1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 4 Copyright(c) 2006 Tundra Semiconductor Corporation. 5 6 7 *******************************************************************************/ 8 9 /* This driver is based on the driver code originally developed 10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by 11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation 12 * 13 * Currently changes from original version are: 14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) 15 * - modifications to handle two ports independently and support for 16 * additional PHY devices (alexandre.bounine@tundra.com) 17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com) 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/interrupt.h> 24 #include <linux/net.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/spinlock.h> 30 #include <linux/delay.h> 31 #include <linux/crc32.h> 32 #include <linux/mii.h> 33 #include <linux/device.h> 34 #include <linux/pci.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/timer.h> 37 #include <linux/platform_device.h> 38 #include <linux/gfp.h> 39 40 #include <asm/io.h> 41 #include <asm/tsi108.h> 42 43 #include "tsi108_eth.h" 44 45 #define MII_READ_DELAY 10000 /* max link wait time in msec */ 46 47 #define TSI108_RXRING_LEN 256 48 49 /* NOTE: The driver currently does not support receiving packets 50 * larger than the buffer size, so don't decrease this (unless you 51 * want to add such support). 52 */ 53 #define TSI108_RXBUF_SIZE 1536 54 55 #define TSI108_TXRING_LEN 256 56 57 #define TSI108_TX_INT_FREQ 64 58 59 /* Check the phy status every half a second. */ 60 #define CHECK_PHY_INTERVAL (HZ/2) 61 62 static int tsi108_init_one(struct platform_device *pdev); 63 static int tsi108_ether_remove(struct platform_device *pdev); 64 65 struct tsi108_prv_data { 66 void __iomem *regs; /* Base of normal regs */ 67 void __iomem *phyregs; /* Base of register bank used for PHY access */ 68 69 struct net_device *dev; 70 struct napi_struct napi; 71 72 unsigned int phy; /* Index of PHY for this interface */ 73 unsigned int irq_num; 74 unsigned int id; 75 unsigned int phy_type; 76 77 struct timer_list timer;/* Timer that triggers the check phy function */ 78 unsigned int rxtail; /* Next entry in rxring to read */ 79 unsigned int rxhead; /* Next entry in rxring to give a new buffer */ 80 unsigned int rxfree; /* Number of free, allocated RX buffers */ 81 82 unsigned int rxpending; /* Non-zero if there are still descriptors 83 * to be processed from a previous descriptor 84 * interrupt condition that has been cleared */ 85 86 unsigned int txtail; /* Next TX descriptor to check status on */ 87 unsigned int txhead; /* Next TX descriptor to use */ 88 89 /* Number of free TX descriptors. This could be calculated from 90 * rxhead and rxtail if one descriptor were left unused to disambiguate 91 * full and empty conditions, but it's simpler to just keep track 92 * explicitly. */ 93 94 unsigned int txfree; 95 96 unsigned int phy_ok; /* The PHY is currently powered on. */ 97 98 /* PHY status (duplex is 1 for half, 2 for full, 99 * so that the default 0 indicates that neither has 100 * yet been configured). */ 101 102 unsigned int link_up; 103 unsigned int speed; 104 unsigned int duplex; 105 106 tx_desc *txring; 107 rx_desc *rxring; 108 struct sk_buff *txskbs[TSI108_TXRING_LEN]; 109 struct sk_buff *rxskbs[TSI108_RXRING_LEN]; 110 111 dma_addr_t txdma, rxdma; 112 113 /* txlock nests in misclock and phy_lock */ 114 115 spinlock_t txlock, misclock; 116 117 /* stats is used to hold the upper bits of each hardware counter, 118 * and tmpstats is used to hold the full values for returning 119 * to the caller of get_stats(). They must be separate in case 120 * an overflow interrupt occurs before the stats are consumed. 121 */ 122 123 struct net_device_stats stats; 124 struct net_device_stats tmpstats; 125 126 /* These stats are kept separate in hardware, thus require individual 127 * fields for handling carry. They are combined in get_stats. 128 */ 129 130 unsigned long rx_fcs; /* Add to rx_frame_errors */ 131 unsigned long rx_short_fcs; /* Add to rx_frame_errors */ 132 unsigned long rx_long_fcs; /* Add to rx_frame_errors */ 133 unsigned long rx_underruns; /* Add to rx_length_errors */ 134 unsigned long rx_overruns; /* Add to rx_length_errors */ 135 136 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ 137 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ 138 139 unsigned long mc_hash[16]; 140 u32 msg_enable; /* debug message level */ 141 struct mii_if_info mii_if; 142 unsigned int init_media; 143 144 struct platform_device *pdev; 145 }; 146 147 /* Structure for a device driver */ 148 149 static struct platform_driver tsi_eth_driver = { 150 .probe = tsi108_init_one, 151 .remove = tsi108_ether_remove, 152 .driver = { 153 .name = "tsi-ethernet", 154 }, 155 }; 156 157 static void tsi108_timed_checker(struct timer_list *t); 158 159 #ifdef DEBUG 160 static void dump_eth_one(struct net_device *dev) 161 { 162 struct tsi108_prv_data *data = netdev_priv(dev); 163 164 printk("Dumping %s...\n", dev->name); 165 printk("intstat %x intmask %x phy_ok %d" 166 " link %d speed %d duplex %d\n", 167 TSI_READ(TSI108_EC_INTSTAT), 168 TSI_READ(TSI108_EC_INTMASK), data->phy_ok, 169 data->link_up, data->speed, data->duplex); 170 171 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", 172 data->txhead, data->txtail, data->txfree, 173 TSI_READ(TSI108_EC_TXSTAT), 174 TSI_READ(TSI108_EC_TXESTAT), 175 TSI_READ(TSI108_EC_TXERR)); 176 177 printk("RX: head %d, tail %d, free %d, stat %x," 178 " estat %x, err %x, pending %d\n\n", 179 data->rxhead, data->rxtail, data->rxfree, 180 TSI_READ(TSI108_EC_RXSTAT), 181 TSI_READ(TSI108_EC_RXESTAT), 182 TSI_READ(TSI108_EC_RXERR), data->rxpending); 183 } 184 #endif 185 186 /* Synchronization is needed between the thread and up/down events. 187 * Note that the PHY is accessed through the same registers for both 188 * interfaces, so this can't be made interface-specific. 189 */ 190 191 static DEFINE_SPINLOCK(phy_lock); 192 193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) 194 { 195 unsigned i; 196 197 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 198 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 199 (reg << TSI108_MAC_MII_ADDR_REG)); 200 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); 201 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); 202 for (i = 0; i < 100; i++) { 203 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 204 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) 205 break; 206 udelay(10); 207 } 208 209 if (i == 100) 210 return 0xffff; 211 else 212 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN); 213 } 214 215 static void tsi108_write_mii(struct tsi108_prv_data *data, 216 int reg, u16 val) 217 { 218 unsigned i = 100; 219 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 220 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 221 (reg << TSI108_MAC_MII_ADDR_REG)); 222 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); 223 while (i--) { 224 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 225 TSI108_MAC_MII_IND_BUSY)) 226 break; 227 udelay(10); 228 } 229 } 230 231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) 232 { 233 struct tsi108_prv_data *data = netdev_priv(dev); 234 return tsi108_read_mii(data, reg); 235 } 236 237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) 238 { 239 struct tsi108_prv_data *data = netdev_priv(dev); 240 tsi108_write_mii(data, reg, val); 241 } 242 243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data, 244 int reg, u16 val) 245 { 246 unsigned i = 1000; 247 TSI_WRITE(TSI108_MAC_MII_ADDR, 248 (0x1e << TSI108_MAC_MII_ADDR_PHY) 249 | (reg << TSI108_MAC_MII_ADDR_REG)); 250 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); 251 while(i--) { 252 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) 253 return; 254 udelay(10); 255 } 256 printk(KERN_ERR "%s function time out\n", __func__); 257 } 258 259 static int mii_speed(struct mii_if_info *mii) 260 { 261 int advert, lpa, val, media; 262 int lpa2 = 0; 263 int speed; 264 265 if (!mii_link_ok(mii)) 266 return 0; 267 268 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); 269 if ((val & BMSR_ANEGCOMPLETE) == 0) 270 return 0; 271 272 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); 273 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); 274 media = mii_nway_result(advert & lpa); 275 276 if (mii->supports_gmii) 277 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); 278 279 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : 280 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); 281 return speed; 282 } 283 284 static void tsi108_check_phy(struct net_device *dev) 285 { 286 struct tsi108_prv_data *data = netdev_priv(dev); 287 u32 mac_cfg2_reg, portctrl_reg; 288 u32 duplex; 289 u32 speed; 290 unsigned long flags; 291 292 spin_lock_irqsave(&phy_lock, flags); 293 294 if (!data->phy_ok) 295 goto out; 296 297 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); 298 data->init_media = 0; 299 300 if (netif_carrier_ok(dev)) { 301 302 speed = mii_speed(&data->mii_if); 303 304 if ((speed != data->speed) || duplex) { 305 306 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); 307 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); 308 309 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; 310 311 if (speed == 1000) { 312 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; 313 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; 314 } else { 315 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; 316 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; 317 } 318 319 data->speed = speed; 320 321 if (data->mii_if.full_duplex) { 322 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; 323 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; 324 data->duplex = 2; 325 } else { 326 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; 327 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; 328 data->duplex = 1; 329 } 330 331 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); 332 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); 333 } 334 335 if (data->link_up == 0) { 336 /* The manual says it can take 3-4 usecs for the speed change 337 * to take effect. 338 */ 339 udelay(5); 340 341 spin_lock(&data->txlock); 342 if (is_valid_ether_addr(dev->dev_addr) && data->txfree) 343 netif_wake_queue(dev); 344 345 data->link_up = 1; 346 spin_unlock(&data->txlock); 347 } 348 } else { 349 if (data->link_up == 1) { 350 netif_stop_queue(dev); 351 data->link_up = 0; 352 printk(KERN_NOTICE "%s : link is down\n", dev->name); 353 } 354 355 goto out; 356 } 357 358 359 out: 360 spin_unlock_irqrestore(&phy_lock, flags); 361 } 362 363 static inline void 364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, 365 unsigned long *upper) 366 { 367 if (carry & carry_bit) 368 *upper += carry_shift; 369 } 370 371 static void tsi108_stat_carry(struct net_device *dev) 372 { 373 struct tsi108_prv_data *data = netdev_priv(dev); 374 u32 carry1, carry2; 375 376 spin_lock_irq(&data->misclock); 377 378 carry1 = TSI_READ(TSI108_STAT_CARRY1); 379 carry2 = TSI_READ(TSI108_STAT_CARRY2); 380 381 TSI_WRITE(TSI108_STAT_CARRY1, carry1); 382 TSI_WRITE(TSI108_STAT_CARRY2, carry2); 383 384 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, 385 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 386 387 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, 388 TSI108_STAT_RXPKTS_CARRY, 389 &data->stats.rx_packets); 390 391 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, 392 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); 393 394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, 395 TSI108_STAT_RXMCAST_CARRY, 396 &data->stats.multicast); 397 398 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, 399 TSI108_STAT_RXALIGN_CARRY, 400 &data->stats.rx_frame_errors); 401 402 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, 403 TSI108_STAT_RXLENGTH_CARRY, 404 &data->stats.rx_length_errors); 405 406 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, 407 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 408 409 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, 410 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 411 412 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, 413 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 414 415 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, 416 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); 417 418 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, 419 TSI108_STAT_RXDROP_CARRY, 420 &data->stats.rx_missed_errors); 421 422 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, 423 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 424 425 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, 426 TSI108_STAT_TXPKTS_CARRY, 427 &data->stats.tx_packets); 428 429 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, 430 TSI108_STAT_TXEXDEF_CARRY, 431 &data->stats.tx_aborted_errors); 432 433 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, 434 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); 435 436 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, 437 TSI108_STAT_TXTCOL_CARRY, 438 &data->stats.collisions); 439 440 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, 441 TSI108_STAT_TXPAUSEDROP_CARRY, 442 &data->tx_pause_drop); 443 444 spin_unlock_irq(&data->misclock); 445 } 446 447 /* Read a stat counter atomically with respect to carries. 448 * data->misclock must be held. 449 */ 450 static inline unsigned long 451 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, 452 int carry_shift, unsigned long *upper) 453 { 454 int carryreg; 455 unsigned long val; 456 457 if (reg < 0xb0) 458 carryreg = TSI108_STAT_CARRY1; 459 else 460 carryreg = TSI108_STAT_CARRY2; 461 462 again: 463 val = TSI_READ(reg) | *upper; 464 465 /* Check to see if it overflowed, but the interrupt hasn't 466 * been serviced yet. If so, handle the carry here, and 467 * try again. 468 */ 469 470 if (unlikely(TSI_READ(carryreg) & carry_bit)) { 471 *upper += carry_shift; 472 TSI_WRITE(carryreg, carry_bit); 473 goto again; 474 } 475 476 return val; 477 } 478 479 static struct net_device_stats *tsi108_get_stats(struct net_device *dev) 480 { 481 unsigned long excol; 482 483 struct tsi108_prv_data *data = netdev_priv(dev); 484 spin_lock_irq(&data->misclock); 485 486 data->tmpstats.rx_packets = 487 tsi108_read_stat(data, TSI108_STAT_RXPKTS, 488 TSI108_STAT_CARRY1_RXPKTS, 489 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); 490 491 data->tmpstats.tx_packets = 492 tsi108_read_stat(data, TSI108_STAT_TXPKTS, 493 TSI108_STAT_CARRY2_TXPKTS, 494 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); 495 496 data->tmpstats.rx_bytes = 497 tsi108_read_stat(data, TSI108_STAT_RXBYTES, 498 TSI108_STAT_CARRY1_RXBYTES, 499 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 500 501 data->tmpstats.tx_bytes = 502 tsi108_read_stat(data, TSI108_STAT_TXBYTES, 503 TSI108_STAT_CARRY2_TXBYTES, 504 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 505 506 data->tmpstats.multicast = 507 tsi108_read_stat(data, TSI108_STAT_RXMCAST, 508 TSI108_STAT_CARRY1_RXMCAST, 509 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); 510 511 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, 512 TSI108_STAT_CARRY2_TXEXCOL, 513 TSI108_STAT_TXEXCOL_CARRY, 514 &data->tx_coll_abort); 515 516 data->tmpstats.collisions = 517 tsi108_read_stat(data, TSI108_STAT_TXTCOL, 518 TSI108_STAT_CARRY2_TXTCOL, 519 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); 520 521 data->tmpstats.collisions += excol; 522 523 data->tmpstats.rx_length_errors = 524 tsi108_read_stat(data, TSI108_STAT_RXLENGTH, 525 TSI108_STAT_CARRY1_RXLENGTH, 526 TSI108_STAT_RXLENGTH_CARRY, 527 &data->stats.rx_length_errors); 528 529 data->tmpstats.rx_length_errors += 530 tsi108_read_stat(data, TSI108_STAT_RXRUNT, 531 TSI108_STAT_CARRY1_RXRUNT, 532 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 533 534 data->tmpstats.rx_length_errors += 535 tsi108_read_stat(data, TSI108_STAT_RXJUMBO, 536 TSI108_STAT_CARRY1_RXJUMBO, 537 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 538 539 data->tmpstats.rx_frame_errors = 540 tsi108_read_stat(data, TSI108_STAT_RXALIGN, 541 TSI108_STAT_CARRY1_RXALIGN, 542 TSI108_STAT_RXALIGN_CARRY, 543 &data->stats.rx_frame_errors); 544 545 data->tmpstats.rx_frame_errors += 546 tsi108_read_stat(data, TSI108_STAT_RXFCS, 547 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, 548 &data->rx_fcs); 549 550 data->tmpstats.rx_frame_errors += 551 tsi108_read_stat(data, TSI108_STAT_RXFRAG, 552 TSI108_STAT_CARRY1_RXFRAG, 553 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 554 555 data->tmpstats.rx_missed_errors = 556 tsi108_read_stat(data, TSI108_STAT_RXDROP, 557 TSI108_STAT_CARRY1_RXDROP, 558 TSI108_STAT_RXDROP_CARRY, 559 &data->stats.rx_missed_errors); 560 561 /* These three are maintained by software. */ 562 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; 563 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; 564 565 data->tmpstats.tx_aborted_errors = 566 tsi108_read_stat(data, TSI108_STAT_TXEXDEF, 567 TSI108_STAT_CARRY2_TXEXDEF, 568 TSI108_STAT_TXEXDEF_CARRY, 569 &data->stats.tx_aborted_errors); 570 571 data->tmpstats.tx_aborted_errors += 572 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, 573 TSI108_STAT_CARRY2_TXPAUSE, 574 TSI108_STAT_TXPAUSEDROP_CARRY, 575 &data->tx_pause_drop); 576 577 data->tmpstats.tx_aborted_errors += excol; 578 579 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; 580 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + 581 data->tmpstats.rx_crc_errors + 582 data->tmpstats.rx_frame_errors + 583 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; 584 585 spin_unlock_irq(&data->misclock); 586 return &data->tmpstats; 587 } 588 589 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) 590 { 591 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, 592 TSI108_EC_RXQ_PTRHIGH_VALID); 593 594 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO 595 | TSI108_EC_RXCTRL_QUEUE0); 596 } 597 598 static void tsi108_restart_tx(struct tsi108_prv_data * data) 599 { 600 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, 601 TSI108_EC_TXQ_PTRHIGH_VALID); 602 603 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | 604 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); 605 } 606 607 /* txlock must be held by caller, with IRQs disabled, and 608 * with permission to re-enable them when the lock is dropped. 609 */ 610 static void tsi108_complete_tx(struct net_device *dev) 611 { 612 struct tsi108_prv_data *data = netdev_priv(dev); 613 int tx; 614 struct sk_buff *skb; 615 int release = 0; 616 617 while (!data->txfree || data->txhead != data->txtail) { 618 tx = data->txtail; 619 620 if (data->txring[tx].misc & TSI108_TX_OWN) 621 break; 622 623 skb = data->txskbs[tx]; 624 625 if (!(data->txring[tx].misc & TSI108_TX_OK)) 626 printk("%s: bad tx packet, misc %x\n", 627 dev->name, data->txring[tx].misc); 628 629 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 630 data->txfree++; 631 632 if (data->txring[tx].misc & TSI108_TX_EOF) { 633 dev_kfree_skb_any(skb); 634 release++; 635 } 636 } 637 638 if (release) { 639 if (is_valid_ether_addr(dev->dev_addr) && data->link_up) 640 netif_wake_queue(dev); 641 } 642 } 643 644 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) 645 { 646 struct tsi108_prv_data *data = netdev_priv(dev); 647 int frags = skb_shinfo(skb)->nr_frags + 1; 648 int i; 649 650 if (!data->phy_ok && net_ratelimit()) 651 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); 652 653 if (!data->link_up) { 654 printk(KERN_ERR "%s: Transmit while link is down!\n", 655 dev->name); 656 netif_stop_queue(dev); 657 return NETDEV_TX_BUSY; 658 } 659 660 if (data->txfree < MAX_SKB_FRAGS + 1) { 661 netif_stop_queue(dev); 662 663 if (net_ratelimit()) 664 printk(KERN_ERR "%s: Transmit with full tx ring!\n", 665 dev->name); 666 return NETDEV_TX_BUSY; 667 } 668 669 if (data->txfree - frags < MAX_SKB_FRAGS + 1) { 670 netif_stop_queue(dev); 671 } 672 673 spin_lock_irq(&data->txlock); 674 675 for (i = 0; i < frags; i++) { 676 int misc = 0; 677 int tx = data->txhead; 678 679 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with 680 * the interrupt bit. TX descriptor-complete interrupts are 681 * enabled when the queue fills up, and masked when there is 682 * still free space. This way, when saturating the outbound 683 * link, the tx interrupts are kept to a reasonable level. 684 * When the queue is not full, reclamation of skbs still occurs 685 * as new packets are transmitted, or on a queue-empty 686 * interrupt. 687 */ 688 689 if ((tx % TSI108_TX_INT_FREQ == 0) && 690 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) 691 misc = TSI108_TX_INT; 692 693 data->txskbs[tx] = skb; 694 695 if (i == 0) { 696 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev, 697 skb->data, skb_headlen(skb), 698 DMA_TO_DEVICE); 699 data->txring[tx].len = skb_headlen(skb); 700 misc |= TSI108_TX_SOF; 701 } else { 702 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 703 704 data->txring[tx].buf0 = 705 skb_frag_dma_map(&data->pdev->dev, frag, 706 0, skb_frag_size(frag), 707 DMA_TO_DEVICE); 708 data->txring[tx].len = skb_frag_size(frag); 709 } 710 711 if (i == frags - 1) 712 misc |= TSI108_TX_EOF; 713 714 if (netif_msg_pktdata(data)) { 715 int i; 716 printk("%s: Tx Frame contents (%d)\n", dev->name, 717 skb->len); 718 for (i = 0; i < skb->len; i++) 719 printk(" %2.2x", skb->data[i]); 720 printk(".\n"); 721 } 722 data->txring[tx].misc = misc | TSI108_TX_OWN; 723 724 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; 725 data->txfree--; 726 } 727 728 tsi108_complete_tx(dev); 729 730 /* This must be done after the check for completed tx descriptors, 731 * so that the tail pointer is correct. 732 */ 733 734 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) 735 tsi108_restart_tx(data); 736 737 spin_unlock_irq(&data->txlock); 738 return NETDEV_TX_OK; 739 } 740 741 static int tsi108_complete_rx(struct net_device *dev, int budget) 742 { 743 struct tsi108_prv_data *data = netdev_priv(dev); 744 int done = 0; 745 746 while (data->rxfree && done != budget) { 747 int rx = data->rxtail; 748 struct sk_buff *skb; 749 750 if (data->rxring[rx].misc & TSI108_RX_OWN) 751 break; 752 753 skb = data->rxskbs[rx]; 754 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 755 data->rxfree--; 756 done++; 757 758 if (data->rxring[rx].misc & TSI108_RX_BAD) { 759 spin_lock_irq(&data->misclock); 760 761 if (data->rxring[rx].misc & TSI108_RX_CRC) 762 data->stats.rx_crc_errors++; 763 if (data->rxring[rx].misc & TSI108_RX_OVER) 764 data->stats.rx_fifo_errors++; 765 766 spin_unlock_irq(&data->misclock); 767 768 dev_kfree_skb_any(skb); 769 continue; 770 } 771 if (netif_msg_pktdata(data)) { 772 int i; 773 printk("%s: Rx Frame contents (%d)\n", 774 dev->name, data->rxring[rx].len); 775 for (i = 0; i < data->rxring[rx].len; i++) 776 printk(" %2.2x", skb->data[i]); 777 printk(".\n"); 778 } 779 780 skb_put(skb, data->rxring[rx].len); 781 skb->protocol = eth_type_trans(skb, dev); 782 netif_receive_skb(skb); 783 } 784 785 return done; 786 } 787 788 static int tsi108_refill_rx(struct net_device *dev, int budget) 789 { 790 struct tsi108_prv_data *data = netdev_priv(dev); 791 int done = 0; 792 793 while (data->rxfree != TSI108_RXRING_LEN && done != budget) { 794 int rx = data->rxhead; 795 struct sk_buff *skb; 796 797 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 798 data->rxskbs[rx] = skb; 799 if (!skb) 800 break; 801 802 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev, 803 skb->data, TSI108_RX_SKB_SIZE, 804 DMA_FROM_DEVICE); 805 806 /* Sometimes the hardware sets blen to zero after packet 807 * reception, even though the manual says that it's only ever 808 * modified by the driver. 809 */ 810 811 data->rxring[rx].blen = TSI108_RX_SKB_SIZE; 812 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; 813 814 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; 815 data->rxfree++; 816 done++; 817 } 818 819 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & 820 TSI108_EC_RXSTAT_QUEUE0)) 821 tsi108_restart_rx(data, dev); 822 823 return done; 824 } 825 826 static int tsi108_poll(struct napi_struct *napi, int budget) 827 { 828 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); 829 struct net_device *dev = data->dev; 830 u32 estat = TSI_READ(TSI108_EC_RXESTAT); 831 u32 intstat = TSI_READ(TSI108_EC_INTSTAT); 832 int num_received = 0, num_filled = 0; 833 834 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 835 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; 836 837 TSI_WRITE(TSI108_EC_RXESTAT, estat); 838 TSI_WRITE(TSI108_EC_INTSTAT, intstat); 839 840 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) 841 num_received = tsi108_complete_rx(dev, budget); 842 843 /* This should normally fill no more slots than the number of 844 * packets received in tsi108_complete_rx(). The exception 845 * is when we previously ran out of memory for RX SKBs. In that 846 * case, it's helpful to obey the budget, not only so that the 847 * CPU isn't hogged, but so that memory (which may still be low) 848 * is not hogged by one device. 849 * 850 * A work unit is considered to be two SKBs to allow us to catch 851 * up when the ring has shrunk due to out-of-memory but we're 852 * still removing the full budget's worth of packets each time. 853 */ 854 855 if (data->rxfree < TSI108_RXRING_LEN) 856 num_filled = tsi108_refill_rx(dev, budget * 2); 857 858 if (intstat & TSI108_INT_RXERROR) { 859 u32 err = TSI_READ(TSI108_EC_RXERR); 860 TSI_WRITE(TSI108_EC_RXERR, err); 861 862 if (err) { 863 if (net_ratelimit()) 864 printk(KERN_DEBUG "%s: RX error %x\n", 865 dev->name, err); 866 867 if (!(TSI_READ(TSI108_EC_RXSTAT) & 868 TSI108_EC_RXSTAT_QUEUE0)) 869 tsi108_restart_rx(data, dev); 870 } 871 } 872 873 if (intstat & TSI108_INT_RXOVERRUN) { 874 spin_lock_irq(&data->misclock); 875 data->stats.rx_fifo_errors++; 876 spin_unlock_irq(&data->misclock); 877 } 878 879 if (num_received < budget) { 880 data->rxpending = 0; 881 napi_complete_done(napi, num_received); 882 883 TSI_WRITE(TSI108_EC_INTMASK, 884 TSI_READ(TSI108_EC_INTMASK) 885 & ~(TSI108_INT_RXQUEUE0 886 | TSI108_INT_RXTHRESH | 887 TSI108_INT_RXOVERRUN | 888 TSI108_INT_RXERROR | 889 TSI108_INT_RXWAIT)); 890 } else { 891 data->rxpending = 1; 892 } 893 894 return num_received; 895 } 896 897 static void tsi108_rx_int(struct net_device *dev) 898 { 899 struct tsi108_prv_data *data = netdev_priv(dev); 900 901 /* A race could cause dev to already be scheduled, so it's not an 902 * error if that happens (and interrupts shouldn't be re-masked, 903 * because that can cause harmful races, if poll has already 904 * unmasked them but not cleared LINK_STATE_SCHED). 905 * 906 * This can happen if this code races with tsi108_poll(), which masks 907 * the interrupts after tsi108_irq_one() read the mask, but before 908 * napi_schedule is called. It could also happen due to calls 909 * from tsi108_check_rxring(). 910 */ 911 912 if (napi_schedule_prep(&data->napi)) { 913 /* Mask, rather than ack, the receive interrupts. The ack 914 * will happen in tsi108_poll(). 915 */ 916 917 TSI_WRITE(TSI108_EC_INTMASK, 918 TSI_READ(TSI108_EC_INTMASK) | 919 TSI108_INT_RXQUEUE0 920 | TSI108_INT_RXTHRESH | 921 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | 922 TSI108_INT_RXWAIT); 923 __napi_schedule(&data->napi); 924 } else { 925 if (!netif_running(dev)) { 926 /* This can happen if an interrupt occurs while the 927 * interface is being brought down, as the START 928 * bit is cleared before the stop function is called. 929 * 930 * In this case, the interrupts must be masked, or 931 * they will continue indefinitely. 932 * 933 * There's a race here if the interface is brought down 934 * and then up in rapid succession, as the device could 935 * be made running after the above check and before 936 * the masking below. This will only happen if the IRQ 937 * thread has a lower priority than the task brining 938 * up the interface. Fixing this race would likely 939 * require changes in generic code. 940 */ 941 942 TSI_WRITE(TSI108_EC_INTMASK, 943 TSI_READ 944 (TSI108_EC_INTMASK) | 945 TSI108_INT_RXQUEUE0 | 946 TSI108_INT_RXTHRESH | 947 TSI108_INT_RXOVERRUN | 948 TSI108_INT_RXERROR | 949 TSI108_INT_RXWAIT); 950 } 951 } 952 } 953 954 /* If the RX ring has run out of memory, try periodically 955 * to allocate some more, as otherwise poll would never 956 * get called (apart from the initial end-of-queue condition). 957 * 958 * This is called once per second (by default) from the thread. 959 */ 960 961 static void tsi108_check_rxring(struct net_device *dev) 962 { 963 struct tsi108_prv_data *data = netdev_priv(dev); 964 965 /* A poll is scheduled, as opposed to caling tsi108_refill_rx 966 * directly, so as to keep the receive path single-threaded 967 * (and thus not needing a lock). 968 */ 969 970 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) 971 tsi108_rx_int(dev); 972 } 973 974 static void tsi108_tx_int(struct net_device *dev) 975 { 976 struct tsi108_prv_data *data = netdev_priv(dev); 977 u32 estat = TSI_READ(TSI108_EC_TXESTAT); 978 979 TSI_WRITE(TSI108_EC_TXESTAT, estat); 980 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | 981 TSI108_INT_TXIDLE | TSI108_INT_TXERROR); 982 if (estat & TSI108_EC_TXESTAT_Q0_ERR) { 983 u32 err = TSI_READ(TSI108_EC_TXERR); 984 TSI_WRITE(TSI108_EC_TXERR, err); 985 986 if (err && net_ratelimit()) 987 printk(KERN_ERR "%s: TX error %x\n", dev->name, err); 988 } 989 990 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { 991 spin_lock(&data->txlock); 992 tsi108_complete_tx(dev); 993 spin_unlock(&data->txlock); 994 } 995 } 996 997 998 static irqreturn_t tsi108_irq(int irq, void *dev_id) 999 { 1000 struct net_device *dev = dev_id; 1001 struct tsi108_prv_data *data = netdev_priv(dev); 1002 u32 stat = TSI_READ(TSI108_EC_INTSTAT); 1003 1004 if (!(stat & TSI108_INT_ANY)) 1005 return IRQ_NONE; /* Not our interrupt */ 1006 1007 stat &= ~TSI_READ(TSI108_EC_INTMASK); 1008 1009 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | 1010 TSI108_INT_TXERROR)) 1011 tsi108_tx_int(dev); 1012 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 1013 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | 1014 TSI108_INT_RXERROR)) 1015 tsi108_rx_int(dev); 1016 1017 if (stat & TSI108_INT_SFN) { 1018 if (net_ratelimit()) 1019 printk(KERN_DEBUG "%s: SFN error\n", dev->name); 1020 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); 1021 } 1022 1023 if (stat & TSI108_INT_STATCARRY) { 1024 tsi108_stat_carry(dev); 1025 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); 1026 } 1027 1028 return IRQ_HANDLED; 1029 } 1030 1031 static void tsi108_stop_ethernet(struct net_device *dev) 1032 { 1033 struct tsi108_prv_data *data = netdev_priv(dev); 1034 int i = 1000; 1035 /* Disable all TX and RX queues ... */ 1036 TSI_WRITE(TSI108_EC_TXCTRL, 0); 1037 TSI_WRITE(TSI108_EC_RXCTRL, 0); 1038 1039 /* ...and wait for them to become idle */ 1040 while(i--) { 1041 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) 1042 break; 1043 udelay(10); 1044 } 1045 i = 1000; 1046 while(i--){ 1047 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) 1048 return; 1049 udelay(10); 1050 } 1051 printk(KERN_ERR "%s function time out\n", __func__); 1052 } 1053 1054 static void tsi108_reset_ether(struct tsi108_prv_data * data) 1055 { 1056 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); 1057 udelay(100); 1058 TSI_WRITE(TSI108_MAC_CFG1, 0); 1059 1060 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); 1061 udelay(100); 1062 TSI_WRITE(TSI108_EC_PORTCTRL, 1063 TSI_READ(TSI108_EC_PORTCTRL) & 1064 ~TSI108_EC_PORTCTRL_STATRST); 1065 1066 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); 1067 udelay(100); 1068 TSI_WRITE(TSI108_EC_TXCFG, 1069 TSI_READ(TSI108_EC_TXCFG) & 1070 ~TSI108_EC_TXCFG_RST); 1071 1072 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); 1073 udelay(100); 1074 TSI_WRITE(TSI108_EC_RXCFG, 1075 TSI_READ(TSI108_EC_RXCFG) & 1076 ~TSI108_EC_RXCFG_RST); 1077 1078 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1079 TSI_READ(TSI108_MAC_MII_MGMT_CFG) | 1080 TSI108_MAC_MII_MGMT_RST); 1081 udelay(100); 1082 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1083 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & 1084 ~(TSI108_MAC_MII_MGMT_RST | 1085 TSI108_MAC_MII_MGMT_CLK)) | 0x07); 1086 } 1087 1088 static int tsi108_get_mac(struct net_device *dev) 1089 { 1090 struct tsi108_prv_data *data = netdev_priv(dev); 1091 u32 word1 = TSI_READ(TSI108_MAC_ADDR1); 1092 u32 word2 = TSI_READ(TSI108_MAC_ADDR2); 1093 1094 /* Note that the octets are reversed from what the manual says, 1095 * producing an even weirder ordering... 1096 */ 1097 if (word2 == 0 && word1 == 0) { 1098 dev->dev_addr[0] = 0x00; 1099 dev->dev_addr[1] = 0x06; 1100 dev->dev_addr[2] = 0xd2; 1101 dev->dev_addr[3] = 0x00; 1102 dev->dev_addr[4] = 0x00; 1103 if (0x8 == data->phy) 1104 dev->dev_addr[5] = 0x01; 1105 else 1106 dev->dev_addr[5] = 0x02; 1107 1108 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1109 1110 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1111 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1112 1113 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1114 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1115 } else { 1116 dev->dev_addr[0] = (word2 >> 16) & 0xff; 1117 dev->dev_addr[1] = (word2 >> 24) & 0xff; 1118 dev->dev_addr[2] = (word1 >> 0) & 0xff; 1119 dev->dev_addr[3] = (word1 >> 8) & 0xff; 1120 dev->dev_addr[4] = (word1 >> 16) & 0xff; 1121 dev->dev_addr[5] = (word1 >> 24) & 0xff; 1122 } 1123 1124 if (!is_valid_ether_addr(dev->dev_addr)) { 1125 printk(KERN_ERR 1126 "%s: Invalid MAC address. word1: %08x, word2: %08x\n", 1127 dev->name, word1, word2); 1128 return -EINVAL; 1129 } 1130 1131 return 0; 1132 } 1133 1134 static int tsi108_set_mac(struct net_device *dev, void *addr) 1135 { 1136 struct tsi108_prv_data *data = netdev_priv(dev); 1137 u32 word1, word2; 1138 int i; 1139 1140 if (!is_valid_ether_addr(addr)) 1141 return -EADDRNOTAVAIL; 1142 1143 for (i = 0; i < 6; i++) 1144 /* +2 is for the offset of the HW addr type */ 1145 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; 1146 1147 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1148 1149 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1150 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1151 1152 spin_lock_irq(&data->misclock); 1153 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1154 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1155 spin_lock(&data->txlock); 1156 1157 if (data->txfree && data->link_up) 1158 netif_wake_queue(dev); 1159 1160 spin_unlock(&data->txlock); 1161 spin_unlock_irq(&data->misclock); 1162 return 0; 1163 } 1164 1165 /* Protected by dev->xmit_lock. */ 1166 static void tsi108_set_rx_mode(struct net_device *dev) 1167 { 1168 struct tsi108_prv_data *data = netdev_priv(dev); 1169 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); 1170 1171 if (dev->flags & IFF_PROMISC) { 1172 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); 1173 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; 1174 goto out; 1175 } 1176 1177 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); 1178 1179 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 1180 int i; 1181 struct netdev_hw_addr *ha; 1182 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; 1183 1184 memset(data->mc_hash, 0, sizeof(data->mc_hash)); 1185 1186 netdev_for_each_mc_addr(ha, dev) { 1187 u32 hash, crc; 1188 1189 crc = ether_crc(6, ha->addr); 1190 hash = crc >> 23; 1191 __set_bit(hash, &data->mc_hash[0]); 1192 } 1193 1194 TSI_WRITE(TSI108_EC_HASHADDR, 1195 TSI108_EC_HASHADDR_AUTOINC | 1196 TSI108_EC_HASHADDR_MCAST); 1197 1198 for (i = 0; i < 16; i++) { 1199 /* The manual says that the hardware may drop 1200 * back-to-back writes to the data register. 1201 */ 1202 udelay(1); 1203 TSI_WRITE(TSI108_EC_HASHDATA, 1204 data->mc_hash[i]); 1205 } 1206 } 1207 1208 out: 1209 TSI_WRITE(TSI108_EC_RXCFG, rxcfg); 1210 } 1211 1212 static void tsi108_init_phy(struct net_device *dev) 1213 { 1214 struct tsi108_prv_data *data = netdev_priv(dev); 1215 u32 i = 0; 1216 u16 phyval = 0; 1217 unsigned long flags; 1218 1219 spin_lock_irqsave(&phy_lock, flags); 1220 1221 tsi108_write_mii(data, MII_BMCR, BMCR_RESET); 1222 while (--i) { 1223 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) 1224 break; 1225 udelay(10); 1226 } 1227 if (i == 0) 1228 printk(KERN_ERR "%s function time out\n", __func__); 1229 1230 if (data->phy_type == TSI108_PHY_BCM54XX) { 1231 tsi108_write_mii(data, 0x09, 0x0300); 1232 tsi108_write_mii(data, 0x10, 0x1020); 1233 tsi108_write_mii(data, 0x1c, 0x8c00); 1234 } 1235 1236 tsi108_write_mii(data, 1237 MII_BMCR, 1238 BMCR_ANENABLE | BMCR_ANRESTART); 1239 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) 1240 cpu_relax(); 1241 1242 /* Set G/MII mode and receive clock select in TBI control #2. The 1243 * second port won't work if this isn't done, even though we don't 1244 * use TBI mode. 1245 */ 1246 1247 tsi108_write_tbi(data, 0x11, 0x30); 1248 1249 /* FIXME: It seems to take more than 2 back-to-back reads to the 1250 * PHY_STAT register before the link up status bit is set. 1251 */ 1252 1253 data->link_up = 0; 1254 1255 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & 1256 BMSR_LSTATUS)) { 1257 if (i++ > (MII_READ_DELAY / 10)) { 1258 break; 1259 } 1260 spin_unlock_irqrestore(&phy_lock, flags); 1261 msleep(10); 1262 spin_lock_irqsave(&phy_lock, flags); 1263 } 1264 1265 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); 1266 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); 1267 data->phy_ok = 1; 1268 data->init_media = 1; 1269 spin_unlock_irqrestore(&phy_lock, flags); 1270 } 1271 1272 static void tsi108_kill_phy(struct net_device *dev) 1273 { 1274 struct tsi108_prv_data *data = netdev_priv(dev); 1275 unsigned long flags; 1276 1277 spin_lock_irqsave(&phy_lock, flags); 1278 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); 1279 data->phy_ok = 0; 1280 spin_unlock_irqrestore(&phy_lock, flags); 1281 } 1282 1283 static int tsi108_open(struct net_device *dev) 1284 { 1285 int i; 1286 struct tsi108_prv_data *data = netdev_priv(dev); 1287 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); 1288 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); 1289 1290 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); 1291 if (i != 0) { 1292 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", 1293 data->id, data->irq_num); 1294 return i; 1295 } else { 1296 dev->irq = data->irq_num; 1297 printk(KERN_NOTICE 1298 "tsi108_open : Port %d Assigned IRQ %d to %s\n", 1299 data->id, dev->irq, dev->name); 1300 } 1301 1302 data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size, 1303 &data->rxdma, GFP_KERNEL); 1304 if (!data->rxring) 1305 return -ENOMEM; 1306 1307 data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size, 1308 &data->txdma, GFP_KERNEL); 1309 if (!data->txring) { 1310 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring, 1311 data->rxdma); 1312 return -ENOMEM; 1313 } 1314 1315 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1316 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); 1317 data->rxring[i].blen = TSI108_RXBUF_SIZE; 1318 data->rxring[i].vlan = 0; 1319 } 1320 1321 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; 1322 1323 data->rxtail = 0; 1324 data->rxhead = 0; 1325 1326 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1327 struct sk_buff *skb; 1328 1329 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 1330 if (!skb) { 1331 /* Bah. No memory for now, but maybe we'll get 1332 * some more later. 1333 * For now, we'll live with the smaller ring. 1334 */ 1335 printk(KERN_WARNING 1336 "%s: Could only allocate %d receive skb(s).\n", 1337 dev->name, i); 1338 data->rxhead = i; 1339 break; 1340 } 1341 1342 data->rxskbs[i] = skb; 1343 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); 1344 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; 1345 } 1346 1347 data->rxfree = i; 1348 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); 1349 1350 for (i = 0; i < TSI108_TXRING_LEN; i++) { 1351 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); 1352 data->txring[i].misc = 0; 1353 } 1354 1355 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; 1356 data->txtail = 0; 1357 data->txhead = 0; 1358 data->txfree = TSI108_TXRING_LEN; 1359 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); 1360 tsi108_init_phy(dev); 1361 1362 napi_enable(&data->napi); 1363 1364 timer_setup(&data->timer, tsi108_timed_checker, 0); 1365 mod_timer(&data->timer, jiffies + 1); 1366 1367 tsi108_restart_rx(data, dev); 1368 1369 TSI_WRITE(TSI108_EC_INTSTAT, ~0); 1370 1371 TSI_WRITE(TSI108_EC_INTMASK, 1372 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | 1373 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | 1374 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | 1375 TSI108_INT_SFN | TSI108_INT_STATCARRY)); 1376 1377 TSI_WRITE(TSI108_MAC_CFG1, 1378 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); 1379 netif_start_queue(dev); 1380 return 0; 1381 } 1382 1383 static int tsi108_close(struct net_device *dev) 1384 { 1385 struct tsi108_prv_data *data = netdev_priv(dev); 1386 1387 netif_stop_queue(dev); 1388 napi_disable(&data->napi); 1389 1390 del_timer_sync(&data->timer); 1391 1392 tsi108_stop_ethernet(dev); 1393 tsi108_kill_phy(dev); 1394 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1395 TSI_WRITE(TSI108_MAC_CFG1, 0); 1396 1397 /* Check for any pending TX packets, and drop them. */ 1398 1399 while (!data->txfree || data->txhead != data->txtail) { 1400 int tx = data->txtail; 1401 struct sk_buff *skb; 1402 skb = data->txskbs[tx]; 1403 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 1404 data->txfree++; 1405 dev_kfree_skb(skb); 1406 } 1407 1408 free_irq(data->irq_num, dev); 1409 1410 /* Discard the RX ring. */ 1411 1412 while (data->rxfree) { 1413 int rx = data->rxtail; 1414 struct sk_buff *skb; 1415 1416 skb = data->rxskbs[rx]; 1417 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 1418 data->rxfree--; 1419 dev_kfree_skb(skb); 1420 } 1421 1422 dma_free_coherent(&data->pdev->dev, 1423 TSI108_RXRING_LEN * sizeof(rx_desc), 1424 data->rxring, data->rxdma); 1425 dma_free_coherent(&data->pdev->dev, 1426 TSI108_TXRING_LEN * sizeof(tx_desc), 1427 data->txring, data->txdma); 1428 1429 return 0; 1430 } 1431 1432 static void tsi108_init_mac(struct net_device *dev) 1433 { 1434 struct tsi108_prv_data *data = netdev_priv(dev); 1435 1436 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | 1437 TSI108_MAC_CFG2_PADCRC); 1438 1439 TSI_WRITE(TSI108_EC_TXTHRESH, 1440 (192 << TSI108_EC_TXTHRESH_STARTFILL) | 1441 (192 << TSI108_EC_TXTHRESH_STOPFILL)); 1442 1443 TSI_WRITE(TSI108_STAT_CARRYMASK1, 1444 ~(TSI108_STAT_CARRY1_RXBYTES | 1445 TSI108_STAT_CARRY1_RXPKTS | 1446 TSI108_STAT_CARRY1_RXFCS | 1447 TSI108_STAT_CARRY1_RXMCAST | 1448 TSI108_STAT_CARRY1_RXALIGN | 1449 TSI108_STAT_CARRY1_RXLENGTH | 1450 TSI108_STAT_CARRY1_RXRUNT | 1451 TSI108_STAT_CARRY1_RXJUMBO | 1452 TSI108_STAT_CARRY1_RXFRAG | 1453 TSI108_STAT_CARRY1_RXJABBER | 1454 TSI108_STAT_CARRY1_RXDROP)); 1455 1456 TSI_WRITE(TSI108_STAT_CARRYMASK2, 1457 ~(TSI108_STAT_CARRY2_TXBYTES | 1458 TSI108_STAT_CARRY2_TXPKTS | 1459 TSI108_STAT_CARRY2_TXEXDEF | 1460 TSI108_STAT_CARRY2_TXEXCOL | 1461 TSI108_STAT_CARRY2_TXTCOL | 1462 TSI108_STAT_CARRY2_TXPAUSE)); 1463 1464 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); 1465 TSI_WRITE(TSI108_MAC_CFG1, 0); 1466 1467 TSI_WRITE(TSI108_EC_RXCFG, 1468 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); 1469 1470 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | 1471 TSI108_EC_TXQ_CFG_EOQ_OWN_INT | 1472 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << 1473 TSI108_EC_TXQ_CFG_SFNPORT)); 1474 1475 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | 1476 TSI108_EC_RXQ_CFG_EOQ_OWN_INT | 1477 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << 1478 TSI108_EC_RXQ_CFG_SFNPORT)); 1479 1480 TSI_WRITE(TSI108_EC_TXQ_BUFCFG, 1481 TSI108_EC_TXQ_BUFCFG_BURST256 | 1482 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1483 TSI108_EC_TXQ_BUFCFG_SFNPORT)); 1484 1485 TSI_WRITE(TSI108_EC_RXQ_BUFCFG, 1486 TSI108_EC_RXQ_BUFCFG_BURST256 | 1487 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1488 TSI108_EC_RXQ_BUFCFG_SFNPORT)); 1489 1490 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1491 } 1492 1493 static int tsi108_get_link_ksettings(struct net_device *dev, 1494 struct ethtool_link_ksettings *cmd) 1495 { 1496 struct tsi108_prv_data *data = netdev_priv(dev); 1497 unsigned long flags; 1498 1499 spin_lock_irqsave(&data->txlock, flags); 1500 mii_ethtool_get_link_ksettings(&data->mii_if, cmd); 1501 spin_unlock_irqrestore(&data->txlock, flags); 1502 1503 return 0; 1504 } 1505 1506 static int tsi108_set_link_ksettings(struct net_device *dev, 1507 const struct ethtool_link_ksettings *cmd) 1508 { 1509 struct tsi108_prv_data *data = netdev_priv(dev); 1510 unsigned long flags; 1511 int rc; 1512 1513 spin_lock_irqsave(&data->txlock, flags); 1514 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd); 1515 spin_unlock_irqrestore(&data->txlock, flags); 1516 1517 return rc; 1518 } 1519 1520 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1521 { 1522 struct tsi108_prv_data *data = netdev_priv(dev); 1523 if (!netif_running(dev)) 1524 return -EINVAL; 1525 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); 1526 } 1527 1528 static const struct ethtool_ops tsi108_ethtool_ops = { 1529 .get_link = ethtool_op_get_link, 1530 .get_link_ksettings = tsi108_get_link_ksettings, 1531 .set_link_ksettings = tsi108_set_link_ksettings, 1532 }; 1533 1534 static const struct net_device_ops tsi108_netdev_ops = { 1535 .ndo_open = tsi108_open, 1536 .ndo_stop = tsi108_close, 1537 .ndo_start_xmit = tsi108_send_packet, 1538 .ndo_set_rx_mode = tsi108_set_rx_mode, 1539 .ndo_get_stats = tsi108_get_stats, 1540 .ndo_do_ioctl = tsi108_do_ioctl, 1541 .ndo_set_mac_address = tsi108_set_mac, 1542 .ndo_validate_addr = eth_validate_addr, 1543 }; 1544 1545 static int 1546 tsi108_init_one(struct platform_device *pdev) 1547 { 1548 struct net_device *dev = NULL; 1549 struct tsi108_prv_data *data = NULL; 1550 hw_info *einfo; 1551 int err = 0; 1552 1553 einfo = dev_get_platdata(&pdev->dev); 1554 1555 if (NULL == einfo) { 1556 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", 1557 pdev->id); 1558 return -ENODEV; 1559 } 1560 1561 /* Create an ethernet device instance */ 1562 1563 dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); 1564 if (!dev) 1565 return -ENOMEM; 1566 1567 printk("tsi108_eth%d: probe...\n", pdev->id); 1568 data = netdev_priv(dev); 1569 data->dev = dev; 1570 data->pdev = pdev; 1571 1572 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", 1573 pdev->id, einfo->regs, einfo->phyregs, 1574 einfo->phy, einfo->irq_num); 1575 1576 data->regs = ioremap(einfo->regs, 0x400); 1577 if (NULL == data->regs) { 1578 err = -ENOMEM; 1579 goto regs_fail; 1580 } 1581 1582 data->phyregs = ioremap(einfo->phyregs, 0x400); 1583 if (NULL == data->phyregs) { 1584 err = -ENOMEM; 1585 goto phyregs_fail; 1586 } 1587 /* MII setup */ 1588 data->mii_if.dev = dev; 1589 data->mii_if.mdio_read = tsi108_mdio_read; 1590 data->mii_if.mdio_write = tsi108_mdio_write; 1591 data->mii_if.phy_id = einfo->phy; 1592 data->mii_if.phy_id_mask = 0x1f; 1593 data->mii_if.reg_num_mask = 0x1f; 1594 1595 data->phy = einfo->phy; 1596 data->phy_type = einfo->phy_type; 1597 data->irq_num = einfo->irq_num; 1598 data->id = pdev->id; 1599 netif_napi_add(dev, &data->napi, tsi108_poll, 64); 1600 dev->netdev_ops = &tsi108_netdev_ops; 1601 dev->ethtool_ops = &tsi108_ethtool_ops; 1602 1603 /* Apparently, the Linux networking code won't use scatter-gather 1604 * if the hardware doesn't do checksums. However, it's faster 1605 * to checksum in place and use SG, as (among other reasons) 1606 * the cache won't be dirtied (which then has to be flushed 1607 * before DMA). The checksumming is done by the driver (via 1608 * a new function skb_csum_dev() in net/core/skbuff.c). 1609 */ 1610 1611 dev->features = NETIF_F_HIGHDMA; 1612 1613 spin_lock_init(&data->txlock); 1614 spin_lock_init(&data->misclock); 1615 1616 tsi108_reset_ether(data); 1617 tsi108_kill_phy(dev); 1618 1619 if ((err = tsi108_get_mac(dev)) != 0) { 1620 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", 1621 dev->name); 1622 goto register_fail; 1623 } 1624 1625 tsi108_init_mac(dev); 1626 err = register_netdev(dev); 1627 if (err) { 1628 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1629 dev->name); 1630 goto register_fail; 1631 } 1632 1633 platform_set_drvdata(pdev, dev); 1634 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", 1635 dev->name, dev->dev_addr); 1636 #ifdef DEBUG 1637 data->msg_enable = DEBUG; 1638 dump_eth_one(dev); 1639 #endif 1640 1641 return 0; 1642 1643 register_fail: 1644 iounmap(data->phyregs); 1645 1646 phyregs_fail: 1647 iounmap(data->regs); 1648 1649 regs_fail: 1650 free_netdev(dev); 1651 return err; 1652 } 1653 1654 /* There's no way to either get interrupts from the PHY when 1655 * something changes, or to have the Tsi108 automatically communicate 1656 * with the PHY to reconfigure itself. 1657 * 1658 * Thus, we have to do it using a timer. 1659 */ 1660 1661 static void tsi108_timed_checker(struct timer_list *t) 1662 { 1663 struct tsi108_prv_data *data = from_timer(data, t, timer); 1664 struct net_device *dev = data->dev; 1665 1666 tsi108_check_phy(dev); 1667 tsi108_check_rxring(dev); 1668 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); 1669 } 1670 1671 static int tsi108_ether_remove(struct platform_device *pdev) 1672 { 1673 struct net_device *dev = platform_get_drvdata(pdev); 1674 struct tsi108_prv_data *priv = netdev_priv(dev); 1675 1676 unregister_netdev(dev); 1677 tsi108_stop_ethernet(dev); 1678 iounmap(priv->regs); 1679 iounmap(priv->phyregs); 1680 free_netdev(dev); 1681 1682 return 0; 1683 } 1684 module_platform_driver(tsi_eth_driver); 1685 1686 MODULE_AUTHOR("Tundra Semiconductor Corporation"); 1687 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); 1688 MODULE_LICENSE("GPL"); 1689 MODULE_ALIAS("platform:tsi-ethernet"); 1690