 rp->rx_skbuff[entry] = skb; 1968 if (skb == NULL) 1969 break; /* Better luck next round. */ 1970 rp->rx_skbuff_dma[entry] = 1971 pci_map_single(rp->pdev, skb->data, 1972 rp->rx_buf_sz, 1973 PCI_DMA_FROMDEVICE); 1974 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) { 1975 dev_kfree_skb(skb); 1976 rp->rx_skbuff_dma[entry] = 0; 1977 break; 1978 } 1979 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]); 1980 } 1981 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); 1982 } 1983 1984 return count; 1985 } 1986 1987 static void rhine_restart_tx(struct net_device *dev) { 1988 struct rhine_private *rp = netdev_priv(dev); 1989 void __iomem *ioaddr = rp->base; 1990 int entry = rp->dirty_tx % TX_RING_SIZE; 1991 u32 intr_status; 1992 1993 /* 1994 * If new errors occurred, we need to sort them out before doing Tx. 1995 * In that case the ISR will be back here RSN anyway. 1996 */ 1997 intr_status = rhine_get_events(rp); 1998 1999 if ((intr_status & IntrTxErrSummary) == 0) { 2000 2001 /* We know better than the chip where it should continue. */ 2002 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), 2003 ioaddr + TxRingPtr); 2004 2005 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, 2006 ioaddr + ChipCmd); 2007 2008 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) 2009 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */ 2010 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); 2011 2012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, 2013 ioaddr + ChipCmd1); 2014 IOSYNC; 2015 } 2016 else { 2017 /* This should never happen */ 2018 netif_warn(rp, tx_err, dev, "another error occurred %08x\n", 2019 intr_status); 2020 } 2021 2022 } 2023 2024 static void rhine_slow_event_task(struct work_struct *work) 2025 { 2026 struct rhine_private *rp = 2027 container_of(work, struct rhine_private, slow_event_task); 2028 struct net_device *dev = rp->dev; 2029 u32 intr_status; 2030 2031 mutex_lock(&rp->task_lock); 2032 2033 if (!rp->task_enable) 2034 goto out_unlock; 2035 2036 intr_status = rhine_get_events(rp); 2037 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); 2038 2039 if (intr_status & IntrLinkChange) 2040 rhine_check_media(dev, 0); 2041 2042 if (intr_status & IntrPCIErr) 2043 netif_warn(rp, hw, dev, "PCI error\n"); 2044 2045 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); 2046 2047 out_unlock: 2048 mutex_unlock(&rp->task_lock); 2049 } 2050 2051 static struct rtnl_link_stats64 * 2052 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 2053 { 2054 struct rhine_private *rp = netdev_priv(dev); 2055 unsigned int start; 2056 2057 spin_lock_bh(&rp->lock); 2058 rhine_update_rx_crc_and_missed_errord(rp); 2059 spin_unlock_bh(&rp->lock); 2060 2061 netdev_stats_to_stats64(stats, &dev->stats); 2062 2063 do { 2064 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp); 2065 stats->rx_packets = rp->rx_stats.packets; 2066 stats->rx_bytes = rp->rx_stats.bytes; 2067 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start)); 2068 2069 do { 2070 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp); 2071 stats->tx_packets = rp->tx_stats.packets; 2072 stats->tx_bytes = rp->tx_stats.bytes; 2073 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start)); 2074 2075 return stats; 2076 } 2077 2078 static void rhine_set_rx_mode(struct net_device *dev) 2079 { 2080 struct rhine_private *rp = netdev_priv(dev); 2081 void __iomem *ioaddr = rp->base; 2082 u32 mc_filter[2]; /* Multicast hash filter */ 2083 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */ 2084 struct netdev_hw_addr *ha; 2085 2086 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2087 rx_mode = 0x1C; 2088 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2089 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2090 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2091 (dev->flags & IFF_ALLMULTI)) { 2092 /* Too many to match, or accept all multicasts. */ 2093 iowrite32(0xffffffff, ioaddr + MulticastFilter0); 2094 iowrite32(0xffffffff, ioaddr + MulticastFilter1); 2095 } else if (rp->pdev->revision >= VT6105M) { 2096 int i = 0; 2097 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */ 2098 netdev_for_each_mc_addr(ha, dev) { 2099 if (i == MCAM_SIZE) 2100 break; 2101 rhine_set_cam(ioaddr, i, ha->addr); 2102 mCAMmask |= 1 << i; 2103 i++; 2104 } 2105 rhine_set_cam_mask(ioaddr, mCAMmask); 2106 } else { 2107 memset(mc_filter, 0, sizeof(mc_filter)); 2108 netdev_for_each_mc_addr(ha, dev) { 2109 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 2110 2111 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 2112 } 2113 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 2114 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 2115 } 2116 /* enable/disable VLAN receive filtering */ 2117 if (rp->pdev->revision >= VT6105M) { 2118 if (dev->flags & IFF_PROMISC) 2119 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2120 else 2121 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); 2122 } 2123 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); 2124 } 2125 2126 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2127 { 2128 struct rhine_private *rp = netdev_priv(dev); 2129 2130 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2131 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2132 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info)); 2133 } 2134 2135 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2136 { 2137 struct rhine_private *rp = netdev_priv(dev); 2138 int rc; 2139 2140 mutex_lock(&rp->task_lock); 2141 rc = mii_ethtool_gset(&rp->mii_if, cmd); 2142 mutex_unlock(&rp->task_lock); 2143 2144 return rc; 2145 } 2146 2147 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2148 { 2149 struct rhine_private *rp = netdev_priv(dev); 2150 int rc; 2151 2152 mutex_lock(&rp->task_lock); 2153 rc = mii_ethtool_sset(&rp->mii_if, cmd); 2154 rhine_set_carrier(&rp->mii_if); 2155 mutex_unlock(&rp->task_lock); 2156 2157 return rc; 2158 } 2159 2160 static int netdev_nway_reset(struct net_device *dev) 2161 { 2162 struct rhine_private *rp = netdev_priv(dev); 2163 2164 return mii_nway_restart(&rp->mii_if); 2165 } 2166 2167 static u32 netdev_get_link(struct net_device *dev) 2168 { 2169 struct rhine_private *rp = netdev_priv(dev); 2170 2171 return mii_link_ok(&rp->mii_if); 2172 } 2173 2174 static u32 netdev_get_msglevel(struct net_device *dev) 2175 { 2176 struct rhine_private *rp = netdev_priv(dev); 2177 2178 return rp->msg_enable; 2179 } 2180 2181 static void netdev_set_msglevel(struct net_device *dev, u32 value) 2182 { 2183 struct rhine_private *rp = netdev_priv(dev); 2184 2185 rp->msg_enable = value; 2186 } 2187 2188 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2189 { 2190 struct rhine_private *rp = netdev_priv(dev); 2191 2192 if (!(rp->quirks & rqWOL)) 2193 return; 2194 2195 spin_lock_irq(&rp->lock); 2196 wol->supported = WAKE_PHY | WAKE_MAGIC | 2197 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2198 wol->wolopts = rp->wolopts; 2199 spin_unlock_irq(&rp->lock); 2200 } 2201 2202 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2203 { 2204 struct rhine_private *rp = netdev_priv(dev); 2205 u32 support = WAKE_PHY | WAKE_MAGIC | 2206 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */ 2207 2208 if (!(rp->quirks & rqWOL)) 2209 return -EINVAL; 2210 2211 if (wol->wolopts & ~support) 2212 return -EINVAL; 2213 2214 spin_lock_irq(&rp->lock); 2215 rp->wolopts = wol->wolopts; 2216 spin_unlock_irq(&rp->lock); 2217 2218 return 0; 2219 } 2220 2221 static const struct ethtool_ops netdev_ethtool_ops = { 2222 .get_drvinfo = netdev_get_drvinfo, 2223 .get_settings = netdev_get_settings, 2224 .set_settings = netdev_set_settings, 2225 .nway_reset = netdev_nway_reset, 2226 .get_link = netdev_get_link, 2227 .get_msglevel = netdev_get_msglevel, 2228 .set_msglevel = netdev_set_msglevel, 2229 .get_wol = rhine_get_wol, 2230 .set_wol = rhine_set_wol, 2231 }; 2232 2233 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2234 { 2235 struct rhine_private *rp = netdev_priv(dev); 2236 int rc; 2237 2238 if (!netif_running(dev)) 2239 return -EINVAL; 2240 2241 mutex_lock(&rp->task_lock); 2242 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); 2243 rhine_set_carrier(&rp->mii_if); 2244 mutex_unlock(&rp->task_lock); 2245 2246 return rc; 2247 } 2248 2249 static int rhine_close(struct net_device *dev) 2250 { 2251 struct rhine_private *rp = netdev_priv(dev); 2252 void __iomem *ioaddr = rp->base; 2253 2254 rhine_task_disable(rp); 2255 napi_disable(&rp->napi); 2256 netif_stop_queue(dev); 2257 2258 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", 2259 ioread16(ioaddr + ChipCmd)); 2260 2261 /* Switch to loopback mode to avoid hardware races. */ 2262 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); 2263 2264 rhine_irq_disable(rp); 2265 2266 /* Stop the chip's Tx and Rx processes. */ 2267 iowrite16(CmdStop, ioaddr + ChipCmd); 2268 2269 free_irq(rp->pdev->irq, dev); 2270 free_rbufs(dev); 2271 free_tbufs(dev); 2272 free_ring(dev); 2273 2274 return 0; 2275 } 2276 2277 2278 static void rhine_remove_one(struct pci_dev *pdev) 2279 { 2280 struct net_device *dev = pci_get_drvdata(pdev); 2281 struct rhine_private *rp = netdev_priv(dev); 2282 2283 unregister_netdev(dev); 2284 2285 pci_iounmap(pdev, rp->base); 2286 pci_release_regions(pdev); 2287 2288 free_netdev(dev); 2289 pci_disable_device(pdev); 2290 pci_set_drvdata(pdev, NULL); 2291 } 2292 2293 static void rhine_shutdown (struct pci_dev *pdev) 2294 { 2295 struct net_device *dev = pci_get_drvdata(pdev); 2296 struct rhine_private *rp = netdev_priv(dev); 2297 void __iomem *ioaddr = rp->base; 2298 2299 if (!(rp->quirks & rqWOL)) 2300 return; /* Nothing to do for non-WOL adapters */ 2301 2302 rhine_power_init(dev); 2303 2304 /* Make sure we use pattern 0, 1 and not 4, 5 */ 2305 if (rp->quirks & rq6patterns) 2306 iowrite8(0x04, ioaddr + WOLcgClr); 2307 2308 spin_lock(&rp->lock); 2309 2310 if (rp->wolopts & WAKE_MAGIC) { 2311 iowrite8(WOLmagic, ioaddr + WOLcrSet); 2312 /* 2313 * Turn EEPROM-controlled wake-up back on -- some hardware may 2314 * not cooperate otherwise. 2315 */ 2316 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); 2317 } 2318 2319 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) 2320 iowrite8(WOLbmcast, ioaddr + WOLcgSet); 2321 2322 if (rp->wolopts & WAKE_PHY) 2323 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); 2324 2325 if (rp->wolopts & WAKE_UCAST) 2326 iowrite8(WOLucast, ioaddr + WOLcrSet); 2327 2328 if (rp->wolopts) { 2329 /* Enable legacy WOL (for old motherboards) */ 2330 iowrite8(0x01, ioaddr + PwcfgSet); 2331 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); 2332 } 2333 2334 spin_unlock(&rp->lock); 2335 2336 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { 2337 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); 2338 2339 pci_wake_from_d3(pdev, true); 2340 pci_set_power_state(pdev, PCI_D3hot); 2341 } 2342 } 2343 2344 #ifdef CONFIG_PM_SLEEP 2345 static int rhine_suspend(struct device *device) 2346 { 2347 struct pci_dev *pdev = to_pci_dev(device); 2348 struct net_device *dev = pci_get_drvdata(pdev); 2349 struct rhine_private *rp = netdev_priv(dev); 2350 2351 if (!netif_running(dev)) 2352 return 0; 2353 2354 rhine_task_disable(rp); 2355 rhine_irq_disable(rp); 2356 napi_disable(&rp->napi); 2357 2358 netif_device_detach(dev); 2359 2360 rhine_shutdown(pdev); 2361 2362 return 0; 2363 } 2364 2365 static int rhine_resume(struct device *device) 2366 { 2367 struct pci_dev *pdev = to_pci_dev(device); 2368 struct net_device *dev = pci_get_drvdata(pdev); 2369 struct rhine_private *rp = netdev_priv(dev); 2370 2371 if (!netif_running(dev)) 2372 return 0; 2373 2374 #ifdef USE_MMIO 2375 enable_mmio(rp->pioaddr, rp->quirks); 2376 #endif 2377 rhine_power_init(dev); 2378 free_tbufs(dev); 2379 free_rbufs(dev); 2380 alloc_tbufs(dev); 2381 alloc_rbufs(dev); 2382 rhine_task_enable(rp); 2383 spin_lock_bh(&rp->lock); 2384 init_registers(dev); 2385 spin_unlock_bh(&rp->lock); 2386 2387 netif_device_attach(dev); 2388 2389 return 0; 2390 } 2391 2392 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); 2393 #define RHINE_PM_OPS (&rhine_pm_ops) 2394 2395 #else 2396 2397 #define RHINE_PM_OPS NULL 2398 2399 #endif /* !CONFIG_PM_SLEEP */ 2400 2401 static struct pci_driver rhine_driver = { 2402 .name = DRV_NAME, 2403 .id_table = rhine_pci_tbl, 2404 .probe = rhine_init_one, 2405 .remove = rhine_remove_one, 2406 .shutdown = rhine_shutdown, 2407 .driver.pm = RHINE_PM_OPS, 2408 }; 2409 2410 static struct dmi_system_id rhine_dmi_table[] __initdata = { 2411 { 2412 .ident = "EPIA-M", 2413 .matches = { 2414 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), 2415 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2416 }, 2417 }, 2418 { 2419 .ident = "KV7", 2420 .matches = { 2421 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), 2422 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), 2423 }, 2424 }, 2425 { NULL } 2426 }; 2427 2428 static int __init rhine_init(void) 2429 { 2430 /* when a module, this is printed whether or not devices are found in probe */ 2431 #ifdef MODULE 2432 pr_info("%s\n", version); 2433 #endif 2434 if (dmi_check_system(rhine_dmi_table)) { 2435 /* these BIOSes fail at PXE boot if chip is in D3 */ 2436 avoid_D3 = true; 2437 pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); 2438 } 2439 else if (avoid_D3) 2440 pr_info("avoid_D3 set\n"); 2441 2442 return pci_register_driver(&rhine_driver); 2443 } 2444 2445 2446 static void __exit rhine_cleanup(void) 2447 { 2448 pci_unregister_driver(&rhine_driver); 2449 } 2450 2451 2452 module_init(rhine_init); 2453 module_exit(rhine_cleanup); 2454