1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 
4   Copyright(c) 2006 Tundra Semiconductor Corporation.
5 
6 
7 *******************************************************************************/
8 
9 /* This driver is based on the driver code originally developed
10  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12  *
13  * Currently changes from original version are:
14  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15  * - modifications to handle two ports independently and support for
16  *   additional PHY devices (alexandre.bounine@tundra.com)
17  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
39 
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
42 
43 #include "tsi108_eth.h"
44 
45 #define MII_READ_DELAY 10000	/* max link wait time in msec */
46 
47 #define TSI108_RXRING_LEN     256
48 
49 /* NOTE: The driver currently does not support receiving packets
50  * larger than the buffer size, so don't decrease this (unless you
51  * want to add such support).
52  */
53 #define TSI108_RXBUF_SIZE     1536
54 
55 #define TSI108_TXRING_LEN     256
56 
57 #define TSI108_TX_INT_FREQ    64
58 
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
61 
62 struct tsi108_prv_data {
63 	void  __iomem *regs;	/* Base of normal regs */
64 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
65 
66 	struct net_device *dev;
67 	struct napi_struct napi;
68 
69 	unsigned int phy;		/* Index of PHY for this interface */
70 	unsigned int irq_num;
71 	unsigned int id;
72 	unsigned int phy_type;
73 
74 	struct timer_list timer;/* Timer that triggers the check phy function */
75 	unsigned int rxtail;	/* Next entry in rxring to read */
76 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
77 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
78 
79 	unsigned int rxpending;	/* Non-zero if there are still descriptors
80 				 * to be processed from a previous descriptor
81 				 * interrupt condition that has been cleared */
82 
83 	unsigned int txtail;	/* Next TX descriptor to check status on */
84 	unsigned int txhead;	/* Next TX descriptor to use */
85 
86 	/* Number of free TX descriptors.  This could be calculated from
87 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
88 	 * full and empty conditions, but it's simpler to just keep track
89 	 * explicitly. */
90 
91 	unsigned int txfree;
92 
93 	unsigned int phy_ok;		/* The PHY is currently powered on. */
94 
95 	/* PHY status (duplex is 1 for half, 2 for full,
96 	 * so that the default 0 indicates that neither has
97 	 * yet been configured). */
98 
99 	unsigned int link_up;
100 	unsigned int speed;
101 	unsigned int duplex;
102 
103 	tx_desc *txring;
104 	rx_desc *rxring;
105 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
106 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
107 
108 	dma_addr_t txdma, rxdma;
109 
110 	/* txlock nests in misclock and phy_lock */
111 
112 	spinlock_t txlock, misclock;
113 
114 	/* stats is used to hold the upper bits of each hardware counter,
115 	 * and tmpstats is used to hold the full values for returning
116 	 * to the caller of get_stats().  They must be separate in case
117 	 * an overflow interrupt occurs before the stats are consumed.
118 	 */
119 
120 	struct net_device_stats stats;
121 	struct net_device_stats tmpstats;
122 
123 	/* These stats are kept separate in hardware, thus require individual
124 	 * fields for handling carry.  They are combined in get_stats.
125 	 */
126 
127 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
128 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
129 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
130 	unsigned long rx_underruns;	/* Add to rx_length_errors */
131 	unsigned long rx_overruns;	/* Add to rx_length_errors */
132 
133 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
134 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
135 
136 	unsigned long mc_hash[16];
137 	u32 msg_enable;			/* debug message level */
138 	struct mii_if_info mii_if;
139 	unsigned int init_media;
140 
141 	struct platform_device *pdev;
142 };
143 
144 static void tsi108_timed_checker(struct timer_list *t);
145 
146 #ifdef DEBUG
147 static void dump_eth_one(struct net_device *dev)
148 {
149 	struct tsi108_prv_data *data = netdev_priv(dev);
150 
151 	printk("Dumping %s...\n", dev->name);
152 	printk("intstat %x intmask %x phy_ok %d"
153 	       " link %d speed %d duplex %d\n",
154 	       TSI_READ(TSI108_EC_INTSTAT),
155 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
156 	       data->link_up, data->speed, data->duplex);
157 
158 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
159 	       data->txhead, data->txtail, data->txfree,
160 	       TSI_READ(TSI108_EC_TXSTAT),
161 	       TSI_READ(TSI108_EC_TXESTAT),
162 	       TSI_READ(TSI108_EC_TXERR));
163 
164 	printk("RX: head %d, tail %d, free %d, stat %x,"
165 	       " estat %x, err %x, pending %d\n\n",
166 	       data->rxhead, data->rxtail, data->rxfree,
167 	       TSI_READ(TSI108_EC_RXSTAT),
168 	       TSI_READ(TSI108_EC_RXESTAT),
169 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
170 }
171 #endif
172 
173 /* Synchronization is needed between the thread and up/down events.
174  * Note that the PHY is accessed through the same registers for both
175  * interfaces, so this can't be made interface-specific.
176  */
177 
178 static DEFINE_SPINLOCK(phy_lock);
179 
180 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
181 {
182 	unsigned i;
183 
184 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
185 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
186 				(reg << TSI108_MAC_MII_ADDR_REG));
187 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
188 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
189 	for (i = 0; i < 100; i++) {
190 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
191 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
192 			break;
193 		udelay(10);
194 	}
195 
196 	if (i == 100)
197 		return 0xffff;
198 	else
199 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
200 }
201 
202 static void tsi108_write_mii(struct tsi108_prv_data *data,
203 				int reg, u16 val)
204 {
205 	unsigned i = 100;
206 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
208 				(reg << TSI108_MAC_MII_ADDR_REG));
209 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
210 	while (i--) {
211 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 			TSI108_MAC_MII_IND_BUSY))
213 			break;
214 		udelay(10);
215 	}
216 }
217 
218 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
219 {
220 	struct tsi108_prv_data *data = netdev_priv(dev);
221 	return tsi108_read_mii(data, reg);
222 }
223 
224 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
225 {
226 	struct tsi108_prv_data *data = netdev_priv(dev);
227 	tsi108_write_mii(data, reg, val);
228 }
229 
230 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
231 					int reg, u16 val)
232 {
233 	unsigned i = 1000;
234 	TSI_WRITE(TSI108_MAC_MII_ADDR,
235 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
236 			     | (reg << TSI108_MAC_MII_ADDR_REG));
237 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
238 	while(i--) {
239 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
240 			return;
241 		udelay(10);
242 	}
243 	printk(KERN_ERR "%s function time out\n", __func__);
244 }
245 
246 static int mii_speed(struct mii_if_info *mii)
247 {
248 	int advert, lpa, val, media;
249 	int lpa2 = 0;
250 	int speed;
251 
252 	if (!mii_link_ok(mii))
253 		return 0;
254 
255 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
256 	if ((val & BMSR_ANEGCOMPLETE) == 0)
257 		return 0;
258 
259 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
260 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
261 	media = mii_nway_result(advert & lpa);
262 
263 	if (mii->supports_gmii)
264 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
265 
266 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
267 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
268 	return speed;
269 }
270 
271 static void tsi108_check_phy(struct net_device *dev)
272 {
273 	struct tsi108_prv_data *data = netdev_priv(dev);
274 	u32 mac_cfg2_reg, portctrl_reg;
275 	u32 duplex;
276 	u32 speed;
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&phy_lock, flags);
280 
281 	if (!data->phy_ok)
282 		goto out;
283 
284 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
285 	data->init_media = 0;
286 
287 	if (netif_carrier_ok(dev)) {
288 
289 		speed = mii_speed(&data->mii_if);
290 
291 		if ((speed != data->speed) || duplex) {
292 
293 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
294 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
295 
296 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
297 
298 			if (speed == 1000) {
299 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
300 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
301 			} else {
302 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
303 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
304 			}
305 
306 			data->speed = speed;
307 
308 			if (data->mii_if.full_duplex) {
309 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
310 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
311 				data->duplex = 2;
312 			} else {
313 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
314 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
315 				data->duplex = 1;
316 			}
317 
318 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
319 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
320 		}
321 
322 		if (data->link_up == 0) {
323 			/* The manual says it can take 3-4 usecs for the speed change
324 			 * to take effect.
325 			 */
326 			udelay(5);
327 
328 			spin_lock(&data->txlock);
329 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
330 				netif_wake_queue(dev);
331 
332 			data->link_up = 1;
333 			spin_unlock(&data->txlock);
334 		}
335 	} else {
336 		if (data->link_up == 1) {
337 			netif_stop_queue(dev);
338 			data->link_up = 0;
339 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
340 		}
341 
342 		goto out;
343 	}
344 
345 
346 out:
347 	spin_unlock_irqrestore(&phy_lock, flags);
348 }
349 
350 static inline void
351 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
352 		      unsigned long *upper)
353 {
354 	if (carry & carry_bit)
355 		*upper += carry_shift;
356 }
357 
358 static void tsi108_stat_carry(struct net_device *dev)
359 {
360 	struct tsi108_prv_data *data = netdev_priv(dev);
361 	unsigned long flags;
362 	u32 carry1, carry2;
363 
364 	spin_lock_irqsave(&data->misclock, flags);
365 
366 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
367 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
368 
369 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
370 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
371 
372 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
373 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
374 
375 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
376 			      TSI108_STAT_RXPKTS_CARRY,
377 			      &data->stats.rx_packets);
378 
379 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
380 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
381 
382 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
383 			      TSI108_STAT_RXMCAST_CARRY,
384 			      &data->stats.multicast);
385 
386 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
387 			      TSI108_STAT_RXALIGN_CARRY,
388 			      &data->stats.rx_frame_errors);
389 
390 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
391 			      TSI108_STAT_RXLENGTH_CARRY,
392 			      &data->stats.rx_length_errors);
393 
394 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
395 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
396 
397 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
398 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
399 
400 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
401 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
402 
403 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
404 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
405 
406 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
407 			      TSI108_STAT_RXDROP_CARRY,
408 			      &data->stats.rx_missed_errors);
409 
410 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
411 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
412 
413 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
414 			      TSI108_STAT_TXPKTS_CARRY,
415 			      &data->stats.tx_packets);
416 
417 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
418 			      TSI108_STAT_TXEXDEF_CARRY,
419 			      &data->stats.tx_aborted_errors);
420 
421 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
422 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
423 
424 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
425 			      TSI108_STAT_TXTCOL_CARRY,
426 			      &data->stats.collisions);
427 
428 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
429 			      TSI108_STAT_TXPAUSEDROP_CARRY,
430 			      &data->tx_pause_drop);
431 
432 	spin_unlock_irqrestore(&data->misclock, flags);
433 }
434 
435 /* Read a stat counter atomically with respect to carries.
436  * data->misclock must be held.
437  */
438 static inline unsigned long
439 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
440 		 int carry_shift, unsigned long *upper)
441 {
442 	int carryreg;
443 	unsigned long val;
444 
445 	if (reg < 0xb0)
446 		carryreg = TSI108_STAT_CARRY1;
447 	else
448 		carryreg = TSI108_STAT_CARRY2;
449 
450       again:
451 	val = TSI_READ(reg) | *upper;
452 
453 	/* Check to see if it overflowed, but the interrupt hasn't
454 	 * been serviced yet.  If so, handle the carry here, and
455 	 * try again.
456 	 */
457 
458 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
459 		*upper += carry_shift;
460 		TSI_WRITE(carryreg, carry_bit);
461 		goto again;
462 	}
463 
464 	return val;
465 }
466 
467 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
468 {
469 	unsigned long excol;
470 
471 	struct tsi108_prv_data *data = netdev_priv(dev);
472 	spin_lock_irq(&data->misclock);
473 
474 	data->tmpstats.rx_packets =
475 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
476 			     TSI108_STAT_CARRY1_RXPKTS,
477 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
478 
479 	data->tmpstats.tx_packets =
480 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
481 			     TSI108_STAT_CARRY2_TXPKTS,
482 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
483 
484 	data->tmpstats.rx_bytes =
485 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
486 			     TSI108_STAT_CARRY1_RXBYTES,
487 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
488 
489 	data->tmpstats.tx_bytes =
490 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
491 			     TSI108_STAT_CARRY2_TXBYTES,
492 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
493 
494 	data->tmpstats.multicast =
495 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
496 			     TSI108_STAT_CARRY1_RXMCAST,
497 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
498 
499 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
500 				 TSI108_STAT_CARRY2_TXEXCOL,
501 				 TSI108_STAT_TXEXCOL_CARRY,
502 				 &data->tx_coll_abort);
503 
504 	data->tmpstats.collisions =
505 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
506 			     TSI108_STAT_CARRY2_TXTCOL,
507 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
508 
509 	data->tmpstats.collisions += excol;
510 
511 	data->tmpstats.rx_length_errors =
512 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
513 			     TSI108_STAT_CARRY1_RXLENGTH,
514 			     TSI108_STAT_RXLENGTH_CARRY,
515 			     &data->stats.rx_length_errors);
516 
517 	data->tmpstats.rx_length_errors +=
518 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
519 			     TSI108_STAT_CARRY1_RXRUNT,
520 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
521 
522 	data->tmpstats.rx_length_errors +=
523 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
524 			     TSI108_STAT_CARRY1_RXJUMBO,
525 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
526 
527 	data->tmpstats.rx_frame_errors =
528 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
529 			     TSI108_STAT_CARRY1_RXALIGN,
530 			     TSI108_STAT_RXALIGN_CARRY,
531 			     &data->stats.rx_frame_errors);
532 
533 	data->tmpstats.rx_frame_errors +=
534 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
535 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
536 			     &data->rx_fcs);
537 
538 	data->tmpstats.rx_frame_errors +=
539 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
540 			     TSI108_STAT_CARRY1_RXFRAG,
541 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
542 
543 	data->tmpstats.rx_missed_errors =
544 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
545 			     TSI108_STAT_CARRY1_RXDROP,
546 			     TSI108_STAT_RXDROP_CARRY,
547 			     &data->stats.rx_missed_errors);
548 
549 	/* These three are maintained by software. */
550 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
551 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
552 
553 	data->tmpstats.tx_aborted_errors =
554 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
555 			     TSI108_STAT_CARRY2_TXEXDEF,
556 			     TSI108_STAT_TXEXDEF_CARRY,
557 			     &data->stats.tx_aborted_errors);
558 
559 	data->tmpstats.tx_aborted_errors +=
560 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
561 			     TSI108_STAT_CARRY2_TXPAUSE,
562 			     TSI108_STAT_TXPAUSEDROP_CARRY,
563 			     &data->tx_pause_drop);
564 
565 	data->tmpstats.tx_aborted_errors += excol;
566 
567 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
568 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
569 	    data->tmpstats.rx_crc_errors +
570 	    data->tmpstats.rx_frame_errors +
571 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
572 
573 	spin_unlock_irq(&data->misclock);
574 	return &data->tmpstats;
575 }
576 
577 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
578 {
579 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
580 			     TSI108_EC_RXQ_PTRHIGH_VALID);
581 
582 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
583 			     | TSI108_EC_RXCTRL_QUEUE0);
584 }
585 
586 static void tsi108_restart_tx(struct tsi108_prv_data * data)
587 {
588 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
589 			     TSI108_EC_TXQ_PTRHIGH_VALID);
590 
591 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
592 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
593 }
594 
595 /* txlock must be held by caller, with IRQs disabled, and
596  * with permission to re-enable them when the lock is dropped.
597  */
598 static void tsi108_complete_tx(struct net_device *dev)
599 {
600 	struct tsi108_prv_data *data = netdev_priv(dev);
601 	int tx;
602 	struct sk_buff *skb;
603 	int release = 0;
604 
605 	while (!data->txfree || data->txhead != data->txtail) {
606 		tx = data->txtail;
607 
608 		if (data->txring[tx].misc & TSI108_TX_OWN)
609 			break;
610 
611 		skb = data->txskbs[tx];
612 
613 		if (!(data->txring[tx].misc & TSI108_TX_OK))
614 			printk("%s: bad tx packet, misc %x\n",
615 			       dev->name, data->txring[tx].misc);
616 
617 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
618 		data->txfree++;
619 
620 		if (data->txring[tx].misc & TSI108_TX_EOF) {
621 			dev_kfree_skb_any(skb);
622 			release++;
623 		}
624 	}
625 
626 	if (release) {
627 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
628 			netif_wake_queue(dev);
629 	}
630 }
631 
632 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
633 {
634 	struct tsi108_prv_data *data = netdev_priv(dev);
635 	int frags = skb_shinfo(skb)->nr_frags + 1;
636 	int i;
637 
638 	if (!data->phy_ok && net_ratelimit())
639 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
640 
641 	if (!data->link_up) {
642 		printk(KERN_ERR "%s: Transmit while link is down!\n",
643 		       dev->name);
644 		netif_stop_queue(dev);
645 		return NETDEV_TX_BUSY;
646 	}
647 
648 	if (data->txfree < MAX_SKB_FRAGS + 1) {
649 		netif_stop_queue(dev);
650 
651 		if (net_ratelimit())
652 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
653 			       dev->name);
654 		return NETDEV_TX_BUSY;
655 	}
656 
657 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
658 		netif_stop_queue(dev);
659 	}
660 
661 	spin_lock_irq(&data->txlock);
662 
663 	for (i = 0; i < frags; i++) {
664 		int misc = 0;
665 		int tx = data->txhead;
666 
667 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
668 		 * the interrupt bit.  TX descriptor-complete interrupts are
669 		 * enabled when the queue fills up, and masked when there is
670 		 * still free space.  This way, when saturating the outbound
671 		 * link, the tx interrupts are kept to a reasonable level.
672 		 * When the queue is not full, reclamation of skbs still occurs
673 		 * as new packets are transmitted, or on a queue-empty
674 		 * interrupt.
675 		 */
676 
677 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
678 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
679 			misc = TSI108_TX_INT;
680 
681 		data->txskbs[tx] = skb;
682 
683 		if (i == 0) {
684 			data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
685 					skb->data, skb_headlen(skb),
686 					DMA_TO_DEVICE);
687 			data->txring[tx].len = skb_headlen(skb);
688 			misc |= TSI108_TX_SOF;
689 		} else {
690 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
691 
692 			data->txring[tx].buf0 =
693 				skb_frag_dma_map(&data->pdev->dev, frag,
694 						0, skb_frag_size(frag),
695 						DMA_TO_DEVICE);
696 			data->txring[tx].len = skb_frag_size(frag);
697 		}
698 
699 		if (i == frags - 1)
700 			misc |= TSI108_TX_EOF;
701 
702 		if (netif_msg_pktdata(data)) {
703 			int i;
704 			printk("%s: Tx Frame contents (%d)\n", dev->name,
705 			       skb->len);
706 			for (i = 0; i < skb->len; i++)
707 				printk(" %2.2x", skb->data[i]);
708 			printk(".\n");
709 		}
710 		data->txring[tx].misc = misc | TSI108_TX_OWN;
711 
712 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
713 		data->txfree--;
714 	}
715 
716 	tsi108_complete_tx(dev);
717 
718 	/* This must be done after the check for completed tx descriptors,
719 	 * so that the tail pointer is correct.
720 	 */
721 
722 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
723 		tsi108_restart_tx(data);
724 
725 	spin_unlock_irq(&data->txlock);
726 	return NETDEV_TX_OK;
727 }
728 
729 static int tsi108_complete_rx(struct net_device *dev, int budget)
730 {
731 	struct tsi108_prv_data *data = netdev_priv(dev);
732 	int done = 0;
733 
734 	while (data->rxfree && done != budget) {
735 		int rx = data->rxtail;
736 		struct sk_buff *skb;
737 
738 		if (data->rxring[rx].misc & TSI108_RX_OWN)
739 			break;
740 
741 		skb = data->rxskbs[rx];
742 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
743 		data->rxfree--;
744 		done++;
745 
746 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
747 			spin_lock_irq(&data->misclock);
748 
749 			if (data->rxring[rx].misc & TSI108_RX_CRC)
750 				data->stats.rx_crc_errors++;
751 			if (data->rxring[rx].misc & TSI108_RX_OVER)
752 				data->stats.rx_fifo_errors++;
753 
754 			spin_unlock_irq(&data->misclock);
755 
756 			dev_kfree_skb_any(skb);
757 			continue;
758 		}
759 		if (netif_msg_pktdata(data)) {
760 			int i;
761 			printk("%s: Rx Frame contents (%d)\n",
762 			       dev->name, data->rxring[rx].len);
763 			for (i = 0; i < data->rxring[rx].len; i++)
764 				printk(" %2.2x", skb->data[i]);
765 			printk(".\n");
766 		}
767 
768 		skb_put(skb, data->rxring[rx].len);
769 		skb->protocol = eth_type_trans(skb, dev);
770 		netif_receive_skb(skb);
771 	}
772 
773 	return done;
774 }
775 
776 static int tsi108_refill_rx(struct net_device *dev, int budget)
777 {
778 	struct tsi108_prv_data *data = netdev_priv(dev);
779 	int done = 0;
780 
781 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
782 		int rx = data->rxhead;
783 		struct sk_buff *skb;
784 
785 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
786 		data->rxskbs[rx] = skb;
787 		if (!skb)
788 			break;
789 
790 		data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
791 				skb->data, TSI108_RX_SKB_SIZE,
792 				DMA_FROM_DEVICE);
793 
794 		/* Sometimes the hardware sets blen to zero after packet
795 		 * reception, even though the manual says that it's only ever
796 		 * modified by the driver.
797 		 */
798 
799 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
800 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
801 
802 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
803 		data->rxfree++;
804 		done++;
805 	}
806 
807 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
808 			   TSI108_EC_RXSTAT_QUEUE0))
809 		tsi108_restart_rx(data, dev);
810 
811 	return done;
812 }
813 
814 static int tsi108_poll(struct napi_struct *napi, int budget)
815 {
816 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
817 	struct net_device *dev = data->dev;
818 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
819 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
820 	int num_received = 0, num_filled = 0;
821 
822 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
823 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
824 
825 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
826 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
827 
828 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
829 		num_received = tsi108_complete_rx(dev, budget);
830 
831 	/* This should normally fill no more slots than the number of
832 	 * packets received in tsi108_complete_rx().  The exception
833 	 * is when we previously ran out of memory for RX SKBs.  In that
834 	 * case, it's helpful to obey the budget, not only so that the
835 	 * CPU isn't hogged, but so that memory (which may still be low)
836 	 * is not hogged by one device.
837 	 *
838 	 * A work unit is considered to be two SKBs to allow us to catch
839 	 * up when the ring has shrunk due to out-of-memory but we're
840 	 * still removing the full budget's worth of packets each time.
841 	 */
842 
843 	if (data->rxfree < TSI108_RXRING_LEN)
844 		num_filled = tsi108_refill_rx(dev, budget * 2);
845 
846 	if (intstat & TSI108_INT_RXERROR) {
847 		u32 err = TSI_READ(TSI108_EC_RXERR);
848 		TSI_WRITE(TSI108_EC_RXERR, err);
849 
850 		if (err) {
851 			if (net_ratelimit())
852 				printk(KERN_DEBUG "%s: RX error %x\n",
853 				       dev->name, err);
854 
855 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
856 			      TSI108_EC_RXSTAT_QUEUE0))
857 				tsi108_restart_rx(data, dev);
858 		}
859 	}
860 
861 	if (intstat & TSI108_INT_RXOVERRUN) {
862 		spin_lock_irq(&data->misclock);
863 		data->stats.rx_fifo_errors++;
864 		spin_unlock_irq(&data->misclock);
865 	}
866 
867 	if (num_received < budget) {
868 		data->rxpending = 0;
869 		napi_complete_done(napi, num_received);
870 
871 		TSI_WRITE(TSI108_EC_INTMASK,
872 				     TSI_READ(TSI108_EC_INTMASK)
873 				     & ~(TSI108_INT_RXQUEUE0
874 					 | TSI108_INT_RXTHRESH |
875 					 TSI108_INT_RXOVERRUN |
876 					 TSI108_INT_RXERROR |
877 					 TSI108_INT_RXWAIT));
878 	} else {
879 		data->rxpending = 1;
880 	}
881 
882 	return num_received;
883 }
884 
885 static void tsi108_rx_int(struct net_device *dev)
886 {
887 	struct tsi108_prv_data *data = netdev_priv(dev);
888 
889 	/* A race could cause dev to already be scheduled, so it's not an
890 	 * error if that happens (and interrupts shouldn't be re-masked,
891 	 * because that can cause harmful races, if poll has already
892 	 * unmasked them but not cleared LINK_STATE_SCHED).
893 	 *
894 	 * This can happen if this code races with tsi108_poll(), which masks
895 	 * the interrupts after tsi108_irq_one() read the mask, but before
896 	 * napi_schedule is called.  It could also happen due to calls
897 	 * from tsi108_check_rxring().
898 	 */
899 
900 	if (napi_schedule_prep(&data->napi)) {
901 		/* Mask, rather than ack, the receive interrupts.  The ack
902 		 * will happen in tsi108_poll().
903 		 */
904 
905 		TSI_WRITE(TSI108_EC_INTMASK,
906 				     TSI_READ(TSI108_EC_INTMASK) |
907 				     TSI108_INT_RXQUEUE0
908 				     | TSI108_INT_RXTHRESH |
909 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
910 				     TSI108_INT_RXWAIT);
911 		__napi_schedule(&data->napi);
912 	} else {
913 		if (!netif_running(dev)) {
914 			/* This can happen if an interrupt occurs while the
915 			 * interface is being brought down, as the START
916 			 * bit is cleared before the stop function is called.
917 			 *
918 			 * In this case, the interrupts must be masked, or
919 			 * they will continue indefinitely.
920 			 *
921 			 * There's a race here if the interface is brought down
922 			 * and then up in rapid succession, as the device could
923 			 * be made running after the above check and before
924 			 * the masking below.  This will only happen if the IRQ
925 			 * thread has a lower priority than the task brining
926 			 * up the interface.  Fixing this race would likely
927 			 * require changes in generic code.
928 			 */
929 
930 			TSI_WRITE(TSI108_EC_INTMASK,
931 					     TSI_READ
932 					     (TSI108_EC_INTMASK) |
933 					     TSI108_INT_RXQUEUE0 |
934 					     TSI108_INT_RXTHRESH |
935 					     TSI108_INT_RXOVERRUN |
936 					     TSI108_INT_RXERROR |
937 					     TSI108_INT_RXWAIT);
938 		}
939 	}
940 }
941 
942 /* If the RX ring has run out of memory, try periodically
943  * to allocate some more, as otherwise poll would never
944  * get called (apart from the initial end-of-queue condition).
945  *
946  * This is called once per second (by default) from the thread.
947  */
948 
949 static void tsi108_check_rxring(struct net_device *dev)
950 {
951 	struct tsi108_prv_data *data = netdev_priv(dev);
952 
953 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
954 	 * directly, so as to keep the receive path single-threaded
955 	 * (and thus not needing a lock).
956 	 */
957 
958 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
959 		tsi108_rx_int(dev);
960 }
961 
962 static void tsi108_tx_int(struct net_device *dev)
963 {
964 	struct tsi108_prv_data *data = netdev_priv(dev);
965 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
966 
967 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
968 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
969 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
970 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
971 		u32 err = TSI_READ(TSI108_EC_TXERR);
972 		TSI_WRITE(TSI108_EC_TXERR, err);
973 
974 		if (err && net_ratelimit())
975 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
976 	}
977 
978 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
979 		spin_lock(&data->txlock);
980 		tsi108_complete_tx(dev);
981 		spin_unlock(&data->txlock);
982 	}
983 }
984 
985 
986 static irqreturn_t tsi108_irq(int irq, void *dev_id)
987 {
988 	struct net_device *dev = dev_id;
989 	struct tsi108_prv_data *data = netdev_priv(dev);
990 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
991 
992 	if (!(stat & TSI108_INT_ANY))
993 		return IRQ_NONE;	/* Not our interrupt */
994 
995 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
996 
997 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
998 		    TSI108_INT_TXERROR))
999 		tsi108_tx_int(dev);
1000 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1001 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1002 		    TSI108_INT_RXERROR))
1003 		tsi108_rx_int(dev);
1004 
1005 	if (stat & TSI108_INT_SFN) {
1006 		if (net_ratelimit())
1007 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1008 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1009 	}
1010 
1011 	if (stat & TSI108_INT_STATCARRY) {
1012 		tsi108_stat_carry(dev);
1013 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1014 	}
1015 
1016 	return IRQ_HANDLED;
1017 }
1018 
1019 static void tsi108_stop_ethernet(struct net_device *dev)
1020 {
1021 	struct tsi108_prv_data *data = netdev_priv(dev);
1022 	int i = 1000;
1023 	/* Disable all TX and RX queues ... */
1024 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1025 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1026 
1027 	/* ...and wait for them to become idle */
1028 	while(i--) {
1029 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1030 			break;
1031 		udelay(10);
1032 	}
1033 	i = 1000;
1034 	while(i--){
1035 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1036 			return;
1037 		udelay(10);
1038 	}
1039 	printk(KERN_ERR "%s function time out\n", __func__);
1040 }
1041 
1042 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1043 {
1044 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1045 	udelay(100);
1046 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1047 
1048 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1049 	udelay(100);
1050 	TSI_WRITE(TSI108_EC_PORTCTRL,
1051 			     TSI_READ(TSI108_EC_PORTCTRL) &
1052 			     ~TSI108_EC_PORTCTRL_STATRST);
1053 
1054 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1055 	udelay(100);
1056 	TSI_WRITE(TSI108_EC_TXCFG,
1057 			     TSI_READ(TSI108_EC_TXCFG) &
1058 			     ~TSI108_EC_TXCFG_RST);
1059 
1060 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1061 	udelay(100);
1062 	TSI_WRITE(TSI108_EC_RXCFG,
1063 			     TSI_READ(TSI108_EC_RXCFG) &
1064 			     ~TSI108_EC_RXCFG_RST);
1065 
1066 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1067 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1068 			     TSI108_MAC_MII_MGMT_RST);
1069 	udelay(100);
1070 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1071 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1072 			     ~(TSI108_MAC_MII_MGMT_RST |
1073 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1074 }
1075 
1076 static int tsi108_get_mac(struct net_device *dev)
1077 {
1078 	struct tsi108_prv_data *data = netdev_priv(dev);
1079 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1080 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1081 	u8 addr[ETH_ALEN];
1082 
1083 	/* Note that the octets are reversed from what the manual says,
1084 	 * producing an even weirder ordering...
1085 	 */
1086 	if (word2 == 0 && word1 == 0) {
1087 		addr[0] = 0x00;
1088 		addr[1] = 0x06;
1089 		addr[2] = 0xd2;
1090 		addr[3] = 0x00;
1091 		addr[4] = 0x00;
1092 		if (0x8 == data->phy)
1093 			addr[5] = 0x01;
1094 		else
1095 			addr[5] = 0x02;
1096 		eth_hw_addr_set(dev, addr);
1097 
1098 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1099 
1100 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1101 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1102 
1103 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1104 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1105 	} else {
1106 		addr[0] = (word2 >> 16) & 0xff;
1107 		addr[1] = (word2 >> 24) & 0xff;
1108 		addr[2] = (word1 >> 0) & 0xff;
1109 		addr[3] = (word1 >> 8) & 0xff;
1110 		addr[4] = (word1 >> 16) & 0xff;
1111 		addr[5] = (word1 >> 24) & 0xff;
1112 		eth_hw_addr_set(dev, addr);
1113 	}
1114 
1115 	if (!is_valid_ether_addr(dev->dev_addr)) {
1116 		printk(KERN_ERR
1117 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1118 		       dev->name, word1, word2);
1119 		return -EINVAL;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static int tsi108_set_mac(struct net_device *dev, void *addr)
1126 {
1127 	struct tsi108_prv_data *data = netdev_priv(dev);
1128 	u32 word1, word2;
1129 
1130 	if (!is_valid_ether_addr(addr))
1131 		return -EADDRNOTAVAIL;
1132 
1133 	/* +2 is for the offset of the HW addr type */
1134 	eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
1135 
1136 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1137 
1138 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1139 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1140 
1141 	spin_lock_irq(&data->misclock);
1142 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1143 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1144 	spin_lock(&data->txlock);
1145 
1146 	if (data->txfree && data->link_up)
1147 		netif_wake_queue(dev);
1148 
1149 	spin_unlock(&data->txlock);
1150 	spin_unlock_irq(&data->misclock);
1151 	return 0;
1152 }
1153 
1154 /* Protected by dev->xmit_lock. */
1155 static void tsi108_set_rx_mode(struct net_device *dev)
1156 {
1157 	struct tsi108_prv_data *data = netdev_priv(dev);
1158 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1159 
1160 	if (dev->flags & IFF_PROMISC) {
1161 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1162 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1163 		goto out;
1164 	}
1165 
1166 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1167 
1168 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1169 		int i;
1170 		struct netdev_hw_addr *ha;
1171 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1172 
1173 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1174 
1175 		netdev_for_each_mc_addr(ha, dev) {
1176 			u32 hash, crc;
1177 
1178 			crc = ether_crc(6, ha->addr);
1179 			hash = crc >> 23;
1180 			__set_bit(hash, &data->mc_hash[0]);
1181 		}
1182 
1183 		TSI_WRITE(TSI108_EC_HASHADDR,
1184 				     TSI108_EC_HASHADDR_AUTOINC |
1185 				     TSI108_EC_HASHADDR_MCAST);
1186 
1187 		for (i = 0; i < 16; i++) {
1188 			/* The manual says that the hardware may drop
1189 			 * back-to-back writes to the data register.
1190 			 */
1191 			udelay(1);
1192 			TSI_WRITE(TSI108_EC_HASHDATA,
1193 					     data->mc_hash[i]);
1194 		}
1195 	}
1196 
1197       out:
1198 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1199 }
1200 
1201 static void tsi108_init_phy(struct net_device *dev)
1202 {
1203 	struct tsi108_prv_data *data = netdev_priv(dev);
1204 	u32 i = 0;
1205 	u16 phyval = 0;
1206 	unsigned long flags;
1207 
1208 	spin_lock_irqsave(&phy_lock, flags);
1209 
1210 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1211 	while (--i) {
1212 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1213 			break;
1214 		udelay(10);
1215 	}
1216 	if (i == 0)
1217 		printk(KERN_ERR "%s function time out\n", __func__);
1218 
1219 	if (data->phy_type == TSI108_PHY_BCM54XX) {
1220 		tsi108_write_mii(data, 0x09, 0x0300);
1221 		tsi108_write_mii(data, 0x10, 0x1020);
1222 		tsi108_write_mii(data, 0x1c, 0x8c00);
1223 	}
1224 
1225 	tsi108_write_mii(data,
1226 			 MII_BMCR,
1227 			 BMCR_ANENABLE | BMCR_ANRESTART);
1228 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1229 		cpu_relax();
1230 
1231 	/* Set G/MII mode and receive clock select in TBI control #2.  The
1232 	 * second port won't work if this isn't done, even though we don't
1233 	 * use TBI mode.
1234 	 */
1235 
1236 	tsi108_write_tbi(data, 0x11, 0x30);
1237 
1238 	/* FIXME: It seems to take more than 2 back-to-back reads to the
1239 	 * PHY_STAT register before the link up status bit is set.
1240 	 */
1241 
1242 	data->link_up = 0;
1243 
1244 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1245 		 BMSR_LSTATUS)) {
1246 		if (i++ > (MII_READ_DELAY / 10)) {
1247 			break;
1248 		}
1249 		spin_unlock_irqrestore(&phy_lock, flags);
1250 		msleep(10);
1251 		spin_lock_irqsave(&phy_lock, flags);
1252 	}
1253 
1254 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1255 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1256 	data->phy_ok = 1;
1257 	data->init_media = 1;
1258 	spin_unlock_irqrestore(&phy_lock, flags);
1259 }
1260 
1261 static void tsi108_kill_phy(struct net_device *dev)
1262 {
1263 	struct tsi108_prv_data *data = netdev_priv(dev);
1264 	unsigned long flags;
1265 
1266 	spin_lock_irqsave(&phy_lock, flags);
1267 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1268 	data->phy_ok = 0;
1269 	spin_unlock_irqrestore(&phy_lock, flags);
1270 }
1271 
1272 static int tsi108_open(struct net_device *dev)
1273 {
1274 	int i;
1275 	struct tsi108_prv_data *data = netdev_priv(dev);
1276 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1277 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1278 
1279 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1280 	if (i != 0) {
1281 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1282 		       data->id, data->irq_num);
1283 		return i;
1284 	} else {
1285 		dev->irq = data->irq_num;
1286 		printk(KERN_NOTICE
1287 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1288 		       data->id, dev->irq, dev->name);
1289 	}
1290 
1291 	data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1292 					  &data->rxdma, GFP_KERNEL);
1293 	if (!data->rxring)
1294 		return -ENOMEM;
1295 
1296 	data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1297 					  &data->txdma, GFP_KERNEL);
1298 	if (!data->txring) {
1299 		dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1300 				    data->rxdma);
1301 		return -ENOMEM;
1302 	}
1303 
1304 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1305 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1306 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1307 		data->rxring[i].vlan = 0;
1308 	}
1309 
1310 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1311 
1312 	data->rxtail = 0;
1313 	data->rxhead = 0;
1314 
1315 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1316 		struct sk_buff *skb;
1317 
1318 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1319 		if (!skb) {
1320 			/* Bah.  No memory for now, but maybe we'll get
1321 			 * some more later.
1322 			 * For now, we'll live with the smaller ring.
1323 			 */
1324 			printk(KERN_WARNING
1325 			       "%s: Could only allocate %d receive skb(s).\n",
1326 			       dev->name, i);
1327 			data->rxhead = i;
1328 			break;
1329 		}
1330 
1331 		data->rxskbs[i] = skb;
1332 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1333 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1334 	}
1335 
1336 	data->rxfree = i;
1337 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1338 
1339 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1340 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1341 		data->txring[i].misc = 0;
1342 	}
1343 
1344 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1345 	data->txtail = 0;
1346 	data->txhead = 0;
1347 	data->txfree = TSI108_TXRING_LEN;
1348 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1349 	tsi108_init_phy(dev);
1350 
1351 	napi_enable(&data->napi);
1352 
1353 	timer_setup(&data->timer, tsi108_timed_checker, 0);
1354 	mod_timer(&data->timer, jiffies + 1);
1355 
1356 	tsi108_restart_rx(data, dev);
1357 
1358 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1359 
1360 	TSI_WRITE(TSI108_EC_INTMASK,
1361 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1362 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1363 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1364 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1365 
1366 	TSI_WRITE(TSI108_MAC_CFG1,
1367 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1368 	netif_start_queue(dev);
1369 	return 0;
1370 }
1371 
1372 static int tsi108_close(struct net_device *dev)
1373 {
1374 	struct tsi108_prv_data *data = netdev_priv(dev);
1375 
1376 	netif_stop_queue(dev);
1377 	napi_disable(&data->napi);
1378 
1379 	del_timer_sync(&data->timer);
1380 
1381 	tsi108_stop_ethernet(dev);
1382 	tsi108_kill_phy(dev);
1383 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1384 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1385 
1386 	/* Check for any pending TX packets, and drop them. */
1387 
1388 	while (!data->txfree || data->txhead != data->txtail) {
1389 		int tx = data->txtail;
1390 		struct sk_buff *skb;
1391 		skb = data->txskbs[tx];
1392 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1393 		data->txfree++;
1394 		dev_kfree_skb(skb);
1395 	}
1396 
1397 	free_irq(data->irq_num, dev);
1398 
1399 	/* Discard the RX ring. */
1400 
1401 	while (data->rxfree) {
1402 		int rx = data->rxtail;
1403 		struct sk_buff *skb;
1404 
1405 		skb = data->rxskbs[rx];
1406 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1407 		data->rxfree--;
1408 		dev_kfree_skb(skb);
1409 	}
1410 
1411 	dma_free_coherent(&data->pdev->dev,
1412 			    TSI108_RXRING_LEN * sizeof(rx_desc),
1413 			    data->rxring, data->rxdma);
1414 	dma_free_coherent(&data->pdev->dev,
1415 			    TSI108_TXRING_LEN * sizeof(tx_desc),
1416 			    data->txring, data->txdma);
1417 
1418 	return 0;
1419 }
1420 
1421 static void tsi108_init_mac(struct net_device *dev)
1422 {
1423 	struct tsi108_prv_data *data = netdev_priv(dev);
1424 
1425 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1426 			     TSI108_MAC_CFG2_PADCRC);
1427 
1428 	TSI_WRITE(TSI108_EC_TXTHRESH,
1429 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1430 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1431 
1432 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1433 			     ~(TSI108_STAT_CARRY1_RXBYTES |
1434 			       TSI108_STAT_CARRY1_RXPKTS |
1435 			       TSI108_STAT_CARRY1_RXFCS |
1436 			       TSI108_STAT_CARRY1_RXMCAST |
1437 			       TSI108_STAT_CARRY1_RXALIGN |
1438 			       TSI108_STAT_CARRY1_RXLENGTH |
1439 			       TSI108_STAT_CARRY1_RXRUNT |
1440 			       TSI108_STAT_CARRY1_RXJUMBO |
1441 			       TSI108_STAT_CARRY1_RXFRAG |
1442 			       TSI108_STAT_CARRY1_RXJABBER |
1443 			       TSI108_STAT_CARRY1_RXDROP));
1444 
1445 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1446 			     ~(TSI108_STAT_CARRY2_TXBYTES |
1447 			       TSI108_STAT_CARRY2_TXPKTS |
1448 			       TSI108_STAT_CARRY2_TXEXDEF |
1449 			       TSI108_STAT_CARRY2_TXEXCOL |
1450 			       TSI108_STAT_CARRY2_TXTCOL |
1451 			       TSI108_STAT_CARRY2_TXPAUSE));
1452 
1453 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1454 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1455 
1456 	TSI_WRITE(TSI108_EC_RXCFG,
1457 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1458 
1459 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1460 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1461 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1462 						TSI108_EC_TXQ_CFG_SFNPORT));
1463 
1464 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1465 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1466 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1467 						TSI108_EC_RXQ_CFG_SFNPORT));
1468 
1469 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1470 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1471 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1472 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1473 
1474 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1475 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1476 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1477 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1478 
1479 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1480 }
1481 
1482 static int tsi108_get_link_ksettings(struct net_device *dev,
1483 				     struct ethtool_link_ksettings *cmd)
1484 {
1485 	struct tsi108_prv_data *data = netdev_priv(dev);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&data->txlock, flags);
1489 	mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1490 	spin_unlock_irqrestore(&data->txlock, flags);
1491 
1492 	return 0;
1493 }
1494 
1495 static int tsi108_set_link_ksettings(struct net_device *dev,
1496 				     const struct ethtool_link_ksettings *cmd)
1497 {
1498 	struct tsi108_prv_data *data = netdev_priv(dev);
1499 	unsigned long flags;
1500 	int rc;
1501 
1502 	spin_lock_irqsave(&data->txlock, flags);
1503 	rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1504 	spin_unlock_irqrestore(&data->txlock, flags);
1505 
1506 	return rc;
1507 }
1508 
1509 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1510 {
1511 	struct tsi108_prv_data *data = netdev_priv(dev);
1512 	if (!netif_running(dev))
1513 		return -EINVAL;
1514 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1515 }
1516 
1517 static const struct ethtool_ops tsi108_ethtool_ops = {
1518 	.get_link 	= ethtool_op_get_link,
1519 	.get_link_ksettings	= tsi108_get_link_ksettings,
1520 	.set_link_ksettings	= tsi108_set_link_ksettings,
1521 };
1522 
1523 static const struct net_device_ops tsi108_netdev_ops = {
1524 	.ndo_open		= tsi108_open,
1525 	.ndo_stop		= tsi108_close,
1526 	.ndo_start_xmit		= tsi108_send_packet,
1527 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1528 	.ndo_get_stats		= tsi108_get_stats,
1529 	.ndo_eth_ioctl		= tsi108_do_ioctl,
1530 	.ndo_set_mac_address	= tsi108_set_mac,
1531 	.ndo_validate_addr	= eth_validate_addr,
1532 };
1533 
1534 static int
1535 tsi108_init_one(struct platform_device *pdev)
1536 {
1537 	struct net_device *dev = NULL;
1538 	struct tsi108_prv_data *data = NULL;
1539 	hw_info *einfo;
1540 	int err = 0;
1541 
1542 	einfo = dev_get_platdata(&pdev->dev);
1543 
1544 	if (NULL == einfo) {
1545 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1546 		       pdev->id);
1547 		return -ENODEV;
1548 	}
1549 
1550 	/* Create an ethernet device instance */
1551 
1552 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1553 	if (!dev)
1554 		return -ENOMEM;
1555 
1556 	printk("tsi108_eth%d: probe...\n", pdev->id);
1557 	data = netdev_priv(dev);
1558 	data->dev = dev;
1559 	data->pdev = pdev;
1560 
1561 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1562 			pdev->id, einfo->regs, einfo->phyregs,
1563 			einfo->phy, einfo->irq_num);
1564 
1565 	data->regs = ioremap(einfo->regs, 0x400);
1566 	if (NULL == data->regs) {
1567 		err = -ENOMEM;
1568 		goto regs_fail;
1569 	}
1570 
1571 	data->phyregs = ioremap(einfo->phyregs, 0x400);
1572 	if (NULL == data->phyregs) {
1573 		err = -ENOMEM;
1574 		goto phyregs_fail;
1575 	}
1576 /* MII setup */
1577 	data->mii_if.dev = dev;
1578 	data->mii_if.mdio_read = tsi108_mdio_read;
1579 	data->mii_if.mdio_write = tsi108_mdio_write;
1580 	data->mii_if.phy_id = einfo->phy;
1581 	data->mii_if.phy_id_mask = 0x1f;
1582 	data->mii_if.reg_num_mask = 0x1f;
1583 
1584 	data->phy = einfo->phy;
1585 	data->phy_type = einfo->phy_type;
1586 	data->irq_num = einfo->irq_num;
1587 	data->id = pdev->id;
1588 	netif_napi_add(dev, &data->napi, tsi108_poll);
1589 	dev->netdev_ops = &tsi108_netdev_ops;
1590 	dev->ethtool_ops = &tsi108_ethtool_ops;
1591 
1592 	/* Apparently, the Linux networking code won't use scatter-gather
1593 	 * if the hardware doesn't do checksums.  However, it's faster
1594 	 * to checksum in place and use SG, as (among other reasons)
1595 	 * the cache won't be dirtied (which then has to be flushed
1596 	 * before DMA).  The checksumming is done by the driver (via
1597 	 * a new function skb_csum_dev() in net/core/skbuff.c).
1598 	 */
1599 
1600 	dev->features = NETIF_F_HIGHDMA;
1601 
1602 	spin_lock_init(&data->txlock);
1603 	spin_lock_init(&data->misclock);
1604 
1605 	tsi108_reset_ether(data);
1606 	tsi108_kill_phy(dev);
1607 
1608 	if ((err = tsi108_get_mac(dev)) != 0) {
1609 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1610 		       dev->name);
1611 		goto register_fail;
1612 	}
1613 
1614 	tsi108_init_mac(dev);
1615 	err = register_netdev(dev);
1616 	if (err) {
1617 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1618 				dev->name);
1619 		goto register_fail;
1620 	}
1621 
1622 	platform_set_drvdata(pdev, dev);
1623 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1624 	       dev->name, dev->dev_addr);
1625 #ifdef DEBUG
1626 	data->msg_enable = DEBUG;
1627 	dump_eth_one(dev);
1628 #endif
1629 
1630 	return 0;
1631 
1632 register_fail:
1633 	iounmap(data->phyregs);
1634 
1635 phyregs_fail:
1636 	iounmap(data->regs);
1637 
1638 regs_fail:
1639 	free_netdev(dev);
1640 	return err;
1641 }
1642 
1643 /* There's no way to either get interrupts from the PHY when
1644  * something changes, or to have the Tsi108 automatically communicate
1645  * with the PHY to reconfigure itself.
1646  *
1647  * Thus, we have to do it using a timer.
1648  */
1649 
1650 static void tsi108_timed_checker(struct timer_list *t)
1651 {
1652 	struct tsi108_prv_data *data = from_timer(data, t, timer);
1653 	struct net_device *dev = data->dev;
1654 
1655 	tsi108_check_phy(dev);
1656 	tsi108_check_rxring(dev);
1657 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1658 }
1659 
1660 static int tsi108_ether_remove(struct platform_device *pdev)
1661 {
1662 	struct net_device *dev = platform_get_drvdata(pdev);
1663 	struct tsi108_prv_data *priv = netdev_priv(dev);
1664 
1665 	unregister_netdev(dev);
1666 	tsi108_stop_ethernet(dev);
1667 	iounmap(priv->regs);
1668 	iounmap(priv->phyregs);
1669 	free_netdev(dev);
1670 
1671 	return 0;
1672 }
1673 
1674 /* Structure for a device driver */
1675 
1676 static struct platform_driver tsi_eth_driver = {
1677 	.probe = tsi108_init_one,
1678 	.remove = tsi108_ether_remove,
1679 	.driver	= {
1680 		.name = "tsi-ethernet",
1681 	},
1682 };
1683 module_platform_driver(tsi_eth_driver);
1684 
1685 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1686 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1687 MODULE_LICENSE("GPL");
1688 MODULE_ALIAS("platform:tsi-ethernet");
1689