1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 4 Copyright(c) 2006 Tundra Semiconductor Corporation. 5 6 7 *******************************************************************************/ 8 9 /* This driver is based on the driver code originally developed 10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by 11 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation 12 * 13 * Currently changes from original version are: 14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) 15 * - modifications to handle two ports independently and support for 16 * additional PHY devices (alexandre.bounine@tundra.com) 17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com) 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/interrupt.h> 24 #include <linux/net.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/spinlock.h> 30 #include <linux/delay.h> 31 #include <linux/crc32.h> 32 #include <linux/mii.h> 33 #include <linux/device.h> 34 #include <linux/pci.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/timer.h> 37 #include <linux/platform_device.h> 38 #include <linux/gfp.h> 39 40 #include <asm/io.h> 41 #include <asm/tsi108.h> 42 43 #include "tsi108_eth.h" 44 45 #define MII_READ_DELAY 10000 /* max link wait time in msec */ 46 47 #define TSI108_RXRING_LEN 256 48 49 /* NOTE: The driver currently does not support receiving packets 50 * larger than the buffer size, so don't decrease this (unless you 51 * want to add such support). 52 */ 53 #define TSI108_RXBUF_SIZE 1536 54 55 #define TSI108_TXRING_LEN 256 56 57 #define TSI108_TX_INT_FREQ 64 58 59 /* Check the phy status every half a second. */ 60 #define CHECK_PHY_INTERVAL (HZ/2) 61 62 static int tsi108_init_one(struct platform_device *pdev); 63 static int tsi108_ether_remove(struct platform_device *pdev); 64 65 struct tsi108_prv_data { 66 void __iomem *regs; /* Base of normal regs */ 67 void __iomem *phyregs; /* Base of register bank used for PHY access */ 68 69 struct net_device *dev; 70 struct napi_struct napi; 71 72 unsigned int phy; /* Index of PHY for this interface */ 73 unsigned int irq_num; 74 unsigned int id; 75 unsigned int phy_type; 76 77 struct timer_list timer;/* Timer that triggers the check phy function */ 78 unsigned int rxtail; /* Next entry in rxring to read */ 79 unsigned int rxhead; /* Next entry in rxring to give a new buffer */ 80 unsigned int rxfree; /* Number of free, allocated RX buffers */ 81 82 unsigned int rxpending; /* Non-zero if there are still descriptors 83 * to be processed from a previous descriptor 84 * interrupt condition that has been cleared */ 85 86 unsigned int txtail; /* Next TX descriptor to check status on */ 87 unsigned int txhead; /* Next TX descriptor to use */ 88 89 /* Number of free TX descriptors. This could be calculated from 90 * rxhead and rxtail if one descriptor were left unused to disambiguate 91 * full and empty conditions, but it's simpler to just keep track 92 * explicitly. */ 93 94 unsigned int txfree; 95 96 unsigned int phy_ok; /* The PHY is currently powered on. */ 97 98 /* PHY status (duplex is 1 for half, 2 for full, 99 * so that the default 0 indicates that neither has 100 * yet been configured). */ 101 102 unsigned int link_up; 103 unsigned int speed; 104 unsigned int duplex; 105 106 tx_desc *txring; 107 rx_desc *rxring; 108 struct sk_buff *txskbs[TSI108_TXRING_LEN]; 109 struct sk_buff *rxskbs[TSI108_RXRING_LEN]; 110 111 dma_addr_t txdma, rxdma; 112 113 /* txlock nests in misclock and phy_lock */ 114 115 spinlock_t txlock, misclock; 116 117 /* stats is used to hold the upper bits of each hardware counter, 118 * and tmpstats is used to hold the full values for returning 119 * to the caller of get_stats(). They must be separate in case 120 * an overflow interrupt occurs before the stats are consumed. 121 */ 122 123 struct net_device_stats stats; 124 struct net_device_stats tmpstats; 125 126 /* These stats are kept separate in hardware, thus require individual 127 * fields for handling carry. They are combined in get_stats. 128 */ 129 130 unsigned long rx_fcs; /* Add to rx_frame_errors */ 131 unsigned long rx_short_fcs; /* Add to rx_frame_errors */ 132 unsigned long rx_long_fcs; /* Add to rx_frame_errors */ 133 unsigned long rx_underruns; /* Add to rx_length_errors */ 134 unsigned long rx_overruns; /* Add to rx_length_errors */ 135 136 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ 137 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ 138 139 unsigned long mc_hash[16]; 140 u32 msg_enable; /* debug message level */ 141 struct mii_if_info mii_if; 142 unsigned int init_media; 143 144 struct platform_device *pdev; 145 }; 146 147 /* Structure for a device driver */ 148 149 static struct platform_driver tsi_eth_driver = { 150 .probe = tsi108_init_one, 151 .remove = tsi108_ether_remove, 152 .driver = { 153 .name = "tsi-ethernet", 154 }, 155 }; 156 157 static void tsi108_timed_checker(struct timer_list *t); 158 159 #ifdef DEBUG 160 static void dump_eth_one(struct net_device *dev) 161 { 162 struct tsi108_prv_data *data = netdev_priv(dev); 163 164 printk("Dumping %s...\n", dev->name); 165 printk("intstat %x intmask %x phy_ok %d" 166 " link %d speed %d duplex %d\n", 167 TSI_READ(TSI108_EC_INTSTAT), 168 TSI_READ(TSI108_EC_INTMASK), data->phy_ok, 169 data->link_up, data->speed, data->duplex); 170 171 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", 172 data->txhead, data->txtail, data->txfree, 173 TSI_READ(TSI108_EC_TXSTAT), 174 TSI_READ(TSI108_EC_TXESTAT), 175 TSI_READ(TSI108_EC_TXERR)); 176 177 printk("RX: head %d, tail %d, free %d, stat %x," 178 " estat %x, err %x, pending %d\n\n", 179 data->rxhead, data->rxtail, data->rxfree, 180 TSI_READ(TSI108_EC_RXSTAT), 181 TSI_READ(TSI108_EC_RXESTAT), 182 TSI_READ(TSI108_EC_RXERR), data->rxpending); 183 } 184 #endif 185 186 /* Synchronization is needed between the thread and up/down events. 187 * Note that the PHY is accessed through the same registers for both 188 * interfaces, so this can't be made interface-specific. 189 */ 190 191 static DEFINE_SPINLOCK(phy_lock); 192 193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) 194 { 195 unsigned i; 196 197 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 198 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 199 (reg << TSI108_MAC_MII_ADDR_REG)); 200 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); 201 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); 202 for (i = 0; i < 100; i++) { 203 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 204 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) 205 break; 206 udelay(10); 207 } 208 209 if (i == 100) 210 return 0xffff; 211 else 212 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN); 213 } 214 215 static void tsi108_write_mii(struct tsi108_prv_data *data, 216 int reg, u16 val) 217 { 218 unsigned i = 100; 219 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 220 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 221 (reg << TSI108_MAC_MII_ADDR_REG)); 222 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); 223 while (i--) { 224 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 225 TSI108_MAC_MII_IND_BUSY)) 226 break; 227 udelay(10); 228 } 229 } 230 231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) 232 { 233 struct tsi108_prv_data *data = netdev_priv(dev); 234 return tsi108_read_mii(data, reg); 235 } 236 237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) 238 { 239 struct tsi108_prv_data *data = netdev_priv(dev); 240 tsi108_write_mii(data, reg, val); 241 } 242 243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data, 244 int reg, u16 val) 245 { 246 unsigned i = 1000; 247 TSI_WRITE(TSI108_MAC_MII_ADDR, 248 (0x1e << TSI108_MAC_MII_ADDR_PHY) 249 | (reg << TSI108_MAC_MII_ADDR_REG)); 250 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); 251 while(i--) { 252 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) 253 return; 254 udelay(10); 255 } 256 printk(KERN_ERR "%s function time out\n", __func__); 257 } 258 259 static int mii_speed(struct mii_if_info *mii) 260 { 261 int advert, lpa, val, media; 262 int lpa2 = 0; 263 int speed; 264 265 if (!mii_link_ok(mii)) 266 return 0; 267 268 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); 269 if ((val & BMSR_ANEGCOMPLETE) == 0) 270 return 0; 271 272 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); 273 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); 274 media = mii_nway_result(advert & lpa); 275 276 if (mii->supports_gmii) 277 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); 278 279 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : 280 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); 281 return speed; 282 } 283 284 static void tsi108_check_phy(struct net_device *dev) 285 { 286 struct tsi108_prv_data *data = netdev_priv(dev); 287 u32 mac_cfg2_reg, portctrl_reg; 288 u32 duplex; 289 u32 speed; 290 unsigned long flags; 291 292 spin_lock_irqsave(&phy_lock, flags); 293 294 if (!data->phy_ok) 295 goto out; 296 297 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); 298 data->init_media = 0; 299 300 if (netif_carrier_ok(dev)) { 301 302 speed = mii_speed(&data->mii_if); 303 304 if ((speed != data->speed) || duplex) { 305 306 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); 307 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); 308 309 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; 310 311 if (speed == 1000) { 312 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; 313 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; 314 } else { 315 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; 316 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; 317 } 318 319 data->speed = speed; 320 321 if (data->mii_if.full_duplex) { 322 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; 323 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; 324 data->duplex = 2; 325 } else { 326 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; 327 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; 328 data->duplex = 1; 329 } 330 331 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); 332 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); 333 } 334 335 if (data->link_up == 0) { 336 /* The manual says it can take 3-4 usecs for the speed change 337 * to take effect. 338 */ 339 udelay(5); 340 341 spin_lock(&data->txlock); 342 if (is_valid_ether_addr(dev->dev_addr) && data->txfree) 343 netif_wake_queue(dev); 344 345 data->link_up = 1; 346 spin_unlock(&data->txlock); 347 } 348 } else { 349 if (data->link_up == 1) { 350 netif_stop_queue(dev); 351 data->link_up = 0; 352 printk(KERN_NOTICE "%s : link is down\n", dev->name); 353 } 354 355 goto out; 356 } 357 358 359 out: 360 spin_unlock_irqrestore(&phy_lock, flags); 361 } 362 363 static inline void 364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, 365 unsigned long *upper) 366 { 367 if (carry & carry_bit) 368 *upper += carry_shift; 369 } 370 371 static void tsi108_stat_carry(struct net_device *dev) 372 { 373 struct tsi108_prv_data *data = netdev_priv(dev); 374 unsigned long flags; 375 u32 carry1, carry2; 376 377 spin_lock_irqsave(&data->misclock, flags); 378 379 carry1 = TSI_READ(TSI108_STAT_CARRY1); 380 carry2 = TSI_READ(TSI108_STAT_CARRY2); 381 382 TSI_WRITE(TSI108_STAT_CARRY1, carry1); 383 TSI_WRITE(TSI108_STAT_CARRY2, carry2); 384 385 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, 386 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 387 388 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, 389 TSI108_STAT_RXPKTS_CARRY, 390 &data->stats.rx_packets); 391 392 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, 393 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); 394 395 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, 396 TSI108_STAT_RXMCAST_CARRY, 397 &data->stats.multicast); 398 399 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, 400 TSI108_STAT_RXALIGN_CARRY, 401 &data->stats.rx_frame_errors); 402 403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, 404 TSI108_STAT_RXLENGTH_CARRY, 405 &data->stats.rx_length_errors); 406 407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, 408 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 409 410 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, 411 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 412 413 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, 414 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 415 416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, 417 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); 418 419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, 420 TSI108_STAT_RXDROP_CARRY, 421 &data->stats.rx_missed_errors); 422 423 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, 424 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 425 426 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, 427 TSI108_STAT_TXPKTS_CARRY, 428 &data->stats.tx_packets); 429 430 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, 431 TSI108_STAT_TXEXDEF_CARRY, 432 &data->stats.tx_aborted_errors); 433 434 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, 435 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); 436 437 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, 438 TSI108_STAT_TXTCOL_CARRY, 439 &data->stats.collisions); 440 441 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, 442 TSI108_STAT_TXPAUSEDROP_CARRY, 443 &data->tx_pause_drop); 444 445 spin_unlock_irqrestore(&data->misclock, flags); 446 } 447 448 /* Read a stat counter atomically with respect to carries. 449 * data->misclock must be held. 450 */ 451 static inline unsigned long 452 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, 453 int carry_shift, unsigned long *upper) 454 { 455 int carryreg; 456 unsigned long val; 457 458 if (reg < 0xb0) 459 carryreg = TSI108_STAT_CARRY1; 460 else 461 carryreg = TSI108_STAT_CARRY2; 462 463 again: 464 val = TSI_READ(reg) | *upper; 465 466 /* Check to see if it overflowed, but the interrupt hasn't 467 * been serviced yet. If so, handle the carry here, and 468 * try again. 469 */ 470 471 if (unlikely(TSI_READ(carryreg) & carry_bit)) { 472 *upper += carry_shift; 473 TSI_WRITE(carryreg, carry_bit); 474 goto again; 475 } 476 477 return val; 478 } 479 480 static struct net_device_stats *tsi108_get_stats(struct net_device *dev) 481 { 482 unsigned long excol; 483 484 struct tsi108_prv_data *data = netdev_priv(dev); 485 spin_lock_irq(&data->misclock); 486 487 data->tmpstats.rx_packets = 488 tsi108_read_stat(data, TSI108_STAT_RXPKTS, 489 TSI108_STAT_CARRY1_RXPKTS, 490 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); 491 492 data->tmpstats.tx_packets = 493 tsi108_read_stat(data, TSI108_STAT_TXPKTS, 494 TSI108_STAT_CARRY2_TXPKTS, 495 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); 496 497 data->tmpstats.rx_bytes = 498 tsi108_read_stat(data, TSI108_STAT_RXBYTES, 499 TSI108_STAT_CARRY1_RXBYTES, 500 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 501 502 data->tmpstats.tx_bytes = 503 tsi108_read_stat(data, TSI108_STAT_TXBYTES, 504 TSI108_STAT_CARRY2_TXBYTES, 505 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 506 507 data->tmpstats.multicast = 508 tsi108_read_stat(data, TSI108_STAT_RXMCAST, 509 TSI108_STAT_CARRY1_RXMCAST, 510 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); 511 512 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, 513 TSI108_STAT_CARRY2_TXEXCOL, 514 TSI108_STAT_TXEXCOL_CARRY, 515 &data->tx_coll_abort); 516 517 data->tmpstats.collisions = 518 tsi108_read_stat(data, TSI108_STAT_TXTCOL, 519 TSI108_STAT_CARRY2_TXTCOL, 520 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); 521 522 data->tmpstats.collisions += excol; 523 524 data->tmpstats.rx_length_errors = 525 tsi108_read_stat(data, TSI108_STAT_RXLENGTH, 526 TSI108_STAT_CARRY1_RXLENGTH, 527 TSI108_STAT_RXLENGTH_CARRY, 528 &data->stats.rx_length_errors); 529 530 data->tmpstats.rx_length_errors += 531 tsi108_read_stat(data, TSI108_STAT_RXRUNT, 532 TSI108_STAT_CARRY1_RXRUNT, 533 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 534 535 data->tmpstats.rx_length_errors += 536 tsi108_read_stat(data, TSI108_STAT_RXJUMBO, 537 TSI108_STAT_CARRY1_RXJUMBO, 538 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 539 540 data->tmpstats.rx_frame_errors = 541 tsi108_read_stat(data, TSI108_STAT_RXALIGN, 542 TSI108_STAT_CARRY1_RXALIGN, 543 TSI108_STAT_RXALIGN_CARRY, 544 &data->stats.rx_frame_errors); 545 546 data->tmpstats.rx_frame_errors += 547 tsi108_read_stat(data, TSI108_STAT_RXFCS, 548 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, 549 &data->rx_fcs); 550 551 data->tmpstats.rx_frame_errors += 552 tsi108_read_stat(data, TSI108_STAT_RXFRAG, 553 TSI108_STAT_CARRY1_RXFRAG, 554 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 555 556 data->tmpstats.rx_missed_errors = 557 tsi108_read_stat(data, TSI108_STAT_RXDROP, 558 TSI108_STAT_CARRY1_RXDROP, 559 TSI108_STAT_RXDROP_CARRY, 560 &data->stats.rx_missed_errors); 561 562 /* These three are maintained by software. */ 563 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; 564 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; 565 566 data->tmpstats.tx_aborted_errors = 567 tsi108_read_stat(data, TSI108_STAT_TXEXDEF, 568 TSI108_STAT_CARRY2_TXEXDEF, 569 TSI108_STAT_TXEXDEF_CARRY, 570 &data->stats.tx_aborted_errors); 571 572 data->tmpstats.tx_aborted_errors += 573 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, 574 TSI108_STAT_CARRY2_TXPAUSE, 575 TSI108_STAT_TXPAUSEDROP_CARRY, 576 &data->tx_pause_drop); 577 578 data->tmpstats.tx_aborted_errors += excol; 579 580 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; 581 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + 582 data->tmpstats.rx_crc_errors + 583 data->tmpstats.rx_frame_errors + 584 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; 585 586 spin_unlock_irq(&data->misclock); 587 return &data->tmpstats; 588 } 589 590 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) 591 { 592 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, 593 TSI108_EC_RXQ_PTRHIGH_VALID); 594 595 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO 596 | TSI108_EC_RXCTRL_QUEUE0); 597 } 598 599 static void tsi108_restart_tx(struct tsi108_prv_data * data) 600 { 601 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, 602 TSI108_EC_TXQ_PTRHIGH_VALID); 603 604 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | 605 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); 606 } 607 608 /* txlock must be held by caller, with IRQs disabled, and 609 * with permission to re-enable them when the lock is dropped. 610 */ 611 static void tsi108_complete_tx(struct net_device *dev) 612 { 613 struct tsi108_prv_data *data = netdev_priv(dev); 614 int tx; 615 struct sk_buff *skb; 616 int release = 0; 617 618 while (!data->txfree || data->txhead != data->txtail) { 619 tx = data->txtail; 620 621 if (data->txring[tx].misc & TSI108_TX_OWN) 622 break; 623 624 skb = data->txskbs[tx]; 625 626 if (!(data->txring[tx].misc & TSI108_TX_OK)) 627 printk("%s: bad tx packet, misc %x\n", 628 dev->name, data->txring[tx].misc); 629 630 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 631 data->txfree++; 632 633 if (data->txring[tx].misc & TSI108_TX_EOF) { 634 dev_kfree_skb_any(skb); 635 release++; 636 } 637 } 638 639 if (release) { 640 if (is_valid_ether_addr(dev->dev_addr) && data->link_up) 641 netif_wake_queue(dev); 642 } 643 } 644 645 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) 646 { 647 struct tsi108_prv_data *data = netdev_priv(dev); 648 int frags = skb_shinfo(skb)->nr_frags + 1; 649 int i; 650 651 if (!data->phy_ok && net_ratelimit()) 652 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); 653 654 if (!data->link_up) { 655 printk(KERN_ERR "%s: Transmit while link is down!\n", 656 dev->name); 657 netif_stop_queue(dev); 658 return NETDEV_TX_BUSY; 659 } 660 661 if (data->txfree < MAX_SKB_FRAGS + 1) { 662 netif_stop_queue(dev); 663 664 if (net_ratelimit()) 665 printk(KERN_ERR "%s: Transmit with full tx ring!\n", 666 dev->name); 667 return NETDEV_TX_BUSY; 668 } 669 670 if (data->txfree - frags < MAX_SKB_FRAGS + 1) { 671 netif_stop_queue(dev); 672 } 673 674 spin_lock_irq(&data->txlock); 675 676 for (i = 0; i < frags; i++) { 677 int misc = 0; 678 int tx = data->txhead; 679 680 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with 681 * the interrupt bit. TX descriptor-complete interrupts are 682 * enabled when the queue fills up, and masked when there is 683 * still free space. This way, when saturating the outbound 684 * link, the tx interrupts are kept to a reasonable level. 685 * When the queue is not full, reclamation of skbs still occurs 686 * as new packets are transmitted, or on a queue-empty 687 * interrupt. 688 */ 689 690 if ((tx % TSI108_TX_INT_FREQ == 0) && 691 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) 692 misc = TSI108_TX_INT; 693 694 data->txskbs[tx] = skb; 695 696 if (i == 0) { 697 data->txring[tx].buf0 = dma_map_single(&data->pdev->dev, 698 skb->data, skb_headlen(skb), 699 DMA_TO_DEVICE); 700 data->txring[tx].len = skb_headlen(skb); 701 misc |= TSI108_TX_SOF; 702 } else { 703 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 704 705 data->txring[tx].buf0 = 706 skb_frag_dma_map(&data->pdev->dev, frag, 707 0, skb_frag_size(frag), 708 DMA_TO_DEVICE); 709 data->txring[tx].len = skb_frag_size(frag); 710 } 711 712 if (i == frags - 1) 713 misc |= TSI108_TX_EOF; 714 715 if (netif_msg_pktdata(data)) { 716 int i; 717 printk("%s: Tx Frame contents (%d)\n", dev->name, 718 skb->len); 719 for (i = 0; i < skb->len; i++) 720 printk(" %2.2x", skb->data[i]); 721 printk(".\n"); 722 } 723 data->txring[tx].misc = misc | TSI108_TX_OWN; 724 725 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; 726 data->txfree--; 727 } 728 729 tsi108_complete_tx(dev); 730 731 /* This must be done after the check for completed tx descriptors, 732 * so that the tail pointer is correct. 733 */ 734 735 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) 736 tsi108_restart_tx(data); 737 738 spin_unlock_irq(&data->txlock); 739 return NETDEV_TX_OK; 740 } 741 742 static int tsi108_complete_rx(struct net_device *dev, int budget) 743 { 744 struct tsi108_prv_data *data = netdev_priv(dev); 745 int done = 0; 746 747 while (data->rxfree && done != budget) { 748 int rx = data->rxtail; 749 struct sk_buff *skb; 750 751 if (data->rxring[rx].misc & TSI108_RX_OWN) 752 break; 753 754 skb = data->rxskbs[rx]; 755 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 756 data->rxfree--; 757 done++; 758 759 if (data->rxring[rx].misc & TSI108_RX_BAD) { 760 spin_lock_irq(&data->misclock); 761 762 if (data->rxring[rx].misc & TSI108_RX_CRC) 763 data->stats.rx_crc_errors++; 764 if (data->rxring[rx].misc & TSI108_RX_OVER) 765 data->stats.rx_fifo_errors++; 766 767 spin_unlock_irq(&data->misclock); 768 769 dev_kfree_skb_any(skb); 770 continue; 771 } 772 if (netif_msg_pktdata(data)) { 773 int i; 774 printk("%s: Rx Frame contents (%d)\n", 775 dev->name, data->rxring[rx].len); 776 for (i = 0; i < data->rxring[rx].len; i++) 777 printk(" %2.2x", skb->data[i]); 778 printk(".\n"); 779 } 780 781 skb_put(skb, data->rxring[rx].len); 782 skb->protocol = eth_type_trans(skb, dev); 783 netif_receive_skb(skb); 784 } 785 786 return done; 787 } 788 789 static int tsi108_refill_rx(struct net_device *dev, int budget) 790 { 791 struct tsi108_prv_data *data = netdev_priv(dev); 792 int done = 0; 793 794 while (data->rxfree != TSI108_RXRING_LEN && done != budget) { 795 int rx = data->rxhead; 796 struct sk_buff *skb; 797 798 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 799 data->rxskbs[rx] = skb; 800 if (!skb) 801 break; 802 803 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev, 804 skb->data, TSI108_RX_SKB_SIZE, 805 DMA_FROM_DEVICE); 806 807 /* Sometimes the hardware sets blen to zero after packet 808 * reception, even though the manual says that it's only ever 809 * modified by the driver. 810 */ 811 812 data->rxring[rx].blen = TSI108_RX_SKB_SIZE; 813 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; 814 815 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; 816 data->rxfree++; 817 done++; 818 } 819 820 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & 821 TSI108_EC_RXSTAT_QUEUE0)) 822 tsi108_restart_rx(data, dev); 823 824 return done; 825 } 826 827 static int tsi108_poll(struct napi_struct *napi, int budget) 828 { 829 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); 830 struct net_device *dev = data->dev; 831 u32 estat = TSI_READ(TSI108_EC_RXESTAT); 832 u32 intstat = TSI_READ(TSI108_EC_INTSTAT); 833 int num_received = 0, num_filled = 0; 834 835 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 836 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; 837 838 TSI_WRITE(TSI108_EC_RXESTAT, estat); 839 TSI_WRITE(TSI108_EC_INTSTAT, intstat); 840 841 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) 842 num_received = tsi108_complete_rx(dev, budget); 843 844 /* This should normally fill no more slots than the number of 845 * packets received in tsi108_complete_rx(). The exception 846 * is when we previously ran out of memory for RX SKBs. In that 847 * case, it's helpful to obey the budget, not only so that the 848 * CPU isn't hogged, but so that memory (which may still be low) 849 * is not hogged by one device. 850 * 851 * A work unit is considered to be two SKBs to allow us to catch 852 * up when the ring has shrunk due to out-of-memory but we're 853 * still removing the full budget's worth of packets each time. 854 */ 855 856 if (data->rxfree < TSI108_RXRING_LEN) 857 num_filled = tsi108_refill_rx(dev, budget * 2); 858 859 if (intstat & TSI108_INT_RXERROR) { 860 u32 err = TSI_READ(TSI108_EC_RXERR); 861 TSI_WRITE(TSI108_EC_RXERR, err); 862 863 if (err) { 864 if (net_ratelimit()) 865 printk(KERN_DEBUG "%s: RX error %x\n", 866 dev->name, err); 867 868 if (!(TSI_READ(TSI108_EC_RXSTAT) & 869 TSI108_EC_RXSTAT_QUEUE0)) 870 tsi108_restart_rx(data, dev); 871 } 872 } 873 874 if (intstat & TSI108_INT_RXOVERRUN) { 875 spin_lock_irq(&data->misclock); 876 data->stats.rx_fifo_errors++; 877 spin_unlock_irq(&data->misclock); 878 } 879 880 if (num_received < budget) { 881 data->rxpending = 0; 882 napi_complete_done(napi, num_received); 883 884 TSI_WRITE(TSI108_EC_INTMASK, 885 TSI_READ(TSI108_EC_INTMASK) 886 & ~(TSI108_INT_RXQUEUE0 887 | TSI108_INT_RXTHRESH | 888 TSI108_INT_RXOVERRUN | 889 TSI108_INT_RXERROR | 890 TSI108_INT_RXWAIT)); 891 } else { 892 data->rxpending = 1; 893 } 894 895 return num_received; 896 } 897 898 static void tsi108_rx_int(struct net_device *dev) 899 { 900 struct tsi108_prv_data *data = netdev_priv(dev); 901 902 /* A race could cause dev to already be scheduled, so it's not an 903 * error if that happens (and interrupts shouldn't be re-masked, 904 * because that can cause harmful races, if poll has already 905 * unmasked them but not cleared LINK_STATE_SCHED). 906 * 907 * This can happen if this code races with tsi108_poll(), which masks 908 * the interrupts after tsi108_irq_one() read the mask, but before 909 * napi_schedule is called. It could also happen due to calls 910 * from tsi108_check_rxring(). 911 */ 912 913 if (napi_schedule_prep(&data->napi)) { 914 /* Mask, rather than ack, the receive interrupts. The ack 915 * will happen in tsi108_poll(). 916 */ 917 918 TSI_WRITE(TSI108_EC_INTMASK, 919 TSI_READ(TSI108_EC_INTMASK) | 920 TSI108_INT_RXQUEUE0 921 | TSI108_INT_RXTHRESH | 922 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | 923 TSI108_INT_RXWAIT); 924 __napi_schedule(&data->napi); 925 } else { 926 if (!netif_running(dev)) { 927 /* This can happen if an interrupt occurs while the 928 * interface is being brought down, as the START 929 * bit is cleared before the stop function is called. 930 * 931 * In this case, the interrupts must be masked, or 932 * they will continue indefinitely. 933 * 934 * There's a race here if the interface is brought down 935 * and then up in rapid succession, as the device could 936 * be made running after the above check and before 937 * the masking below. This will only happen if the IRQ 938 * thread has a lower priority than the task brining 939 * up the interface. Fixing this race would likely 940 * require changes in generic code. 941 */ 942 943 TSI_WRITE(TSI108_EC_INTMASK, 944 TSI_READ 945 (TSI108_EC_INTMASK) | 946 TSI108_INT_RXQUEUE0 | 947 TSI108_INT_RXTHRESH | 948 TSI108_INT_RXOVERRUN | 949 TSI108_INT_RXERROR | 950 TSI108_INT_RXWAIT); 951 } 952 } 953 } 954 955 /* If the RX ring has run out of memory, try periodically 956 * to allocate some more, as otherwise poll would never 957 * get called (apart from the initial end-of-queue condition). 958 * 959 * This is called once per second (by default) from the thread. 960 */ 961 962 static void tsi108_check_rxring(struct net_device *dev) 963 { 964 struct tsi108_prv_data *data = netdev_priv(dev); 965 966 /* A poll is scheduled, as opposed to caling tsi108_refill_rx 967 * directly, so as to keep the receive path single-threaded 968 * (and thus not needing a lock). 969 */ 970 971 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) 972 tsi108_rx_int(dev); 973 } 974 975 static void tsi108_tx_int(struct net_device *dev) 976 { 977 struct tsi108_prv_data *data = netdev_priv(dev); 978 u32 estat = TSI_READ(TSI108_EC_TXESTAT); 979 980 TSI_WRITE(TSI108_EC_TXESTAT, estat); 981 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | 982 TSI108_INT_TXIDLE | TSI108_INT_TXERROR); 983 if (estat & TSI108_EC_TXESTAT_Q0_ERR) { 984 u32 err = TSI_READ(TSI108_EC_TXERR); 985 TSI_WRITE(TSI108_EC_TXERR, err); 986 987 if (err && net_ratelimit()) 988 printk(KERN_ERR "%s: TX error %x\n", dev->name, err); 989 } 990 991 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { 992 spin_lock(&data->txlock); 993 tsi108_complete_tx(dev); 994 spin_unlock(&data->txlock); 995 } 996 } 997 998 999 static irqreturn_t tsi108_irq(int irq, void *dev_id) 1000 { 1001 struct net_device *dev = dev_id; 1002 struct tsi108_prv_data *data = netdev_priv(dev); 1003 u32 stat = TSI_READ(TSI108_EC_INTSTAT); 1004 1005 if (!(stat & TSI108_INT_ANY)) 1006 return IRQ_NONE; /* Not our interrupt */ 1007 1008 stat &= ~TSI_READ(TSI108_EC_INTMASK); 1009 1010 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | 1011 TSI108_INT_TXERROR)) 1012 tsi108_tx_int(dev); 1013 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 1014 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | 1015 TSI108_INT_RXERROR)) 1016 tsi108_rx_int(dev); 1017 1018 if (stat & TSI108_INT_SFN) { 1019 if (net_ratelimit()) 1020 printk(KERN_DEBUG "%s: SFN error\n", dev->name); 1021 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); 1022 } 1023 1024 if (stat & TSI108_INT_STATCARRY) { 1025 tsi108_stat_carry(dev); 1026 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); 1027 } 1028 1029 return IRQ_HANDLED; 1030 } 1031 1032 static void tsi108_stop_ethernet(struct net_device *dev) 1033 { 1034 struct tsi108_prv_data *data = netdev_priv(dev); 1035 int i = 1000; 1036 /* Disable all TX and RX queues ... */ 1037 TSI_WRITE(TSI108_EC_TXCTRL, 0); 1038 TSI_WRITE(TSI108_EC_RXCTRL, 0); 1039 1040 /* ...and wait for them to become idle */ 1041 while(i--) { 1042 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) 1043 break; 1044 udelay(10); 1045 } 1046 i = 1000; 1047 while(i--){ 1048 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) 1049 return; 1050 udelay(10); 1051 } 1052 printk(KERN_ERR "%s function time out\n", __func__); 1053 } 1054 1055 static void tsi108_reset_ether(struct tsi108_prv_data * data) 1056 { 1057 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); 1058 udelay(100); 1059 TSI_WRITE(TSI108_MAC_CFG1, 0); 1060 1061 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); 1062 udelay(100); 1063 TSI_WRITE(TSI108_EC_PORTCTRL, 1064 TSI_READ(TSI108_EC_PORTCTRL) & 1065 ~TSI108_EC_PORTCTRL_STATRST); 1066 1067 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); 1068 udelay(100); 1069 TSI_WRITE(TSI108_EC_TXCFG, 1070 TSI_READ(TSI108_EC_TXCFG) & 1071 ~TSI108_EC_TXCFG_RST); 1072 1073 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); 1074 udelay(100); 1075 TSI_WRITE(TSI108_EC_RXCFG, 1076 TSI_READ(TSI108_EC_RXCFG) & 1077 ~TSI108_EC_RXCFG_RST); 1078 1079 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1080 TSI_READ(TSI108_MAC_MII_MGMT_CFG) | 1081 TSI108_MAC_MII_MGMT_RST); 1082 udelay(100); 1083 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1084 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & 1085 ~(TSI108_MAC_MII_MGMT_RST | 1086 TSI108_MAC_MII_MGMT_CLK)) | 0x07); 1087 } 1088 1089 static int tsi108_get_mac(struct net_device *dev) 1090 { 1091 struct tsi108_prv_data *data = netdev_priv(dev); 1092 u32 word1 = TSI_READ(TSI108_MAC_ADDR1); 1093 u32 word2 = TSI_READ(TSI108_MAC_ADDR2); 1094 1095 /* Note that the octets are reversed from what the manual says, 1096 * producing an even weirder ordering... 1097 */ 1098 if (word2 == 0 && word1 == 0) { 1099 dev->dev_addr[0] = 0x00; 1100 dev->dev_addr[1] = 0x06; 1101 dev->dev_addr[2] = 0xd2; 1102 dev->dev_addr[3] = 0x00; 1103 dev->dev_addr[4] = 0x00; 1104 if (0x8 == data->phy) 1105 dev->dev_addr[5] = 0x01; 1106 else 1107 dev->dev_addr[5] = 0x02; 1108 1109 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1110 1111 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1112 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1113 1114 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1115 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1116 } else { 1117 dev->dev_addr[0] = (word2 >> 16) & 0xff; 1118 dev->dev_addr[1] = (word2 >> 24) & 0xff; 1119 dev->dev_addr[2] = (word1 >> 0) & 0xff; 1120 dev->dev_addr[3] = (word1 >> 8) & 0xff; 1121 dev->dev_addr[4] = (word1 >> 16) & 0xff; 1122 dev->dev_addr[5] = (word1 >> 24) & 0xff; 1123 } 1124 1125 if (!is_valid_ether_addr(dev->dev_addr)) { 1126 printk(KERN_ERR 1127 "%s: Invalid MAC address. word1: %08x, word2: %08x\n", 1128 dev->name, word1, word2); 1129 return -EINVAL; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int tsi108_set_mac(struct net_device *dev, void *addr) 1136 { 1137 struct tsi108_prv_data *data = netdev_priv(dev); 1138 u32 word1, word2; 1139 int i; 1140 1141 if (!is_valid_ether_addr(addr)) 1142 return -EADDRNOTAVAIL; 1143 1144 for (i = 0; i < 6; i++) 1145 /* +2 is for the offset of the HW addr type */ 1146 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; 1147 1148 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1149 1150 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1151 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1152 1153 spin_lock_irq(&data->misclock); 1154 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1155 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1156 spin_lock(&data->txlock); 1157 1158 if (data->txfree && data->link_up) 1159 netif_wake_queue(dev); 1160 1161 spin_unlock(&data->txlock); 1162 spin_unlock_irq(&data->misclock); 1163 return 0; 1164 } 1165 1166 /* Protected by dev->xmit_lock. */ 1167 static void tsi108_set_rx_mode(struct net_device *dev) 1168 { 1169 struct tsi108_prv_data *data = netdev_priv(dev); 1170 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); 1171 1172 if (dev->flags & IFF_PROMISC) { 1173 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); 1174 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; 1175 goto out; 1176 } 1177 1178 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); 1179 1180 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 1181 int i; 1182 struct netdev_hw_addr *ha; 1183 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; 1184 1185 memset(data->mc_hash, 0, sizeof(data->mc_hash)); 1186 1187 netdev_for_each_mc_addr(ha, dev) { 1188 u32 hash, crc; 1189 1190 crc = ether_crc(6, ha->addr); 1191 hash = crc >> 23; 1192 __set_bit(hash, &data->mc_hash[0]); 1193 } 1194 1195 TSI_WRITE(TSI108_EC_HASHADDR, 1196 TSI108_EC_HASHADDR_AUTOINC | 1197 TSI108_EC_HASHADDR_MCAST); 1198 1199 for (i = 0; i < 16; i++) { 1200 /* The manual says that the hardware may drop 1201 * back-to-back writes to the data register. 1202 */ 1203 udelay(1); 1204 TSI_WRITE(TSI108_EC_HASHDATA, 1205 data->mc_hash[i]); 1206 } 1207 } 1208 1209 out: 1210 TSI_WRITE(TSI108_EC_RXCFG, rxcfg); 1211 } 1212 1213 static void tsi108_init_phy(struct net_device *dev) 1214 { 1215 struct tsi108_prv_data *data = netdev_priv(dev); 1216 u32 i = 0; 1217 u16 phyval = 0; 1218 unsigned long flags; 1219 1220 spin_lock_irqsave(&phy_lock, flags); 1221 1222 tsi108_write_mii(data, MII_BMCR, BMCR_RESET); 1223 while (--i) { 1224 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) 1225 break; 1226 udelay(10); 1227 } 1228 if (i == 0) 1229 printk(KERN_ERR "%s function time out\n", __func__); 1230 1231 if (data->phy_type == TSI108_PHY_BCM54XX) { 1232 tsi108_write_mii(data, 0x09, 0x0300); 1233 tsi108_write_mii(data, 0x10, 0x1020); 1234 tsi108_write_mii(data, 0x1c, 0x8c00); 1235 } 1236 1237 tsi108_write_mii(data, 1238 MII_BMCR, 1239 BMCR_ANENABLE | BMCR_ANRESTART); 1240 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) 1241 cpu_relax(); 1242 1243 /* Set G/MII mode and receive clock select in TBI control #2. The 1244 * second port won't work if this isn't done, even though we don't 1245 * use TBI mode. 1246 */ 1247 1248 tsi108_write_tbi(data, 0x11, 0x30); 1249 1250 /* FIXME: It seems to take more than 2 back-to-back reads to the 1251 * PHY_STAT register before the link up status bit is set. 1252 */ 1253 1254 data->link_up = 0; 1255 1256 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & 1257 BMSR_LSTATUS)) { 1258 if (i++ > (MII_READ_DELAY / 10)) { 1259 break; 1260 } 1261 spin_unlock_irqrestore(&phy_lock, flags); 1262 msleep(10); 1263 spin_lock_irqsave(&phy_lock, flags); 1264 } 1265 1266 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); 1267 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); 1268 data->phy_ok = 1; 1269 data->init_media = 1; 1270 spin_unlock_irqrestore(&phy_lock, flags); 1271 } 1272 1273 static void tsi108_kill_phy(struct net_device *dev) 1274 { 1275 struct tsi108_prv_data *data = netdev_priv(dev); 1276 unsigned long flags; 1277 1278 spin_lock_irqsave(&phy_lock, flags); 1279 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); 1280 data->phy_ok = 0; 1281 spin_unlock_irqrestore(&phy_lock, flags); 1282 } 1283 1284 static int tsi108_open(struct net_device *dev) 1285 { 1286 int i; 1287 struct tsi108_prv_data *data = netdev_priv(dev); 1288 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); 1289 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); 1290 1291 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); 1292 if (i != 0) { 1293 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", 1294 data->id, data->irq_num); 1295 return i; 1296 } else { 1297 dev->irq = data->irq_num; 1298 printk(KERN_NOTICE 1299 "tsi108_open : Port %d Assigned IRQ %d to %s\n", 1300 data->id, dev->irq, dev->name); 1301 } 1302 1303 data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size, 1304 &data->rxdma, GFP_KERNEL); 1305 if (!data->rxring) 1306 return -ENOMEM; 1307 1308 data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size, 1309 &data->txdma, GFP_KERNEL); 1310 if (!data->txring) { 1311 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring, 1312 data->rxdma); 1313 return -ENOMEM; 1314 } 1315 1316 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1317 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); 1318 data->rxring[i].blen = TSI108_RXBUF_SIZE; 1319 data->rxring[i].vlan = 0; 1320 } 1321 1322 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; 1323 1324 data->rxtail = 0; 1325 data->rxhead = 0; 1326 1327 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1328 struct sk_buff *skb; 1329 1330 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 1331 if (!skb) { 1332 /* Bah. No memory for now, but maybe we'll get 1333 * some more later. 1334 * For now, we'll live with the smaller ring. 1335 */ 1336 printk(KERN_WARNING 1337 "%s: Could only allocate %d receive skb(s).\n", 1338 dev->name, i); 1339 data->rxhead = i; 1340 break; 1341 } 1342 1343 data->rxskbs[i] = skb; 1344 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); 1345 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; 1346 } 1347 1348 data->rxfree = i; 1349 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); 1350 1351 for (i = 0; i < TSI108_TXRING_LEN; i++) { 1352 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); 1353 data->txring[i].misc = 0; 1354 } 1355 1356 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; 1357 data->txtail = 0; 1358 data->txhead = 0; 1359 data->txfree = TSI108_TXRING_LEN; 1360 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); 1361 tsi108_init_phy(dev); 1362 1363 napi_enable(&data->napi); 1364 1365 timer_setup(&data->timer, tsi108_timed_checker, 0); 1366 mod_timer(&data->timer, jiffies + 1); 1367 1368 tsi108_restart_rx(data, dev); 1369 1370 TSI_WRITE(TSI108_EC_INTSTAT, ~0); 1371 1372 TSI_WRITE(TSI108_EC_INTMASK, 1373 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | 1374 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | 1375 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | 1376 TSI108_INT_SFN | TSI108_INT_STATCARRY)); 1377 1378 TSI_WRITE(TSI108_MAC_CFG1, 1379 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); 1380 netif_start_queue(dev); 1381 return 0; 1382 } 1383 1384 static int tsi108_close(struct net_device *dev) 1385 { 1386 struct tsi108_prv_data *data = netdev_priv(dev); 1387 1388 netif_stop_queue(dev); 1389 napi_disable(&data->napi); 1390 1391 del_timer_sync(&data->timer); 1392 1393 tsi108_stop_ethernet(dev); 1394 tsi108_kill_phy(dev); 1395 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1396 TSI_WRITE(TSI108_MAC_CFG1, 0); 1397 1398 /* Check for any pending TX packets, and drop them. */ 1399 1400 while (!data->txfree || data->txhead != data->txtail) { 1401 int tx = data->txtail; 1402 struct sk_buff *skb; 1403 skb = data->txskbs[tx]; 1404 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 1405 data->txfree++; 1406 dev_kfree_skb(skb); 1407 } 1408 1409 free_irq(data->irq_num, dev); 1410 1411 /* Discard the RX ring. */ 1412 1413 while (data->rxfree) { 1414 int rx = data->rxtail; 1415 struct sk_buff *skb; 1416 1417 skb = data->rxskbs[rx]; 1418 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 1419 data->rxfree--; 1420 dev_kfree_skb(skb); 1421 } 1422 1423 dma_free_coherent(&data->pdev->dev, 1424 TSI108_RXRING_LEN * sizeof(rx_desc), 1425 data->rxring, data->rxdma); 1426 dma_free_coherent(&data->pdev->dev, 1427 TSI108_TXRING_LEN * sizeof(tx_desc), 1428 data->txring, data->txdma); 1429 1430 return 0; 1431 } 1432 1433 static void tsi108_init_mac(struct net_device *dev) 1434 { 1435 struct tsi108_prv_data *data = netdev_priv(dev); 1436 1437 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | 1438 TSI108_MAC_CFG2_PADCRC); 1439 1440 TSI_WRITE(TSI108_EC_TXTHRESH, 1441 (192 << TSI108_EC_TXTHRESH_STARTFILL) | 1442 (192 << TSI108_EC_TXTHRESH_STOPFILL)); 1443 1444 TSI_WRITE(TSI108_STAT_CARRYMASK1, 1445 ~(TSI108_STAT_CARRY1_RXBYTES | 1446 TSI108_STAT_CARRY1_RXPKTS | 1447 TSI108_STAT_CARRY1_RXFCS | 1448 TSI108_STAT_CARRY1_RXMCAST | 1449 TSI108_STAT_CARRY1_RXALIGN | 1450 TSI108_STAT_CARRY1_RXLENGTH | 1451 TSI108_STAT_CARRY1_RXRUNT | 1452 TSI108_STAT_CARRY1_RXJUMBO | 1453 TSI108_STAT_CARRY1_RXFRAG | 1454 TSI108_STAT_CARRY1_RXJABBER | 1455 TSI108_STAT_CARRY1_RXDROP)); 1456 1457 TSI_WRITE(TSI108_STAT_CARRYMASK2, 1458 ~(TSI108_STAT_CARRY2_TXBYTES | 1459 TSI108_STAT_CARRY2_TXPKTS | 1460 TSI108_STAT_CARRY2_TXEXDEF | 1461 TSI108_STAT_CARRY2_TXEXCOL | 1462 TSI108_STAT_CARRY2_TXTCOL | 1463 TSI108_STAT_CARRY2_TXPAUSE)); 1464 1465 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); 1466 TSI_WRITE(TSI108_MAC_CFG1, 0); 1467 1468 TSI_WRITE(TSI108_EC_RXCFG, 1469 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); 1470 1471 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | 1472 TSI108_EC_TXQ_CFG_EOQ_OWN_INT | 1473 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << 1474 TSI108_EC_TXQ_CFG_SFNPORT)); 1475 1476 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | 1477 TSI108_EC_RXQ_CFG_EOQ_OWN_INT | 1478 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << 1479 TSI108_EC_RXQ_CFG_SFNPORT)); 1480 1481 TSI_WRITE(TSI108_EC_TXQ_BUFCFG, 1482 TSI108_EC_TXQ_BUFCFG_BURST256 | 1483 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1484 TSI108_EC_TXQ_BUFCFG_SFNPORT)); 1485 1486 TSI_WRITE(TSI108_EC_RXQ_BUFCFG, 1487 TSI108_EC_RXQ_BUFCFG_BURST256 | 1488 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1489 TSI108_EC_RXQ_BUFCFG_SFNPORT)); 1490 1491 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1492 } 1493 1494 static int tsi108_get_link_ksettings(struct net_device *dev, 1495 struct ethtool_link_ksettings *cmd) 1496 { 1497 struct tsi108_prv_data *data = netdev_priv(dev); 1498 unsigned long flags; 1499 1500 spin_lock_irqsave(&data->txlock, flags); 1501 mii_ethtool_get_link_ksettings(&data->mii_if, cmd); 1502 spin_unlock_irqrestore(&data->txlock, flags); 1503 1504 return 0; 1505 } 1506 1507 static int tsi108_set_link_ksettings(struct net_device *dev, 1508 const struct ethtool_link_ksettings *cmd) 1509 { 1510 struct tsi108_prv_data *data = netdev_priv(dev); 1511 unsigned long flags; 1512 int rc; 1513 1514 spin_lock_irqsave(&data->txlock, flags); 1515 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd); 1516 spin_unlock_irqrestore(&data->txlock, flags); 1517 1518 return rc; 1519 } 1520 1521 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1522 { 1523 struct tsi108_prv_data *data = netdev_priv(dev); 1524 if (!netif_running(dev)) 1525 return -EINVAL; 1526 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); 1527 } 1528 1529 static const struct ethtool_ops tsi108_ethtool_ops = { 1530 .get_link = ethtool_op_get_link, 1531 .get_link_ksettings = tsi108_get_link_ksettings, 1532 .set_link_ksettings = tsi108_set_link_ksettings, 1533 }; 1534 1535 static const struct net_device_ops tsi108_netdev_ops = { 1536 .ndo_open = tsi108_open, 1537 .ndo_stop = tsi108_close, 1538 .ndo_start_xmit = tsi108_send_packet, 1539 .ndo_set_rx_mode = tsi108_set_rx_mode, 1540 .ndo_get_stats = tsi108_get_stats, 1541 .ndo_eth_ioctl = tsi108_do_ioctl, 1542 .ndo_set_mac_address = tsi108_set_mac, 1543 .ndo_validate_addr = eth_validate_addr, 1544 }; 1545 1546 static int 1547 tsi108_init_one(struct platform_device *pdev) 1548 { 1549 struct net_device *dev = NULL; 1550 struct tsi108_prv_data *data = NULL; 1551 hw_info *einfo; 1552 int err = 0; 1553 1554 einfo = dev_get_platdata(&pdev->dev); 1555 1556 if (NULL == einfo) { 1557 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", 1558 pdev->id); 1559 return -ENODEV; 1560 } 1561 1562 /* Create an ethernet device instance */ 1563 1564 dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); 1565 if (!dev) 1566 return -ENOMEM; 1567 1568 printk("tsi108_eth%d: probe...\n", pdev->id); 1569 data = netdev_priv(dev); 1570 data->dev = dev; 1571 data->pdev = pdev; 1572 1573 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", 1574 pdev->id, einfo->regs, einfo->phyregs, 1575 einfo->phy, einfo->irq_num); 1576 1577 data->regs = ioremap(einfo->regs, 0x400); 1578 if (NULL == data->regs) { 1579 err = -ENOMEM; 1580 goto regs_fail; 1581 } 1582 1583 data->phyregs = ioremap(einfo->phyregs, 0x400); 1584 if (NULL == data->phyregs) { 1585 err = -ENOMEM; 1586 goto phyregs_fail; 1587 } 1588 /* MII setup */ 1589 data->mii_if.dev = dev; 1590 data->mii_if.mdio_read = tsi108_mdio_read; 1591 data->mii_if.mdio_write = tsi108_mdio_write; 1592 data->mii_if.phy_id = einfo->phy; 1593 data->mii_if.phy_id_mask = 0x1f; 1594 data->mii_if.reg_num_mask = 0x1f; 1595 1596 data->phy = einfo->phy; 1597 data->phy_type = einfo->phy_type; 1598 data->irq_num = einfo->irq_num; 1599 data->id = pdev->id; 1600 netif_napi_add(dev, &data->napi, tsi108_poll, 64); 1601 dev->netdev_ops = &tsi108_netdev_ops; 1602 dev->ethtool_ops = &tsi108_ethtool_ops; 1603 1604 /* Apparently, the Linux networking code won't use scatter-gather 1605 * if the hardware doesn't do checksums. However, it's faster 1606 * to checksum in place and use SG, as (among other reasons) 1607 * the cache won't be dirtied (which then has to be flushed 1608 * before DMA). The checksumming is done by the driver (via 1609 * a new function skb_csum_dev() in net/core/skbuff.c). 1610 */ 1611 1612 dev->features = NETIF_F_HIGHDMA; 1613 1614 spin_lock_init(&data->txlock); 1615 spin_lock_init(&data->misclock); 1616 1617 tsi108_reset_ether(data); 1618 tsi108_kill_phy(dev); 1619 1620 if ((err = tsi108_get_mac(dev)) != 0) { 1621 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", 1622 dev->name); 1623 goto register_fail; 1624 } 1625 1626 tsi108_init_mac(dev); 1627 err = register_netdev(dev); 1628 if (err) { 1629 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1630 dev->name); 1631 goto register_fail; 1632 } 1633 1634 platform_set_drvdata(pdev, dev); 1635 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", 1636 dev->name, dev->dev_addr); 1637 #ifdef DEBUG 1638 data->msg_enable = DEBUG; 1639 dump_eth_one(dev); 1640 #endif 1641 1642 return 0; 1643 1644 register_fail: 1645 iounmap(data->phyregs); 1646 1647 phyregs_fail: 1648 iounmap(data->regs); 1649 1650 regs_fail: 1651 free_netdev(dev); 1652 return err; 1653 } 1654 1655 /* There's no way to either get interrupts from the PHY when 1656 * something changes, or to have the Tsi108 automatically communicate 1657 * with the PHY to reconfigure itself. 1658 * 1659 * Thus, we have to do it using a timer. 1660 */ 1661 1662 static void tsi108_timed_checker(struct timer_list *t) 1663 { 1664 struct tsi108_prv_data *data = from_timer(data, t, timer); 1665 struct net_device *dev = data->dev; 1666 1667 tsi108_check_phy(dev); 1668 tsi108_check_rxring(dev); 1669 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); 1670 } 1671 1672 static int tsi108_ether_remove(struct platform_device *pdev) 1673 { 1674 struct net_device *dev = platform_get_drvdata(pdev); 1675 struct tsi108_prv_data *priv = netdev_priv(dev); 1676 1677 unregister_netdev(dev); 1678 tsi108_stop_ethernet(dev); 1679 iounmap(priv->regs); 1680 iounmap(priv->phyregs); 1681 free_netdev(dev); 1682 1683 return 0; 1684 } 1685 module_platform_driver(tsi_eth_driver); 1686 1687 MODULE_AUTHOR("Tundra Semiconductor Corporation"); 1688 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); 1689 MODULE_LICENSE("GPL"); 1690 MODULE_ALIAS("platform:tsi-ethernet"); 1691